
Introduction to
Python Network
Automation

The First Journey
—
Brendan Choi

Introduction to Python
Network Automation

The First Journey

Brendan Choi

Brendan Choi
Sydney, NSW, Australia

Introduction to Python Network Automation: The First Journey

ISBN-13 (pbk): 978-1-4842-6805-6 ISBN-13 (electronic): 978-1-4842-6806-3
https://doi.org/10.1007/978-1-4842-6806-3

Copyright © 2021 by Brendan Choi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors, nor the Publisher can accept any legal responsibility for any errors or
omissions that may be made. The Publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York
Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, email
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC,
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6805-6. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6806-3
www.freepik.com
http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://booktranslations@springernature.com
http://bookpermissions@springernature.com
http://www.apress.com/bulk-sales
http://www.apress.com/978-1-4842-6805-6
http://www.apress.com/source-code

For my wife Sue and children, Hugh, Leah, and Caitlin.

v

About the Author ��xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

Table of Contents

 ■Chapter 1: Introduction to Python Network Automation ��������������������������������������� 1

Laying the Foundation �� 1

Exploring Your Skills and Prerequisites �� 2

General Competencies of Three Main IT Domain Group ��� 3

Comparative Analysis of IT Engineers’ Responsibilities ��� 6

Python and Network Automation Studies ��� 10

Why Do People Want to Learn Python? ��� 10

What Do I Need to Study Network Automation Using Python? ��������������������������������������� 12

Hardware: Minimum Specifications for Laptop or PC ��� 13

Software Requirements �� 14

Building a Network Automation Development Environment Using GNS3 ����������������������� 16

Downloading Supplementary Guides and Source Code ��� 20

Summary �� 21

Storytime 1: Mega Speed Shoe Factory ��� 21

■ Table of ConTenTs

vi

 ■Chapter 2: Learn Python Basics on Windows �� 23

“Hello, World!” and print() Function in Interactive Mode ��� 24

Preparing for the Python Exercises �� 27

Understanding Data Types �� 28

Indentation and Code Blocks �� 30

Commenting ��� 31

Python Naming Convention �� 32

Doing the Python Exercises �� 33

Variables and Strings ��� 34

Exercise 2-1: Create Variables and Assign Various Data Types �� 34

Exercise 2-2: Create Variables and Use the print() Function to Print Output �� 35

Exercise 2-3: Use Abbreviated Variable Assignment �� 36

Exercise 2-4: Enter a String, Escape Character Backslash (\), and type() Function ����������������������������� 36

Exercise 2-5: Determine If a Variable Is a Container, a Tag, or a Pointer �� 38

Exercise 2-6: Use String Indexing ��� 39

Exercise 2-7: Understand Variable Assignment Errors ��� 39

Exercise 2-8: Avoid “SyntaxError: EOL While Scanning String Literal” ��� 40

Exercise 2-9: Avoid “NameError: name ‘variable_name’ is not defined” �� 40

Exercise 2-10: Avoid “SyntaxError: invalid syntax” ��� 41

Exercise 2-11: Avoid “TypeError: ‘str’ object is not callable” �� 41

Exercise 2-12: Add Multiline Comments with Triple Quotation Marks �� 43

Exercise 2-13: Use \ as an Escape Character to Remove Special Character Meanings ����������������������� 44

Exercise 2-14: Enter (Inject) Values/Strings in a String Using %s �� 44

Printing, Concatenating, and Converting Strings �� 45

Exercise 2-15: Use the print() and len() Functions to Create a Simple Function ��������������������������������� 45

Exercise 2-16: Use the lower() and upper() String Methods�� 46

Exercise 2-17: Perform String Concatenation and Use the str() Method ��� 46

Exercise 2-18: Learn to Change a String Using Curly Brackets and �format() ������������������������������������� 47

Exercise 2-19: Adjust the Text Position with Curly Brackets and �format() �� 48

Exercise 2-20: Adjust the Number of Decimal Places��� 49

■ Table of ConTenTs

vii

Exercise 2-21: Ask for and Receive User Input with input() ��� 49

Exercise 2-22: Change a Word or Characters in a String �� 50

Recap: Variables and Strings �� 51

Numbers and Arithmetic Operators �� 52

Exercise 2-23: Use Arithmetic Operators �� 52

Exercise 2-24: Understand Integers vs� Strings ��� 53

Recap: Arithmetic Operators ��� 53

Booleans and Relational Operators �� 54

Exercise 2-25: Use Booleans �� 54

Exercise 2-26: Use Relational Operators �� 55

Exercise 2-27: Use Boolean Expressions to Test True or False ��� 55

Exercise 2-28: Use Logical (Membership) Operators �� 56

Exercise 2-29: Change the Order of Operation with () ��� 56

Control Statements: if, elif, and else ��� 56

Exercise 2-30: Use if and else �� 57

Exercise 2-31: Use if, elif, and else ��� 57

Exercise 2-32: Write Code with if, elif, and else �� 58

Recap: Boolean and Conditionals ��� 59

Functions �� 59

Exercise 2-33: Defining a Function ��� 60

Exercise 2-34: Assign Default Values to a Function �� 60

Exercise 2-35: Define Hello and Goodbye Functions �� 61

Exercise 2-36: Use the Odd or Even Function ��� 62

Exercise 2-37: Nest a Function Within a Function �� 62

Recap: Functions �� 63

Lists �� 63

Exercise 2-38: Create a List and Index Items ��� 63

Exercise 2-39: Use append, extend, and insert in a List ��� 64

Slicing �� 65

Exercise 2-40: Slice a List �� 65

■ Table of ConTenTs

viii

Exceptions and Error Handling ��� 66

Exercise 2-41: Avoid a ValueError Error �� 66

Exercise 2-42: Handle Errors with try and except in a List ��� 66

Exercise 2-43: Find an Index of an Item in a List with the Customized Exception ������������������������������� 68

Practicing Lists ��� 69

Exercise 2-44: Practice a List ��� 69

Using for Loops and while Loops ��� 71

Exercise 2-45: Use the for Loop’s upper() and capitalize() Methods ��� 71

Exercise 2-46: Use the while Loop and len() Function ��� 71

Sorting and Ranges �� 72

Exercise 2-47: Use sort() vs� sorted() in a List ��� 72

Exercise 2-48: Link Two Lists ��� 72

Exercise 2-49: Find the List Length Using the len() Function ��� 73

Exercise 2-50: Use range() and the for Loop �� 73

Exercise 2-51: Use the String List for loop() and range() with Arguments �� 74

Recap: Lists and Loops ��� 75

Tuples ��� 76

Exercise 2-52: See Some Basic Tuple Examples �� 76

Exercise 2-53: Convert a Tuple to a List ��� 76

Exercise 2-54: Determine Whether a Tuple Immutable ��� 77

Exercise 2-55: Convert a Tuple to a List and a List to a Tuple ��� 78

Exercise 2-56: Use a for Loop in a Tuple ��� 78

Exercise 2-57: Assign Multiple Variables to a Tuple�� 79

Exercise 2-58: Create a Simple Tuple Function �� 79

Exercise 2-59: Use Tuples as List Elements ��� 80

Recap: Tuples �� 80

Dictionaries �� 81

Exercise 2-60: Understand Dictionary Basics ��� 81

Exercise 2-61: Avoid a Dictionary TypeError and Convert Two Lists to a Single Dictionary ������������������ 82

Exercise 2-62: Use Keys to Print Values from a Dictionary ��� 82

Exercise 2-63: Change a Dictionary Value �� 83

■ Table of ConTenTs

ix

Exercise 2-64: Add a New Set of Keys and Values to a Dictionary ��� 83

Exercise 2-65: Find the Number of Dictionary Elements �� 84

Exercise 2-66: Delete Dictionary Keys and Values ��� 84

Exercise 2-67: Write a Python Script with a Dictionary �� 84

Exercise 2-68: Use a Dictionary for a Loop and Formatting ��� 85

Recap: Dictionaries ��� 86

Handling Files ��� 87

Exercise 2-69: Read and Display Hosts File from Your PC �� 87

Exercise 2-70: Open and Close Hosts Files �� 88

Exercise 2-71: Create Code to Close a File in Two Ways �� 89

Exercise 2-72: Create a Text File, and Read, Write, and Print ��� 90

Exercise 2-73: Use rstrip() or lstrip() to Remove Whitespace �� 93

Exercise 2-74: Python File Mode Exercise: Use r Mode �� 94

Exercise 2-75: Python File Mode Exercise: Use r+ Mode ��� 95

Exercise 2-76: Python File Mode Exercise: Use a Mode ��� 96

Exercise 2-77: Python File Mode Exercise: Use a+ Mode ��� 99

Exercise 2-78: Python File Mode Exercise: Use w Mode �� 99

Exercise 2-79: Python File Mode Exercise: Use w+ Mode �� 100

Exercise 2-80: Python File Mode Exercise: Use x Mode ��� 101

Exercise 2-81: Python File Mode Exercise: Use x Mode ��� 102

Exercise 2-82: Open a Byte File in Python �� 103

Exercise 2-83: Handle Errors with try and except �� 104

Recap: Python file Handling Concept �� 105

Using Python Modules �� 105

Time Module ��� 106

Exercise 2-84: Import the time Module �� 106

Sleep Method ��� 106

Exercise 2-85: Use the time�sleep() Function ��� 106

Exercise 2-86: Browse a Path Using the sys Module ��� 107

Exercise 2-87: Add a New Filepath Using the sys Module �� 108

Exercise 2-88: Check Built-ins and sys�builtin_module ��� 109

■ Table of ConTenTs

x

Exercise 2-89: Use a Simple import sys Module in a try and except Exercise ����������������������������������� 110

Exercise 2-90: Understand Lambdas by Making a Calculator �� 111

Recap: Module Concepts �� 112

Summary �� 112

 ■Chapter 3: More Python Exercises �� 113

Getting Ready for the Exercises ��� 113

Exercise 3-1: Concatenate a List and a Tuple into a Single List ��� 114

Exercise 3-2: Use Python as a Calculator ��� 114

Exercise 3-3: Do Some Basic String format() Exercises �� 114

Exercise 3-4: Ask for a Username �� 115

Exercise 3-5: Get a Username: Version 1 �� 116

Exercise 3-6: Get a Username: Version 2 �� 117

Exercise 3-7: Get a Username: Version 3 �� 118

Exercise 3-8: Add a Temporary Filepath, Import ex3_7�py as a Module, and Run the Script �������������� 120

Exercise 3-9: Use Commas to Add Spaces Between Strings �� 120

Exercise 3-10: Practice if; if and else; and if, elif, and else �� 121

Exercise 3-11: Practice for ~ in range with end=‘ ’ ��� 122

Exercise 3-12: Practice for ~ in range �� 123

Exercise 3-13: Practice for line in ~ ��� 123

Exercise 3-14: Use the split() Method �� 124

Exercise 3-15: Practice with lstrip(), rstrip(), strip(), upper(), lower(), title(), and capitalize()��������� 124

Exercise 3-16: Create a file and read it four different ways ��� 125

Exercise 3-17: Read and Output Files for a More Detailed Understanding ��� 126

Exercise 3-18: Use the getpass() Module and User Input �� 127

Exercise 3-19: Understand the Difference Between Encoding and Decoding ������������������������������������ 128

Exercise 3-20: Handle CSV Files in Python with the csv Module �� 128

Exercise 3-21: Output a CSV File �� 132

Exercise 3-22: Find the Price of a Cisco ISR 4331 Router from a CSV File ��� 132

Exercise 3-23: Calculate the Total Cost of the Router Purchases: No Module ������������������������������������ 133

Exercise 3-24: Calculate the Total Cost of the Router Purchases: Using the csv Module ������������������� 134

Exercise 3-25: Convert dd-mmm-yy and Calculate the Difference in Days and Then in Years����������� 134

■ Table of ConTenTs

xi

Exploring the Python IDE Environment ��� 136

Summary �� 137

Storytime 2: Machine vs� Human, The First Confrontation ��� 138

 ■Chapter 4: Introduction to VMware Workstation ��� 139

VMware Workstation at a Glance ��� 139

Type-1 vs� Type-2 Hypervisors �� 141

VMware Workstation Pro for a Proof-of-Concept Lab ��� 142

Before Using VMware Workstation ��� 142

What’s Next on VMware Workstation 15 Pro? ��� 145

VMware Workstation 15 Pro User Console ��� 145

Basic Operations of VMware Workstation 15 Pro ��� 146

VMware Workstation Pro: Basic Operations�� 147

VMware Workstation Menu ��� 149

Virtual Network Adapters ��� 152

Virtual Network Editor Overview ��� 152

Virtual Network Interface Description �� 155

Revealing Each Virtual Network Interface Types �� 159

Summary �� 168

 ■Chapter 5: Creating an Ubuntu Server Virtual Machine ������������������������������������� 169

Downloading and Installing a Ubuntu Server 20 Image ��� 170

Downloading the Ubuntu Server 20�04 LTS Image ��� 171

Installing Ubuntu Server 20�04 LTS �� 172

Logging In to a New Ubuntu Server 20 via SSH ��� 196

Customize Ubuntu Server ��� 202

Ubuntu VM Customization 1: Enable Root User SSH Login on Ubuntu Server 20�04 �������������������������� 203

Ubuntu VM Customization 2: Install a Desktop GUI and Other Packages �� 205

Ubuntu VM Customization 3: Enable Root User GUI Access �� 210

Taking a Snapshot of a Virtual Machine ��� 214

Cloning a Virtual Machine ��� 217

Summary �� 222

■ Table of ConTenTs

xii

 ■Chapter 6: Creating a CentOS 8 Server Virtual Machine ������������������������������������ 223

Downloading and Installing a CentOS 8 Server Image ��� 223

Downloading the CentOS 8 Server Image ��� 224

Installing CentOS 8 Server �� 226

Logging In to a New CentOS 8 Server via SSH ��� 260

Managing a Network Adapter on Linux �� 263

Creating a GNS3 VM by Importing an �ova File ��� 269

Downloading and Installing the GNS3 VM from an �ova File ��� 270

Summary �� 274

Storytime 3: The Origin of Hypervisors ��� 274

 ■Chapter 7: Linux Fundamentals ��� 275

Why Learn Linux? ��� 276

The Beginning of Linux ��� 278

Understanding the Linux Environment ��� 279

Understanding Linux Directories and File Formats �� 280

vi vs� nano �� 281

Introduction to vi ��� 282

Introduction to nano ��� 293

Linux Basic Administration ��� 306

Changing the Hostname ��� 306

Linux Basic File and Directory Commands ��� 309

Linux File and Directory Exercises�� 311

Summary �� 327

 ■Chapter 8: Linux Basic Administration �� 329

Information on Linux: Kernel and Distribution Version ��� 329

Information on Linux: Use the netstat Command to Validate TCP/UDP Ports ��������������� 332

Installing TFTP, FTP, SFTP, and NTP Servers �� 339

FTP Server Installation�� 340

Installing the SFTP Server �� 346

https://doi.org/10.1007/978-1-4842-6806-3_6#Sec2222

■ Table of ConTenTs

xiii

Installing the TFTP Server ��� 350

Installing the NTP Server �� 355

Linux TCP/IP Troubleshooting Exercise ��� 359

Summary �� 364

Storytime 4: Becoming a Savvy Linux Administrator, Perhaps Every IT
Engineer’s Dream? ��� 364

 ■Chapter 9: Regular Expressions for Network Automation ��������������������������������� 367

Why Regex? �� 368

To re or Not to re ��� 369

Studying Regular Expressions Using Python �� 371

Method 1: Using Notepad++ �� 372

Method 2: Using the Linux Shell ��� 374

Regular Expression Breakdown: [A-Z]{3}\d{4}[/]\w+ �� 375

Method 3: Using the Internet to Study Regular Expressions �� 375

Regex Operation: The Basics �� 376

Character Class ([]) ��� 378

Dot (�): Single Character Match ��� 379

Asterisk (*): Repetition �� 380

Plus (+): Repetition ��� 380

{m, n}: Repetition �� 380

Python’s re Module ��� 382

Python re String Methods ��� 383

Match Object Method ��� 387

Compile Options ��� 388

re�DOTALL (re�S) �� 389

re�IGNORECASE (re�I) ��� 389

re�MULTILINE (re�M)��� 390

re�VERBOSE (re�X) ��� 391

\: Confusing Backslash Character �� 392

Regular Expressions: A Little Revision Plus More �� 393

More Metacharacters ��� 393

■ Table of ConTenTs

xiv

Lookahead and Lookbehind Assertions �� 403

Lookahead, Lookbehind, and Noncapturing group ��� 403

Practice More Lookarounds �� 405

Lookaround Application Examples �� 407

sub Method: Substituting Strings ��� 409

Substitute Strings Using sub �� 410

Using sub and \g to Swap Positions ��� 410

Insert a Function in sub Method ��� 411

Summary �� 413

 ■Chapter 10: GNS3 Basics ��� 415

GNS3 at a Glance �� 415

Installing GNS3 for the First Time ��� 417

Downloading the GNS3 Installation File �� 417

GNS3 Installation and Setup ��� 418

GNS3 Installation �� 418

GNS3 Setup Procedures ��� 418

Getting Familiar with GNS3 �� 424

GNS3 Menus and GUI �� 424

Gracefully Shutting Down GNS3 and GNS3 VM ��� 426

Starting GNS3 as an Administrator ��� 428

Using GNS3 for the First Time: Cisco IOS and Windows Lab �� 429

Cisco IOS Software License and Downloading an Older Cisco IOS ��� 430

Decompressing Cisco IOS for GNS3 Use ��� 431

Installing Cisco IOS on the GNS3 VM �� 442

Creating an IOS Lab Topology on GNS3 and Connecting to the Internet ���������������������� 454

Installing the Microsoft Loopback Adapter ��� 462

Accessing GNS3 Network Devices Using MS Loopback ��� 469

Configuring the GNS3 IOS Router Using a Python Script from the Windows
Host PC ��� 478

■ Table of ConTenTs

xv

Cisco IOS and GNS3 Appliance Lab �� 482

Importing and Installing the GNS3 Linux Appliance Server �� 482

Manually Assigning IP Address to GNS3 Linux Appliance Server ��� 486

Using the GNS3 Appliance Linux’s Python to Manage R1 ��� 487

Summary �� 489

 ■Chapter 11: Cisco IOS Labs �� 491

Cisco IOS and the Linux VM Lab ��� 491

Creating a New GNS3 Project for the Linux VM Lab ��� 492

Uploading and Downloading Files to the GNS3 IOS Router from Linux VMs
(File Transfer Testing Lab) �� 503

Copying (Cloning) a GNS3 Project �� 511

Summary �� 514

 ■Chapter 12: Building a Python Automation Lab Environment ��������������������������� 515

Cisco CML-PERSONAL Software License Information and Software Downloads ��������� 516

Downloading the Cisco CML-PERSONAL IOSvL2 (Switch) Image ��������������������������������� 516

Downloading the Cisco CML-PERSONAL IOSv (Router) Image and
startup_config Files ��� 517

Installing the Cisco CML-PERSONAL L2 Switch and CML-PERSONAL L3 on GNS3 ������ 518

Installing the Cisco CML-PERSONAL L2 Switch on GNS3 ��� 518

Quick Communication Test on CML L2 Switch Integration on GNS3 �� 528

Installing the Cisco CML-PERSONAL L3 Router on GNS3 ��� 529

Quick Communication Test on CML L3 Router Integration on GNS3 ��� 539

Building a CML-PERSONAL Lab Topology ��� 541

Summary �� 548

 ■Chapter 13: Python Network Automation Lab: Basic Telnet ������������������������������ 549

Python Network Automation: Telnet Labs ��� 549

Telnet Lab 1: Interactive Telnet Session to Cisco Devices on a Python Interpreter ������ 551

Telnet Lab 2: Configure a Single Switch with a Python Telnet Template ���������������������� 557

Telnet Lab 3: Configure Random VLANs Using a for Loop �� 562

■ Table of ConTenTs

xvi

Telnet Lab 4: Configure Random VLANs Using a while Loop �� 566

Telnet Lab 5: Configure 100 VLANs Using the for ~ in range Loop Method ������������������ 569

Telnet Lab 6: Add a Privilege 3 User on Multiple Devices Using IP Addresses
from an External File �� 573

Telnet Lab 7: Taking Backups of running-config (or startup-config) to
Local Server Storage �� 579

Summary �� 582

 ■Chapter 14: Python Network Automation Labs: SSH paramiko and netmiko ���� 583

Python Network Automation Labs Using the paramiko and netmiko Libraries ������������ 583

Python SSH Labs: paramiko ��� 584

paramiko Lab 1: Configure the Clock and Time Zone of All Devices Interactively
in the Python Interpreter �� 584

paramiko Lab 2: Configuring an NTP Server on Cisco Devices Without
User Interaction (NTP Lab) �� 592

paramiko Lab 3: Create an Interactive paramiko SSH Script to Save Running
Configurations to the TFTP Server �� 598

Python SSH Labs: netmiko ��� 605

netmiko Lab 1: netmiko Uses a Dictionary for Device Information,
Not a JSON Object �� 606

netmiko Lab 2: Develop a Simple Port Scanner Using a Socket Module and Then
Develop a nemiko Disable Telnet Script ��� 614

netmiko Lab 3: config compare �� 621

Summary �� 628

 ■Chapter 15: Python Network Automation Labs: cron and SNMPv3 ������������������� 629

Cron and SNMPv3 Labs �� 629

Cloning a GNS3 Project for the Next Lab �� 630

Quick-Start to the Linux Scheduler, cron �� 637

Ubuntu 20�04 LTS Task Scheduler: crontab �� 637

CentOS8�1 Task Scheduler: crond ��� 641

Learn cron Job Definitions with Examples ��� 646

■ Table of ConTenTs

xvii

Using Python to Run an SNMPv3 Query ��� 648

Quick-Start Guide to SNMP��� 649

Learn to Use SNMPwalk on a Linux Server �� 653

Borrowing Some Example Python SNMP Code ��� 666

Summary �� 673

 ■Chapter 16: Python Network Automation Labs: Ansible, pyATS, Docker,
and the Twilio API ��� 675

Python Network Automation Development Labs �� 675

Quick-Start Guide to Ansible: virtualenv Lab 1 ��� 676

Installing virtualenv and Getting Started with Ansible �� 678

Quick-Start Guide to pyATS (Genie): VirtualEnv Lab 2 �� 685

Sendmail Lab Using an Imported Docker Image �� 700

Docker Components and Account Registration �� 701

Docker Installation �� 702

Test-Driving Docker �� 703

Docker Sendmail Python Lab �� 707

Lab: Sendmail Email Notification script Development �� 712

CPU Utilization Monitoring Lab: Send an SMS Message Using Twilio �������������������������� 717

TWILIO Account Creation, Install Twilio Python Module and SMS Message Setup ����������������������������� 718

CPU Utilization Monitoring Lab with an SMS Message ��� 723

Summary �� 732

 ■Chapter 17: Upgrading Multiple Cisco IOS XE Routers �������������������������������������� 733

Practical Python Network Automation Lab: IOS XE Upgrade Lab ��������������������������������� 733

Applying OOP Concepts to Your Network ��� 734

Flow Control and Controlling User Input: UID, PWD, and Information Collector ������������ 738

Lab Preparation �� 743

CSR 1000v IOS XE Software and Download �� 744

Cisco CSR 1000v Installation on VMware Workstation ��� 745

■ Table of ConTenTs

xviii

Discussion of How an IOS (IOS-XE/XR) Is Upgraded on Cisco Devices ������������������������� 756

Tasks Involved in a Cisco IOS Upgrade ��� 756

Summary �� 759

 ■Chapter 18: Python Network Automation Lab: Cisco IOS Upgrade
Mini Tools Development �� 761

Cisco IOS Upgrade Application Development ��� 761

Part A: Pre-check Tools Development Connectivity Validation Tool ������������������������������ 762

Collect User’s Login Credentials and User Input �� 774

Collect a New IOS Filename and MD5 Value from a CSV File ��������������������������������������� 778

Check the MD5 Value of the New IOS on the Server �� 788

Check the Flash Size on Cisco Routers �� 792

Make Backups of running-config, the Interface Status, and the Routing Table ����������� 796

Part B: IOS Uploading and More Pre-check Tools Development ����������������������������������� 799

IOS Uploading Tool �� 799

Check the New IOS MD5 Value on the Cisco Device’s Flash �� 804

Options to Stop or Reload the Routers ��� 810

Check the Reloading Device and Perform a Post-Reload Configuration Verification ��� 819

Summary �� 829

 ■Chapter 19: Python Network Automation Labs: Combining and
Completing the Cisco IOS Upgrade Application �� 831

Creating a Single Python File ��� 832

Summary �� 852

Final Words ��� 853

Index ��� 855

xix

About the Author

Brendan Choi currently works as a senior technical consultant for
Australia’s leading IT integrator and Internet service provider, Telstra.
He is a Certified Cisco Network Engineer and a Certified VMware Data
Center Engineer, working on enterprise networking, data center, unified
communications, security, and virtualization technologies for more
than 17 years and now using Python automation to manage enterprise
devices. He began his IT career with Cisco Systems and then moved on to
networking and systems integrator roles with several reputable enterprise
IT integrators. He previously worked for Dimension Data for seven years as
a senior network engineer focusing on trending technologies to streamline
processes, increase work efficiency, and develop technical training to
improve team productivity through various open source software. He
started exploring Python and network automation about seven years ago
but got serious about its potential in the last five years. He prepared Python
3 Network Automation Lab Guide for Network & System Engineers for his
colleagues and trained more than 100 network and systems engineers in
his last company. Based on blog content and the lab guide, he authored

and published Python Network Automation: By Building an Integrated Virtual Lab in Korean. He is interested
in all aspects of IT technologies but most interested in enterprise networking, security, and virtualization
technologies. He writes to share his love for general IT. His learning experience is shared through his blog
(https://italchemy.wordpress.com/) and YouTube channel (Python Automation).

https://italchemy.wordpress.com/

xxi

About the Technical Reviewer

Giuseppe Citerna, CCIE No. 10503, was the first CCIE Academy Instructor
in Europe, the Middle East, and Africa. Passionate about technologies and
learning systems, he is obsessed with the constant research of systems
to allow everyone to leverage the Internet as a tool for both human and
professional growth. He is currently working as a learning director at IeXa
Academy (www.iexa.it), a startup founded with his longtime friend and
partner Aldo Menichelli. It is active in the education technology field, and
it is radically changing the vocational training system. He is also working
as a learning and development consultant for Dimira, a Cisco Gold
Partner system integrator. He started his career at Telecom Italia’s TAC
in 1999. Then he moved to NextiraOne, where he worked on enterprise
networking, data center virtualization, unified communications, and
knowledge management projects. Alongside his technical career, in
1999 he started working in education at the ELIS Center in Rome at the

Italian Cisco Academy Training Center. Throughout his 20-year career, he has trained thousands of network
engineers at several major companies. His core areas of interest are data center virtualization, network
automation and programmability, and anything related to technologies applied to learning.

http://www.iexa.it

xxiii

Acknowledgments

This book’s content is based on various resources, including my study notes, work instructions, cheat sheets,
content shared on personal blogs, and training guides used for internal network automation training (2018).
The original version was published in Korean on July 25, 2019, but more than half of the content had to be
rewritten to make this book suitable for its new audience. So, technically, this is my second published book,
and I have spent many hours locked up in my study authoring this book.

I am very thankful to both my English publisher (Apress) and my Korean publisher (Acorn) for allowing
me to write and publish the Python network automation learning techniques I have compiled over the years
from the enterprise networking field. I am also grateful to my family, who stood by me while completing this
book. My wife Sue is the biggest supporter of my work, and publication of my work has been only possible
with her support. I had dreamed of writing a book and dedicating it to our three lovely children, Hugh, Leah,
and Caitlin, so they can grow into strong and healthy adolescents who will live up to their dreams and also
learn to share any valuable knowledge or unique experiences with others around them. Hugh, you will be
a kind young man playing piano; Leah, you will continue to set the standard for everyone and strive for
excellence; and Caitlin, one day, you will learn coding to become an outstanding data scientist/white hacker
to help others.

I also would like to give special thanks to Giuseppe Citerna for his excellent technical review; this book
has been made twice as good for our readers because of his experience. I also thank all the Apress staff who
helped me to polish this book. Finally, I sincerely thank all the readers who have purchased this book to
begin their Python network automation journey.

Brendan Choi (2021)

xxv

Introduction

A decade ago, network engineer roles consisted of installing, configuring, maintaining, and troubleshooting
LANs, WANs, and any other IP connectivity technologies. Practical working knowledge of networking
concepts and strong networking protocol knowledge were must-have skills for network engineers. Some of
these protocols included OSPF, EIGRP, BGP, MPLS, VRF, IPsec, QoS, DNS, VTP, VPN, Broadcast, Multicast,
and GRE. Even then, the job requirements for a network engineer demanded real-world experience; broad
application of the advanced principles, theories, concepts, and techniques of networking; and the ability to
troubleshoot, report, and resolve a networking problem.

Roughly five years ago, network engineers were forced to take on more administrative responsibilities
based on ITIL’s IT Service Management and ISO 9001’s designated quality management standards. Middle
management found a way to push down their administration work onto their subordinates. During this
period, new buzzwords were invented by some tech geniuses and sold to the enterprise network market as
the silver bullet to solve all of the IT industry’s problems; these hot keywords were software-defined network
and network automation. The introduction of these words hinted that the enterprise networking market
was about to rapidly change. In fact, the industry started to demand more hybrid engineers with network
programming skills on top of their existing responsibilities. In short, the market wanted more network
engineers who could think and code like real application developers using one or more programming
languages and open source programs. In line with the current market trend, Python has become one of the
most popular programming languages among network engineers for networking task automation because
of its ease of use and shorter development cycle. Python is not the only programming language used in
network automation; other programming or scripting languages currently used include Shell, Bash, Perl,
Java, API, Ansible, JSON, SOAP, Ruby, and REST.

Interestingly, a few years ago, not many organizations or engineers thought network engineers needed
to know how to write code and develop automation scripts or applications. At that time, the network
engineer role was clearly defined, with different groups of engineers divided based on the technology
domain groups. Back then, the term network automation only meant creating ad hoc and simple Tcl scripts
based on the Cisco IOS built-in feature. Network engineers, especially those who studied and worked mainly
on Cisco technologies, were hesitant to dive into any programming language to make their work more
efficient. Although network automation skills could become a real weapon for many network engineers, it
would be a bumpy road to network programmability.

Traditional network engineers only had to deal with OSI layer problems between layers 1 through 4;
they were happy in their bubble, and there was no hurry for any innovation. They had an excellent working
knowledge of networking concepts and protocols that kept them on the job for many years with decent
salaries. But the concept of a software-defined network had been taking the enterprise networking industry
by storm. Cisco was the world leader and a household name for enterprise networking in routing and
switching, security, voice services, and, more recently, server equipment–related data center solutions. Cisco
had been the trusted vendor and partner to larger enterprise customers as well as to smaller, SMB customers
all around the world. Remarkably, it had been a “one-stop shop” enterprise IT solutions vendor for more
than 40 years. This meant you bought complete IT solutions from a single IT vendor, and Cisco’s famous
SmartNet Support, the best post-sales technical assistant center (TAC) support at any time of the day around
the world, was available to all paid customers. Think of Cisco Systems as the world’s largest supermarket for

■ InTroduCTIon

xxvi

enterprise equipment and solutions. Unfortunately, ever since Cisco’s lawsuit against a Chinese networking
equipment manufacturing vendor, Huawei in 2003, Cisco has not been the same. Its technologies and
intellectual properties were stolen, copied, and used by the Chinese vendor, undercutting Cisco’s business
model and eating up Cisco’s market shares.

A few years ago, to have a successful career as a network engineer, you only had to focus on learning
Cisco-specific technologies to keep your job. Many enterprise networks were predominantly designed
and deployed with IP devices manufactured and supported by Cisco until ten years ago. It probably was
the Golden Age of Cisco, where Cisco led the enterprise networking and infrastructure solutions market
based on its robust hardware-based solutions. Even today, when many IT companies hire a new network
engineer, the first qualification they look at is what level of Cisco certification the candidate holds. During
the initial job application process, having a current Cisco certification or not could be a single deciding
factor to make it through the next round of the job interview process. Of course, practical experience is more
important than the actual certification. Still, specific Cisco certifications have been an important measure of
networking and technical proficiency.

No doubt, Cisco Systems has been the dominant vendor in the enterprise networking equipment
and solutions market since the early 1990s and still is in the current market. Still, with the introduction of
disruptive virtualization and software-defined networking (SDN) concepts and the recent onset of open
source tools, network automation technologies have been threatening to disrupt Cisco’s existing business
models. The concept of automation has been around for many years; its roots can be found in the modern
industrialization of the 1900s, and about 20 years ago, the automation phenomena swiped out many
industries relying on electronic terminals (older computer types with specific functions). So, why has
automation become the hot topic in today’s IT industry in general, which includes networking, security, data
center, unified communications, storage, systems, and the cloud?

When you examine the main driver for the latest automation craze in enterprise networking, you will
see there has been a rapid development in high-performance computing based on faster and more efficient
hardware. The hardware components have shrunk in size, providing smaller but more powerful hardware
platforms for software to run in an optimized environment. The existing hardware-centric infrastructure
architecture that required tens to hundreds of servers can now run on a handful of powerful yet energy-efficient
servers running on a virtualized environment. What used to run on hardware-based servers became virtual
machines, happily running on bare-metal hypervisors. Software-centric solutions based on high-performance
hardware, faster intranet speed, and faster LAN and SAN network connectivity are now dominating our
IT industry. The realization of the software-based solution over the traditional hardware-based solutions
empowers organizations to be more flexible and economical, using more robust and reliable IT services
throughout the whole life of the infrastructure devices and applications. For example, one of the most popular
virtualization technology examples is cloud computing. There is very little client-owned, on-premise hardware
in such an environment, and many of the IT services are on-demand services. Today these new technologies are
already replacing more traditional IT infrastructures.

Engineers with passive learning strategies under the current enterprise networking market trend will
have only a grim future waiting ahead. As history repeats itself, the market will leave those engineers behind
and move on quickly. In the last decade, virtualization solutions have become the new norm of server and
storage platforms. Now, even the networking devices are gradually moving away from hardware-based
platforms and moving into the virtual environment, where everything can be controlled by application
programming interfaces (APIs). Two such solutions making their mark are VMware’s NSX and Cisco’s ACI.
Virtualized networking devices are just a handful of files running on hypervisors, making the administration
of control, data, and management planes extremely easy with software. Soon, more and more engineers’
work will be replaced by automated applications that talk to each other through APIs and programming
languages such as Python and Go. Also, the fine lines between specific technologists based on different
technology domains are getting blurred. Simultaneously, what traditional IT engineers have been doing will
be replaced slowly with lines of code or intelligent applications.

■ InTroduCTIon

xxvii

As seen in many industries, there is no doubt that software and automation technologies will be taking
over our lives. The enterprise network automation is part of this unstoppable movement. Software removes
the traditional barriers that stood between systems, software, and network engineers, and all engineers are
now encouraged to learn and write code. As a network engineer, once you learn to code and apply your
new skills in your own company’s network, there is a good chance that you will remain well-footed in the
industry. This is my argument for why all network engineers must learn to code in a programming language.
You must keep learning and apply your newly acquired coding skills to your work to take advantage of
software-defined networks.

 Target Audience
Before writing any documentation, you have to think about the context and consider who your target
audience is. The same goes when writing a book of this magnitude. As the book’s title suggests, this
book is about introducing Python network automation and is written for people with little or no Python
network automation experience. In other words, this book is not just about Python, nor an introduction to
networking basics; it is a guide to help networking students and engineers pick up Python to start on their
network automation journey.

 Topics Covered
This book covers a wide range of IT topics to expose you to a selection of technologies in three different IT
domains: networking, systems, and programming. This book focuses on IT technologies that will provide
a strong foundation to extend your knowledge to the next level. Readers are recommended to read each
chapter sequentially, from Chapter 1 to Chapter 19. Even if you are a seasoned network professional,
you are recommended to read each chapter in sequence to get the most out of this book. Your success in
reaching and completing the last lab in this book depends on building your lab environment in the first
half of the book.

On the first page of each chapter, this book provides recommended difficulty scales based on the
intricacies of tasks involved in each chapter; this is to set the right mindset and expectation of the readers.
You start with a casual reading in Chapter 1, and as you progress through the book, each chapter’s difficulty
increases compared to the previous chapter. Each chapter was designed to equip you with different IT skills
and by the time you reach the end of this book, you will reach at least an intermediate IT and Python skill
level where you can build a fully functional proof-of-concept networking lab and start writing Python code
for Network Automation. The difficulty levels are only there as a guideline, and the actual difficulty of tasks
in each chapter will be dependent on your own experience and prior knowledge of the covered contents.

Figure I-1 shows the difficulty levels of each chapter, and Figure I-2 displays the topics covered in each
chapter.

■ InTroduCTIon

xxviii

Figure I-1. Chapter difficulty increments

Figure I-2. Chapter topics covered in this book

■ InTroduCTIon

xxix

Chapter 1: Introduction to Python Network Automation
The first chapter talks about why you want to study Python as the de facto network automation

programming language for your work. It discusses the available skill sets of three IT domain groups: systems,
DevOps, and network. You will study a network engineering group’s weaknesses in network programmability
and strategize how to embark on network automation studies using Python. Also, the chapter outlines the
system and software requirements for a successful journey using this book.

Chapters 2–3: Learn and Practice Python Basics on Windows
You have to master Python basics to write working network automation code in Python. In Chapters

2 and 3, you are taken through a series of basic Python syntax and concepts on Windows 10. As the most
commonly used end-user operating system is Windows, the entry to Python becomes easier while learning
Python on Windows. These two chapters contain hands-on Python exercises connecting some Python
concepts to networking concepts.

Chapters 4–6: Learn VMware Workstation Basics and Build Virtual Machines
VMware’s desktop virtualization will be the gel holding together all our development integration. The

chosen desktop virtualization software for this book is VMware Workstation 15 Pro, and you will be provided
with a step-by-step user guide on how to use VMware Workstation 15 Pro on Windows 10. You will download
Linux bootable and GNS3 VM ova images to start building virtual machines as part of initial lab preparation.
You will get familiar with all the VMware Workstation basics and some virtualization basics while installing
and creating virtual machines.

Chapters 7–8: Linux Fundamentals
Linux administration knowledge is a key to your Python network automation success as around 30

percent of enterprise systems are based on Linux operating systems (OSs). Using the two Linux virtual
machines from Chapters 5 and 6, you will briefly learn the fundamentals of Linux. You will use Ubuntu 20
LTS (Debian derivative) and CentOS 8.1 (Red Hat derivative) servers to get exposure to two different Linux
distros. In Chapter 7, you will learn to manage files and directories and use vi and nano text editors. In
Chapter 8, you will learn the basic Linux system administration, Linux kernel validation, and networking
commands to build TFTP, FTP, SFTP, and NTP servers.

Chapter 9: Regular Expression for Network Automation
If you want to write an intermediate to advanced Python script, you are going to need a tool called a

regular expression, aka the re module in Python. In this chapter, you will experience the wonderful world
of regular expressions. The chapter teaches you how to use various regular expressions and use Python’s
re module in certain networking-related scenarios. To move up to the intermediate level, you have to know
how to handle or massage various data using regular expressions. This topic will make you so much stronger
in your programming skills.

Chapters 10–11: GNS3 Basics and Cisco IOS Lab
GNS3 VM is a Linux (Ubuntu) virtual server hosting all our networking devices such as routers,

switches, and firewalls. You will learn to install GNS3 on your Windows Host PC and then integrate the
GNS3 VM to run on VMware Workstation as a VM. In Chapter 11, you will learn how to install an old Cisco
IOS router image and then learn and master how to drive basic networking lab on GNS3 with ease. You will
learn the GNS3 tips and tricks learned over the years working on the GNS3 lab building. At the end of these
chapters, you will build various networking labs with flexibility and speed.

Chapters 12–14: GNS3 Cisco CML-PE integration and CML-PE labs
GNS3 is compatible with the later Cisco Modeling Lab (CML) layer 2 and layer 3 images; here, you will

learn to integrate CML switch (L2) and router (L3) images with GNS3. For your network automation labs,
you need both later model switches and routers; CML image integration with GNS3 replaces the hardware-
based switches and routers and allows us to configure many routers and switches as virtual networking
devices on GNS3. You will learn to build a test network topology and learn the basics to control routers and
switches using Python’s Telnet and SSH (paramiko) libraries. Your commands will be written into Python
networking codes, and you will see the configuration changes on your routers and switches right in front of
your eyes.

■ InTroduCTIon

xxx

Chapter 15: Python Network Automation Exploration Labs: Cron and SNMPv3
Full automation does not involve human interaction; if you want to run your script at 2 a.m. while

you are asleep, then cron is the right tool for this job. In this chapter, you will learn how to use Linux’s task
scheduler, cron. You will learn to use this tool on both Ubuntu and CentOS. You will trigger scripts to run
at a specified time using the cron scheduler. You will also be introduced to Python and SNMPv3 to get
you started with Python’s SNMP network monitoring. You will get exposure to a set of tools that are very
different, but you will be better equipped with two more tools under your belt.

Chapter 16: Python Network Automation Development Labs
This chapter will help you to think outside of the box for Python network automation use cases. You will

learn how to use virtualenv in Python to avoid library incompatibilities and save time for new library testing.
You will then get exposure to Docker images by downloading a Python network automation Docker image
and running the Docker container using a tiny portion of the Linux host’s resources. Using Docker, you will
learn how to send an email notification to your email using Sendmail. You will also write a CPU utilization
monitoring application and integrate a simple Twilio API script to send SMS to your mobile device when
your testing router experiences high CPU utilization.

Chapter 17–19: Practical Python Network Automation Lab: IOS XE Upgrade Lab
You are now moving up to the next level! These final chapters are the highlight of this book. First,

you will learn object-oriented programming (OOP) in Python in the context of networking devices. Then
the chapter will briefly discuss the application flow control, followed by ten mini tools development for a
Cisco CRS 1000v IOS XE router upgrade. By putting together smaller tools, you will build a fully functional
and interactive IOS XE upgrade application to upgrade one or more Cisco Cloud Service Routers. Imagine
upgrading 20 or 200 networking devices in one change window using Python’s loop statements. You will
begin to realize the real power of Python in enterprise network automation.

 Configuring the Lab Environment
A significant part of software installations and lab building will be outlined in this book. Some chapters will
require you to download essential software installation guides and complete a supplementary software
installation before beginning the chapters. You can download the supplementary pre-installation guides
from my GitHub page. There you will also find all the source code used in this book.

• GitHub: https://github.com/pynetauto/apress_pynetauto

https://github.com/pynetauto/apress_pynetauto

1
© Brendan Choi 2021
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_1

CHAPTER 1

Introduction to Python Network
Automation
This chapter serves as a primer to this book and discusses what it feels like to be an IT professional in
today’s IT industry. We will also discuss the different enterprise IT engineering domain groups and their
responsibilities. The chapter then compares each domain group’s weaknesses and strengths and draws
up a working study plan that serves as the book’s foundation. This chapter will also discuss why you might
want to learn a programming language, in our case, Python, since this is your primary reason for purchasing
this book and get started on your network automation journey. Finally, we will discuss the minimum PC/
laptop requirements to build a fully working Python/Linux/network automation lab on a single PC. All lab
machines, Linux servers, routers, and switches will be installed on a single PC/laptop using a recommended
software set.

*Suggested difficulty level only.
*This level may vary based on the reader's experience.

 Laying the Foundation
In recent years, network programmability concepts have been taking the enterprise networking industry
by storm, and network automation has been at the eye of the storm for a few years. Enterprise businesses
and organizations that are spending millions of dollars on traditional IT lifecycle management based on
traditional IT frameworks have been searching for a new IT framework that will provide more stable and
predictable network operations without interruption to their IP service and end-user applications. Quite a
few network engineers have already started exploring network automation, and the remaining engineers
are still trying to make a start. Still, many are encountering various challenges. Looking back on my own
networking automation journey, I know it can be a slow, painful, and daunting experience.

Whether you have never touched a programming language in your career or are new to software-
defined networks, starting on the network automation journey feels like you are trying to climb up a big
mountain. Once you reach the first peak, you may realize that even bigger mountains await. You may even
want to give up.

You probably have been living a comfortable life as a network engineer for the past few decades. Now your
bosses expect you to upskill your nonexistent programming skills so you can replace manual tasks with lines of
code so that you can add more value to your company. If you say no, your bosses have a Plan B: somebody else
will write the code for your team to automate your work, and you will start losing credibility (and maybe even
your job). You need to step outside of your comfort zone to start on our network programmability journey.
Network programmability still is uncharted ground for most traditional network engineers.

https://doi.org/10.1007/978-1-4842-6806-3_1#DOI

Chapter 1 ■ IntroduCtIon to python network automatIon

2

In this chapter, we will identify three main IT domain groups in a typical IT environment today. Then,
we will define the common IT skill sets that each IT domain group possesses to determine each group’s
relational strengths and weaknesses. This book was written by a network engineer for network engineers
and reviewed by a Cisco Network Academy instructor. The strengths and weakness discussions will be from
an enterprise network industry perspective. The point is to learn how the Network group can use realistic
learning strategies to get closer to the other two groups (DevOps and systems groups) and grow into cross-
functional engineers who have strong networking skills as well as the skill sets to manage Linux operating
systems and write code to develop business applications. This chapter also introduces a cross-functional
“hybrid engineer” concept, which will soon be in enormous demand in the IT job market. The career
knowledge growth for such hybrid engineers will take the shape of a T, as they have a firm foothold in their
main IT domain and extend out to other domain skill sets as the top of the letter T.

In almost every chapter of this book, except this one, you will install, configure, practice, code, and
learn from your PC or laptop, so your system’s minimum requirements are the success of your Python
network automation study with this book. Hence, we will review the minimum system requirements for
your system and introduce you to the software used to gauge the size of crucial tasks outlined in this book.
We will also briefly touch on an integrated development environment (IDE) for Python network automation
development and provide all the download links for the software, source code, and files used in this book. At
the end of this chapter, you will better understand a current network engineer’s strengths and weaknesses.
Hence, you will know the gaps (target study areas) you have to focus on to start writing Python code to
develop your own network automation applications.

 Exploring Your Skills and Prerequisites
The section discusses the three main IT domain groups’ skill sets at work today. You will learn each group’s
strengths and weaknesses. From the network group’s perspective, we will discuss and dissect the weaknesses
in your skill set and develop workable study strategies to work on the weaknesses and turn them into your
strengths. Studying Python syntax and concepts will help you reach 25 percent of your network automation
goals. What about the other 75 percent? To write Python network automation code, you have to become
strong in many other areas besides networking, and this chapter will help you become better in these areas.
Of course, we will also cover Python basics from a networking perspective. Together, we will work on a study
plan to address the common network engineer’s weaknesses and guide you in the right direction for network
automation using Python.

If you are currently working in the IT industry, especially on enterprise-level routing, switching, and
security technologies, you should take pride in your job. You probably can relate to the image presented
in Figure 1-1. Although the image might make you laugh, you have probably seen an IT engineer who
walks and talks like he knows it all. We have all been in that situation where our clients expect us to know
everything as the technical expert.

Chapter 1 ■ IntroduCtIon to python network automatIon

3

Sadly, the image in Figure 1-1 holds some truth to how some IT engineers think and behave at work.
Since the first personal computer was invented in 1971, many IT jobs have come and gone as different
technologies have emerged and disappeared. Most enterprise IT ecosystems continuously evolve as new
technologies are introduced into the IT market. Unfortunately, some IT engineers are too stubborn to
move with the times and often get caught out during technology transitional periods, which results in early
termination from their IT careers. Currently, the age of artificial intelligence (AI) and IT automation has
arrived in the enterprise network IT industry. If you refuse to skill up, your position might not be as secure as
you think.

In fact, for many years, the IT industry has been trying to drive the operational costs down by offloading
less-skilled jobs to developing countries where the IT operational cost is relatively cheaper than on the
home turf. For many years, driving the operational costs down and reducing the overheads spent on human
resources were trends for many organizations. We live in an era where human resources are an overhead
cost in a business model, and many clients these days want to pay less but still demand quality IT delivery
services. Contrary to many organizations’ claims, many local IT jobs are considered overhead rather than
valuable human resources for an organization in advanced countries. That is, many IT organizations claim
they value their staff, and their priority is the well-being of these human resources in the organization’s IT
operation. Still, when the crunch time comes, almost every organization succumbs to the financial pressure
and cuts IT operational costs to maximize the organization’s profit. In the last 20 years, IT outsourcing and
offshoring efforts have had great success to some extent. Still, each IT department is driven harder than
before to drive the operational cost down, which has been the catalyst in speeding up the adoption of IT
automations such as software-defined networks and infrastructure as code.

 General Competencies of Three Main IT Domain Group
Bangalore, India, is commonly known as the Silicon Valley of India, and there is a common saying there:
“There are two types of people in IT profession; one, IT professionals, and two, professionals who manage
these people.” In this book, to help your understanding, we are dividing IT domain groups into three
different groups based on each group’s competencies and characteristics. Then we’ll compare their general
technical competencies to each other to forecast what the near-future IT industry may look like for one
particular group of engineers, that is, the network engineering (connectivity) group. Who will be at the
forefront of the networking field in the next five years and beyond? Let’s review the gaps and requirements
to look ahead and develop a plan to study Python, network automation, and any other requirements to build
your confidence to skill up in IT.

Figure 1-1. IT engineers

Chapter 1 ■ IntroduCtIon to python network automatIon

4

At the enterprise level, many organizations have three main domain groups that look after IT
infrastructure.

• Network: The network group, sometimes known as connectivity group, looks after all
infrastructures and end-user connectivity.

• Systems: The systems group looks after servers and applications to provide service
to other infrastructure or end users as service; these will include corporate emails,
shared storage, and various business applications critical to the success of the
company.

• DevOps: Last is the group of software engineers or programmers who test, develop,
and implement various business applications to cater for a company’s business
requirement. Recently these group of engineers have become known as DevOps
engineers.

We will refer to these three main domain groups as network group, systems group, and DevOps
groups for the simplicity of this book. The network group works on IP connectivity and services, including
technology subdomains such as RS, security, data center, cloud, and unified collaboration engineers.
A network connection is the foundation of any enterprise business connectivity, and we consider both
applications and services as the tenants of connected networks. Hence, the entire business comes to a halt if
there is a major network outage on the corporate network.

The systems group is responsible for critical business applications and operating systems running on
both Windows and Linux OS.

The DevOps group comprises software developers and programmers who specialize in developing
software and applications using various programming languages and software development tools. By
comparing and analyzing each group’s current capabilities, we will better understand each group’s strengths
and weaknesses. Hence, we identify several weaknesses in the network group so that you can work on
these weaknesses. Although the networking vendor technology used in this book is from Cisco, note that
the network automation concepts shown in this book will apply to any vendor networking and security
technologies including Cisco, Arista, Juniper, Check Point, Palo Alto, and HP.

First, let’s compare what technical capability differences exist among these three domain groups. To
analyze each group’s competencies, we will use a spiderweb graph to plot and illustrate different technical
capabilities. After this simple comparison, we will recommend on ways to embark upon network automation
using Python as the preferred programming language.

To easily compare and help your understanding of the three IT domain groups’ capabilities, let’s
first plot each group’s competencies on a graph, as shown in Figure 1-2. The graph uses ten scores for all
competencies plotted on the graph. For example, a competent level in an area would be eight out of ten, and
a less capable person would get a score of two out of ten.

Chapter 1 ■ IntroduCtIon to python network automatIon

5

The graph represents the common competencies required by each engineering group in the past ten
years. Plotting the common competencies on such a graph already gives us an eagle-eye view of where each
group’s strengths and weaknesses exist. Traditionally, network engineers did not have a strict requirement
to learn software engineering or write code as the work pace was a lot slower than today’s networks need.
As discussed, most of the work has been done by conventional network engineers sitting in front of their
computer, through command lines. The system group has been exposed more to system automation tools
and languages because of the work as they have to perform most tasks in batches (bulk). From a network
group’s perspective, writing code to automate the enterprise network was a new concept until five years
ago. Hence, network engineers had no urgency to expand their skill sets toward the systems or DevOps
domain. For someone to automate an enterprise network, one must possess a combination of all three
groups. None of the three groups has all the competencies to achieve enterprise network automation from
the graph. And it would be safe to guess that you would have minimal exposure to managing enterprise
systems or be involved in enterprise tools (application) development projects at work if you are coming from
a conventional network engineering background. In recent times, everyone is expected to deliver more bang
for the customer’s buck and with a good customer (end-user) experience.

0

2

4

6

8

10
Manage Enterprise Connectivity

Manage SP Connectivity

Network Automation skills - tcl,
pexpect

Manage Windows Systems

Manage Linux Systems

OS Automation skills -
PowerShell, Puppet, Ansible

Applications design, develop and
deploy

Coding skills -
Python/Perl/Ruby/Javascript

General IT Automation skills -
task automation using codes

Ability to deliever customer
centric service

IT Domain Groups' Competencies
(Last 10 years)

DevOps Group
Systems Group
Network Group
Maximum

Figure 1-2. IT domain groups’ general competencies comparison

Chapter 1 ■ IntroduCtIon to python network automatIon

6

This same mentality has caught up to the work of network group. Still, you cannot throw in more
bodies to deliver the service levels as in the offshoring method or cut corners to make up the numbers,
as many sales operations promise more but deliver the bare minimum. Also, as the graph suggests, most
companies now realize that there is no single group with all the competencies to deliver an enterprise
network automation solution for the company. The company does not want to pay for the overhead of
running all three IT domain groups; hence, the current focus is to upskill the existing employees to achieve
IT automation for the company. IT business insiders have been saying, “The walls of different IT domains
are crumbling.” Now, network engineers must know how to administer a Linux operating system, have the
skills to manage a programming language, and must know how to develop a specific application to automate
the enterprise network they manage. On the flip side, any engineers from the systems or DevOps groups can
learn networking technologies and automate the network group’s work.

Of course, the graph contains the generalized capabilities of each IT domain group, and the
competencies of each engineer in each group will vary from one person to the next. Still, this graph provides
us with accurate pointers on where and how a network group approach should approach Python network
automation studies.

 Comparative Analysis of IT Engineers’ Responsibilities
In Figure 1-2, you saw the competencies of the three IT domain groups. In this section, we will look at
the typical responsibilities of engineers from each group to pinpoint the areas a network engineer has to
improve to embark on enterprise network automation using Python. Spend about five minutes studying
the responsibilities of each group, and you can easily see where a conventional network engineer must
focus to gain the required skills to write a scripted application to automate their work. As the shaded area
shows, the first requirement is mastering operating systems such as Linux and Windows; this is on top of
strong networking skills.

Chapter 1 ■ IntroduCtIon to python network automatIon

7

For enterprise automation, the default operating system used is Linux. After getting familiar with
basic to intermediate Linux administration, you can start with basic Python syntax and slowly discover
how DevOps work. At the same time, you need exposure to Linux grep or, even better, general regular
expressions, as data processing is the key to any programming language. From this point on, you can
gradually expand to other areas of interest.

Figure 1-3. IT engineers’ general responsibilities

Chapter 1 ■ IntroduCtIon to python network automatIon

8

As mentioned, you are expected to have a working knowledge of Cisco CCNA to get the most out of this
book, so if you are studying for or have already completed CCNA, you will get a lot more from this book.
Although the content of this book does not teach general networking concepts from Cisco Systems, much of
the book is very hands-on, and the labs in later chapters are based on Cisco’s IOS and IOS XE configurations.
Even if you are not a certified Cisco Certified network engineer, I base this book’s content on the discussions
in Figures 1-2 and 1-3, so the topics are broad with many helpful parts to upskill your general IT skills.

Based on Figure 1-3, let’s draw on the skill sets a network engineer needs to get ready for network
automation using Python. The following are derived from the responsibilities of systems and DevOps
engineers, but not the core responsibilities of a typical networking job:

• System security maintenance (credentials, systems, and user security access control,
data access control)

• Hardware and software lifecycle management (both server and user OS and OS-
specific applications)

• DevOps, server setup, and deployment

• Applications support such as databases and web services

• Database design and setup

• Back-end development server-side scripting (developing complex software)

• Back-end server-side scripting

• Front-end development with HTML, CSS, and JavaScript

• Software testing (your own or vendors’)

The previous responsibilities are quite general and broad. Many subdomain technologies are not even
mentioned in the previous list. But from a network engineer’s perspective, while having a firm footing in
network foundational responsibilities, you should realize that you have to shift your interest and skill sets
toward systems and DevOps groups’ responsibilities. To make your life easier for you, see Table 1-1. As
mentioned earlier, this book is not a network core concept book, a Python syntax and concept book, or a
Linux core concept book. This book is a combination of three books, but the topics are chosen selectively to
get you ready for Python network automation. The skills you will learn in this book will serve as the primer
for your knowledge.

As you go through each chapter, you will gain new IT skills outside of your comfort zones. You can see
that the technical approach shown in Table 1-1 is practical, including installing virtual machines, installing
network services, learning Linux and Python basics, installing Python, and controlling networking devices
by writing Python code. Unless you are a presales engineer or an architect for your IT domain, you need to
be a true professional who can do the real hands-on work. This table shows one way a network engineer can
approach their first journey into Python network automation.

Chapter 1 ■ IntroduCtIon to python network automatIon

9

Table 1-1. Skill Recommendations for Network Engineers Embarking on Python Network Automation

Required Skills Recommended Topics to Study
Python basics Install Python on your computer

Learn basic Python syntax
Relate and apply basic Python syntax to a Python network context

VMware and virtualization basics Install the latest VMware Workstation Pro version
Learn virtualization basics
Learn to build virtual machines

Operating system management,
patching, upgrading, troubleshooting,
and configuration skills

Install two different flavors of Linux, Ubuntu 20.04 LTS and
CentOS 8.1
Use a VMware template to install a prestaged server; import
GNS3 VM Server
Read the Python installation guide and troubleshoot any
installation problems

Learn Linux basics Understand the Linux directory
Understand Linux file management and practices
Learn how to use the vi and nano text editors without a GUI
desktop app
GUI Desktop Linux remote connection concepts, SSH, Telnet,
basic APIs
Install the FTP, SFTP, TFTP, and NTP servers

Regular expressions Learn regular expression basics
Learn how regular expressions are used in Python
Learn to relate and apply regular expressions to networking
ideas and concepts

Network emulator (GNS3) skills Learn to install and integrate GNS3
Learn to configure basic to complex network topology
Learn to integrate GNS3 with VMware Workstation

Cisco IOS and IOS XE command lines Learn to integrate Cisco IOS, IOS-XE, and CML-Personal L2 and
L3 images into GNS3
Learn basic router and switch commands for the network
automation lab setup
Write Python code to control emulated Cisco network devices
via SSH, Telnet, FTP, and SNMP
Practice Python scripting in a virtual lab
Install and set up virtual routers and switches with Python
scripts

Application development and
establishment

Install Python 3
Install Python Telnet and SSH modules
Understand application development for network automation
with Python code
Understand basic DevOps development concepts

Specific engineer’s task automation Understand the task flow to automate specific tasks

Chapter 1 ■ IntroduCtIon to python network automatIon

10

The recommended topics to study from Table 1-1 form the basis for this book. At various points of
this book, you will be introduced to different technologies and exercise-based tasks, which require you to
follow the book’s content in front of your PC (or laptop). To complete this book in full, you must complete
all exercises in each chapter to get enough practice and build various skills required for network automation
using Python. I want you to learn the basics in one place and learn them well.

 Python and Network Automation Studies
Why do you want to study Python for network automation? This question might be tricky to answer. The
answer may vary from one person to the next person. Still, perhaps the common goal in studying Python
for network automation is to convert physically repetitive tasks into code lines so that you can focus on
more valuable and important tasks at work. The process of network automation using Python could be very
different from the process of network automation using Ansible or other device management tools. You have
the freedom to structure your thought and task processes while trying to automate actual physical tasks
and thinking processes targeted for automation. So, what does it mean to streamline the thought process?
Perhaps you are talking about performing your work more effectively, systematically, and quickly using
Python code.

Are you hinting that what you and your team have been doing all these years has been inefficient,
slow, and unstructured? Maybe that is why you are here and reading this book. If so, first review the
currently inefficient work your team is performing and break each logical thinking process and physical
task performed into steps. It can be extremely handy to determine what you are trying to automate with
lines of Python code. This will give you a great foundation to start your first network automation project and
approach your current automation challenges.

Rather than embarking on your Python studies, look around and identify the manually intensive tasks at
work that you want to automate and then document current processes. Now, you can start learning Python
syntax. This simple process will keep your motivation high and also keep you focused on your first Python
studies because you are not studying Python for the sake of learning one of the most popular programming
languages at the moment. You are learning it for a purpose.

 Why Do People Want to Learn Python?
Python is used by leading IT service vendors and enterprises such as Google, YouTube, Instagram, Netflix,
Dropbox, and NASA. There are many areas where Python programming can be developed in a short time
and applied to solve actual problems. The barrier to learning it is one of the lowest out of all the major
programming languages in use today.

According to RedMonk.com , in June 2020, Python is the second most popular programming languages
globally, overtaking Java and gaining momentum. There are pros and cons of each programming language,
and Python is not immune to various cons, but why is it becoming so popular? In October 2019, Python even
overtook JavaScript as the most asked for languages on Stack Overflow.

So, how do you begin? You must master the basic Python syntax and concepts well. There are many
books on Python basics and concepts, some of which are outstanding, but I still could not make the
connection between Python concepts and network automation concepts when I was learning. Strangely,
there were also intermediate to advanced Python networking automation books, but they did not explain
where to start and what drills to do to reach the intermediate to advanced level. Everyone tells you that
Python is such an easy language to learn and the barrier to entry is low, but they do not tell you that if you
want to become great at any programming language, you need to put your head down and be persistent
and passionate about the language you have chosen. Be ready to give up your social nights and weekends
to learn some silly Python library features and watch hundreds of hours of so-called Python gurus’ YouTube
videos and online training videos.

http://redmonk.com

Chapter 1 ■ IntroduCtIon to python network automatIon

11

That is correct; a low barrier to entry does not mean that Python is the most straightforward language
to study. It means that anyone can start learning Python as a programming language, but how many people
are persistent and passionate enough to make writing Python code their life? The most challenging part
of learning Python often is to be persistently pushing yourself to learn different ways of doing things using
Python and keeping your passion alive as long as you can. To do this, you have to find practical use cases
and small projects that are personal and that matter to you and your work. Remember that automation is a
slow and steady process as everything you want to automate must be written into lines of code. Somebody
or something (in the case of AI) has to write the code. There is no AI good enough to imitate an experienced
and logical network engineer. Hence, the network engineer has to automate tasks until the artificial
intelligence (AI) can imitate and automate the network engineer’s actions.

In summary, Figure 1-4 is from a 2019 Stack Overflow survey. Python is the fastest-growing
programming language and the most wanted language for the third year in a row, meaning that developers
who have not yet used it say they want to learn Python to develop applications.

Figure 1-4. Most wanted programming language for developers in 2019
Source: https://insights.stackoverflow.com/survey/2019#most- loved- dreaded- and- wanted

https://insights.stackoverflow.com/survey/2019#most-loved-dreaded-and-wanted

Chapter 1 ■ IntroduCtIon to python network automatIon

12

Figure 1-5 shows the growth of major programming languages in 2017.

 What Do I Need to Study Network Automation Using
Python?
Most network engineers who have been studying network automation will agree that having a flexible
integrated development environment (IDE) will help engineers develop applications. There are many ways
you can study basic Python syntax, but not everyone has the comfort of the company’s provided network
automation development lab environment, although Cisco dCloud or similar online sandboxes offer timed
lab environments. Still, it is not exactly available to you on-demand around the clock. So, I recommend
you use your own equipment to control your lab. Such a lab environment can be configured in several
forms. First, it can be configured with 100 percent hardware using routers, switches, and servers. Second,
it can be part hardware and part virtualized, a hybrid development environment, or third, it can be 100
percent of equipment virtualized and live inside a server or a PC. The first method will require a large initial
investment to purchase second-hand equipment and incur ongoing electricity bills to keep the physical
devices operational. A hybrid development environment will become cumbersome to have some devices

Figure 1-5. Growth of major programming languages based on Stack Overflow questions, 2017
Source: https://stackoverflow.blog/2017/09/06/incredible- growth- python/

https://stackoverflow.blog/2017/09/06/incredible-growth-python/

Chapter 1 ■ IntroduCtIon to python network automatIon

13

run on physical devices, and some run on a virtualized environment. The last environment would be an
ideal lab environment for anyone studying Python for network automation. This has been made possible by
integrating several systems and network operating systems running on a virtualization solution. It is almost
impossible to practice and experience everything that occurs in the real network environment, but building
the integrated development lab will be the closest thing you can get to. If you are learning everything
through books or passively learning Python network automation by binge-watching YouTube videos, that is
not good enough. Build your IDE and type your code to learn and master Python.

To study Python network automation through this book, all you need is a reasonably powerful desktop
or laptop computer that has enough central processing unit (CPU) power and enough random access
memory (RAM). Next, let’s discuss the minimum hardware specifications to follow this book.

 Hardware: Minimum Specifications for Laptop or PC
To install, configure, and practice all the exercises and Python network automation labs in this book,
your computer must meet or exceed the minimum specifications listed in Table 1-2. Since most network
engineers at work use Windows 10, we will also use this OS as the base operating system for building our IDE
lab environment. Unfortunately, if you are using macOS or Linux, then you are on your own with finding the
right software and compatibility. If you have a powerful laptop or PC with Windows 10 freshly pre-installed,
you are in a perfect place to read this book, but if your system is still running Windows 8.1 or 7, it is highly
recommended that you upgrade to the latest Windows 10. If you have a reasonably powerful desktop PC
with optimized CPU and system cooling, it will run much better than a laptop. However, if your laptop is the
latest and greatest, I would recommend using your laptop for mobility and a lower electricity bill.

Since a large part of this book focuses on installing software, creating a practical lab, and running
network automation labs on a single Windows 10 system, make sure your system meets the minimum
requirements specified in Table 1-2. Otherwise, you will encounter system performance issues such as slow
system response time in your lab.

Table 1-2. Laptop or PC: Minimum Specifications

PC Components Minimum Specification
CPU Intel: CPU i7 Gen3 (64-bit) or above

AMD: Ryzen 3600 or above

RAM 16GB or more for DDR4 (or 24GB for DDR3)

SSD 240GB or more (with 15 percent or free space for system paging)

OS Microsoft Windows 10 (64-bit) or newer

Chapter 1 ■ IntroduCtIon to python network automatIon

14

Figure 1-6 shows the desktop system I have used to write this book.

If your CPU is on par or better than Intel i7-3770, as shown in Figure 1-6, and has more than 16GB
DDR4 (or 24GB DDR3) RAM, all labs should run smoothly. Also, SSD is recommended over HDD because
the mechanical hardware is one component that can become the system bottleneck. This book aims to
enable you to create a hands-on lab where you can study Python, virtualization, Linux, networking, and
network automation, all from a single PC/laptop. As we will explain later, the labs in this book are useful for
Python network automation study and those studying for various certifications such as Cisco CCNA/CCNP/
CCIE, Checkpoint, Palo Alto, and Juniper Junos, as GNS3 supports various vendor OSs.

 Software Requirements
You will learn how to install and integrate various technologies while building a highly flexible and
integrated lab on a single PC/laptop. Table 1-3 contains all the software and provides the download links.
You can download all software before beginning Chapter 2 or follow along with the book and download
different software as instructed at the beginning of each chapter.

Please note that not all software used here is freeware or open source software, and you may have to
use demo software or paid software. For example, VMware’s Workstation 15/16 Pro will run in demo mode
for the initial 30 days, and then you will have to purchase a valid key. Another example is Cisco Modeling
Labs-Personal Edition (CML-PE), which has a subscription of $199 yearly. For our lab, you are only going to
require the three files outlined in Table 1-3. All other software used here is either freeware or open source
software.

Figure 1-6. My system specs

Chapter 1 ■ IntroduCtIon to python network automatIon

15

Table 1-3. Software and Download Links

Required Software Usage Download links
VMware Workstation Pro 15
or 16 (demo/paid)

Desktop
Virtualization

https://my.vmware.com/web/vmware/downloads/
info/slug/desktop_end_user_computing/vmware_
workstation_pro/15_0
or
https://my.vmware.com/web/vmware/downloads/
info/slug/desktop_end_user_computing/vmware_
workstation_pro/16_0

GNS3-2-2-14-all-in-one
or later (for Windows)

Network device
emulator

https://github.com/GNS3/gns3- gui/releases
or
https://www.gns3.com/software/download

GNS3.VM.Vmware.
Workstation.2.2.14.zip

VMware Workstation
GNS3 VM ova image

https://github.com/GNS3/gns3- gui/releases

IOSv-L3-15.6(2)T.qcow2 or
newer (paid)

Cisco CML L3 image https://learningnetworkstore.cisco.com/cisco-
modeling- labs- personal/cisco- cml- personal

IOSv_startup_config.img
(paid)

Cisco CML L3
booting image

https://learningnetworkstore.cisco.com/cisco-
modeling- labs- personal/cisco- cml- personal

IOSvL215.2.4055.qcow2 or
newer (paid)

Cisco CML L2 image https://learningnetworkstore.cisco.com/cisco-
modeling- labs- personal/cisco- cml- personal

python-3.8.5.amd64.exe or
newer (for Windows)

Python 3.8.5 or
higher

https://www.python.org/ftp/python/

Notepad++ v.7.8.5 (64-bit) Text editor for
Windows

https://notepad- plus- plus.org/downloads/

Putty.exe (64-bit) (for
Windows)

SSH/Telnet client https://www.putty.org/
or
https://the.earth.li/~sgtatham/putty/0.74/
w64/

Ubuntu-20.04-live-server-
amd64.iso (952.1MB)

Ubuntu Server
image - Bootable

https://linuxclub.cs.byu.edu/downloads/isos/
ubuntu/
or
https://www.ubuntu.com/download/server

CentOS-7-x86_64-
DVD-1804.iso (4.16GB)

CentOS Server
image, bootable

https://www.centos.org/download/
or
http://centos.mirror.omnilance.com/

c3725-adventerprisek9-
mz.124-15.T14.bin
or
c3745-adventerprisek9-
mz.124-15.T14d.bin

Cisco IOS image for
GNS3 integration

From old used Cisco devices
or
Through Google search

Unpack.exe Cisco image
unpacker 0.1 binary
for Windows

http://downloads.sourceforge.net/gns- 3/
Unpack- 0.1_win.zip?download

(continued)

https://my.vmware.com/web/vmware/downloads/info/slug/desktop_end_user_computing/vmware_workstation_pro/15_0
https://my.vmware.com/web/vmware/downloads/info/slug/desktop_end_user_computing/vmware_workstation_pro/15_0
https://my.vmware.com/web/vmware/downloads/info/slug/desktop_end_user_computing/vmware_workstation_pro/15_0
https://my.vmware.com/web/vmware/downloads/info/slug/desktop_end_user_computing/vmware_workstation_pro/16_0
https://my.vmware.com/web/vmware/downloads/info/slug/desktop_end_user_computing/vmware_workstation_pro/16_0
https://my.vmware.com/web/vmware/downloads/info/slug/desktop_end_user_computing/vmware_workstation_pro/16_0
https://github.com/GNS3/gns3-gui/releases
https://www.gns3.com/software/download
https://github.com/GNS3/gns3-gui/releases
https://learningnetworkstore.cisco.com/cisco-modeling-labs-personal/cisco-cml-personal
https://learningnetworkstore.cisco.com/cisco-modeling-labs-personal/cisco-cml-personal
https://learningnetworkstore.cisco.com/cisco-modeling-labs-personal/cisco-cml-personal
https://learningnetworkstore.cisco.com/cisco-modeling-labs-personal/cisco-cml-personal
https://learningnetworkstore.cisco.com/cisco-modeling-labs-personal/cisco-cml-personal
https://learningnetworkstore.cisco.com/cisco-modeling-labs-personal/cisco-cml-personal
https://www.python.org/ftp/python/
https://notepad-plus-plus.org/downloads/
https://www.putty.org/
https://the.earth.li/~sgtatham/putty/0.74/w64/
https://the.earth.li/~sgtatham/putty/0.74/w64/
https://linuxclub.cs.byu.edu/downloads/isos/ubuntu/
https://linuxclub.cs.byu.edu/downloads/isos/ubuntu/
https://www.ubuntu.com/download/server
https://www.centos.org/download/
http://centos.mirror.omnilance.com/
http://downloads.sourceforge.net/gns-3/Unpack-0.1_win.zip?download
http://downloads.sourceforge.net/gns-3/Unpack-0.1_win.zip?download

Chapter 1 ■ IntroduCtIon to python network automatIon

16

Required Software Usage Download links

WinMD5Free Windows MD5
Checker

https://www.winmd5.com/

WinSCP Secure File Transfer
for Windows-Linux

https://winscp.net/eng/download.php

FileZilla client (64-bit, for
Windows)

Secure File Transfer
for Windows-Linux

https://filezilla- project.org/

Table 1-3. (continued)

 Building a Network Automation Development Environment
Using GNS3
A network automation development environment is an IDE lab for network application development.
For our convenience in this book, we will call this environment the lab or the network lab instead of an
integrated development environment or network automation development environment. As discussed earlier,
there are different ways to create a learning lab for your Python network automation. About 15 years ago,
while networking students studied Cisco routing and switching, many students used a mix of hardware-
based labs, a networking OS simulator from Cisco called Packet Tracer, and an open source emulator called
Dynamips. This was followed by the introduction of GNS3, which is Dynamips with a GUI interface for ease
of use. Dynamips was a good networking device emulator used for study, but it lacked the GUI and made
it a little challenging for beginners. GNS3 was a program that provided a graphical user interface (GUI) to
manage emulated lab devices with ease.

In the early days, GNS3 had a lot of bugs and did not always work well. With the development of more
advanced CPU architecture, increased RAM capacity, and the introduction of the solid-state drive (SSD),
emulating vendor network devices from an application on your laptop or PC has become more comfortable
and more accessible. The price reduction of PC hardware components and more open source network
emulators made studying networking extremely accessible. The latest versions of GNS3 are free from many
pre-existing bugs and can run a very stable lab environment. GNS3 has evolved to support older Cisco IOS
and integrate Cisco IOU and CML’s (VIRL) L2 and L3 IOS. You can run both L2 switches, and L3 routers can
be emulated and run in a virtualized lab environment. Although the best way to study any technology is to
use the proper equipment or the same virtual infrastructure, this option might not be available to everyone.
If both the money and time are available, it is best to study with proper equipment. It is always better to
study with an emulator than with a simulator and is even better if you can afford to run the real lab using the
proper equipment. Table 1-4 provides a tabulated list of applications used for network labs to help you with
some history of network simulators and emulators for networking studies.

https://www.winmd5.com/
https://winscp.net/eng/download.php
https://filezilla-project.org/

Chapter 1 ■ IntroduCtIon to python network automatIon

17

Table 1-4. Network Emulation/Simulation Program for Networking Studies

Application Simulator /
Emulator

Free/Open Source/
Proprietary

Pros and Cons

Cisco Packet
Tracer

Simulator Proprietary Pros:
Free to Network Academy students
Very easy to use (suits beginners)
Useful for learning the basic concept
Readily available on torrent sites or free file
share sites (download and use at your own risk)
OK study tool for Cisco Certification

Cons:
Nothing close to real Cisco IOS
Nothing close to real Cisco hardware

Dynamips Emulator Open source
(still requires extracted
Cisco IOS image(s))

Pros:
Free
Reasonably easy to use (suits intermediate
users)
Useful for learning the basic concept
Support for older router platforms
Very versatile
Easy integration with virtual machines
Easy integration with other hardware
Fewer bugs than GNS3
Support for both Windows OS and Linux OS
Excellent study/work tool for Cisco certification

Cons:
You’ll have to find your own IOS copies
Only support older IOS routers (except for 7200
routers)
Limited switching capabilities
Support through open source forums only

(continued)

Chapter 1 ■ IntroduCtIon to python network automatIon

18

Table 1-4. (continued)

Application Simulator /
Emulator

Free/Open Source/
Proprietary

Pros and Cons

GNS3 Emulator Open source
(still requires extracted
Cisco IOS image(s))

Pros:
Free
Very easy to use (suits beginners)
Useful for learning the basic concept
Support for older router platforms
Very versatile
Easy integration with Virtual Machines
Easy integration with other hardware
Support for both Windows OS and Linux OS
Perfect study/work tool for Cisco certification

Cons:
Locate your own IOS copies
Only support older IOS routers (except for 7200
routers)
Limited switching capabilities
Lots of bugs
Lots of performance issues
Support through open source forums only

Cisco IOU Emulator Proprietary Pros:
Reasonably easy to use (suits intermediate
users)
Support for later or latest IOS
Excellent L2/L3 switch emulation
Can run on most WIN/Linux hosts
Readily available on torrent sites or free file
share sites
Excellent study/work tool for Cisco certification

Cons:
Proprietary
Requires a relatively powerful host machine
No support from Cisco. Find your copy and use
at your own risk

(continued)

Chapter 1 ■ IntroduCtIon to python network automatIon

19

Other emulators introduced in the last decade include Unified Networking Lab’s UNL Lite (renamed
EVE-NG), Cisco’s IOU (IOS On Unix), and Cisco’s CML (Cisco Modeling Lab, old VIRL). Cisco Packet Trace
can be used while studying Cisco certifications using Cisco Network Academy account. The software was
used for experimentation only within the Cisco Technical Assistance Center (TAC) with Cisco IOU. It cannot
be used by companies or individuals other than Cisco TAC. There have been many books and free guides on
the Web on how to use the previous software, but in this book, GNS3 VM running on VMware Workstation
Pro, integrated with Cisco IOS and CML images, will provide us with the emulated network infrastructure for
Python network automation labs.

For this book, the ideal lab is the one that is optimized for less power consumption, which can be
operated conveniently at any time and anywhere. So, this book has carefully laid out the topics in sequence,
from easy to intermediate. Also, as long as you use the same or newer versions of software used in this book,
most of the lab setup should work without software compatibility issues, and all labs should be reproducible.

Table 1-4. (continued)

Application Simulator /
Emulator

Free/Open Source/
Proprietary

Pros and Cons

Cisco CML
(VIRL)

Emulator Proprietary Pros:
Fairly easy to use
Support for later or latest IOS
Excellent L2/L3 switch emulation
Can run on most WIN/Linux host
Excellent study/work tool for Cisco certification
Support from Cisco if paid for subscription
Readily available on torrent sites or free file
share sites

Cons:
Proprietary
Requires a relatively powerful host machine

UNL Lite
(EVE-NG)

Emulator Proprietary Pros:
Support for later or latest IOS
Excellent L2/L3 switch emulation
Can run on most WIN/Linux host
Excellent study/work tool for Cisco Certification

Cons:
Requires a relatively powerful host machine

Vagrant Open source Pros:
Free
Tool for building and managing virtual machine
environments in a single workflow
Easy-to-use workflow
Focus on automation
Lowers development environment setup time
Increases production parity

Cons:
Requires a relatively powerful host machine

Chapter 1 ■ IntroduCtIon to python network automatIon

20

Suppose you want to use this book’s content for group training and only want to teach students in
Python labs. In that case, you could install Windows 10 as a virtual machine on ESXi 6.5 (Figure 1-7), install
all software, complete the integration, and then make clones of the original virtual machine and provide
RDP accesses to designated virtual machines.

 Downloading Supplementary Guides and Source Code
Download all pre-installation guides and source code before reading Chapter 2.

Supplementary pre-installation guides download:

• Author’s URL: https://github.com/pynetauto/apress_pynetauto

Source code download:

• Author’s URL: https://github.com/pynetauto/apress_pynetauto

Figure 1-7. Example of running a network automation lab on ESXi 6.5 for group training

https://github.com/pynetauto/apress_pynetauto
https://github.com/pynetauto/apress_pynetauto

Chapter 1 ■ IntroduCtIon to python network automatIon

21

 Summary
We discussed IT network automation in general and did a quick comparative analysis of three main IT
domain groups. We identified areas that the network engineer group must focus on to start writing Python
code for network automation application development. Finally, we discussed the minimum hardware and
software requirements to embark on your network automation journey. You probably noticed no networking
hardware requirement is mentioned as part of the hardware requirement; everything will be software-based,
even the routers and switches.

 Storytime 1: Mega Speed Shoe Factory

In 2016, there was a great hype around robotics and automation replacing human labor in the shoe
manufacturing industry. A famous shoe and sports apparel manufacturer, Adidas of Germany, announced a
new robotic shoe factory; during the announcement, there was a prediction that up to 90 percent of 9 million
workers in Southeast Asia could face unemployment because of this type of factory. However, in 2020,
Adidas announced it would halt production at its two robotic “speed factories” in Germany, Ansbach, and
the U.S. factories. The robotic shoe manufacturing line could only produce a limited number of models that
mainly consisted of running shoes with a knit upper sole; the robots could not produce leather shoes with
rubber soles. The old pieces of machinery have been moved and are currently used by Adidas suppliers in
Vietnam and China.

Some people say machines will take over the world and take all our jobs sooner than later, but this
example amplifies the need for more careful planning and the introduction of workplace automation. Each
industry is learning the power of automation through trial and error.

This failure also takes us back to the early 1990s when automated teller machines (ATMs) were
introduced. In that case, some studies in the United States have found that the economic forecasts made
by many prominent economists and scholars were as accurate as your local taro fortune teller. So, if we
are well prepared and embrace the changes, we should not fear automation or AI in the IT industry. While
supporting your company’s IT ecosystem and having pride in what you do at work is extremely important
to all IT engineers, we have to be truthful about what we can do and what we know. An IT engineer does not
know every aspect of all the IT technologies they support. Hence, they should not attempt to cover up their
inability to perform specific tasks. We should always be ready to discover new things and gain additional skill
sets to advance our careers.

23
© Brendan Choi 2021
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_2

CHAPTER 2

Learn Python Basics on Windows
Windows is the most commonly used end-user operating system for both private and enterprise users.
More people will start their Python journey on a Windows PC rather than Linux or macOS, and the barrier
to Python is lower when you begin to code in Python on Windows operating systems. This chapter contains
hands-on Python exercises connecting selective Python concepts to general programming concepts, and
some exercises will refer to real-world scenarios. The chapter will serve as a primer to the Python network
automation scripting labs in the later chapters. Following the coding tradition, you will start your Python
learning with the obligatory “Hello World!” program. Before starting the exercises, you will be guided to set
up a simple Windows Python environment and will be introduced to some foundational Python coding
etiquette. You will learn the most basic Python syntax and concepts, build stronger foundational blocks, and
gain the essential Python skills required for Python network automation labs.

 To learn and revisit basic Python concepts on the Windows operating system (OS), install Python 3 on your
laptop or PC to follow along with exercises in this chapter. Download CH02_Pre_Task_Install_Python3_on_
WIN10_NotepadPP.pdf from GitHub.

URL: https://github.com/pynetauto/installation_guide

Here I will share my own experience. I first started learning Python in 2013 with the hope to apply it
to my work. In this first attempt, just trying to learn simple Python syntax took too long, and it felt tedious
and pointless, so I gave up after two months. In 2015, I took another stab at Python syntax and concepts.
I went through the basic Python syntax and concepts in three months but could not relate Python syntax
and concepts to my work, so I gave up again. Fast-forward to 2017, when I endlessly searched for what I
was missing. I finally realized that learning and mastering a programming language on its own is a useless
exercise unless you have a set of objectives and a clear road map to get there.

In simple terms, my objective was to learn and use Python to automate repetitive tasks as a network
engineer. The conclusion was that learning Python is only part of the journey. I had to cover a lot more parts,
for example, improve on Linux system admin skills, master regular expressions, and learn to use various
Python modules for both built-in and external modules and anything ad hoc to make quick adjustments to
my code.

Getting started on the first programming language learning journey requires strong motivation and
personal dedication from most of us. Continual learning takes patience and strong will power. With any

https://doi.org/10.1007/978-1-4842-6806-3_2#DOI
https://github.com/pynetauto/installation_guide

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

24

learning, once you complete the first part of your journey, the second part awaits, and after you complete the
second part, the third part is waiting for you. The learning continues with no definite end, and you will get
caught in this vicious cycle as you will have to go back and forward in different parts of the journey. To make
your Python learning curve more comfortable, first spend some time thinking about your motivation, why
you want to learn Python, and where you want to use it; when you slack off, use it as a reminder to put you
back on the course. Also, set the right expectations with plenty of time to absorb Python syntax and concepts
in-depth and also explore various Python modules for your use case. Writing code in Python is no different
from writing code in other programming languages. Also, learning Python syntax is like learning a non-
native language, and it will take a long time to complete the basics and move to the next level. Like any other
study, it is a constant struggle within you, but a well-planned study strategy can get you there with less pain.

Now let’s examine different ways you can interact with your computer; there are three primary ways you
can interact and instruct the computer to carry out a task. First, you sit in front of the physical computer or
a remote console machine directly connected to a system and give real-time instructions in a one-to-one or
one-to-n manner. Second, you can write a piece of code using a text editor or IDE and manually execute the
code. This method is known as semi-automation. Third, you can write the code and schedule it to run at a
specific time, and the system (computer) automatically executes your code with no human interaction. This
method is known as full automation or fully automated. As you know, Python is an interactive programming
language that does not require precompiling. An interactive programming language interprets the source
code on the spot and gives the computer instructions when code needs to execute.

As mentioned in Chapter 1, although this is a book about Python network automation, this book
considers Python knowledge and skills as part of many skill sets required to realize Python network
automation. So, this book does not solely focus on Python syntax and concepts but aims to broaden your
perspective on various IT technologies required on your network automation journey. The book will attempt
to expose you to several technologies that will enable you to be a well-rounded technologist who can code
in Python, administrate Linux, develop applications, and build a proof-of-concept (POC) networking lab
for work. Suppose you only want to study basic Python syntax. In that case, it will be more appropriate to
purchase a good Python basics book that is readily available on Amazon or in your local bookstore.

Your Python knowledge and experience will vary by mileage. But in this chapter, I will assume that
you are a first-time or novice Python coder, so this chapter will cover a selection of essential Python syntax
and concepts to grasp in order to perform all the tasks required in this book. This book builds your Python
network automation skill set gradually and linearly. As a reader, we encourage you to follow along with each
exercise presented in this chapter on your keyboard. You must type the code and complete all exercises in
this chapter before moving onto the next chapters.

Unlike other books, this book will present you with various exercises to perform first, and then
explanations will follow in this chapter and throughout the book. There are way too many books explaining
the concepts in excessive detail. This book is for the doers, not for the conceptual thinkers. Some exercises
will contain explanations as embedded comments, but in most cases, the explanation will follow each
exercise to further aid to your understanding. At the end of each Python concept milestone, you will find a
brief concept summary as a reminder of what you have learned. Finally, this book does not present you with
trivial quizzes, irrational questions, or absurd challenges to put you into brain blackouts.

 “Hello, World!” and print() Function in Interactive Mode
Learn to print the obligatory “Hello, World!” and understand the difference between interactive versus
scripting modes.

 ■ Hint >>> with a space is the Python prompt, indicating that you are working in interactive mode.

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

25

If you want to learn Python interactively on Windows 10, there are few methods, but the three principal
methods are in the Python shell, at the command prompt, and in Windows PowerShell (Figure 2-1). In
interactive mode, when you open a Python shell, it welcomes you with >>> (three right-pointing brackets
and a space) and a blinking cursor. Python is telling you it is ready for your interactive input. When you
write code in this mode, you are writing code in interactive mode, and it saves your code in the computer’s
random memory and then is interpreted instantaneously by Python. In the examples shown in this chapter,
you will use a simple print() function to print out an obligatory “Hello World!” statement on the screen
to start your Python journey. Write some strings enclosed in a set of round brackets with a set of single
or double quotes and then press the Enter key on your keyboard. The Python interpreter immediately
interprets the code and prints the output to your computer screen. Python, like Ruby and Perl, is an
interpreted programming language.

Open one of the prompt methods to type in the obligatory print('Hello World!') or print("Hello
World!") statement. You have learned three things. First, you have learned how to use the print() function;
second, you have learned that Python uses a set of single quotes (' ') or a set of double quotes (" ") to wrap
strings. The print() function and the use of quotation marks will be discussed throughout various examples
in this chapter. Third, this exercise has introduced you to the obligatory print('Hello World') statement as
a verification tool.

Figure 2-1. Python interactive coding on Windows 10

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

26

Whether you are new or old to Python programming language, it is worthwhile to read about the origin
of “Hello World!” and its use cases. The following are two URLs for you to visit and learn about the famous
“Hello World!” program. For our use in this book, you will use it to validate that Python, as a program, is
functioning correctly and can print the strings on the console screen when you run the print() function.

 For more information about the “Hello, World!” program, see the following:

URL: https://en.wikipedia.org/wiki/%22Hello,_World!%22_program

URL: https://www.youtube.com/watch?v=ycl1VL0q1rs

In Python 3, print() is a built-in function and a standard function used to display processed data on
the user’s computer screen. As the Python 2.7.18 version marks the end of version 2.x support and reached
the end of life on January 1, 2020, all the Python code in this book is written in Python 3.6.4. Do not bother
with Python 2.x as once you get a firm grasp of Python 3.x, you will realize there are not many differences
between the two. A fair analogical comparison would be the differences between Windows 8 and Windows
10; if you know how to use Windows 10, then you can use Windows 8 with ease.

You can also write Python code in a text editor and save it in the .py file format before running the script
on Windows 10. When you write code in a text editor, we call this writing a script or working in scripting
mode. When you install Python on Windows 10 PC, Python provides a built-in text editor (Figure 2-2), or
you can use a text editor of your choice to write your code and save it as a .py file. Python code is platform-
independent, so code written on the Windows operating system (OS) can run on macOS or Linux OS and
vice versa. In this chapter, I expect you to open Python IDLE and the built-in text editor to practice each line
of code on your keyboard so you can experience what it feels like to write code in Python. Coding in a more
feature-rich integrated development environment (IDE) is also possible, but we will briefly discuss this later
in this chapter. For now, try to write code using the Python interpreter and a simple text editor environment.
You do not want to worry about which IDE to use at this stage. Mastering how to use the Python shell and
built-in text editor is more than adequate for now. Be practical, not fashionable!

Open Python’s built-in text editor, write the following line of code, and save it as welcome_pynetauto.py
in the Python39 folder. Then go to Run and select Run Module F5.

welcome_pynetauto.py

print("Welcome to Python Network Automation")

print("Welcome to Python Network Automation")

https://en.wikipedia.org/wiki/"Hello,_World!"_program
https://www.youtube.com/watch?v=ycl1VL0q1rs

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

27

After completing all the exercises in this chapter, you will become more familiar with basic but core
Python concepts; this understanding is mandatory before moving on to the following chapters in the second
half of this book. If you are using Linux or macOS, you can open a terminal window and type in python or
python3 to start interactive mode. We will talk about coding in Linux OS later in this book.

 Preparing for the Python Exercises
The vast majority of this book’s target audience consists of Windows users. To begin the exercises in this
chapter, you should have followed the installation guide at CH02_Pre_Task_Install_Python3_on_WIN10_
NotepadPP.pdf to install the latest version of Python 3 on your Windows 10 host machine. According to 2019
statistics, Windows users still outnumber Linux users by a 20-to-1 ratio. So, beginning your Python journey
on the Windows environment is ideal, and then you can transition to Linux. Since most enterprise servers
supporting Python run on one of the many Linux OS flavors, this is enough reason for enterprise engineers
to skill up in Linux. In the later chapters, you will learn Linux basics, and you will perform tasks in a Linux
environment, so we will start with Python on Windows and then learn to use Python on Linux. If you have
been a Windows user all your life, you must start working on Linux OS to get ahead of the rest of the pack in
most IT technician jobs. If you are already familiar with Linux, then you will fly in business class while going
on your Python network automation journey.

Throughout this chapter, you will go through various exercises and use the explanations and concept
summaries to review what you have learned from these exercises. To get you started with Python coding, you
will first learn about four obligatory Python concepts, see some examples, and then you will try the exercises.

• Python data types

• Indentation and code blocks

• Commenting

• Basic Python naming conventions

Figure 2-2. Coding in Python’s built-in text editor in Windows

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

28

You can practice all the exercises presented in this chapter on either Linux or macOS with minor
directory location slash modifications. When you open Python in Python’s built-in IDLE or Windows
command prompt or Windows PowerShell and type in python, Python will run and greet you with a friendly
interactive Python prompt. Please pay close attention; you will see it has three greater-than symbols followed
by a single space.

>>>

When you see the three greater-than signs and a space, Python is telling you that you can type in the
next code line. Get comfortable with this symbol, as you will spend many hours staring at it.

 Understanding Data Types
In this section, you will learn about the different data types used in Python: numbers, sequences, mapping,
sets, and None.

 ■ Hint Try to wrap your head around Python data types to save time in the future.

A Python data type is a set/group of values with similar characteristics. Data types can belong to one of
the groups shown in Figure 2-3. We will study each data type using Python’s built-in function type().

Figure 2-3. Python data types

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

29

Everything is treated as an object in Python and classified into different data or data types depending
on the object’s characteristics. First, let’s take a quick look at Python’s data types. This book attempts to build
on your knowledge of basic to intermediate Python code while developing various network automation
applications. So, you do not have to know all the data types in-depth, but you have to know the most
commonly used data types; we will only cover the basics required to get through this book.

You will use Python's built-in function type() to find out how Python classifies different data objects.
Open your Python shell and type in the text after >>> and the space; then press the Enter key.

Exercise Explanation

① >>> type (3)
<class 'int'>

An integer is a subclass of numbers. 1 is an example of an integer.
Whole numbers with + or – signs like –3, 0, 5 are integers. They are
used in numeric data for calculation.

② >>> type (True)
<class 'bool'>
>>> type (False)
<class 'bool'>

A Boolean (True or False) is a subclass of an integer. A Boolean
operation tests some conditions for True or False. The constant 1
represents True, and 0 represents False.

③ >>> type (1.0)
<class 'float'>

A float is a subclass of numbers, also known as floating point. In
this example, 1.0 is an example of a float. Floats are numbers with
fractions or decimal points.

④ >>> type (1 + 2j)
<class 'complex'>

A complex number is a combination of real and imaginary numbers.
You can think of it as numerical data used to make calculations
convenient and used often in science calculations.

⑤ >>> type ('123')
<class 'str'>
>>> type('word')
<class 'str'>

A string is a subclass of sequence, mutable, and an ordered sequence
of letters or characters. A sequence is an ordered collection of items
indexed by integers from 0 to n. Any data type enclosed in double or
single quotation marks, for example, '123' or "word", is a string in
Python.

⑥ >>> type ([1, 2, 3])
<class 'list'>

A list is a subclass of the sequence of values of any data type. Values
in the list are items, and they are mutable, indexed by integers from 0
to n, and ordered. The list uses a set of square brackets, [], to carry
items in the order.

⑦ >>> type ((3, 2, 1))
<class 'tuple'>

A tuple is a sequence of values of any data type and is indexed by
integers. It’s an immutable data type that lists elements in round
brackets, (), separated by commas. The difference between a list
and a tuple is their immutability.

⑧ >>> type ({1: 'apple',
2: 'banana'})
<class 'dict'>

A dictionary is an unordered mapping data type created by
constructing key: value pairs, separating them by comma, and
wrapping them in braces, { }. For example, a in 'a':'apple' is
called a key, and apple that follows the colon is called a value. In the
dictionary, the order of elements is ignored, and the value is paged
by calling a key.

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

30

Exercise Explanation

⑨ >>> type ({1, 2, 3, 3,
2, 1})
<class 'set'>
>>> {1, 2, 3, 3, 2, 1}
{1, 2, 3}

Sets are an unordered collection of values of any data type without
duplicate entry. The set data type is also immutable. As shown in the
example, the set only allows a single entry of the same value.

⑩ >>> type (None)
<class 'NoneType'>

None is a special data type with a single value. It’s a constant that
represents the absence of a value. If you assign None to a variable, it
means the variable is empty.

⑪ >>> int(7.24)
7
>>> float(3.00)
3.0
>>> str("365")
'365'
>>> bool(1)
True

Explicit typecasting can specify a precise data type. Python does
an outstanding job of automatically detecting the data type, but
sometimes, some data needs to be fixed to avoid confusion. The
data type constructors such as int(), float(), str(), and bool()
are often used while handling different data types in Python code.

 We can reference more detailed explanations of each data type on the Python.org documentation site.
URL: https://docs.python.org/3/library/stdtypes.html

 Indentation and Code Blocks
Most programming languages such as C, C++, and Java use braces, { }, to structure code. Python uses
indentation to define a code block to give its unique code structure; a block of code is a group of statements
in a program or script consisting of at least one statement and declarations for the programming block. In
Python, a code block starts with indentation and ends with the first unindented line; examples include the
body of a function, loop, and class. In this section, you’ll learn to use indentation or whitespaces as code
blocks.

 ■ Hint Python uses four spaces to differentiate between code blocks.

http://python.org
https://docs.python.org/3/library/stdtypes.html

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

31

① with open("C:\\Python39\\ip_adds.txt", "r") as f:
🗌🗌🗌🗌for line in f:
🗌🗌🗌🗌🗌🗌🗌🗌print(line)

Output: 10.20.30.1

172.168.1.254

192.168.0.2

10.20.34.25

② with open("C:\\Python39\\ip_adds.txt", "r") as f:
🗌🗌for line in f:
🗌🗌🗌🗌print(line, end="")

Output: 10.20.30.1
172.168.1.254
192.168.0.2
10.20.34.25

 Explanation
① Python uses spaces to group statements; this is also known as indentation. The first line of code

usually starts with no spacing; when the statement ends with a colon (:), the next line needs to be
indented to show that it is part of the group. Example ① is code that opens a file with IP addresses
and reads the IP addresses. Four indentations are the PEP80 recommendation and the most widely
used indentation convention when coding in Python. The example shows the second line with four
spaces, followed by eight spaces on the third line.
The output is shown for demonstration only, but you can create a text file called ip_adds.txt under
C:\Python39\, enter a few IP addresses, and test the code shown in your Python interpreter.

② The same code still works with two spaces for indentation. As long as your spacing is consistent, you
can use any spacing for your code blocks; however, four spacing is the norm. At Google, the Python
coding standard uses two spaces.
In the last line of code, I have added end="" to eliminate the whitespaces created while reading the
information from the file. Using end=", end=" ", end = "/", end=":", and more, you can manipulate
how unwanted whitespaces are handled in the output.

 Commenting
Comments are part of the code that does not affect the program’s flow and that provide descriptions of
your application’s important sections. Comments can explain the purpose of certain functions or explain
complex code snippets to assist readers. Python uses a # sign when processing comments, and subsequent
characters are commented out and have no effect on the program. To add multiple-line comments, you can
use either triple-single quotations (''' ''') or triple-double quotation marks (""" """) across multiple
lines. Another use of Python commenting is to make some part of the code inactive while still developing an
application.

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

32

In this section, you’ll learn how to add comments to your code.

 ■ Hint Code is read more times than written. Good commenting habits can save time when decoding.

① # This code can SSH into multiple devices & download IOS from a TFTP server
and upgrades old IOS to the latest version.
Please... [skip]

② # Ask new driver's age.
age = 17
if age > = 18:
 print('You are old enough to drive a car.')
#elif age > 80:
print('You are too old to drive a car!') else:
 print('You are too young to drive a car.')

③ """
This code can SSH into multiple devices and download IOS from a TFTP server
And upgrades old IOS to the latest version. Please check MD5 values of the new
IOS image before uploading it to the router flash.
"""

 Explanation
① Add comments by entering the # hash (sharp) symbol at the beginning of each line. Python ignores

everything after #. Comments are used to explain and clarify the meaning of source code or give
guidance to source code used as in example ①.

② Or temporarily disable parts of code during application development, as shown in example ②.

③ For multiple lines (the recommendation is three or more lines), use the triple quotation marks.

 Python Naming Convention
In this section, you’ll learn the standard Python-related object naming conventions.

 ■ Hint To write consistent and high-quality Python code, you have to adopt standardized naming
conventions.

As in every other programming language, Python also has some naming conventions to follow. If your
Python code will be read by others, then it is a best practice to follow these conventions to avoid confusion
and misunderstanding at later times. When you name variables, functions, modules, classes, and so forth,
give meaningful, sensible, and descriptive names to avoid ambiguity for others. Use the # or triple quotation
marks to add additional comments in your code. Table 2-1 outlines the recommended naming conventions
for new Python coders.

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

33

Take your time to study each type, example, and convention before moving onto the next section. You
can also come back to this table as a reference point later as needed.

 Doing the Python Exercises
Complete all exercises to master the basic Python syntax and concepts required for network automation coding.

 ■ Hint all the exercises in this chapter will help you better understand the network automation code
presented later in the book. you have to understand the Python basics to continue your Python network
automation journey.

You are encouraged to open Python IDLE and perform all the exercises given in this book. You type in the
syntax in the Python IDLE first, and then the explanation follows the exercises to aid your understanding of the
practiced topics. The selective exercises provided in this chapter are the same as what I used while learning
Python for the first time. This will make you familiar with Python syntax and concepts. If you are a novice
Python learner, you will get enough exposure to start network automation coding using Python. You will learn
the necessary Python skills required to understand the Python code to prepare you for later chapters in this
book. I would like to teach you more about Python syntax, but this book’s focus is on network automation,
virtualization, Linux, and Cisco networking. Hence, relevant exercises have been chosen selectively to cover
Python basics so that when you get to the final lab chapters, you will feel comfortable following the exercises.

In this chapter, when you type the first character in the exercise, try to get to the last line in the exercise
in one session. Even if you don’t understand the code on your first attempt, repeat the whole exercise for a

Table 2-1. Python Naming Conventions

Type Examples Conventions Description
Variable x, y, z, var, tmp, f_name,

s_name
No capitalization
A letter, word, or words
with underscore(s)

Use a lowercase letter (for augments),
words, or words with underscore
separator(s).

Function function my_function No capitalization word or
words with underscore(s)

Use lowercase words or words, or
words with underscore separator(s).

Method method class_method Same as function Use a lowercase word or words with
underscore separator(s).

Module module.py network_
tools.py

Same as function +
module saved as .py file

When saving a module as a .py file,
use a short, lowercase word or words
with underscore separator(s).

Package package firstpackage All lowercase word
or words with no
underscore(s)

Use a short, lowercase word or words
without underscore separator(s).

Class Class FirstClass First letter capitalization
with no underscore(s)

Use camel casing; start each word with
a capital letter without underscore
separator(s).

Constant CONSTANT FIRST_
CONSTANT FIRST_TIME_
CONSTANT

Capitalized with
underscore(s)

Use an uppercase single letter, word,
or words with underscore separator(s).

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

34

second time. Many of the examples used in this chapter are self-explanatory, or follow-up explanations will
clarify each code. There are plenty of Python introduction books for sale on Amazon and an abundance of
free and paid online lessons. So, after attempting the exercises in this chapter, if you feel you would like to
improve by doing more Python concepts and syntax, please find a book or website of your choice and spend
more time practicing Python basics.

We will use Python 3 instead of Python 2 for a simple reason; Python 2 versions reached the end of life
on January 1, 2020.

Also, I encourage you to complete all exercises from a Windows-based computer so you can learn
the minor syntax differences between the Windows and Linux operating systems, mainly dealing with
file handling and how directory structures are different between the two operating systems. I have not
mentioned macOS as it is a derivative of a BSD UNIX, which is the same as many of the Linux distributions
(distros). In Chapters 5 and 6, you will build virtual machines from the most popular Linux distros, CentOS
(Red Hat derivative), and Ubuntu (Debian derivative). For a smoother transition, you will need to get
familiar with the Linux OS and then use Python 3 on Linux.

When you launch Python IDLE, it will welcome you with three greater-than symbols (>>>) and a cursor
(|). If you see the three greater-than symbols in the exercises, you must type in the content into your Python
IDLE. If you must save your code and run it as a Python file, which has a file extension ending with .py, you
will have to follow the instructions and write the code in either Python’s built-in text editor or Notepad.
Although I could introduce you to various text editors and IDEs, our focus in this chapter is purely on Python
syntax and concepts, so a fancy IDE or text editor is an obstruction.

It’s time to launch your Python IDLE. When you see the prompt, start typing the code in the first
exercise.

 Variables and Strings
We’ll start with variables and strings.

 Exercise 2-1: Create Variables and Assign Various Data Types

① >>> x = 1
>>> y = 2
>>> x + y
3
>>> type(x + y)
<class 'int'>

② >>> x = '1'
>>> y = '2'
>>> x + y
'12'
>>> type(x + y)
<class 'str'>

③ >>> fruit = 'apple'
>>> applause = 'bravo'
>>> dec1 = 1.0
>>> bool_one = True
>>> bool_0 = False
>>> _nada = None

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

35

 Explanation

① You created variables x and y and assigned two integers. Perform a simple addition to check the sum
of two numbers. Python supports other arithmetic operations; the equal sign (=) in Python is an
assignment operator. So, you must read x = 1 as “x is assigned to 1” or “x is pointing to 1” or “tag x is
assigned to object 1.” Unlike other programming languages, in Python, there is no need to declare the
variable up front; the value assigned to the variable determines the variable type, and in this example,
they are all integers.

② We created variables x and y; then they got assigned to two different strings. Although 1 and 2 are
integer data types, we wrapped these numbers in single quotation marks, and this automatically
converted them into strings. So, performing concatenations with two strings will return a string, 12,
and not the sum of the two numbers, which is 3.

③ You should give variables with brief and intuitive names. Variable names usually start with a–z
or _. Also, avoid capitalization of the first variable letter. The variable names must be continuous
without whitespacing or breaks. If you try to name a variable with a number, arithmetic operator, or
special characters, you will receive various syntax errors. Also, Python is case sensitive, and a string
is immutable. You cannot overwrite an immutable object’s values, but there is a trick to changing
characters in a string. You will learn this trick in Exercise 2-22.

 Exercise 2-2: Create Variables and Use the print() Function to Print
Output

① >>> x = 100
>>> y = 200
>>> z = 300
>>> total = x + y + z
>>> print(total) 600

 Explanation

① We have created and assigned the x, y, and z variables to different values and created another variable
called total, the sum of the three variables. We used print(total) to print the result on the screen. You
usually use the print() function to display the output on the screen. The print() statement has no
impact on the existing variable values from the computer’s or Python’s perspective.

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

36

 Exercise 2-3: Use Abbreviated Variable Assignment

① >>> x, y, z = 10, 20, 30
>>> x
10
>>> y
20
>>> z
30
>>> type(x)
<class 'int'>
>>> x, y, z
(10, 20, 30)

② >>> a, b, c = "apple", "banana", "coconut"
>>> a, b, c
('apple', 'banana', 'coconut')

 Explanation

① You can assign multiple variables to multiple values on a single line using a comma (,) as the
separator. When you page an individual variable, it returns as an integer object, but when paged as a
group using commas, it returns a tuple.

② The same applies to the objects with a string data type. Did you notice that double quotation marks
are used instead of single quotation marks? You can use both as long as you are consistent through
the whole code.

 Exercise 2-4: Enter a String, Escape Character Backslash (\),
and type() Function

① >>> 'He said, "You are one of a kind."'
'He said, "You are one of a kind."'

② >>> said = "He said, \" You are one of a kind.\""
>>> print(said)
He said, "You are one of a kind."
>>> type(said)
<class 'str'>

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

37

 Explanation
① You can express a string of text in a set of single or double quotation marks. This example uses single

quotation marks on Python IDLE.

② This example uses double quotation marks and two backslashes (\) just before inner double
quotation marks ("). A backslash escapes (removes) the functional meaning of double quotation
marks and marks them as normal characters only. It is common practice to use one style of quotation
marks to stay consistent and improve your code’s readability. Use the type() function to check the
data type.

Table 2-2 provides examples of backslash use cases. Review the table before moving on to the next
exercise. You can also type the examples into your Python interpreter to learn the subtle differences between
the unique examples.

Table 2-2. Backslash Examples

\ Use Example Explanation
\\ >>> print('\\represents backslash\\')

\represents backslash\
The backslash is used to escape the
leading backslash. We also know this
process as negating the meaning of a
metacharacter and taking a character as
a literal character.

\' >>> print('\'Single quotes in single
quotes\'')
'Single quotes in single quotes'

The backslash is used to escape a single
quote.

\" >>> print("\"double quotation marks
inside double quotation marks\"")
"double quotation marks inside double
quotation marks"

The backslash is used to escape a double
quote.

\n >>> print('Line 1\nLine 2\nLine 3')
Line 1
Line 2
Line 3

Combining \ with n takes another
meaning and becomes a newline
character, \n.

\r (for Linux)
\r\n
(for Windows)

>>> print('Line 1\r\nLine 2\r\nLine 3')
Line 1
Line 2
Line 3

On a Linux machine, to emulate
pressing the Enter key, \r is used but,
you have to use \r\n on a Windows
machine.

\t >>> print('No tab\tTab\tTab')
No tab Tab Tab

Tab has the same effect as pressing the
Tab key on a physical keyboard.

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

38

 Exercise 2-5: Determine If a Variable Is a Container, a Tag, or a Pointer

① >>> x = "apple"
>>> y = "apple"
>>> id(x)
2590130366512
>>> id(y)
2590130366512
>>> x == y
True

 Explanation

① Many Python books teach novice Python learners about variables using a variables-as-containers
analogy. In this analogy, variable containers temporarily store objects. To some extent, this seems
to be a correct analogy, but not exactly 100 percent correct. Variables are more like tags or pointers
pointing at an object (see Figure 2-4). The container analogy does not work. As seen in the previous
exercise, x and y have been assigned to the same string (an object), "apple" (pointing to the same
object). You can use the id() function to check the object IDs for validation; x and y have the same
ID. Using the comparison operator, you can confirm that x is equal to y, and hence they are both
pointing to the same object, "apple".

 Here are some Python variable naming conventions recommendations:

1. Use a lowercase single letter, word, or words.

2. if more than two words are used, separate words with an underscore (_) for readability. Use numbers
to differentiate the same variables with similar object characteristics, for example, fruit_1= "apple"
and fruit_2 = "orange".

Figure 2-4. Variables: container versus tag/pointer analogy

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

39

3. Variable names are case sensitive. fruit_1 and Fruit_1 are two separate variables.

4. avoid using Python reserved words; this will be discussed in the later exercise.

You can practice a character or sentence that you define by putting it in double or single quotation
marks in the following example. Also, check for string errors.

 Exercise 2-6: Use String Indexing

① >>> bread = 'bagel'
>>> bread [0]
'b'
>>> bread [1]
'a'
>>> bread [4]
'l'

 Explanation

① Python indexing starts at 0. For the word bagel used in the example, the letter b is the 0 index, and the
letter l is the index 4.

String: b a g e l
Index : 0 1 2 3 4

While writing Python code, you will encounter various Python error messages. If you get familiar with
commonly encountered errors in advance, you will resolve these errors quickly and enjoy Python coding
much more. In the following examples, you will intentionally trigger several Python errors to learn more
about them.

 Exercise 2-7: Understand Variable Assignment Errors

① >>> +lucky7 = 777
SyntaxError: can't assign to operator
>>> 7lucky= 777
SyntaxError: invalid syntax
>>> 7_lucky = 777
SyntaxError: invalid decimal literal
>>> lucky7 = 777
>>> lucky7
777

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

40

 Explanation

① The previous syntax errors display the errors triggered by incorrect variable naming conventions.
If you use an arithmetic operator symbol at the beginning, Python will raise an error. If you place a
number at the beginning of the variable name, Python will return an invalid syntax error. If you assign
variables correctly, you will not encounter error messages, as shown in the previous example. Errors
are a crucial part of any coding, as they are there to help you correct your coding mistakes.

 Exercise 2-8: Avoid “SyntaxError: EOL While Scanning String Literal”

① # On Python Shell:
>>> q1 = 'Did you have a wonderful day at work?"
SyntaxError: EOL while scanning string literal

On Window Command-Line or PowerShell:
>>> q1 = 'Did you have a wonderful day at work?"
File "<stdin>", line 1
q1 = 'Did you have a wonderful day at work? "
^

SyntaxError: EOL while scanning string literal

>>> q1 = 'Did you have a wonderful day at work?' # Use correct quotation marks, no
error prompted.
>>>

 Explanation

① You cannot mix single and double quotes when assigning a string to a variable. You will get a scanning
string literal error as shown. This exercise shows the same error output from the Python shell and
Windows PowerShell. To correct this error, make sure you type incorrect quotation marks at the
beginning and the end of the string.

 Exercise 2-9: Avoid “NameError: name ‘variable_name’ is not defined”

① >>> print(a1)
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in <module>
 print(a1)
NameError: name 'a1' is not defined
>>> a1 = 'Yes, I had a lovely day.'
>>> print(a1)
Yes, I had a lovely day.

 Explanation

① NameError occurs when your variable is not predefined. To avoid this error, define your variable first
and use it in a function like print(a1).

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

41

 Exercise 2-10: Avoid “SyntaxError: invalid syntax”

① #On Python 3.9Shell:
>>> for = 'I drove my car for 4 hours before taking the first break.'
SyntaxError: invalid syntax

② #On Window Command-Line or PowerShell
>>> for = 'I drove my car for 4 hours before taking the first break.'
File "<stdin>", line 1
for = 'I drove my car for 4 hours before taking the first break.'
^
SyntaxError: invalid syntax

>>> first_break = 'I drove my car for 4 hours before taking the first break.'
>>>

 Explanation

① Python returns this error when you use words that are in Python’s reserved words list. To avoid this
error, avoid using reserved words as variable names.

② It triggered the same error in the Windows command line, and it gives a little more information. The
^ (caret) symbol is used to indicate a potential problem area. Python tells you to make corrections
roughly around where ^ is pointing.
Give a more descriptive or meaningful name to your variable. I renamed the variable name to first_
break, so the variable name is in context with the string assigned to this variable.

 Exercise 2-11: Avoid “TypeError: ‘str’ object is not callable”

① >>> help = 'Please help me reach my goal.'
>>> print(help)
Please help me reach my goal.
>>> help (print)
Traceback (most recent call last):
File "<pyshell#77>", line 1, in <module> help (print)
TypeError: 'str' object is not callable

 Explanation

① When you assign a built-in function name as a variable name, you disable the function name, and it
immediately becomes unusable. Avoid using keywords and built-in function names as your variable
names. You can check all built-in function names using the dir(__builtins__) command, which will
be discussed in a later example.

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

42

 When help() works normally, the help information appears as shown here:

Python 3.9.1 (tags/v3.9.1:1e5d33e, Dec 7 2020, 17:08:21) [MSC v.1927 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

>>> help(print)

Help on built-in function print in module builtins:

print(...)
 print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

 Prints the values to a stream, or to sys.stdout by default.
 Optional keyword arguments:
 file: a file-like object (stream); defaults to the current sys.stdout.
 sep: string inserted between values, default a space.
 end: string appended after the last value, default a newline.
 flush: whether to forcibly flush the stream.

>>>

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

43

you have reviewed a few common syntaxes related to Python errors. as you write and run your code, you will
be encountering various error codes. Some error codes are easy to troubleshoot, but some error codes are
stubborn to troubleshoot, and you will have to search on the Stack Overflow website (https://stackoverflow.
com/questions) for answers.

 Exercise 2-12: Add Multiline Comments with Triple Quotation Marks

① >>> """You're one of a kind. You're my best friend.
I've never met someone like you before. It's been wonderful getting to know you. """
"You're one of a kind.\nYou're my best friend.\nI've never met someone like you
before.\nIt's been wonderful getting to know you.\n"

② >>> cook_noodles = '''How to cook a bowl of instant noodles? Pour 2.5 cups of water in
a saucepan,
boil it first, and then
put dried vegetables, powder soup, and noodles. Then boil it for another 5 minutes.
Now you can eat delicious instant noodles.'''
>>> print(cook_noodles)
How to cook a bowl of instant noodles? Pour 2.5 cups of water in a saucepan, boil it
first and then
put dried vegetables, powder soup, and noodles. Then boil it for another 5 minutes.
Now you can eat delicious instant noodles.

③ # Use PEP-8 to keep per line of code less than 80 characters
>>> cook_noodles = '''How to cook a bowl of instant noodles? \
Pour 2.5 cups of water in a saucepan, boil it first, and then put dried \
vegetables, powder soup, and noodles. Then boil it for another 5 minutes.\
Now you can eat delicious instant noodles.'''
>>> print(cook_noodles)
'How to cook a bowl of instant noodles? Pour 2.5 cups of water in a saucepan, boil
it first and then put dried vegetables, powder soup, and noodles. Then boil it for
another 5 minutes. Now you can eat delicious instant noodles.'

 Explanation
① If you wrap a long string with triple quotation marks (three single or double quotation marks), you

can enter multiple lines of comments. This is a valid commenting method when entering long
descriptions.

② You can also use triple quotation marks when you assign a long string to a variable.

③ If your code line gets too long, use the backslash (\) at the end of the line to continue writing
comments or strings, as shown in this example. PEP-8 recommends that a line of code should be less
than 80 characters long.
Go to the following Python.org site to read more about the PEP-8 writing style and more:
https://www.python.org/dev/peps/pep- 0008/.

https://stackoverflow.com/questions
https://stackoverflow.com/questions
http://python.org
https://www.python.org/dev/peps/pep-0008/

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

44

 Exercise 2-13: Use \ as an Escape Character to Remove Special
Character Meanings

① >>> single_quote_string = 'He said, "arn\'t, can\'t shouldn\'t woundn\'t."'
>>> print(single_quote_string)
He said, "arn't, can't shouldn't wouldn't."

② >>> double_quote_string = "He said, \"arn't can't shouldn't wouldn't.\""
>>> print(double_quote_string)
He said, "arn't can't shouldn't wouldn't."

 Explanation

① Using the backslash symbol as an escape character inside single quotation marks removes the special
character meaning and makes the next character regular plain text. So, Python recognizes \' as a
plaintext '. The escape character (or the backslash) plays an essential role in Python coding.

② You can use the escape character in a string marked with double quotation marks. Since ' (single
quote) is different from the outer " (double quote), there’s no need to use backslash escape characters
as many times as in example ①.

 Exercise 2-14: Enter (Inject) Values/Strings in a String Using %s

① >>> exam_result = 95
>>> text_message = 'Congratulations! You have scored %s in your exam!'
>>> print(text_message% exam_result)
Congratulations! You have scored 95 in your exam!

② >>> wish = 'You need %s to make your wish come true.'
>>> genie = 'a Genie in the bottle'
>>> print(wish% genie)
You need a Genie in the bottle to make your wish come true.

③ >>> fast_car = 'Fast cars have %s & %s to make the car go faster.'
>>> part1 = 'a supercharger'
>>> part2 = 'a turbocharger'

>>> print(fast_car% (part1, part2))
Fast cars have a supercharger & a turbocharger to make the car go faster.

④ >>> ccnp_score = 'My exam scores are %s forENCOR, %s for ENARSI and %s forENAUTO.'
>>> ccnp_score% (95, 92, 90)
'My exam scores are 95 for ENCOR, 92 for ENARSI and 90 for ENAUTO.'
>>> print(ccnp_score% (95, 92, 90))
My exam scores are 95 for ENCOR, 92 for ENARSI and 90 for ENAUTO.

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

45

 Explanation
① You can enter a digit variable into a string message using %s.

② You can enter a string variable into a string message using %s.

③ You can enter two or more variables into a string using multiple %s characters and wrap them as a
tuple sequence.

④ You do not have to define values as variables; first, you can add the expected augments directly, as
shown in this example. The ccnp_score variable expects three strings (arguments), so we provided
three arguments (95, 92, 90).

 Printing, Concatenating, and Converting Strings
 Exercise 2-15: Use the print() and len() Functions to Create a Simple
Function

① >>> print('Paris baguette')
Paris baguette

>>> bread = 'NY bagel'
>>> print(bread)
NY bagel

② >>> aussie = 'meat pie'
>>> print(len(aussie))
8

>>> print(type(aussie[4]))
<class 'str'>

③ >>> bread = 'naan'
>>> def bread_len():
🗌🗌🗌🗌length = len(bread)
🗌🗌🗌🗌print(length)

>>> bread_len()
4

 Explanation
① Use the print() function to print output to your display.

② Use the len() function to check the length of a string. The len() function even counts the whitespace
as a string.

③ Define a variable and then create a simple function that reads your bread choice length and prints
the character count. To create a function, always start the line with def and finish the header line with
a semicolon (:). The next line then places four spaces, as shown. (You have already learned about
indentation.) To call the function, simply type in the function name and (), in this example, bread_
len(). You have just created your first function.

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

46

 Exercise 2-16: Use the lower() and upper() String Methods

① >>> "Bagel Is My Favorite Bread!".lower()
'bagel is my favorite bread!'
>>> bread = 'BAGEL'
>>> print(bread.lower())
bagel

② >>> "baguette is also my favorite bread.".upper()
'BAGUETTE IS ALSO MY FAVORITE BREAD.'
>>> bread = 'baguette'
>>> print(bread.upper())
BAGUETTE

 Explanation

① Both lower() and upper() are built-in methods used for string handling. The lower() string method
converts all uppercase characters to lowercase. If lowercase characters exist, it returns the original
string.

② The upper() string method works precisely opposite to the lower() string methods.

 Exercise 2-17: Perform String Concatenation and Use the str()
Method

① >>> print('Best' + 'friends' + 'last' + 'forever.')
Bestfriendslastforever.
>>> print('Best ' + 'friends ' + 'last ' + 'forever.')
Best friends last forever.
>>> print('Best' + ' ' + 'friends' + ' ' + 'last' + ' ' + 'forever.')
Best friends last forever.
>>> print('Best', 'friends', 'last', 'forever.')
Best friends last forever.
>>> print('~'*50)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
>>> love = ('like' * 10)
>>> print(love)
likelikelikelikelikelikelikelikelikelike

② >>> time = 30
>>> print('You have' + time + 'minutes left.')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "int") to str
>>> print('You have ' + str (time) + ' minutes left.')
You have 30 minutes left.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

47

 Explanation

① You have just practiced string concatenation using +, whitespaces, commas, and * to manipulate the 
output. String concatenation is an essential skill in coding.

② The variable was assigned with an integer, 30. You cannot concatenate an integer with strings, first, 
convert the integer into a string using the str() method, which converts an integer data type into a 
string data type. This conversion is also known as casting.

 Exercise 2-18: Learn to Change a String Using Curly Brackets and  
.format()

① >>> 'She is {} years old.'.format(25)
'She is 25 years old.'
>>> 'She is {{}} years old.'.format()
'She is {} years old.'
>>> 'She is {{}} years old.'.format(25)
'She is {} years old.'
>>> 'She is {{{}}} years old.'.format(25)
'She is {25} years old.'

② >>> 'Learning Python 101 is {}.'.format('important')
'Learning Python 101 is important.'
>>> '{} {} {} {} {}'.format ('Learning', 'Python', 101, 'is', 'important.')
'Learning Python 101 is important.'

③ >>> '{} | {} | {}'.format ('bread', 'quantity', 'date') 
bread | quantity | date 
>>> '{} | {} | {}'.format ('bagel', '100', '01/12/2020') 
'bagel | 100 | 01/12/2020'

 Explanation
① Change the string using {} (curly brackets) and the .format() method. To show {} within a string, you 

must use double curly brackets. To show {value} within a string, you must use triple curly brackets.

② Use multiple curly brackets with the .format() method to form a string.

③ You can also create a table-like format using curly brackets and the pipe (|) symbol.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

48

 Exercise 2-19: Adjust the Text Position with Curly Brackets and 
.format()

① >>> '{}|{}'.format ('bagel', '10')
'bagel|10'
>>> '{} | {}'.format ('bagel', '10')
'bagel | 10'
>>> '{0:1} | {1:1}'.format ('bagel', '10')
'bagel | 10'

② >>> '{0:1} | {0:1}'.format ('bagel', '10')
bagel | bagel
>>> ('{0:1} | {0:1} | {1:1} | {1:1}'.format ('bagel', '10'))
'bagel | bagel | 10 | 10'

③ >>> '{0:>1} | {1:1}'.format ('bagel', '10')
'bagel | 10'
>>> '{0:>10} | {1:1}'.format ('bagel', '10')
bagel | 10'
>>> '{0:>20} | {1:1}'.format ('bagel', '10')
bagel | 10'

④ >>> '{0:^10} | {1:^10}'.format ('bagel', '10') ' bagel | 10 '
>>> '{0:^20} | {1:^20}'.format ('bagel', '10')
Bagel   |   10   '
>>> '{0:^30} | {1:^30}'.format ('bagel', '10')
Bagel  |   10   '

 Explanation

① You can adjust text positions using options within curly brackets and format() methods. The string 
positioning special characters include < (adjust to left), ^ (adjust to center), or > (adjust to right).
The examples here show you the default indexing and positioning of items if you leave curly brackets 
blank or filled in.

② You can page the items as you like at any place in the string.

③ The greater-than symbol (>) is used to move the string x spaces. {0:>10} means that the first indexed 
item will end at position 10 and so forth. The first integer, 0, in {0:>1} refers to the first item in tuple, 
('bagel', '10'), so it refers to bagel. Similarly, the first integer 1 in {1:1} refers to the second item, 10.

④ These examples showcase what happens when you adjust both strings using different positioning 
values and center them.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

49

 Exercise 2-20: Adjust the Number of Decimal Places

① >>> '{0:^10} | {1:10}'.format('pizza', 27.333333)
' pizza | 27.333333'
>>> '{0:^10} | {1:10.2f}'.format('pizza', 27.333333)
'  pizza   |   27.33'

② >>> '{0:^10} | {1:10}'.format('Cisco IOS XE 4351', 16.1203)
'Cisco IOS XE 4351 | 16.1203'
>>> '{0:1} | {1:10.2f}'.format('Cisco IOS XE 4351', 16.1203)
'Cisco IOS XE 4351 |   16.12'

③ >>> '{0:1} | {1:1.2f}'.format('Cisco IOS XE 4351', 16.1203)
'Cisco IOS XE 4351 | 16.12'

>>> router = ('Cisco IOS XE 4351', 16.1203)
>>> router[0] + ' | ' + str( round(router[1], 2))
'Cisco IOS XE 4351 | 16.12'

 Explanation

① Using nf, you can format the number of decimal places. Here, n is the number of decimal places, and 
f represents the format specifier. Hence, 2f means to reduce the float to two decimal places. To better 
understand the format specifier or any other content in this book, you must enter the lines and learn 
from your keyboard and screen.

② Apply formatting to a network example.

③ Another way to achieve the same result is to use the concatenation and round method in your code. 
First, use the indexing method to call out the router name with 'router[0]. Second, index the second 
item, float (Cisco IOS XE version number). Third, use the round method with decimal reference of 2. 
Fourth, convert the shortened float as a string. Finally, use the + method to concatenate the values as 
a string.

 Exercise 2-21: Ask for and Receive User Input with input()

① >>> fav_bread = input('Name of your favorite bread: ')
Name of your favorite bread: pita
>>> print(fav_bread)
Pita

>>> num_bread = input("How many " + fav_bread + " would you like? ")
How many pita would you like? 5
>>> print(num_bread)
5

>>> 'So, you wanted {} {} bread.'.format(num_bread, fav_bread)
'So, you wanted 5 pita bread.'



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

50

 Explanation

① You can use input() to receive the user’s input through the keyboard. The previous example shows 
that the input() function takes user input and can store the returned information as variables. You 
can recall the stored information from your computer’s random memory.

 Exercise 2-22: Change a Word or Characters in a String

① >>> your_phone = 'iPhone 12 Pro'
>>> your_phone.split()
['iPhone', '12', 'Pro']
>>> your_phone = your_phone.split()
>>> your_phone
['iPhone', '12', 'Pro']
>>> your_phone[2] = 'ProMax'
>>> your_phone
['iPhone', '12', 'ProMax']
>>> " ".join(your_phone) # " " has a whitespace
'iPhone 12 ProMax'

② >>> my_phone = 'Galaxy S10 +'
>>> len(my_phone)
12
>>> my_phone = list(my_phone)
>>> my_phone
['G', 'a', 'l', 'a', 'x', 'y', ' ', 'S', '1', '0', ' ', '+']
>>> my_phone[8], my_phone[11] = '2', 'Ultra'
>>> my_phone
['G', 'a', 'l', 'a', 'x', 'y', ' ', 'S', '2', '0', ' ', 'Ultra']
>>> "".join(my_phone) # "" has no whitespace
'Galaxy S20 Ultra'

 Explanation

① The first example teaches you how to split a string and replace a word. Your aim here is to replace the 
word Pro with ProMax. So, you have used the split() method and then indexed the third item pro 
and replaced it with ProMax; then we used the " ".join method with spacing to put the strings back 
together. Your phone is now iPhone 12 ProMax.

② In this exercise, you aim to convert the string Galaxy S10 + into Galaxy S20 Ultra. Because of a 
Python string’s immutable nature, to replace characters in a string, you must use a workaround. So, 
the 9th character, 1, must be replaced with 2, and the 12th character, + must be replaced with the word 
Ultra. Remember, in Python, the index starts from 0, so index 8 is the 9th character, and index 11 is the 
12th character.
First, use the list () method to split the string into individual characters in a list. Then use indexing 
to replace 1 and + with 2 and Ultra. Finally, use the .join method with no spacing separator "" to join 
all the elements.
You may think that the previous exercise is rather anal. If you enjoyed the previous exercises, you will 
probably enjoy writing code as you have excellent attention to detail.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

51

 Recap: Variables and Strings
Here’s a recap of variables and strings:

• A string is an immutable sequence data type.

• You can express strings in either single or double quotation marks.

• Variables are labels for a location in memory.

• A variable can hold a value.

• Python uses basic variable naming conventions to make code more readable and 
usable.

• A Python variable must start with a letter, word, or words with underscore 
separator(s). It cannot start with an integer, special characters, or space, and if more 
than two words are used, you cannot place whitespace between two words.

• As a best practice, avoid using Python reserved words or function names as variable 
names.

• A function is a reusable piece of code written to do a specific task.

• You have learned about using the built-in functions, print(), len(), str(), and 
list(), to work with string data types.

Table 2-3 contains the reserved keywords in Python 3.8; avoid using these words as your variable 
names.

Table 2-3. Python 3 Reserved Keywords

and del from not while

as elif global or with

assert else if pass yield

break except import print FALSE

class exec in raise TRUE

continue finally is return None

def for lambda try nonlocal

* print is a keyword in Python 2 but it is a function in Python 3.

 Unlike in Python 2.7, in Python 3.x, the print statement is a built-in function, not a reserved keyword.

To view reserved keywords, type help("keywords") in your Python interpreter.

To view the full list of built-ins, type dir(__builtins__) in your Python interpreter.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

52

 Numbers and Arithmetic Operators
Next, you will continue learning about the numbers, operators, and functions using simple examples. 
Arithmetic is all about numbers, and mathematics is all about theory; here, we are dealing only with numbers.

 Exercise 2-23: Use Arithmetic Operators

① >>> 1 + 2
3
>>> 1 - 2
-1
>>> 1 * 2
2
>>> 1 / 2
0.5

② >>> 1 + 2.0
3.0

③ >>> 2 ** 3
8

④ >>> 7 // 3
2

⑤ >>> 7 % 3
1
>>> 4 % 2
0

 Explanation

① Addition, subtraction, multiplication, and division operators can carry out the calculation of numbers.

② When Python calculates an integer and a float, the result takes a form of a float.

③ Python expresses 2 to the power of 3 as 2**3.

④ // performs a floor division. 7 contains two lots of 3, so the  correct answer is 2 and the remaining 1 is 
discarded.

⑤ To find a remainder, you can use the % symbol.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

53

 Exercise 2-24: Understand Integers vs. Strings

① >>> int_3 = 3
>>> str_3 = '3'
>>> total = int_3 + str_3
raceback (most recent call last):
File "<pyshell#304>", line 1, in <module> total = int_3 + str_3
TypeError: unsupported operand type(s) for +: 'int' and 'str'

② >>> total = int_3 + int(str_3)
>>> print(total)
6

 Explanation

① Assign an integer to a variable, and assign a string to another variable. Use an operator to add the two. 
Python will return a TypeError. You can only perform additions of the same object types.

② Now use the int() method to convert the string into an integer, and it will perform standard 
calculation and return 6.

 Recap: Arithmetic Operators
Here’s a recap of arithmetic operators:

• Python uses arithmetic operators to perform calculations with integers. When used 
with strings, the plus sign (+) can concatenate a series of strings, and the multiplier 
sign (*) can multiply a string n number of times. Table 2-4 shows Python arithmetic 
operators.

Table 2-4. Python Arithmetic Operators

Operator Meaning
+ Addition

- Subtraction

* Multiplication

/ Division

** Power of

// Floor division

% Remainder



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

54

• When entering numbers, do not use quotation marks.

• If a number is in quotation marks, Python recognizes the object as a string.

• To convert a string into an integer, use the int() function.

• To convert a string to decimal, use the float() function.

 Booleans and Relational Operators
We’ll now look at Booleans and relational operators.

 Exercise 2-25: Use Booleans

① >>> a = True
>>> b = False

>>> print(a)
True
>>> print(b)
False
>>> type (a)
<class 'bool'>
>>> type (b)
<class 'bool'>

② >>> type (True)
<class 'bool'>
>>> print((1).__bool__())
True
>>> type (False)
<class 'bool'>
>>> print((0).__bool__())
False

 Explanation

① A Boolean can have a value of either True or False. Boolean tests the True or False value of some 
conditions.

② In a Boolean operation, the constant 1 represents True, and 0 represents False. You can use the   bool    
method to test the value 1 or 0 in a Boolean operation. The constants defined to be false include None 
and False. Zero of any numeric type—0, 0.0, 0j, decimal(0), integer(0.1)—are all False. Also, empty 
sequences and collections—' ', (), [], {}, set(), range(0)—are also False.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

55

 Exercise 2-26: Use Relational Operators
The following is a Boolean table put together as an exercise. Do not waste your time staring at a Boolean table to 
understand Boolean operators. Instead, do the following exercise to wrap your head around Boolean operators.

① >>> 1 == 2
False
>>> 1 > 2
False
>>> 1 >= 2
False
>>> 1 < 2
True
>>> 1 <= 2
True
>>> 1 != 2
True

# Equal to

# Greater than

# Greater or equal to

# Less than

# Less or equal to

# Not equal to

 Explanation

① The relational operators are self-explanatory, so the more you practice, the better you will get with 
their usage.

 Exercise 2-27: Use Boolean Expressions to Test True or False

① >>> True and True is True
True
>>> True and False is False
True
>>> False and True is False
False
>>> False and False is False
False
>>> not True is False
True
>>> not False is True
True

 Explanation

① In the previous examples, Python tests the True and False of each statement to understand Booleans 
better. Staring at the book may not make any sense; type in the Boolean statements into your Python 
interpreter window.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

56

 Exercise 2-28: Use Logical (Membership) Operators

① >>> True and False or not False
True
>>> True and False or True
True
>>> False or True
True
>>> True or False
True

 Explanation

① The previous conditionals always return the result as True. The logical operators and, or, and not are 
also known as membership operators in Python.

 Exercise 2-29: Change the Order of Operation with ()

① >>> True and False or not False
True

② >>> (True and False) or (not False)
True

③ >>> ((True and False) or (not False))
True

 Explanation
① This example is simple conditional testing from left to right.

② Using parentheses, you can alter the order of operation, although, in this example, the expected 
output is the same, True.

③ Using parentheses, you can change the flow of evaluation.

 Control Statements: if, elif, and else
Let’s talk about control statements.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

57

 Exercise 2-30: Use if and else

① >>> if 1 < 2:
...     print('One is less than two.')
...
One is less than two.

② >>> if 1 > 2:
...     print('One is bigger than two.')
...
>>>

③ >>> if 1 > 2:
...     print('One is bigger than two.')
... else:
...     print('One is NOT bigger than two.')
...
One is NOT bigger than two.

 Explanation

① The if statement can be a single statement. If the condition is True, it will run the next statement, 
which is the print statement.

② If the if statement is False, it will exit from the if loop. As you can see, the conditional statement 
ends with a semicolon (:).

③ This is an if and else example; the first condition is not met so that the else statement will catch all 
other conditions.

 Exercise 2-31: Use if, elif, and else

① >>> age = 21
>>> if age >= 18:
...     print('You are old enough to get your driver\'s license.')
...
You are old enough to get your driver's license.

② >>> age = 17
>>> if age >= 18:
...     print('You are old enough to drive a car.')
else:
...     print('You are too young to drive a car.')
...
You are too young to drive a car.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

58

③ >>> age = 100
>>> if age <18:
...     print('You are too young to drive a car.') elif age> 99:
...     print('You are too old to drive a car.')
else:
...     print('You are in an eligible age group, so you can drive a car.')
...
You are too old to drive a car.

 Explanation

① In this exercise, you have used only a single if statement.

② In this exercise, you have used the if and else statements.

③ In this last exercise, you used the if, elif, and else statements. If there are more conditions, you can 
use as many elif statements as required.

 Exercise 2-32: Write Code with if, elif, and else
Step 1. For this exercise, in your Python shell, go to File ➤ New File. Type the source code into Python’s built-
in text editor.

① # Enter the following code and save it as a .py file format. # ex2_32.py

q1 = input ('What is your legal age?') age = int(q1)

if age < 16:
...     print('You are too young to take a driving test.')
elif age > 99:
...     print('You are too old to take a driving test.')
else:
...     print('You\'re in the right age group to take a driving test.')
...

Step 2. From the text editor’s menu, go to File ➤ Save and save the file as ex2_32.py. Afterward, save 
your code as driverage.py under the Python root folder C:\Python39. In the Python text editor, go to Run ➤ 
Run module or press the F5 key to run your script. Then your Python shell will prompt you to enter your age 
as follows:

② What is your legal age? 15
You are too young to take a driving test.

③ What is your legal age? 18
You're in the right age group to take a driving test.

④ What is your legal age? 100
You are too old to take a driving test.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

59

 Explanation

① This source code uses the Python basics we have learned so far and uses if, elif, and else statements 
for flow control. Also, user input is required to test the conditions and run the next line of code 
accordingly.

② Example 1 of the ex2_32.py script runs.

③ Example 2 of the ex2_32.py script runs.

④ Example 3 of the ex2_32.py script runs.
If you are running this script on Linux/macOS, you can run the code by typing python3 ex2_32.py 
from where you saved your Python source file.

 Recap: Boolean and Conditionals
Here’s a recap:

• Boolean data types deal with a condition’s truthiness, which is if something is True 
or False.

• The relational operators compare one number with another to answer as a Boolean.

• In Boolean, you can change the order of operations using round brackets, ( ).

• Express more complex conditionals using Boolean logical operators such as and and 
not.

• The logical operators and, or, and not in Boolean are also known as membership 
operators.

• and is True if both or more conditions are true.

• or is True even if only one of several conditions is true.

• not calculates the inverse condition of the used operator.

• In Boolean, operations are executed in the order of not, and, then or.

• Control statements such as if, elif, and else are used with the Boolean operators 
in Python code.

 Functions
Let’s talk about functions.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

60

 Exercise 2-33: Defining a Function

① >>> def say_hello():
...      print('Hello')
...
>>> say_hello()
Hello

② >>> say_goodbye()
Traceback (most recent call last): File "<stdin>", line 1, in <module>
NameError: name 'say_goodbye' is not defined

 Explanation

① In Python, you define functions using the word def and always end with a colon. You can create a new 
function in the following format:
def function_name(): # Code block

② If you use a function without defining it, a NameError will be encountered.

 Exercise 2-34: Assign Default Values to a Function

① >>> def say_hello(name):
...     print('Hello {}.'.format (name))
...
>>> say_hello('Hugh')
Hello Hugh.

② >>> say_hello()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: say_hello() missing 1 required positional argument: 'name'

③ >>> def say_hello(name = 'son'):
...     print('Hi {}.'. format (name))
...
>>> say_hello()
Hi son.
>>> say_hello('Hugh')
Hi Hugh.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

61

 Explanation

① This is a function that returns a Hello when you enter a name.

② If you forget to enter a name, TypeError will be returned.

③ In this example, you have assigned a default name to make the code run without TypeError. You can 
consider it as an error handling mechanism. We will learn about error handling in the later exercises.

 Exercise 2-35: Define Hello and Goodbye Functions

① >>> def say_hello(f_name, s_name):
...     print('Hello {} {}!'. format (f_name, s_name))
...
>>> say_hello ('Michael', 'Shoesmith')
Hello Michael Shoesmith!

>>> say_hello ('Michael')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: say_hello() missing 1 required positional argument: 's_name'

② >>> >>> say_hello(f_name='Leah', s_name='Taylor')
Hello Leah Taylor!

>>> say_hello(s_name = 'Johnson', f_name = 'Caitlin')
Hello Caitlin Johnson!

③ >>> def say_goodbye(f_name, s_name = 'Doe'):
...    print('Goodbye {} {}!'. format (f_name, s_name))
...
>>> say_goodbye('John')

Goodbye John Doe!
>>> say_goodbye('John', 'Citizen')
Goodbye John Citizen!

 Explanation

① In this example, you have defined the say_hello function with two variables. This means when the 
function runs, it would expect two positional arguments. If you give only a single argument, you will 
encounter TypeError with a missing argument.

② If variable names are used to call the function, the order of variables does not matter as the function 
uses the named variables.

③ You can also assign a default variable value to the function to accept even the single positional 
argument’s responses. In this example, one or two arguments are accepted and processed without the 
TypeError. This could be an acceptable error avoidance strategy to continue your code to run.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

62

 Exercise 2-36: Use the Odd or Even Function

① >>> def odd_or_even(number):
...     if number%2 == 0:
...         return 'even'
...     else:
...         return 'odd'
...

>>> odd_or_even(3)
'odd'
>>> odd_or_even(4)
'even'

② >>> def even_num(number):
...     if number%2 == 0:
...         return True
...     else:
...         return False
...

>>> even_num(1)
False
>>> even_num(2)
True

 Explanation

① You have just made a simple application returning whether a number is even or odd. Do not look at 
the function’s simplicity; think about how you can apply it at work.

② You can tweak example ① and make it into a True or False function. Try to learn the basics of Python 
each day and think about scenarios or applications to use such functions.

 Exercise 2-37: Nest a Function Within a Function

① >>> def name():
...     n = input('Enter your name: ')
...         return n
...
>>> def say_name(n):
...     print('Your name is {}.'.format(n))
...
>>> def say_the_name():
...     n = name()
...         say_name(n) # The first function is nested here.
...
>>> say_the_name()
Enter your name: Michael Shoesmith Your name is Michael Shoesmith.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

63

 Explanation

① You have created two functions, and then on the third function, you have nested (reused) them. 
This is a straightforward exercise, but if a function is lengthy and complicated, you can save the code 
lines as a separate file and import a specific function as a customized module. You will learn about 
modules in the later chapters, so in this section, try to focus on the Python syntax.

 Recap: Functions
Here’s a recap:

• Define a function before use. The basic function syntax begins with def function_
name(parameter_name):.

• A function can perform any action with small code in the reusable main code and 
return data.

• Functions can take parameters, or you can set default parameter values to use 
arbitrary parameters.

• Functions can be used to control the flow of your script.

• You can get more help by using the built-in function help() and then type in def.

 Lists
Let’s talk about lists.

 Exercise 2-38: Create a List and Index Items

① >>> vehicles = ['car', 'bus', 'truck']
>>> print(vehicles[0])
car
>>> print(vehicles[1])
bus
>>> print(vehicles[2])
Truck

② >>> vehicles = ['car', 'bus', 'truck']
>>> vehicles[0] = 'motorbike'
>>> vehicles

['motorbike', 'bus', 'truck']

③ >>> print(vehicles[-1])
truck
>>> print(vehicles[-2])
bus
>>> print(vehicles[-3])
Motorbike



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

64

④ >>> vehicles
['motorbike', 'bus', 'truck']
>>> vehicles[0] = ['sedan', 'wagon', 'convertible', 'SUV']
>>> vehicles
[['sedan', 'wagon', 'convertible', 'SUV'], 'bus', 'truck']

⑤ >>> cars = ['sedan', 'wagon', 'SUV', 'hatchback']
>>> for car in range(len(cars)):
...     print('{} is at position {}. '.format(cars[car], car))
...
sedan is at position 0. wagon is at position 1. SUV is at position 2. hatchback is at 
position 3.

 Explanation

① In Python, lists are written with square brackets. In this example, only strings items are used, but the 
list supports all other data types. The indexing starts from 0 and increases by one, so to page truck, 
which is the third item in the list, index [2].

② A list is a collection that is ordered and mutable. So you can replace an item using the indexing 
method. In this exercise, car has been replaced with motorbike.

③ You can use minus signs to index items backward. More slicing examples will follow soon.

④ The list can also contain most of the other data types. This example shows a list of cars as part of the 
parent list, vehicle.

⑤ In example ①, you have seen that the indexing starts at 0. Quickly write a function to check the item 
positions and see if it starts at 0.

 Exercise 2-39: Use append, extend, and insert in a List

① >>> cars = ['sedan', 'SUV', 'hatchback']
>>> cars.append('convertible')
>>> cars
['sedan', 'SUV', 'hatchback', 'convertible']

② >>> cars.extend(['crossover', '4WD'])
>>> cars
['sedan', 'SUV', 'hatchback', 'convertible', 'crossover', '4WD']

③ >>> cars.insert(1, 'wagon')
>>> cars
['sedan', 'wagon', 'SUV', 'hatchback', 'convertible', 'crossover', '4WD']



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

65

 Explanation

① append adds an item at the end of a list.

② To add multiple items to the end of a list, use the extend() function.

③ To insert an item in a specific location, use an index number to insert the new item. In this example, 
wagon was inserted in index 1 and pushed the other items to the right index.

 Slicing
Let’s talk about slicing.

 Exercise 2-40: Slice a List

① >>> bread = ['bagels', 'baguette', 'ciabatta', 'crumpet', 'naan', 'pita', 'tortilla']
>>> some_bread = bread[1:3]
>>> some_bread
['baguette', 'ciabatta']
>>> print('Some Bread: {}'.format (some_bread))
Some Bread: ['baguette', 'ciabatta']

② >>> first_two = bread[0:2]
>>> first_two
['bagels', 'baguette']

③ >>> first_three_bread = bread[:3]
>>> print(first_three_bread)
['bagels', 'baguette', 'ciabatta']

④ >>> last_two_bread = bread[-2:]
>>> print('Last two bread: {}'.format (last_two_bread))
Last two bread: ['pita', 'tortilla']

⑤ >>> bread = ['bagels', 'baguette', 'ciabatta']
>>> ciabatta_index = bread.index('ciabatta')
>>> print(ciabatta_index)
2

 Explanation

① You can use the slicing method to call the items in a list. In this example, we want to index items 1 and 
2, so we have to use [1:3]. The first indexed item is included but not the last indexed item.
You can also use the print() function to prettify your output.

② If you want the first two items, use [0:2] as the slicing index.

③ If you do not specify the start index number, Python will page from index 0.

④ You can also page backward using minus indexing.

⑤ You can also create a variable and check the index number of an item from the list.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

66

 Exceptions and Error Handling
Let’s talk about exceptions and error handling.

 Exercise 2-41: Avoid a ValueError Error

① >>> bread = ['bagels', 'baguette', 'ciabatta']
>>> crumpet_index = bread.index('crumpet')
Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: 
'crumpet' is not in list

 Explanation

① You will encounter ValueError if you page an item that does not exist in a list.

 Exercise 2-42: Handle Errors with try and except in a List
Learn the concept of error handling.

 ■ Hint When an error occurs, your program will suddenly stop. When Python runs into an error, it detects it as 
a sign to stop and exit the application. if you know what errors are expected, in most of the scenarios, you want 
to be in control of how errors are handled. Do not let Python decide what to do with the errors.

 ■ Note you have to save the following code in a file and save it as ex2_42.py.

① >>> bread = ['bagels', 'baguette', 'ciabatta']
>>> try:
...     crumpet_index = bread.index('crumpet')
... except:
...     crumpet_index = 'No crumpet bread found.'
...     print(crumpet_index)
...
No crumpet bread found.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

67

Figure 2-5. Python coding on Notepad++ example

② Open Notepad++ and enter the following lines of code as shown in Figure 2-5. Then save the file as 
ex2_42.py under the C:\Python39\ folder.

# ex2_42.py
bread = ['bagels', 'baguette', 'ciabatta']
try:

crumpet_index = bread.index('crumpet')
except:

crumpet_index = 'No crumpet bread found.'
print(crumpet_index)

After saving the file, press Ctrl+F6 combo keys to run the script.
#Output:
C:\Python39\python.exe "C:\Python39\ex2_42.py"
Process started (PID=6916) >>>
No crumpet bread found.
<<< Process finished (PID=6916). (Exit code 0)
================ READY ================

 Explanation

① When you encounter errors in an application, the program must continue running the rest of the 
application, or it will stop to prevent more significant problems. Errors are a constructive part of the 
script, and they help your application stop, so it does not cause more problems. So, as a programmer, 
you want to know which errors are expected and how you want to handle them when they occur.
If you know how to handle errors like ValueError in the previous example in this exercise, you will 
have cleaner Python code. You can customize and process the error message as you want to express it. 
In the previous example, the error message tells explicitly that the paged bread type, crumpet, does not 
exist.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

68

② It is much easier to use a text editor than coding it directly in Python IDLE in this example. The figure 
showed you the source code ex2_42.py in Notepad++ and ran the code by pressing Ctrl+F6 keys.

 Exercise 2-43: Find an Index of an Item in a List with the Customized 
Exception

 ■ Note Save the code with the exercise name given and run it from the Python prompt. all the code is 
available for download from the GitHub site. The file names are ex2_43_1.py for exercise 2-43 ① and 
ex2_43_2.py for exercise 2-43 ②.

① # ex2_43_1.py
bread = ['bagels', 'baguette', 'ciabatta', 'crumpet']

try:
crumpet_index = bread.index ('crumpet')

except:
crumpet_index = 'No crumpet bread was found.'
print(crumpet_index)

# Output from Notepad++
C:\Python39\python.exe "C:\Python39\ex2_43_1.py"
Process started (PID=5852) >>>
<<< Process finished (PID=5852). (Exit code 0)
================ READY ================

② # ex2_43_2.py
bread = ['bagels', 'baguette', 'ciabatta', 'naan']

try:
crumpet_index = bread.index ('crumpet')

except:
crumpet_index = 'No crumpet bread was found.'
print(crumpet_index)

# Output from Notepad++
C:\Python39\python.exe "C:\Python39\ex2_43_2"
Process started (PID=4580) >>>
No crumpet bread was found.
<<< Process finished (PID=4580). (Exit code 0)
================ READY ================



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

69

 Explanation

① In this example, we are trying to find the index number of crumpet. bread.index('crumpet') will look 
for the index number of the item. In the output, index 3 is returned.

② If we replace crumpet with naan bread and run the script, then it will return a customized exception 
error as shown in the output.

 Practicing Lists
Practice the list concepts you have learned so far. I encourage you to type in every single word and character 
shown. While you are typing, try to guess what the exercise is trying to teach you. You might be getting tired, 
but nobody will practice these exercises for you; you have to do everything yourself.

 Exercise 2-44: Practice a List

① >>> shopping_list1 = 'baseball hat, baseball shoes, sunglasses, baseball bat, sunscreen 
lotion, baseball meat'
>>> print(shopping_list1)
baseball hat, baseball shoes, sunglasses, baseball bat, sunscreen lotion, baseball meat
>>> type(shopping_list1)
<class 'str'>

② shopping_list2 = ['baseball hat', 'baseball shoes', 'sunglasses', 'baseball bat', 
'sunscreen lotion', 'baseball meat']
>>> print(shopping_list2 [2])
sunglasses
>>> type(shopping_list2)
<class 'list'>

③ >>> shopping_list2 = ['baseball hat', 'baseball shoes', 'sunglasses', 'baseball bat', 
'sunscreen lotion', 'baseball meat']
>>> shopping_list2.pop(5)
'baseball meat'
>>> shopping_list2
['baseball hat', 'baseball shoes', 'sunglasses', 'baseball bat', 'sunscreen lotion']

④ >>> print(shopping_list2 [2])
sunglasses
>>> print(shopping_list2 [2: 5])
['sunglasses', 'baseball bat', 'sunscreen lotion']



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

70

⑤ >>> shopping_list2 [2] = 'ball'
>>> print(shopping_list2)
['baseball hat', 'baseball shoes', 'ball', 'baseball bat', 'sunscreen lotion']

⑥ >>> some_numbers = [1, 3, 5]
>>> some_strings = ['which', 'Olympic', 'sports']
>>> numbers_and_strings = ['which', 1, 'Olympic', 3, 'sports', 5]

⑦ >>> numbers = [3, 6, 9, 12]
>>> strings = ['soccer', 'baseball', 'basketball', 'swimming']
>>> new_list = [numbers, strings]
>>> print(new_list)
[[3, 6, 9, 12], ['soccer', 'baseball', 'basketball', 'swimming']]

⑧ >>> summer_sports = ['swimming', 'diving', 'baseball', 'basketball', 'cricket']
>>> summer_sports.append ('beach volleyball')
>>> print(summer_sports)
['swimming', 'diving', 'baseball', 'basketball', 'cricket', 'beach volleyball']

⑨ >>> print(summer_sports)
['swimming', 'diving', 'baseball', 'basketball', 'cricket', 'beach volleyball']
>>> del summer_sports [1]
>>> print(summer_sports)
['swimming', 'baseball', 'basketball', 'cricket', 'beach volleyball']

⑩ >>> summer_sports = ['swimming', 'baseball', 'basketball', 'cricket', 'beach volleyball']
>>> winter_sports = ['skiing', 'ice skating', 'ice hockey', 'snowboarding']
>>> print(summer_sports + winter_sports)
['swimming', 'baseball', 'basketball', 'cricket', 'beach volleyball', 'skiing', 'ice 
skating', 'ice hockey', 'snowboarding']

 Explanation

① You have just created shopping_list1 as a string.

② Shopping_list2 is a list as the items are wrapped around [ ] (square brackets), a square bracket set. 
Use indexing to return sunglasses.

③ Indexing does not change the list, but if you use the pop() method, it will take the called item out 
permanently.

④ Using a single index or a range of indexes, you can call out the items from a list.

⑤ You can insert a new item into the list using the indexing as a mutable object.

⑥ The list can contain numbers or strings or a combination of unique items.

⑦ A list can store another list.

⑧ You can use the append() method to join two lists and make them into one list.

⑨ Use del and indexing to delete items you want to delete from your list.

⑩ You can concatenate lists using the + operator.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

71

 Using for Loops and while Loops
Let’s talk about loops.

 Exercise 2-45: Use the for Loop’s upper() and capitalize() Methods

① >>> bread_type = ['bagels', 'baguette', 'ciabatta']
>>> for bread in bread_type:
...     print(bread.upper())
...
BAGELS
BAGUETTE
CIABATTA

② >>> bread_type = ['bagels', 'baguette', 'ciabatta']
>>> for bread in bread_type:
...     print(bread.capitalize())
...
Bagels
Baguette
Ciabatta

 Explanation

① As the name suggests, the for loop loops through the list until the last item is paged from the list. This 
example calls out the index 0 item first and then goes back to the loop and calls the index 1 item and then 
the last item, which has index 2. Also, appending upper() will convert the returned values into uppercase.

② You can also use Python’s capitalize() method to change each bread’s first letter into capital letters.

 Exercise 2-46: Use the while Loop and len() Function

① >>> basket = ['bagels', 'baguette', 'ciabatta', 'crumpet', 'naan', 'pita', 'tortilla']
>>> bread = 0
>>> while bread < len(basket):
...     print(basket[bread], end=" ") # " " contains a whitespace
...     bread += 1
...
bagels baguette ciabatta crumpet naan pita tortilla >>>

 Explanation

① The while loop and len() function are used to call out and print each bread. This while loop uses 
indexing and loops until the list is empty. Although the len() function returns the number of items 
in an object; in this example, it is used with the for loop to return each item until the list is empty. 
Notice that end=" " is used to print the output on a single line.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

72

 Sorting and Ranges
Let’s talk about sorting and ranges.

 Exercise 2-47: Use sort() vs. sorted() in a List

① >>> bread = ['naan', 'baguette', 'tortilla', 'ciabatta', 'pita']
>>> bread.sort()
>>> bread
['baguette', 'ciabatta', 'naan', 'pita', 'tortilla']

② >>> bread = ['naan', 'baguette', 'tortilla', 'ciabatta', 'pita']
>>> bread_in_order = sorted(bread)
>>> bread_in_order
['baguette', 'ciabatta', 'naan', 'pita', 'tortilla']
>>> bread
['naan', 'baguette', 'tortilla', 'ciabatta', 'pita']

 Explanation

① When you use the sort() function on a list, it sorts the items from A to Z permanently.

② The sorted() function only sorts A to Z temporarily. It does not change the order of the original data. 
The different effects of the sort() and sorted() seem to be insignificant and unnoticed to novice 
Python programmers, but in programming fundamentals, sorted() would be the recommended 
method over the sort() method as it does not permanently alter the original item; you can reuse the 
original item as well as the newly created item as objects.

 Exercise 2-48: Link Two Lists

① >>> bread = ['naan', 'baguette', 'tortilla', 'ciabatta', 'pita']
>>> more_bread = ['bagels', 'crumpet']
>>> all_bread = bread + more_bread
>>> print(all_bread)
['naan', 'baguette', 'tortilla', 'ciabatta', 'pita', 'bagels', 'crumpet']
>>> all_bread.sort()
>>> print(all_bread)
['bagels', 'baguette', 'ciabatta', 'crumpet', 'naan', 'pita', 'tortilla']
>> all_bread.reverse()
>>> all_bread
['tortilla', 'pita', 'naan', 'crumpet', 'ciabatta', 'baguette', 'bagels']



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

73

 Explanation

① In this example, we created two lists and then merged them into one list. Then we used the sort() 
function to organize the items in the list from A to Z. Finally, we used the reverse() method to 
reverse the list’s order to Z to A.

 Exercise 2-49: Find the List Length Using the len() Function

① >>> bread = ['bagels', 'baguette', 'ciabatta']
>>> print(len(bread))
3
>>> bread.append('naan')
>>> print(len(bread))
4

 Explanation

① Use the len() function to check how many bread types are in a list. Next, add another bread type using the 
append method, and then recheck the number of bread types with the len() function. It has increased by 1.

 Exercise 2-50: Use range() and the for Loop

① >>> for number in range (3):
...   print(number)
...
0
1
2

② >>> for number in range (2, 5):
...   print(number, end=" ")
...
2 3 4

③ >>> for number in range (1, 8, 2):
...     print(number, end=" ")
...
1 3 5 7

④ >>> for bread in ['bagels', 'baguette', 'crumpet', 'naan']:
...     print(bread, end=" ")
...
bagels baguette crumpet naan

⑤ >>> for bread in ('bagels', 'baguette', 'crumpet', 'naan'):
...     print(bread, end=" ")
...
bagels baguette crumpet naan



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

74

 Explanation

① If you use a for loop with the range() function, you can call out the list items with ease. range(3) 
means up to but not including 3, so this example loops through 0, 1, and 2.

② Using commas, you can specify where to begin and where to finish. In this for loop example, the first 
argument (digit) represents the first number, and the second argument (digit) represents the ceiling 
number of finishing the loop, so the last number is always going to be n-1, which is 4 in this example.

③ In the previous example, you are using three arguments to loop through a range of numbers. The first 
and last numbers carry the same meaning as explained in example ② previously, but the last digit, 2, 
represents the interval or frequency. Starting from 1, it will loop through to odd numbers only until it 
reaches the ceiling number, 8. So, as expected, Python only prints the odd numbers 1, 3, 5, 7.
You must master the for loop well to make your Python scripts work harder for you.

④ You are applying the for loop to a list. Instead of a range() function, you have used a list with items 
inside the list.

⑤ You are applying the for loop to a tuple. So, what is the difference between this and the previous 
example? You cannot feel it in these examples, but the difference is in the speed. Since tuples are 
immutable and have fewer indexing pointers than lists, they can process the data faster while looping 
through each item in a tuple. If you need to process a million data lines, then speed will matter, so use 
tuples over lists.

 Exercise 2-51: Use the String List for loop() and range() 
with Arguments

① >>> bread = ['bagels', 'baguette', 'ciabatta', 'crumpet', 'naan', 'pita', 'tortilla']
>>> for number in range (0, len (bread), 2):
...     print(bread [number] , end=" ")
...
bagels ciabatta naan tortilla

② >>> bread = ['bagels', 'baguette', 'ciabatta', 'crumpet', 'naan', 'pita', 'tortilla']
>>> for number in range (0, len (bread), 3):
...     print(bread [number] , end=" ")
...
bagels crumpet tortilla

③ >>> bread = ['bagels', 'baguette', 'ciabatta', 'crumpet', 'naan', 'pita', 'tortilla']
>>> for number in range (0, len (bread), 5):
...      print(bread [number] , end=" ")
...
bagels pita



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

75

 Explanation

① In this example, you have a nested len() function inside a range() function to loop through a bread 
list with three arguments similar to Exercise 2-50’s example ③. Since the last argument is 2, it will step 
through the bread list, index items 1, 3, 5, and 7.

② This is the same example as the previous example, but with a stepping value of 3, the indexed items 
are bagels, crumpet, and tortilla.

③ This is the same example with a stepping value of 5, so this example prints out the first value and sixth 
values, bagels and pita bread.

 Recap: Lists and Loops
Here’s a recap:

• When creating and assigning a variable to a list, enclose the elements in square 
brackets, [ ], and separate each item in the list with a comma. A typical list syntax 
looks like this:

List_name = [element_1, element_2, ..., element_n]

• List items can be indexed by the index number starting from 0 to n. To index the first 
item in a list, use index number 0. To index an item from the last item, use an index 
number of -1.

• Use slicing to index part of a list. For example, use List_Name [3, 6].

• Use a for loop() to index a range of numbers in a list.

• A while loop will continue to run as long as the condition is True and only stops 
when the condition becomes False.

• You can sort a list using the sort() and sorted() list methods.

• If you use built-in functions like range(), you can index sequential numbers.

• Handle Python exception errors using try and except code blocks.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

76

 Tuples
Let’s talk about tuples.

 Exercise 2-52: See Some Basic Tuple Examples

① >>> tuple1 = (0, 1, 3, 6, 9)
>>> tuple2 = ('w', 'x', 'y', 'z')
>>> tuple3 = (0, 1, 'x', 2, 'y', 3, 'z')

② >>> tuple1 = (0, 1, 3, 6, 9)
>>> tuple [1] = 12
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'type' object does not support item assignment

③ >>> tuple1 = (0, 1, 3, 6, 9)
>>> tuple2 = ('w', 'x', 'y', 'z')
>>> print(tuple1 + tuple2)
(0, 1, 3, 6, 9, 'w', 'x', 'y', 'z')

 Explanation

① These are examples of tuples. Notice that tuples are almost identical to lists, except the items are 
wrapped around a set of the round brackets, ( ). Notice that they are aesthetically different.

② You have tried to change 1 to 12, and tuple will spit the dummy back at you with a TypeError. 
Therefore, tuples are known as immutable sequential objects in Python.

③ But you can still conjoin two tuples together by using the + sign.

 Exercise 2-53: Convert a Tuple to a List

① >>> tuple3 = (0, 1, 'x', 2, 'y', 3, 'z')
>>> list (tuple3)
[0, 1, 'x', 2, 'y', 3, 'z']

② >>> tuple1 = (0, 1, 3, 6, 9)
>>> tuple2 = ('w', 'x', 'y', 'z')
>>> list (tuple1 + tuple2)
[0, 1, 3, 6, 9, 'w', 'x', 'y', 'z']



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

77

 Explanation

① To change a tuple into a list, use list(tuple_name).

② You can conjoin two or more tuples and still convert them using the list() conversion technique.

 Exercise 2-54: Determine Whether a Tuple Immutable

① >>> days_of_the_week = ('Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 
'Saturday', 'Sunday')>>> for day in days_of_the_week:
...     print(day, end=" ")
...
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

② >>> days_of_the_week = ('Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 
'Saturday', 'Sunday')
>>> days_of_the_week [0] = 'Funday'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

③ >>> days_of_the_week = ('Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 
'Saturday', 'Sunday')
>>> print(days_of_the_week)
('Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday')
>>> del days_of_the_week
>>> print(days_of_the_week)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'days_of_the_week' is not defined

 Explanation

① This is a simple tuple example containing the days of a week.

② When you try to update an item with another, Python will return a TypeError to remind you that a 
tuple is an immutable object in Python.

③ Although tuples are immutable, it does not mean you cannot delete the whole tuple. Use del tuple_
name to delete a tuple.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

78

 Exercise 2-55: Convert a Tuple to a List and a List to a Tuple

① >>> weekend_tuple = ('Saturday', 'Sunday')
>>> weekend_list = list (weekend_tuple)
>>> print('weekend_tuple is {}.'. format (type (weekend_tuple)))
weekend_tuple is <class 'tuple'>.
>>> print('weekend_list is {}.'. format (type (weekend_list)))
weekend_list is <class 'list'>.

② >>> country_list = ['US', 'England', 'Germany', 'France']
>>> country_tuple = tuple (country_list)
>>> type (country_list)
<class 'list'>
>>> type (country_tuple)
<class 'tuple'>

 Explanation

① This is a simple example of converting a tuple to a list. You can check the data type using the type () 
function.

② Similarly, this is an example of converting a list to a tuple.

 Exercise 2-56: Use a for Loop in a Tuple

① >>> countries = ('US', 'England', 'Germany', 'France')
>>> for country in countries:
...     print(country, end=" ")
...
US England Germany France

 Explanation

① Like a list, you can index items in a tuple by using a for loop. Tuples and lists have a lot of common 
properties. The differences are that one is immutable (tuple) and the other is mutable (list), and that 
one is faster (tuple) and the other is slower (list) during indexing.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

79

 Exercise 2-57: Assign Multiple Variables to a Tuple

① >>> weekend = ('Saturday', 'Sunday')
>>> (saturn, sun) = weekend
>>> print(saturn)
Saturday

>>> weekdays = ('Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday')
>>> (moon, tiu, woden, thor, freya) = weekdays
>>> print(thor)
Thursday

② >>> country_info = ['England', '+44']
>>> (country, code) = country_info
>>> print(country)
England
>>> print(code)
+44

 Explanation

① You can assign multiple variables to items in a tuple. This example uses the seven-day week and the 
meanings of the names of the days. Sunday and Monday were named after Sun and Moon, and other 
days were named after mythological gods.

② You can also use a list as items in a tuple.

 Exercise 2-58: Create a Simple Tuple Function

① >>> def high_and_low (numbers):
...     highest = max (numbers)
...     lowest = min (numbers)
...     return (highest, lowest)
...
>>> lotto_numbers = [1, 37, 25, 48, 15, 23]
>>> (highest, lowest) = high_and_low (lotto_numbers)
>>> print(highest)
48
>>> print(lowest)
1

 Explanation

① You can make a simple function and use a tuple to page the highest number or the lowest number. 
Spend a few minutes to understand how this function works and then move to the next exercise.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

80

 Exercise 2-59: Use Tuples as List Elements

① >>> country_code = [('England', '+44'), ('France', '+33')]

>>> for (country, code) in country_code:
...     print(country, code)
...
England +44
France +33

>>> for (country, code) in country_code:
...     print(country, end=" ")
...
England France

>>> for (country, code) in country_code:
...     print(code, end=" ")
...
+44 +33

 Explanation

① You can use tuples as elements in a list. You can choose to call out single items in each tuple. Enter 
something meaningful to you to get more practice on this.

 Recap: Tuples
Here’s a recap of tuples:

• Tuples are sometimes called immutable lists, and once created, they cannot be 
changed in the same tuple form. You need to convert tuples back into a list first, and 
then the elements can be changed. The general tuple syntax is as follows:

Tuple_name = (element_1, element_2, ..., element_n)

• However, you can delete the entire tuple in Python.

• You can convert a tuple to a list using the built-in function list().

• You can convert a list to a tuple using the built-in function tuple().

• You can find the maximum and minimum values of a tuple using the max() and 
min() methods.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

81

 Dictionaries
Let’s talk about dictionaries.

 Exercise 2-60: Understand Dictionary Basics

① >>> fav_activity = {'hugh': 'computer games', 'leah': 'ballet', 'caitlin': 'ice 
skating'}
>>> print(fav_activity)
{'hugh': 'computer games', 'leah': 'ballet', 'caitlin': 'ice skating'}

② >>> fav_activity = {'hugh': 'computer games', 'leah': 'ballet', 'caitlin': 'ice 
skating'}
>>> print(fav_activity ['caitlin'])
ice skating

③ >>> fav_activity = {'hugh': 'computer games', 'leah': 'ballet', 'caitlin': 'ice 
skating'}
>>> del fav_activity ['hugh']
>>> print(fav_activity)
{'leah': 'ballet', 'caitlin': 'ice skating'}

④ >>> print(fav_activity)
{'leah': 'ballet', 'caitlin': 'ice skating'}
>>> fav_activity ['leah'] = 'swimming'
>>> print(fav_activity)
{'leah': 'swimming', 'caitlin': 'ice skating'}

 Explanation

① Create a dictionary called fav_activity. Make your family member’s favorite hobbies into a 
dictionary. A dictionary usually has key and value elements as in a real dictionary. A Python dictionary 
key:value elements are wrapped in a curly bracket set, { }, with comma separators.

② You can use a key called caitlin to call out the value of the key.

③ Delete the key hugh using the del statement. When you delete a key, its value also gets deleted. Now 
you know a dictionary in Python is a mutable object.

④ Change the value of the key leah in the dictionary to swimming.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

82

 Exercise 2-61: Avoid a Dictionary TypeError and Convert Two Lists 
to a Single Dictionary

① >>> fav_activity = {'leah': 'swimming', 'caitlin': 'ice skating'}
>>> fav_subject = {'leah': 'math', 'caitlin': 'english'}
>>> print(fav_activity + fav_subject)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type (s) for +: 'dict' and 'dict'

② >>> keys = ['a', 'b', 'c', 'm', 'p']
>>> values = ['apple', 'banana', 'coconut', 'melon', 'pear']
>>> fruits = dict (zip (keys, values))
>>> fruits
{'a': 'apple', 'b': 'banana', 'c': 'coconut', 'm': 'melon', 'p': 'pear'}

 Explanation

① In Python, you cannot link two or more dictionaries into a single dictionary. Trying to conjoin two 
dictionaries into one will return TypeError: unsupported operand.

② However, if one list contains only keys and the other list contains the same number of corresponding 
values, the two lists can be conjoined to form a dictionary. In this example, you have just created a 
dictionary called fruits using one list of letters (keys) and another list with corresponding fruit names 
(values).

 Exercise 2-62: Use Keys to Print Values from a Dictionary

① >>> dialing_code = {'France': '+ 33', 'Italy': '+ 39', 'Spain': '+ 34', 'England': '+ 
44'}
>>> France_code = dialing_code ['France']
>>> Italy_code = dialing_code ['Italy']
>>> Spain_code = dialing_code ['Spain']
>>> England_code = dialing_code ['England']
>>> print('Press {} first to call France.'. format (France_code))
Press +33 first to call France.
>>> print('Press {} first to call Italy.'. format (Italy_code))
Press +39 first to call Italy.
>>> print('Press {} first to call Spain.'. format (Spain_code))
Press +34 first to call Spain.
>>> print('Press {} first to call England.'. format (England_code))
Press +44 first to call England.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

83

 Explanation

① In the previous dictionary example, you used the keys to call corresponding values and printed them 
on your computer monitor. Try to practice all the examples. Many newbie programmers ask the same 
question on how to get better in coding; there is no substitute for practice.

 Exercise 2-63: Change a Dictionary Value

① >>> dialing_code = {'France': '+ 33', 'Italy': '+ 39', 'Spain': '+ 34', 'England': '+ 
44'}
>>> dialing_code ['England'] = '+ 44-20'
>>> England_London = dialing_code ['England']
>>> print('Dial {} to call London, England.'. format (England_London))
Dial + 44-20 to call London, England.

 Explanation

① As with other mutable objects in Python, you can also change dictionaries. In this exercise, you have 
updated the value of the key England. You have just included the area code of 20 for London behind 
the country code +44. Then you printed out a simple statement using the format() function.

 Exercise 2-64: Add a New Set of Keys and Values to a Dictionary

① >>> dialing_code = {'France': '+ 33', 'Italy': '+ 39', 'Spain': '+ 34',  
'England': '+ 44'}
>>> dialing_code ['Greece'] = '+30'
>>> dialing_code
{'England': '+44', 'Greece': '+30', 'Italy': '+39', 'Spain': '+34', 'France': '+33'}

 Explanation

① You can add other keys and value pairs as you like. Dictionaries, like lists, are mutable containers. 
Notice the unordered manner of the dictionary in this example. There is no need for number indexing 
in Python dictionaries, as the keys are used to call the values.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

84

 Exercise 2-65: Find the Number of Dictionary Elements

① >>> dialing_code = {'England': '+44', 'Greece': '+30', 'Italy': '+39', 'Spain': '+34', 
'France': '+ 33 '}
>>> print(len (dialing_code))
5

 Explanation

① Use len() to find the number of key:value pairs in a dictionary.

 Exercise 2-66: Delete Dictionary Keys and Values

① >>> dialing_code = {'England': '+44', 'Greece': '+30', 'Italy': '+39', 'Spain': '+34', 
'France': '+ 33 '}
>>> del dialing_code ['Italy']
>>> print(dialing_code)
{'England': '+44', 'Greece': '+30', 'Spain': '+34', 'France': '+33'}

 Explanation

① To delete a key, use a value pair in a dictionary; use "del" with a key. The value will be removed along 
with the key automatically.

 Exercise 2-67: Write a Python Script with a Dictionary

① # ex2_67.py
dialing_code = {'England': '+44', 'Greece': '+30', 'Italy': '+39', 'Spain': '+34', 
'France': '+33'}
for code in dialing_code:

print('The country code for {0} is {1}.'. format (code, dialing_code [code]))
# Output:
The country code for England is +44.
The country code for Greece is +30.
The country code for Italy is +39.
The country code for Spain is +34.
The country code for France is +33.

 ■ Note Try to save the ex2_67.py script on notepad++, save the file with the same name, and run the code 
using the Ctrl+F6 keys as shown in Figure 2-6.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

85

 Explanation

① Now let’s get familiar with making simple scripts like this and run it on IDLE or Notepad++. In this 
example, you have used the format function to call both key and value pairs and put them through a 
for loop to print out each country’s international dialing codes.

 Exercise 2-68: Use a Dictionary for a Loop and Formatting

① >>> countries = {'England': {'code':'+ 44', 'capital_city':'London'}, 'France': 
{'code':'+ 33', 'capital_city':'Paris'}}
>>> for country in countries:
...     print("{} 's country info:" .format (country))
...     print(countries [country] ['code'])
...     print(countries [country] ['capital_city'])
...
England 's country info:
+ 44
London
France 's country info:
+ 33
Paris

Figure 2-6. Notepad++ dictionary example



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

86

② >> countries = {'England': {'code':'+ 44', 'capital_city':'London'}, 'France': 
{'code':'+ 33', 'capital_city':'Paris'}}
>>> for country in countries:
...     print(f"{country}'s country info:")
...     print(countries [country] ['code'])
...     print(countries [country] ['capital_city'])
...
England's country info:
+ 44
London
France's country info:
+ 33
Paris

 Explanation

① You can nest dictionaries within a dictionary. Use a for loop to print elements of the dictionary, 
countries.

② print("{} 's country info:" .format (country)) in example ① is the same as 
print(f"{country}'s country info:") in example ②. The second version is the simplified version 
and helps us to write shorter code.

 Recap: Dictionaries
Here’s a recap:

• A dictionary comprises key:value pair collections, which are separated by a 
commas separator wrapped around braces, { }. The general dictionary syntax is as 
follows:

dictionary_Name = ['Key_1': 'Value_1', 'Key_2': 'Value_2', 'Key_n': 'Value_n']

• To call a value stored in a dictionary, you must use a key rather than indexing. The 
dictionary doesn’t use number indexing, so it is an unordered sequence collection.

• You can change the value of a key using the key as an index. Here’s an example: 
dictionary_name ['key_1'] = 'new_value_1'.

• Deleting a key using del deletes both key and value. Here’s an example: del 
dictionary_name ['key_1'].

• value_x in dictionary_name.values() will tell you if a key is part of a dictionary or 
not.

• dictionary_name.keys() returns only the keys of the dictionary.

• dictionary_name.values() returns only the value of the dictionary.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

87

• You can use a for loop on a dictionary, as in lists and tuples.

• Dictionaries can have any data types as elements as long as they have the correct 
key: value pairings.

 Handling Files
File handling skills in Python are fundamental, as business-critical data must be processed using various 
file handling modules and methods. The simplest form of file handling is reading and writing a text file. As 
you become familiar with more complex file handling, you can learn more advanced file handling methods 
using Python modules such as Pandas and NumPy for data processing or xlrd and openpyxl for Excel files. 
However, even before becoming familiar with such modules, master how to do basic data processing using 
indexing or slicing or using regex to process your data. There is a 500-page book written on how to use the 
Python Pandas module, so it is an unenviable task to cover all the topics of data processing and file handling 
in one section.

However, this book aims to expose you to various basic data processing exercises and file handling 
methods. You will become familiar with how Python processes data, and then the processed data can be 
processed through a basic file handling method.

 Exercise 2-69: Read and Display Hosts File from Your PC
Run this from the Microsoft Windows Python interactive shell.

① >>> hosts = open('c://windows//system32//drivers//etc//hosts')
>>> hosts_file = hosts.read()
>>> print(hosts_file)
# Copyright (c) 1993-2009 Microsoft Corp. #
# This is a sample HOSTS file used by Microsoft TCP/IP for Windows. #
# This file contains the mappings of IP addresses to host names. Each # entry should 
be kept on an individual line. The IP address should
# be placed in the first column followed by the corresponding host name. # The IP 
address and the host name should be separated by at least one # space.
#
# Additionally, comments (such as these) may be inserted on individual # lines or 
following the machine name denoted by a '#' symbol.
#
# For example:
#
#   102.54.94.97   rhino.acme.com    # source server #    38.25.63.10    x.acme.com    
# x client host
# localhost name resolution is handled within DNS itself. #   127.0.0.1   localhost
#   ::1   localhost



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

88

Optionally, run this from the Linux or macOS Python interactive shell:

② >>> hosts = open ('/etc/hosts')
>>> hosts_file = hosts.read()
>>> print(hosts_file)
127.0.0.1 localhost.localdomain localhost
:: 1 localhost6.localdomain6 localhost6

The following lines are desirable for IPv6 capable hosts
:: 1 localhost ip6-localhost ip6-loopback fe00 :: 0 ip6-localnet
ff02 :: 1 ip6-allnodes ff02 :: 2 ip6-allrouters
ff02 :: 3 ip6-allhosts

 Explanation

① You have just read the hosts file from your Windows machine and printed it out on your computer 
screen.
Reading a file is this easy, and if you do not specify the reading method, it usually opens in r (reading) 
mode.
Notice while opening the hosts file how each \ in the Windows OS file system has been replaced with 
//. If you insist on running Python on Windows and must handle files, then this is a significant point to 
take away from this example.

② You can use the same code on a Linux or macOS system to read the hosts file (object), but this time 
the hosts file exists under /etc/hosts instead. In Python, it takes only three lines of code to open, 
read, and print a file’s content.

 Exercise 2-70: Open and Close Hosts Files

① >>> hosts = open('c://windows//system32//drivers//etc//hosts')
>>> hosts_file = hosts.read()
>>> print(hosts_file)
# Copyright (c) 1993-2009 Microsoft Corp.
.
[... omitted for brevity]
.
# localhost name resolution is handled within DNS itself.
# 127.0.0.1 localhost
# ::1 localhost
>>> hosts.close ()



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

89

 Explanation

① After opening a file with the open('file_path') method, you must close the file after use. This 
process is the same as you would open a text or word file on your computer, and after use, you must 
close the file. You can close the file using the file_variable.close() method. In our example, close 
the open file using hosts.close().

 Exercise 2-71: Create Code to Close a File in Two Ways

① >>> hosts = open ('c://windows//system32//drivers//etc//hosts', 'r')
>>> hosts_file_contents = hosts.read()
>>> print('File closed? {}'.format(hosts.closed))
File closed? False
>>>
>>> if not hosts.closed:
...     hosts.close()
...
>>>
>>> print('File closed? {}'.format(hosts.closed))
File closed? True
>>>

② >>> with open ('c://windows//system32//drivers//etc//hosts', 'r') as hosts:
...     print('File closed? {}'.format (hosts.closed))
...     print(hosts.read())
...     print('Finished reading the file.')
...
File closed? False
# Copyright (c) 1993-2009 Microsoft Corp.

[... omitted for brevity]

# localhost name resolution is handled within DNS itself.
# 127.0.0.1 localhost
# ::1 localhost
Finished reading the file.
>>>
>>> print('File closed? {}'. format (hosts.closed))
File closed? True
>>>

③ try:
f = open('c://windows//system32//drivers//etc//hosts', encoding = 'utf-8')
f_read = f.read()
print(f_read)

finally:
f.close()



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

90

 Explanation

① Type in simple Python scripts to open the hosts file and then close it. Then check if the file has been 
properly closed. True means the file has closed correctly. Sometimes this file open option comes in 
handy.

② When you use the open() option, this removes the need to add a close() line. The with open 
statement opens the file and closes the file automatically with no close() statement. Try to open files 
using this option over the file.open() method.

③ If you insist on using the file open() method, open the file in a try-finally block, so if some file 
operation fails and suddenly closes, it closes the file correctly. Also, notice that encoding has been 
specified as UTF-8. On Python 3.4+, this is already the default encoding method but specified for 
demonstration purposes only in this example.

 Exercise 2-72: Create a Text File, and Read, Write, and Print

① >>> f = open('C://Users//brendan//Documents//file1.txt', 'w+') # Replace my name with 
yours
>>> for i in range(3):
...     f.write('This is line %d.\r' %(i + 1))
...
16
16
16
>>> f.close() # Always close file. Data gets written as file closes.
>>>
>>> f = open('C://Users//brendan//Documents//file1.txt')
>>> f_read = f.read()
>>> print(f_read)
This is line 1. This is line 2. This is line 3.
▯ # whitespace
>>>
>>> print(f_read.strip())# Removes undesired whitespaces.
This is line 1. This is line 2. This is line 3.
>>>
>>> print(f_read, end='') # Removes undesired whitespaces.
This is line 1. This is line 2. This is line 3.
>>>
>>> f.close() # Always close file.
>>>



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

91

② >>> with open('C://Users//brendan//Documents//file1.txt', 'w+') as f:
...     for i in range(3):
...     f.write('This is line %d.\n' %(i + 1))
...
16
16
16
>>> with open('C://Users//brendan//Documents//file1.txt', 'r') as f:
...     for line in f:
...     print(line)
...
This is line 1.
▯# whitespace
This is line 2.
▯# whitespace
This is line 3.
▯# whitespace

③ >>> with open('C://Users//brendan//Documents//file1.txt', 'r') as f:
...     for line in f:
...     print(line, end=' ')
...
This is line 1. This is line 2. This is line 3.

④ >>> with open('C://Users//brendan//Documents//file1.txt', 'r') as f:
...     for line in f:
...     print(line.strip())
...
This is line 1. This is line 2. This is line 3.

⑤ >>> with open('C://Users//brendan//Documents//file1.txt', 'r') as f:
...     skip_header = next(f) #Removes the header or the first line.
...     for line in f:
...         print(line.strip())
...
This is line 2. This is line 3.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

92

⑥ >>> with open('C://Users//brendan//Documents//file1.txt', 'w+') as f:
...     for i in range(3):
...         f.write('This is line %d.\r\n' %(i + 1))
...
17
17
17
>>> with open('C://Users//brendan//Documents//file1.txt', 'r') as f:
...     for line in f:
...         print(line)
...
This is line 1.
▯# whitespaces
▯
▯
This is line 2.
▯# whitespaces
▯
▯
This is line 3.
▯# whitespaces
▯
▯

 Explanation

① This is a basic example of opening (creating) a file in write mode (w+) and writing to the file. The file 
is closed after the information is written. Then the file is opened again in reading (r) mode, and the 
content of the file is printed out on the screen. The file has to be closed after each use. Use strip() 
or end='' to remove any whitespace created during file writing. You can remove the unwanted 
whitespaces if you want.

② In this second example, you have used the open with method to create and read the file, so there 
is no need to close the file. Also, while you created the file, you used \n (newline) rather than \r 
(return carriage), and when the content was read, you can see that the new lines have been added. 
Whitespaces include \t (tab), \n (newline), and \r (return carriage).

③ Once again, you have used end=' to remove the undesired whitespaces.

④ Similarly, use strip() to remove any whitespaces.

⑤ skip_header = next(f) can remove the header or the first line of your file to print from the second 
line.

⑥ Be careful using \r and \n together as the end product will behave differently depending on your 
operating system. If you are handling files in Linux or macOS, the use of \r and \n will differ.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

93

 Exercise 2-73: Use rstrip() or lstrip() to Remove Whitespace

① >>> with open('C://Users//brendan//Documents//file1.txt', 'w+') as f:
...     for i in range(3):
...     f.write('▯▯▯▯This line contains whitespaces %d.▯▯▯▯\n' %(i + 1))
...
42
42
42
>>> with open('C://Users//brendan//Documents//file1.txt', 'r') as f:
...     for line in f:
...     print(line)
...
▯▯▯▯This line contains whitespaces 1.▯▯▯▯ # whitespaces
▯ # whitespace
▯▯▯▯This line contains whitespaces 2.▯▯▯▯
▯
▯▯▯▯This line contains whitespaces 3.▯▯▯▯
▯

② >>> with open('C://Users//brendan//Documents//file1.txt', 'r') as f:
...     for line in f:
...     print(line.lstrip())
...
This line contains whitespaces 1.▯▯▯▯
▯
This line contains whitespaces 2.▯▯▯▯
▯
This line contains whitespaces 3.▯▯▯▯
▯

③ >>> with open('C://Users//brendan//Documents//file1.txt', 'r') as f:
...     for line in f:
...         print(line.rstrip())
...
▯▯▯▯This line contains whitespaces 1.
▯▯▯▯This line contains whitespaces 2.
▯▯▯▯This line contains whitespaces 3.

④ >>> with open('C://Users//brendan//Documents//file1.txt', 'r') as f:
...     for line in f:
...         print(line.strip())
...
This line contains whitespaces 1. This line contains whitespaces 2. This line contains 
whitespaces 3.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

94

 Explanation

① Create a file with four spaces on the left and four spaces on the right.

② Use lstrip() to remove whitespaces on the left side.

③ Use rstrip() to remove whitespaces on the right side, including \n, the newline character.

④ Use strip() to remove all whitespaces.

 Exercise 2-74: Python File Mode Exercise: Use r Mode

 When you open a file in reading (r) mode, the file pointer is placed at the beginning of the file, which is the 
default mode.

①
#1

#2

#3

#4

#5

#6

>>> with open('C://Users//brendan//Documents//file2.txt', 'r') as f:
...     print('Created file2.txt')
...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
FileNotFoundError: [Errno 2] No such file or directory: 'C://Users//brendan//
Documents//file2.txt'
>>> import os
>>> os.path.isfile('C://Users//brendan//Documents//file2.txt')
False
>>> with open('C://Users//brendan//Documents//file2.txt', 'w') as f:
...     print('Created file2.txt')
...
Created file2.txt
>>> import glob
>>> print(glob.glob('C://Users//brendan//Documents//*.txt'))
['C://Users//brendan//Documents\\file1.txt', 'C://Users//brendan//Documents\\file2.txt']
>>> import os
>>> os.path.isfile('C://Users//brendan//Documents//file2.txt')
True

#7

>>> with open('C://Users//brendan//Documents//file2.txt') as f:
...     print(f.mode)
...
r #  If file mode is not specified, the file opens in default reading only.
>>> with open('C://Users//brendan//Documents//file2.txt') as f:
...     f.write ('Writing to a file is fun.')
...
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
io.UnsupportedOperation: not writable



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

95

 Explanation

① #1. You tried to create a file in default reading mode, but Python does not allow file creation in only 
read (r) mode.
#2. You imported the os module and used the os.path.isfile() method to check if a file has been 
created, but as expected, no file has been created.
#3. Now you have opened and created file2.txt in write (w) mode.
#4. Then you imported the globe module to confirm that the file exists in your Document folder.
#5. Using the os.path.isfile() method, you double-checked the file created and exists in the folder 
(the directory in Linux).
#6. You have used .mode to validate file mode.
#7. You have opened file2.txt in reading mode and attempted to write to the file, and Python 
reminded you that you could not write to the file in this case.

 Exercise 2-75: Python File Mode Exercise: Use r+ Mode
Open a file for both reading and writing. The file pointer will be at the beginning of the file.

①
#1

#2

#3

>>> import os
>>> os.remove('C://Users//brendan//Documents//file2.txt')
>>> os.path.isfile('C://Users//brendan//Documents//file2.txt')
False
>>> with open('C://Users//brendan//Documents//file2.txt', 'r+') as f:
...     f.write('* Test Line 1')
...     print('Trying to write the first line.')
...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
FileNotFoundError: [Errno 2] No such file or directory: 'C://Users//brendan//
Documents//file2.txt'
>>> with open('C://Users//brendan//Documents//file2.txt', 'w+') as f:
...     f.write('* Test Line 1')
...     print('Just created file2.txt with line 1')
...
13
Just created file2.txt with line 1
>>> with open('C://Users//brendan//Documents//file2.txt', 'r+') as f:



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

96

#4

#5

#6

...     print(f.mode)

...
r+ # Opens a file for both reading and writing.
>>> with open('C://Users//brendan//Documents//file2.txt', 'r+') as f:
...     f_read = f.read()
...     print(f_read)
...
* Test Line 1
>>> with open('C://Users//brendan//Documents//file2.txt', 'r+') as f:
...     f.write('# This will overwrite Line 1')
...
28
>>> with open('C://Users//brendan//Documents//file2.txt', 'r+') as f:
...     f_read = f.read()
...     print(f_read)
...
# This will overwrite Line 1

 Explanation

① #1. Use the os.remove() method to remove an existing file, file2.txt. This file was created in Exercise 
2-74. You can also check if the file has been deleted successfully using the os.path.isfile() method.
#2. Try to open and create a file in r+ mode; just as in r mode, Python will return FileNotFoundError. 
You cannot create a new file using r+ mode.
#3. This time use the w+ mode to re-create the file2.txt file and write the first line for testing. As in 
Exercise 2-74, w+ allows you to open and create a new file; you will find more on this on the following 
w and w+ exercises.
#4. Use the .mode method to check your file handling mode.
#5. Now reopen text2.txt in r+ mode and write to the file.
#6. When you read the file, you can see that the last action has overwritten the old information.

 Exercise 2-76: Python File Mode Exercise: Use a Mode
Open a file for an appending exercise. The file pointer is at the end of the file if the file exists. The file is in the 
append mode. If the file does not exist, it creates a new file for writing.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

97

①
#1

#2

#3

#4

#5

#6

>>> import os
>>> os.remove('C://Users//brendan//Documents//file2.txt')
>>> os.path.isfile('C://Users//brendan//Documents//file2.txt')
False
>>> with open('C://Users//brendan//Documents//file2.txt', 'a') as f:
...     f.write('This is line 1.')
...
15
>>> with open('C://Users//brendan//Documents//file2.txt', 'a') as f:
...     f_read = f.read()
...     print(f_read)
...
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
io.UnsupportedOperation: not readable
>>> with open('C://Users//brendan//Documents//file2.txt', 'r') as f:
...     f_read = f.read()
...     print(f_read)
...
This is line 1.
>>> with open('C://Users//brendan//Documents//file2.txt', 'a') as f:
...     f.write('This is line 2.')
...
15
>>> with open('C://Users//brendan//Documents//file2.txt', 'r') as f:
...     f_read = f.read()
...     print(f_read)
...
This is line 1.This is line 2.

#7

#8

#9

#10

>>> with open('C://Users//brendan//Documents//file2.txt', 'a') as f:
...     f.write('\rThis is line 3.')
...
16
>>> with open('C://Users//brendan//Documents//file2.txt', 'r') as f:
...     f_read = f.read()
...     print(f_read)
...
This is line 1.This is line 2. This is line 3.
>>> with open('C://Users//brendan//Documents//file2.txt', 'a') as f:
...     f.write('\nThis is line 4.')
...
16
>> with open('C://Users//brendan//Documents//file2.txt', 'r') as f:
...     for line in f.readlines():
...         print(line.strip())
...



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

98

#11

#12

This is line 1.This is line 2. This is line 3.
This is line 4.
>>> with open('C://Users//brendan//Documents//file2.txt', 'r') as f:
...      f.readline()
...
'This is line 1.This is line 2.\n'
>>> with open('C://Users//brendan//Documents//file2.txt', 'r') as f:
...     f.readlines()
...
['This is line 1.This is line 2.\n', 'This is line 3.\n', 'This is line 4.']
>>> with open('C://Users//brendan//Documents//file2.txt', 'r') as f:
...     f.tell()
...
0
>> with open('C://Users//brendan//Documents//file2.txt', 'a') as f:
...     f.tell()
...
63

 Explanation

① #1. Remove file2.txt and re-create a file with the same name in an (append) mode. As you have 
already noticed, append mode will also allow you to create a new file if it does not exist already.
#2. Open file2.txt in append mode to read the file. Python will tell you that in this mode, you 
cannot read the file.
#3. Open the file in reading mode and print out the content to the screen.
#4. This time open the file in append mode and add some more information.
#5. Open the file in reading mode again and print the file content. As you have noticed, the second 
sentence you have written to the file has been appended immediately after the first sentence, without 
proper spacing or newline entry. In append mode, the pointer starts at the end of the last sentence to 
append any additional information at the end of the last character entry.
#6. Open file2.txt in append mode and add a new line. This time, add \r to add the line to the next 
line.
#7. Confirm the entry in reading mode.
#8. This time, use \n to add another line.
#9. When you use the strip() method, whitespaces such as \r or \n get deleted.
#10. When you use the read() method, Python reads the whole file content and dumps out the 
information. Sometimes this is not the desired method as you only want to read per line. Use 
readline() to read one line at a time.
#11. If you use the readlines() method, Python will read each line and return them as a string item 
list.
#12. Python’s file method tell() returns the file’s current position read/write pointer within the file. 
As you can observe, when a file is opened in r/r+ mode, the pointer starts from index 0. Whereas if 
you open the file in a/a+ mode, the pointer will begin at the end of the index.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

99

 Exercise 2-77: Python File Mode Exercise: Use a+ Mode
Open a file for an appending and reading exercise. The file pointer is at the end of the file if the file exists. 
The file opens in the append mode. If the file does not exist, it creates a new file for reading and writing.

①
#1

#2

#3

>>> import os
>>> os.remove('C://Users//brendan//Documents//file2.txt') # Removes old file2.txt
>>> with open('C://Users//brendan//Documents//file2.txt', 'a+') as f:
...     print(f.mode)
...     f.write('This is line 1.\rThis is line 2.\rThis is line 3.\r')
...
a+
48
>>> with open('C://Users//brendan//Documents//file2.txt', 'a+') as f:
...     f_read = f.read()
...     print(f_read, end='')
...
>>> with open('C://Users//brendan//Documents//file2.txt', 'r') as f:
...     f_read = f.read()
...     print(f_read, end='')
...
This is line 1. This is line 2. This is line3.

 Explanation

① #1. Remove file2.txt once again and open and re-create the file2.txt file in a+ mode with three 
lines.
#2. Open the file in a+ mode, read, and print the file. But since the pointer is at the end of the file in a+ 
mode, no information is printed.
#3. When you open the file in the default r mode again, the pointer starts at the beginning of the file 
and prints out the file content on the screen. Although a+ supports file reading mode, because of its 
pointer location when the file is opened in this mode, really there is no fair use case to open a file in 
this mode over the normal a mode.

 Exercise 2-78: Python File Mode Exercise: Use w Mode
Open a file for writing only. This overwrites the file if the file exists. If the file does not exist, create a new file 
for writing.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

100

①
#1

#2

#3

>>> with open('C://Users//brendan//Documents//file2.txt', 'w') as f:
...     f.tell()
...     print(f.mode)
...     f.write('This is line 1.')
...
0
w
15
>>> with open('C://Users//brendan//Documents//file2.txt', 'r') as f:
...     f_read = f.read()
...     print(f_read)
...
This is line 1.
>>> with open('C://Users//brendan//Documents//file2.txt', 'w') as f:
...     f_read = f.read()
...     print(f_read)
...
Traceback (most recent call last): File "<stdin>", line 2, in <module>
io.UnsupportedOperation: not readable

 Explanation

① #1. There’s no need to remove the old file. Opening a file in w mode will overwrite the old file and 
create a new file. If there is no file with the same name, Python will create a new file.
#2. You opened file2.txt in read mode and printed the file content in r mode.
#3. If you try to read the file content in w mode, you will encounter an IO-related error, as shown in 
this example.

 Exercise 2-79: Python File Mode Exercise: Use w+ Mode
Open a file for both writing and reading. This overwrites the existing file if the file exists. If the file does not 
exist, create a new file for reading and writing.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

101

①
#1

#2

>>> with open('C://Users//brendan//Documents//file2.txt', 'w+') as f:
...     f.tell()
...     f.write('This is line 1.')
...     f.tell()
...     print(f.read())
...
0
15
15
>>> with open('C://Users//brendan//Documents//file2.txt', 'w+') as f:
...     print(f.mode)
...     f.write('This is line 1.')
...     f.seek(0)
...     print(f.read())
...
w+
15
0
This is line 1.

 Explanation

① #1. When you open in w+ mode, the pointer begins at index 0, after writing to the file. It moves to 
the end of the content. When you try to print information while the pointer is at the end of the line, 
Python will return a blank.
#2. To write in w+ mode and then read and print out the file content, then you have to move the 
pointer to position zero using the seek(0) method. In this example, you have reset the pointer 
position to 0, or the beginning of the file, and Python printed the lines correctly.

 Exercise 2-80: Python File Mode Exercise: Use x Mode
x is like w. But for x, if the file exists, raise FileExistsError.

①
#1

#2

>>> with open('C://Users//brendan//Documents//file2.txt', 'x') as f:
...     print(f.mode)
...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
FileExistsError: [Errno 17] File exists: 'C://Users//brendan//Documents//file2.txt'
>>> with open('C://Users//brendan//Documents//file4.txt', 'x') as f:
...     print(f.mode)
...
X



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

102

 Explanation

① #1. file2.txt already exists from the previous exercise. When you try to open file2.txt in x mode, 
it will raise FileExistsError. This new file handling mode can come in handy if you do not want to 
overwrite the existing file mistakenly using w/w+ mode.
#2. Now create a new file in x mode, and Python is happy with this operation.

 Exercise 2-81: Python File Mode Exercise: Use x Mode
x is writeable only. x+ can write and read.

① >>> with open('C://Users//brendan//Documents//file5.txt', 'x+') as f:
...     print(f.mode)
...
x+

 Explanation

① This is a write and read mode of x mode. It’s almost identical to w+ mode, but it will not overwrite the 
existing file. It will require exclusivity to create a new file. Look at Table 2-5 for all file modes; you do 
not have to memorize all modes now, but you will get familiar with each modes as you write more 
Python code.

(continued)

Table 2-5. File Processing Modes

Mode Descriptions
r Opens a file for reading only. This mode places the file pointer at the beginning of the file. This is 

the default mode.

rb Opens a file for reading only in binary format. This mode places the file pointer at the beginning 
of the file.

r+ Opens a file for both reading and writing. The file pointer will be at the beginning of the file.

rb+ Opens a file for both reading and writing in binary format. The file pointer will be at the 
beginning of the file.

a Opens a file for appending. The file pointer is at the end of the file if the file exists. The file is in 
the append mode. If the file does not exist, it creates a new file for writing.

ab Opens a file for appending in binary format. The file pointer is at the end of the file if the file 
exists. The file is in the append mode. If the file does not exist, it creates a new file for writing.

a+ Opens a file for both appending and reading. The file pointer is at the end of the file if the file 
exists. The file opens in the append mode. If the file does not exist, it creates a new file for reading 
and writing.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

103

 Exercise 2-82: Open a Byte File in Python

① >>> with open('C://Users//brendan//Pictures//ex82_horse.jpg', 'rb') as horse_pic:
...     horse_pic.seek(2)
...     horse_pic.seek(4)
...     print(horse_pic.tell())
...     print(horse_pic.mode)
...
2
4
4
Rb

 Explanation

① Python can also open and read byte files such as images and other files. This example shows you how 
to open and uses the seek method to read byte files. When you open in byte mode, you add b behind 
the normal r/r+, a/a+, and w/w+ modes.

Mode Descriptions

ab+ Opens a file for both appending and reading in binary format. The file pointer is at the end of the 
file if the file exists. The file opens in the append mode. If the file does not exist, it creates a new 
file for reading and writing.

w Opens a file for writing only. Overwrites the file if the file exists. If the file does not exist, creates a 
new file for writing.

wb Opens a file for writing only in binary format. Overwrites the file if the file exists. If the file does 
not exist, create a new file for writing.

w+ Opens a file for both writing and reading. Overwrites the existing file if the file exists. If the file 
does not exist, creates a new file for reading and writing.

wb+ Opens a file for both writing and reading in binary format. Overwrites the existing file if the file 
exists. If the file does not exist, create a new file for reading and writing.

x x mode is like w mode. But for x, if the file exists, raise FileExistsError.

x+ x is only writable. "x+" can write and read.

Table 2-5. (continued)



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

104

 you can download the ex82_horse.jpg file from the pynetauto GitHub site as part of the Chapter 2 code. 
This JPeG file is included in the chapter2_codes.zip file. This is my photo, so there is no copyright on this photo.

URL: https://github.com/pynetauto/apress_pynetauto

 Exercise 2-83: Handle Errors with try and except
Optionally, you can download the source code files called ex2_83_countries.py and ex2_83_countries.txt 
and then run the code from Notepad++.

① >>> try:
...     countries = open('C://Users//brendan//Documents//ex2_83_countries.txt', 'r')
... except FileNotFoundError as e:
...     print(str(e))
... else:
...     nations = countries.read()
...     print(nations)
...     countries.close()
...
[Errno 2] No such file or directory: 'C://Users//brendan//Documents//ex2_83_countries.
txt'

② >>> try:
...     countries = open('C://Users//brendan//Documents//ex2_83_countries.txt', 'r')
... except FileNotFoundError as e:
...     print(str(e))
... else:
...     nations = countries.read()
...     print(nations)
...     countries.close()
...
United States England Germany France
Japan Italy Spain Australia

 Explanation

① You can use try and except, try, except and else, or try and finally to handle errors that occur 
during file handling. This first exercise shows you an example of an error where there was no file in the 
directory. Download and drop the ex83_countries.txt file in your Documents folder and perform the 
next task.

② If you have the correct file in the directory, the Python code will reach the else statement and print out 
the names of the countries in the file. try and except error handling becomes handy while working 
with errors, especially while working with files.

https://github.com/pynetauto/apress_pynetauto


CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

105

 Recap: Python file Handling Concept
Here’s a recap:

• Use the open() built-in function to open a file. The general syntax is as follows:

• open(file_location, mode)

• If the file mode is not specified, the file opens in default r (read) mode.

• In read() file mode, the entire content of the file is read.

• When a file is opened with the open() function, the best practice is to close the file 
with the close() function.

• If you open a file using open ~, you do not have to use the close() function to close 
the opened file.

• The for loop reads the file content line by line.

• Whitespaces created during handling of a file can be deleted using the strip(), 
rstrip(), lsetrip(), and end=' methods.

• You can write data to a file using the write() function.

• The file opens in text mode unless specified to be opened in byte mode using b 
mode. Computers prefer to handle data in binary format.

• English alphabets or numbers are recognized as 1 byte in size, but some characters 
in UTF-8 format, such as Korean, Chinese, and Japanese, can be larger than 1 byte in 
size.

• try and except error handling can help you write more robust Python scripts.

 Using Python Modules
The words modules and packages could be used interchangeably in Python, but how are they different? Yes, 
they are closely related, and often new Python learners get confused. They both serve the same purpose 
in organizing code, but there are some subtle differences between the two as they each provide slightly 
different ways of organizing code. Usually, a module is a single .py Python file with some function.  
A package is a directory that contains multiple Python modules. So, a package is a collection of modules.  
A module can be considered a self-contained package, and a package is a collection of various modules that 
are separated across multiple files. Usually, you start with a module, and as the requirements grow, you turn 
the multiple modules into a package to serve some purpose in your work.

As you work more with Python code, you will use many built-in modules and packages, adopt and use 
someone else’s modules and packages, or create your custom modules and packages to use in your Python 
applications. Let’s learn some basics using the modules.



CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

106

 Time Module
Let’s talk about the time module.

 Exercise 2-84: Import the time Module

① >>> import time
>>> print(time.asctime())
Sun Apr 12 00:48:07 2020

② >> print(time.timezone)
-36000

③ >>> from time import asctime
>>> print(asctime())
Sun Apr 12 00:49:44 2020

 Explanation

① Import the time module and print the time from your computer.

② Find your time zone using the time.timezone method.
-36000 is the time zone value for Sydney, Australia.

③ Use from ~ import ~ to only import required functions from the time module. You can import multiple 
functions on the same line.
For example, from time, import gmtime and strftime.

 Sleep Method
Let’s talk about the sleep method.

 Exercise 2-85: Use the time.sleep() Function

① #Ex2_85.py (optional)
>>> from time import asctime, sleep
>>> print(asctime())
Sun Apr 12 01:00:01 2020
>>> sleep(10)
>>> print(asctime())
Sun Apr 12 01:00:11 2020

# Output:
Sun Apr 12 01:02:05 2020
Sun Apr 12 01:02:15 2020



 Explanation

① time.sleep() is used to put your script into sleep for a designated period. Whenever you can, avoid 
using import * (import all) when importing modules; only import the explicit function you are going 
to use. The * wildcard means load all modules and functions, so it will add slowness to your code as it 
takes more time to load all modules than loading only a single module.

For example, try to avoid using this:

from time import * # Avoid *, as * is too greedy

This is preferred:

from time import asctime, sleep # importing two modules here

If you don't remember the name of the function from the module, you can import the module first 
and use dir(module_name) to find the name of all the methods you can choose from.

>>> import time
>>> dir(time)
['CLOCK_MONOTONIC', 'CLOCK_MONOTONIC_RAW', 'CLOCK_PROCESS_CPUTIME_ID', 'CLOCK_
REALTIME',
'CLOCK_THREAD_CPUTIME_ID', '_STRUCT_TM_ITEMS', ' doc ', ' loader ', ' name ', ' ' 
asctime ',' clock ',' clock_getres', 'clock_gettime', 'clock_settime', 'ctime', 
'daylight', 'get_clock_info', 'gmtime', 'localtime', 'mktime', 'monotonic', 'perf_
counter' , 'process_time', 'sleep', 'strftime', 'strptime', 'struct_time', 'time', 
'timezone', 'tzname', 'tzset']

 Exercise 2-86: Browse a Path Using the sys Module

① # For Windows
>>> import sys
>>> sys.path
['', 'C:\\Python39\\python39.zip', 'C:\\Python39\\DLLs', 'C:\\Python39\\lib', 'C:\\
Python39', 'C:\\Python39\\lib\\site-packages']

# For Linux
>>> import sys
>>> sys.path
['', '/usr/lib/python36.zip', '/usr/lib/python3.6', '/usr/lib/python3.6/lib-dynload', 
'/ usr/local/lib/python3.6/dist-packages', '/usr/lib/python3/dist-packages']

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

107



② # For Windows
>>> import sys
>>> for path in sys.path:
...     print(path)
...

C:\Python39\python39.zip
C:\Python39\DLLs
C:\Python39\lib
C:\Python39
C:\Python39\lib\site-packages

# For Linux
>>> import sys
>>> for path in sys.path:
...     print(path)
...

/usr/lib/python36.zip
/usr/lib/python3.6
/usr/lib/python3.6/lib-dynload
/usr/local/lib/python3.6/dist-packages
/usr/lib/python3/dist-packages

 Explanation

① First, import the target module and then use sys.path to find where Python files exist on your system.

② To prettify the output, use the for loop method to give you the system directory path line by line. In 
this example, you can compare where PYTHONPATH and related packages are installed in Windows vs. 
Linux. PYTHONPATH is an environment variable to add additional directories where Python will look for 
modules and packages.

 Exercise 2-87: Add a New Filepath Using the sys Module

① # For Windows
>>> import sys
>>> sys.path.append('C:\Python39\my-packages')
>>> for path in sys.path:
...     print(path)
...

C:\Python39\python39.zip
C:\Python39\DLLs
C:\Python39\lib
C:\Python39
C:\Python39\lib\site-packages
C:\Python38Python39\my-packages # Newly added FILEPATH

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

108



# For Linux
>>> import sys
>>> sys.path.append('/Users/root/my-packages')

>>> for path in sys.path:
...     print(path)
...

/usr/lib/python36.zip
/usr/lib/python3.6
/usr/lib/python3.6/lib-dynload
/usr/local/lib/python3.6/dist-packages
/usr/lib/python3/dist-packages
/Users/root/my-packages # Newly added FILEPATH

 Explanation

① If you want to create and add new modules/packages to a FILEPATH, Python will also look at the 
customized modules/packages under the new directory. You can add the new FILEPATH using the sys 
module.

 Exercise 2-88: Check Built-ins and sys.builtin_module

① >>> dir(__builtins__)
['ArithmeticError', 'AssertionError', 'AttributeError',
[... omitted for brevity]
'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'vars', 'zip']

>>> import sys
>>> for name in sys.builtin_module_names:
...     print (name, end=' ')
...
_abc _ast _bisect _blake2 _codecs _codecs_cn _codecs_hk
[... omitted for brevity]
faulthandler gc itertools marshal math mmap msvcrt nt parser sys time winreg xxsubtype 
zlib

 Explanation

① In the Python interpreted session, you can use the dir() function to view built-in modules. You can 
also use the for loop method to view what’s inside built-in modules. There are other ways to view this 
information, and this is just a way to check built-ins and modules.

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

109



 Exercise 2-89: Use a Simple import sys Module in a try and except 
Exercise

① # ex2_89.py
import sys
file = 'C://Users//brendan//Documents//test.txt'
try:

with open (file) as test_file:
for line in test_file:
print(line.strip())

except:
print('Could not open {}'. format(file))
sys.exit(1)

② C:\Users\brendan> python C://Users//brendan//Documents/ex2_89.py
Could not open C://Users//brendan//Documents//test.txt # output

③ >>> with open('C://Users//brendan//Documents//test.txt', 'w') as f:
...     f.write('This is a test file only.')
...     f.write('Study Python, Network, Linux and Automation all from a single book.')
...
26 67

④ >>> with open('C://Users//brendan//Documents//test.txt', 'r') as f:
...     print(f.read())
...
This is a test file only. # output
Study Python, Network, Linux, and Automation all from a single book. # output

⑤ C:\Users\brendan> python C://Users//brendan//Documents/ex2_89.py
This is a test file only. # output
Study Python, Network, Linux, and Automation all from a single book. # output

 Explanation

① First, create a script called ex2_89.py and copy the code. This example script was created and saved in 
the C://Users//brendan//Documents folder.

② From the Windows command-line prompt or Windows PowerShell, run the ex2_89.py script. 
Optionally, if you have set up Notepad++ for Python, run the code. Since there is no text.txt file in 
the designated folder, Python will trigger the customized exception error. The script had an import 
sys module statement, and it triggered an exit action after printing the exception error.

③ Now create a test.txt file and add a couple of lines.

④ To check the content, open and read the file, and then print the lines.

⑤ Now run the Python script (ex2_89.py) to print the content. This was a small exercise, but I hope you 
are taking away something from this exercise. If you haven’t, then let’s go back and review what we 
have learned here.

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

110



 Exercise 2-90: Understand Lambdas by Making a Calculator

① >>> def sum(x, y):
...     return x +y
...
>>> sum(3, 2)
5

② >>> sum = lambda x, y: x + y
>>> sum(3, 2)
5

③ >>> lamb_cal = [lambda x,y:x+y, lambda x,y:x-y, lambda x,y:x*y, lambda x,y:x/y]

>>> lamb_cal[0]
<function <lambda> at 0x000001BF34AFC3A0>
>>> lamb_cal[0](3, 2)
5

>>> lamb_cal[1]
<function <lambda> at 0x000001BF34AFC670>
>>> lamb_cal[1](3, 2)
1

>>> lamb_cal[2]
<function <lambda> at 0x000001BF34AFC700>
>>> lamb_cal[2](3, 2)
6

>>> lamb_cal[3]
<function <lambda> at 0x000001BF34AFC790>
>>> lamb_cal[3](3, 2)
1.5

 Explanation

① This is a simple function that adds and returns the sum of x and y.

② You can use lambda on a single line of code to achieve the same result. This is the re-creation of the 
function in ① but with fewer lines.

③ You have just created a simple calculator on a single line using a lambda. The calculator is self-
explanatory; lamb_cal can perform the basic arithmetic.
As we become more familiar with Python coding, there are certain situations we can apply lambdas. 
You do not have to use a lambda, but you can see the real value of lambdas in this exercise.

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

111



 Recap: Module Concepts
Here’s a recap:

• Modules are Python code that can use a set of variables, functions, and classes in  
the .py file format.

• You can import a module by issuing import module_name.

• The default location of the module is set during Python installation.

• The Python built-in library is a set of reusable Python programs that contain a variety 
of codes.

• The dir() built-in function allows you to view the modules in a package.

• If you do not have the required module, you can create one, add FILEPATH, and add 
your packages.

 if you want to go over what you have learned in this chapter or repeat the exercises for the second or third 
time, download ex2_1_to_2_90.txt and use it for your practice; this file contains all the exercises from 
exercise 2-1 to exercise 2-90. if you are totally new to Python, i am recommending you repeat the previous 
exercise at least three times.

URL: https://github.com/pynetauto/apress_pynetauto/tree/master

 Summary
I hope you have been busy on your keyboard throughout this chapter and tried some basic Python exercises. 
An interpreted programming language such as Python was designed to mimic a human language. Many 
years ago, I studied the pragmatics of language at university. According to Cambridge Dictionary, pragmatics 
is “the study of how language is affected by the situation in which it is used, of how language is used to get 
things or perform actions, and of how words can express things that are different from what they appear 
to mean.” As we become more comfortable with Python as a programming language or a tool, we have to 
continue to learn to communicate with computers (machines), give a set of instructions to the computers, 
and interpret Python’s feedback or errors. We have covered the most basic Python concepts through 
practical examples and exercises. The best way to learn a programming language is through more exercises 
that are relatable to real scenarios. Now that we have learned the basics, let’s get some more practice to link 
the concepts to real scenarios in Chapter 3. The next chapter contains general Python exercises as well as 
work-related exercises.

CHaPTeR 2 ■ LeaRn PyTHOn BaSiCS On WinDOWS

112

https://github.com/pynetauto/apress_pynetauto/tree/master


113
© Brendan Choi 2021 
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_3

CHAPTER 3

More Python Exercises

The Romans borrowed an old Athenian concept and turned it into a proverb: “Repetito master sturdiorum,” 
which means “Repetition is the mother of all learning.” In the previous chapter, you practiced basic Python 
concepts, but you will get more practice with more relatable subjects and scenarios in this chapter. Some 
parts of the exercises will contain content that will be directly relatable to the scripts you will be writing in 
the second half of this book. When we do each exercise in this chapter, let your fingers do the typing, but let 
your brain think about how a certain exercise can help you automate parts of your work.

 

 Getting Ready for the Exercises
This book works on the assumption that you are new to network automation using Python. When we look 
at the day-to-day tasks of a typical IT engineer, systems engineers and network engineers do not have to 
type as much as DevOps engineers. This is just the nature of the job because DevOps engineers are always 
on the move, writing code and creating applications as part of various projects. In other words, for most of 
the non-DevOps IT staff who are reading this book, your time will be spent on installing, configuring, and 
troubleshooting various issues in your field. It will be challenging to find the time during work hours to 
practice as you are not paid to learn to code and develop automation applications. Yet, almost all enterprise 
IT teams are trying to push their IT engineers to start learning a programming language and automating 
repetitive tasks. Being a good employee and exemplary IT engineer, you have probably been using time 
outside of work hours to learn Python. Not all of us will understand programmability concepts or learn the 
Python basics on our first attempt; just be consistent and keep trying until you do. The only way to overcome 
the challenges is through more exercises. If you have specific Python challenges, please get into the habit of 
searching for that topic on Google and reading further about it. Now, let’s get some more Python practices 
using relatable examples.

In Chapter 2, you learned the basics of Python. This chapter will help you practice even more to prepare 
you for network automation using Python. The more you practice, the better you will get.

https://doi.org/10.1007/978-1-4842-6806-3_3#DOI


Chapter 3 ■ More python exerCises

114

 Exercise 3-1: Concatenate a List and a Tuple into a Single List

① >>> fruits = ['apple', 'orange', 'mango']
>>> vegetables = ('broccoli', 'potato', 'spinach')
>>> favorites = fruits + list(vegetables)
>>> print(favorites)
['apple', 'orange', 'mango', 'broccoli', 'potato', 'spinach']

 Explanation

① Create one variable in the list and create one variable in a tuple. Convert the tuple to a list using the 
list() method. Concatenate and merge one list and one tuple into a single list.

 Exercise 3-2: Use Python as a Calculator

① >>> eigrp, ospf, rip = 90, 110, 120
>>> path1, path2, path3 = 3, 6, 9
>>> admin_distance = (eigrp * path1) + (ospf * path2) + (rip * path3)
>>> print(admin_distance)
2010

 Explanation

① Use Python as a calculator and calculate an administrative distance.

 Exercise 3-3: Do Some Basic String format() Exercises

① >>> name = 'Hugh'
>>> age = 15
>>> detail = 'His name is %s and he is %d.'
>>> print(detail %(name, age))
His name is Hugh and he is 15.



Chapter 3 ■ More python exerCises

115

②
#1

#2

#3

#4

>>> Name, age, height = 'Hugh', 15, 174.5
>>> detail = ('His name is {}, he is {} and {} cm tall.'.format(name, age, height))
>>> print(detail)
His name is Hugh, he is 15 and 174.5 cm tall.

>>> detail = ('His name is {0}, he is {1} and {2} cm tall.'.format(name, age, height))
>>> print(detail)
His name is Hugh, he is 15 and 174.5 cm tall.

>>> detail = ('His name is {name}, he is {age} and {height} cm 
tall.'.format(name='Joshua', age=16, height=178))
>>> print(detail)
His name is Joshua, he is 16 and 178 cm tall.

>>> detail = ('His name is {0}, he is {age} and {height} cm tall.'.format('Michael', 
age=12, height=170))
>>> print(detail)
His name is Michael, he is 12 and 170 cm tall.

③ >>> person = {'height':174.5, 'name':'Hugh', 'age':15}
>>> print('{name} is {age} years old and {height} cm tall.'.format(**person))
Hugh is 15 years old and 174.5 cm tall.

 Explanation

① This is a basic string (%s) and digit (%d) formatting example.

② #1. format() example: Default arguments
#2. format() example: Positional arguments
#3. format() example: Keyword arguments
#4. format() example: Mixed arguments

③ This is an str.format(**mapping) example. This is an example of the argument parsing used in 
Python, so make a special note of the two asterisks used in the example.

 Exercise 3-4: Ask for a Username
Write the code in Notepad++ as shown in Figure 3-1.

① # ex3_4.py
print('Please enter your name: ')
name = input()
print('Thank you, ', name)



Chapter 3 ■ More python exerCises

116

 Explanation

① Create some Python code that will ask for the user’s name. You are going to use this as the basis of 
username and password tool development. You will have some fun while asking for someone’s name.

 Exercise 3-5: Get a Username: Version 1
Write the code and save it as ex3_5.py and run the code in Notepad++. (see Figure 3-2)

① #ex3_5.py
name = input('Please enter your name: ')

print(f'Hi, {name}.')

Figure 3-1. User input, thanking the user



Chapter 3 ■ More python exerCises

117

 Explanation

① Reiterate ex3_4.py and write some simplified code in ex3_5.py. The number of code lines has 
shrunk. In this exercise, you are learning how to reduce two code lines into a single line of code and 
also use an abbreviated formatting method.

 Exercise 3-6: Get a Username: Version 2
On Notepad++, enter the following code, save the file as ex3_6.py and run the code. (see Figure 3-3).

① #Ex3_6.py
import re

name = input("Enter your name: ")
while True:

while not re.match("^[a-zA-Z]+$", name):
name = input("Enter your name: ")

else:
print(name)
exit()

Figure 3-2. User input, saying “hi”



Chapter 3 ■ More python exerCises

118

 Explanation

① Using ex3_5.py as the basis, you have just created a simple Python application asking for someone’s 
name with some requirements. You have imported the re (regular expression) built-in Python 
module to force the user to provide a name starting with an alphabetical letter that accepts letters 
only.

^[a-zA-Z]+$ means any character starting with a letter with one or more characters and ending with 
a letter. So, yomu cannot enter a number or a special character as a name. If the user cannot adhere 
to this rule, the script asks until the user provides an expected response. Once the correct response is 
received, the name is printed and exits the application.

You will learn more about regular expressions in Chapter 9. An entire chapter will be dedicated to 
learning regular expressions and how to use the re module. Scripting is all about data handling 
and how we process them. We must master regular expressions and conquer our fear of regular 
expressions to become confident programming engineers.

 Exercise 3-7: Get a Username: Version 3

Enter the code and save the file as ex3_7.py on Notepad++. Run the code as shown in Figure 3-4.

Figure 3-3. User input, getting correctly formatted input



Chapter 3 ■ More python exerCises

119

① # ex3_7.py
import re

def get_name():
name = input("Enter your name: ")
while True:
while not re.match("^[a-zA-Z]+$", name):
name = input("Enter your name: ")

else:
print(name)
exit()

get_name()

 Explanation

① Create the ex3_7.py script and run it to learn how you can create a function based on ex3_6.py and 
convert it into a function. The last statement, get_name(), will trigger the script to run. This is the same 
script as ex3_6.py, but we have converted it into a function so you can understand the reiteration process.

Figure 3-4. User input, getting the username script into a function



Chapter 3 ■ More python exerCises

120

 Exercise 3-8: Add a Temporary Filepath, Import ex3_7.py as a Module, 
and Run the Script

① C:\Users\brendan>python
Python 3.9.1 (tags/v3.9.1:1e5d33e, Dec  7 2020, 17:08:21) [MSC v.1927 64 bit (AMD64)] 
on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import ex3_7.py
Enter your name: Brendan
Brendan

C:\Users\brendan>

② # If your script is under a different folder, for example, under 'C:\Users\brendan\
Documents\'. You have to manually add the Filepath using append.
>>> import sys
>>> sys.path.append('C:\\Users\\brendan\\Documents\\') # Add temporary filepath
>>> print(sys.path)
['', 'C:\\Python39\\python39.zip', 'C:\\Python39\\DLLs', 'C:\\Python39\\lib', 'C:\\
Python39', 'C:\\Python39\\lib\\site-packages', 'C:\\Users\\brendan\\Documents\\']

>>> import ex3_7.py
9
Enter your name: Ryan
Ryan

 Explanation

① If you selected Add Python 3.9 to PATH during the Python installation, you should be able to call the 
Python script as a module and run it from anywhere on your Windows operating system. If you forget, 
you can choose to add a temporary filepath, as shown in example ②.

② Open the Python command prompt and add a temporary filepath so Python can read the Python 
module created in Exercise 3-7. Here you are adding a new (temporary) filepath and importing 
a custom module to run from your interpreter session to learn how importing and customizing 
modules work.

 Exercise 3-9: Use Commas to Add Spaces Between Strings

① >> print('Around' + 'the' + 'World' + 'in' + '100' + 'days.')
AoundtheWorldin100days. # by default, no spaces are added when '+' is used

>>> print('Around ' + 'the ' + 'World ' + 'in ' + '100 ' + 'days.') # manually enter 
spaces between words
Around the World in 100 days.

>>> print('Around', 'the', 'World', 'in', '100', 'days.')
Around the World in 100 days. # adds spaces automatically



Chapter 3 ■ More python exerCises

121

 Explanation

① Practice the previous exercises and compare the output. Notice that commas are used in the previous 
exercise, and the output adds spaces between the strings.

 Exercise 3-10: Practice if; if and else; and if, elif, and else

① >>> y = 5
>>> if x > y:
...     print('x is greater than y.')
...
>>> # No output as if the statement was False

>>> x = 3
>>> y = 5
>>> if x < y:
...     print('x is less than y.')
...
x is less than y. # prints output as if the statement was True

>>> y = 5
>>> if x >= y:
...     print('x is greater or equal to y.')
... else:
...     print('x is smaller than y.')
...
x is smaller than y. #  prints output of else statement

>>> x = 3
>>> y = 5
>>> z = 3
>>> if x < y > z:
...     print('y is greater than x and greater than z.')
...
y is greater than x and greater than z. # all conditions met

>>> x = 5
>>> y = 10
>>> if x < y:
...     print('x is smaller than y.')
... elif x > y:
...     print('x is greater than y.')
... else:
...     print('x is equal to y.')
...
x is smaller than y. # if the statement was satisfied



Chapter 3 ■ More python exerCises

122

 Explanation

① You have just practiced if; if and else; and if, elif, and else. These exercises are self-explanatory; 
this is one beauty of Python.

 Exercise 3-11: Practice for ~ in range with end=‘ ’

① >>> for n in range (1, 11):
...         print(n)
...
1
2
3
[omitted for brevity]
9
10

>>> for n in range (1, 11):
...     print(n, end='')
...
12345678910
>>>
>>> for n in range (1, 11):
...     print(n, end=' ') # adds spaces and print horizontally
...
1 2 3 4 5 6 7 8 9 10
>>>
>>> for n in range (1, 11):
...     print(n, end=',') # adds commas between output
...
1,2,3,4,5,6,7,8,9,10,
>>>
>>> for n in range (1, 11):
...     print(n, end='/') # adds forward slashes
...
1/2/3/4/5/6/7/8/9/10/
>>>
>>> for n in range (1, 11):
...     print(n, end='|') # adds pipes (vertical bars)
...
1|2|3|4|5|6|7|8|9|10|
>>>

 Explanation

① Practice each for ~ in range statement with end= and compare the variations in the outcome.



Chapter 3 ■ More python exerCises

123

 Exercise 3-12: Practice for ~ in range

① >>> for n in range (2, 11):
...     print(("Creating VLAN") + str(n))
...
Creating VLAN2 Creating VLAN3 Creating VLAN4 Creating VLAN5 Creating VLAN6 Creating 
VLAN7 Creating VLAN8 Creating VLAN9 Creating VLAN10

 Explanation

① for ~ in range() becomes handy when you have to loop through several lines to add configuration 
to networking devices. We will apply the previous code in the later Python network automation labs. 
Try to get familiar with this example.

 Exercise 3-13: Practice for line in ~

① >>> txt1 = "Seeya later Alligator"
>>> for line in txt1:
...         print(line)
...
S
e
e
[omitted for brevity]
o
r

>>> txt1 = "Seeya later Alligator"
>>> for line in txt1:
...     print(line, end='')
...
Seeya later Alligator

 Explanation

① For strings, you can use the for line in ~ method, and you will get the same effect as the for n in 
range() method for numbers.



Chapter 3 ■ More python exerCises

124

 Exercise 3-14: Use the split() Method

① >>> txt1 = "Seeya later Alligator"
>>> print(txt1.split())# splits at every white spaces
['Seeya', 'later', 'Alligator']
>>> print(txt1.split( )) # same as above
['Seeya', 'later', 'Alligator']
>>> print(txt1.split('e', 1))
['S', 'eya later Alligator'] #splits at first instance of 'e
>>> txt2 = (txt1.split('e', 1))
>>> print(txt2[0]) #  you only want to extract the letter 'S'
S
>>> txt3 = (txt1.split('a', 3))
>>> print(txt3) # splits at every 'a', three times
['Seey', ' l', 'ter Allig', 'tor']
>>> print(txt3[1]) # you only want to extract the first letter 'l'
L

 Explanation

① Getting enough practice with string indexing and splicing becomes a powerful tool when used with 
regular expressions. Unfortunately, to become a good programmer, we have to get familiar with 
general data handling: data gathering, data processing, and data flow control.

 Exercise 3-15: Practice with lstrip(), rstrip(), strip(), upper(), lower(), 
title(), and capitalize()

① >>> australia = ' terra australis incognita '
>> print(australia.title())# title() method capitalizes first letters
Terra Australis Incognita
>>> print(australia.rstrip().upper())# upper() for capitalization
TERRA AUSTRALIS INCOGNITA
>>> x = (australia.lstrip().lower())# lower() for lower casing
>>> print(x.capitalize())# capitalize() for capitalization of first letter only
Terra australis incognita
>>> print(australia.strip().upper())# strip() remove both left and right white spaces
TERRA AUSTRALIS INCOGNITA



Chapter 3 ■ More python exerCises

125

 Explanation

① You have just completed the uppercasing and lowercasing and strip method practice. Can you think 
of some interesting and relatable words for you to practice? Add some fun into your exercise by 
changing the words to have more meaning to you.

 Exercise 3-16: Create a file and read it four different ways

① >>> with open('test123.txt', 'w') as f:
...     f.write('This is line 1.\nThis is line 2.\nThis is line 3.\n')
...
48

② >>> with open('test123.txt', 'r') as f:
...     lines = f.readlines()
...     print(lines)
...
['This is line 1.\n', 'This is line 2.\n', 'This is line 3.\n']

③ >>> with open('test123.txt', 'r') as f:
...     lines = list(f)
...     print(lines)
...
['This is line 1.\n', 'This is line 2.\n', 'This is line 3.\n']

④ >>> f = open('test123.txt', 'r')
>>> lines = f.readlines()
>>> print(lines)
['This is line 1.\n', 'This is line 2.\n', 'This is line 3.\n']
>> f.close()

⑤ >>> f = open('test123.txt', 'r')
>>> lines = list(f)
>>> print(lines)
['This is line 1.\n', 'This is line 2.\n', 'This is line 3.\n']
f.close()

 Explanation

① Create test123.txt in w mode and write something.

② This is with the open method with a readlines() example.

③ This is with the open method with a list() example.

④ This is a simple open() method with a readlines() example. Always close the file after use.

⑤ This is a simple open() method with a list() example. Make sure f.close() is issued to close the 
file.



Chapter 3 ■ More python exerCises

126

 Exercise 3-17: Read and Output Files for a More Detailed Under-
standing

① >>> with open('test123.txt', 'w') as f:
...          f.write(' this is a lower casing line.\n')
...
33
>>> with open('test123.txt', 'r') as f:
...           print(f.read())
...
this is a lower casing line.

② >>> with open('test123.txt', 'a') as f:
...        f.write('THIS IS AN UPPER CASING LINE. \nThisIsACamelCasingLine.\n')
...
58

③ >>> with open('test123.txt', 'r') as f:
...        print(f.read())
...
this is a lower casing line. THIS IS AN UPPER CASING LINE.
ThisIsACamelCasingLine.

>>> with open('test123.txt', 'r') as f:
...       print(f.readline())
...
this is a lower casing line.

>>> with open('test123.txt', 'r') as f:
...       print(f.readlines())
...
[' this is a lower casing line. \n', 'THIS IS AN UPPER CASING LINE .\n', 
'ThisIsACamelCasingLine.\n']

④ >> >>> with open('test123.txt', 'r') as f:
...            print(f.read().lower().strip())
...
this is a lower casing line. this is an upper casing line. thisisacamelcasingline.

⑤ >>> with open('test123.txt', 'r') as f:
...         x = (f.read().lower().strip())
...          y = set(x.split())
...          print(y)
...          print(len(y))
...
{'lower', 'casing', 'a', 'this', 'is', 'upper', 'thisisacamelcasingline.', 'an', 
'line.'} 9



Chapter 3 ■ More python exerCises

127

 Explanation

① Create a new test123.txt file. Since the file opens in w mode, it will overwrite the file created in 
Exercise 3-17. Write to the file in the same way as shown in this book.

② You can write more content to your file in a mode.

③ Try to read and print in three different modes: read(), readline(), and readlines(). Do you see the 
difference?

④ Practice using other methods to manipulate your strings and whitespaces.

⑤ You are using the set() and split() methods together to count the total number of words and 
characters in your file.

 Exercise 3-18: Use the getpass() Module and User Input

For this exercise, open Python IDLE (interpreter) to write the code.

① >>> import getpass
>>> def get_pwd():
...     username = input('Enter username : ')
...     password = getpass.getpass()
...     print(username, password)
...
>>> get_pwd()
Enter username : admin
Password: **********
admin mypassword

 Explanation

① Use import to load the getpass library. Use def to change your password into a function. Then use 
the input() function to ask for the user’s name; then use the getpass.getpass() module to ask for 
the user’s password. While the password is entered, the getpass() module will hide the entered 
password. Just for testing, we have printed out the username and password. The getpass() module 
comes in handy when creating a login request for SSH and Telnet to networking devices.



Chapter 3 ■ More python exerCises

128

 Exercise 3-19: Understand the Difference Between Encoding and  
Decoding

① >>> text_1 = 'Network Automation'
>>> print(text_1)
Network Automation
>>> byte_1 = text_1.encode()
>>> print(byte_1)
b'Network Automation '

② >>> byte_2 = b'Mission completed.'
>>> print(byte_2)
b'Mission completed. '
>>> text_2 = byte_2.decode()
>>> print(text_2)
Mission completed.

 Explanation

① Computers communicate in bits (0s and 1s), and the computer handles files in bytes. But we humans 
want to communicate in plaintext to the machines, so encoding and decoding are required. This is a 
simple exercise to convert a string into bytes. You will see this in action during the Telnet Python lab 
exercises in Chapter 13. Make a special note of this exercise.

② In Python 3, all strings are recognized as Unicode, and the decode() method must be used to convert 
bytes, which are binary stream data that computers understand. When executing commands on 
machines such as routers and switches, be wary of bytes to string conversion and string to bytes 
conversion to avoid code execution errors.

 Exercise 3-20: Handle CSV Files in Python with the csv Module

① # Use the following information to create .py called ex3_20.py and save it to your 
Documents folder.
# ex3_20.py
import csv

with open ('C://Users//brendan//Documents//2020_router_purchase.csv', 'w', newline='' 
) as csvfile:

filewriter = csv.writer (csvfile, delimiter = ',', quotechar = '|', quoting = csv.
QUOTE_MINIMAL)
filewriter.writerow (['Site', 'Router_Type', 'IOS_Image', 'No_of_routers', 'Unit_
price($)', 'Purchase_Date'])
filewriter.writerow(['NYNY', 'ISR4351/K9', 'isr4300-universalk9.16.09.05.SPA.bin', 
4, '$ 9100.00', '1-Mar-20'])     
filewriter.writerow(['LACA', 'ISR4331/K9', 'isr4300-universalk9.16.09.05.SPA.bin', 
2, '$ 5162.00', '1-Mar- 20'])



Chapter 3 ■ More python exerCises

129

filewriter.writerow(['LDUK', 'ISR4321/K9', 'isr4300-universalk9.16.09.05.SPA.bin', 
1, '$ 2370.00', '3-Apr- 20'])
filewriter.writerow(['HKCN', 'ISR4331/K9', 'isr4300-universalk9.16.09.05.SPA.bin', 
2, '$ 5162.00', '17-Apr-20'])
filewriter.writerow(['TKJP', 'ISR4351/K9', 'isr4300-universalk9.16.09.05.SPA.bin', 
1, '$ 9100.00', '15-May-20'])
filewriter.writerow(['MHGM', 'ISR4331/K9', 'isr4300-universalk9.16.09.05.SPA.bin', 
2, '$ 5162.00', '30-Jun-20'])

② Open the Windows command prompt or Windows PowerShell, and run the Python code to create 
your CSV file  (see Figure 3-5).

PS C:\Users\brendan> cd Documents # change directory to Documents
PS C:\Users\brendan\Documents> dir ex3_20.py # check ex3_20.py exists under Documents 
folder
PS C:\Users\brendan\Documents> python ex3_20.py # run ex3_20.py to create a csv file
PS C:\Users\brendan\Documents> dir 2020_router_* # check 2020_router_purchase.csv file 
has been created

Figure 3-5. Running the CSV script to create an Excel file on Windows PowerShell



Chapter 3 ■ More python exerCises

130

③ Use Microsoft Excel to open the file and check the newly created file. It should look similar to Figure 3-
6.

④ # For Windows users
>>> f = open('C://Users//brendan//Documents//2020_router_purchase.csv', 'r')
>>> f
<_io.TextIOWrapper name='C://Users//brendan//Documents//2020_router_purchase.csv' 
mode='r' encoding='cp1252'>

# For Linux users (optional)
>>> f = open ('2020_router_purchase.csv', 'r')
>>> f
<_io.TextIOWrapper name = ''2020_router_purchase.csv' mode = 'r' encoding = 'UTF-8'>

⑤ >>> f = open('C://Users//brendan//Documents//2020_router_purchase.csv', 'r')
>>> routers = f.read()
>>> routers
'Site,Router_Type,IOS_Image,No_of_routers,Unit_price($),Purchase_Date\nNYNY,ISR4351/
K9,isr4300- universalk9.16.09.05.SPA.bin,4,$ 9100.00,1-Mar-20\nLACA,ISR4331/
K9,isr4300- universalk9.16.09.05.SPA.bin,2,$ 5162.00,1-Mar-20\nLDUK,ISR4321/
K9,isr4300- universalk9.16.09.05.SPA.bin,1,$ 2370.00,3-Apr-20\nHKCN,ISR4331/
K9,isr4300- universalk9.16.09.05.SPA.bin,2,$ 5162.00,17-Apr-20\nTKJP,ISR4351/
K9,isr4300-
universalk9.16.09.05.SPA.bin,1,$ 9100.00,15-May-20\nMHGM,ISR4331/K9,isr4300-
universalk9.16.09.05.SPA.bin,2,$ 5162.00,30-Jun-20\n'

Figure 3-6. Checking 2020_router_purchase.csv in Excel



Chapter 3 ■ More python exerCises

131

>>> print(routers)
Site,Router_Type,IOS_Image,No_of_routers,Unit_price($),Purchase_Date
NYNY,ISR4351/K9,isr4300-universalk9.16.09.05.SPA.bin,4,$ 9100.00,1-Mar-20
LACA,ISR4331/K9,isr4300-universalk9.16.09.05.SPA.bin,2,$ 5162.00,1-Mar- 20
LDUK,ISR4321/K9,isr4300-universalk9.16.09.05.SPA.bin,1,$ 2370.00,3-Apr- 20
HKCN,ISR4331/K9,isr4300-universalk9.16.09.05.SPA.bin,2,$ 5162.00,17-Apr-20
TKJP,ISR4351/K9,isr4300-universalk9.16.09.05.SPA.bin,1,$ 9100.00,15-May-20
MHGM,ISR4331/K9,isr4300-universalk9.16.09.05.SPA.bin,2,$ 5162.00,30-Jun-20

>>> f.close ()

⑥ >>> with open('C://Users//brendan//Documents//2020_router_purchase.csv', 'r') as f:
...     routers = f.readlines()
...     for router in routers:
...         print(router, end=(" "))
...
Site,Router_Type,IOS_Image,No_of_routers,Unit_price($),Purchase_Date
NYNY,ISR4351/K9,isr4300-universalk9.16.09.05.SPA.bin,4,$ 9100.00,1-Mar-20
LACA,ISR4331/K9,isr4300-universalk9.16.09.05.SPA.bin,2,$ 5162.00,1-Mar- 20
LDUK,ISR4321/K9,isr4300-universalk9.16.09.05.SPA.bin,1,$ 2370.00,3-Apr- 20
HKCN,ISR4331/K9,isr4300-universalk9.16.09.05.SPA.bin,2,$ 5162.00,17-Apr-20
TKJP,ISR4351/K9,isr4300-universalk9.16.09.05.SPA.bin,1,$ 9100.00,15-May-20
MHGM,ISR4331/K9,isr4300-universalk9.16.09.05.SPA.bin,2,$ 5162.00,30-Jun-20

 Explanation

① Create a new code file called ex3_20.py using the information. The file needs to be saved in your 
Documents folder.

② Then open a command prompt of your choice and run the Python command to create a CSV file 
using the ex3_20.py script.

③ Open the newly created 2020_router_purchase.csv file in Microsoft Excel to check it.

④ If you open and read the file, you can see that the Windows-created file will use the encoding of 
cp1252, whereas on Linux, UTF-8 encoding will be used as the default decoding method.

⑤ Use read() to read the file. The content is a long string of data. If you use print(), then the new lines 
will be displayed as individual lines, and it becomes easier to read.

⑥ If you do not want to be bothered with the ending f.close() statement, you can also use the with 
open command to open the file and read it. In this example, we are using the f.readlines() method 
to read each line separately and then using the for loop to call out each line in the CSV file. Take your 
time carefully studying the difference between the read(), readlines(), and readline() methods.



Chapter 3 ■ More python exerCises

132

 Exercise 3-21: Output a CSV File

① >>> f = open('C://Users//brendan//Documents//2020_router_purchase.csv', 'r')
>>> for line in f:
...     print(line.strip())
...
Site,Router_Type,IOS_Image,No_of_routers,Unit_price($),Purchase_Date NYNY,ISR4351/
K9,isr4300-universalk9.16.09.05.SPA.bin,4,$ 9100.00,1-Mar-20 LACA,ISR4331/
K9,isr4300-universalk9.16.09.05.SPA.bin,2,$ 5162.00,1-Mar-20 LDUK,ISR4321/
K9,isr4300-universalk9.16.09.05.SPA.bin,1,$ 2370.00,3-Apr-20 HKCN,ISR4331/K9,isr4300-
universalk9.16.09.05.SPA.bin,2,$ 5162.00,17 -Apr-20
TKJP,ISR4351/K9,isr4300-universalk9.16.09.05.SPA.bin,1,$ 9100.00,15 -May-20
MHGM,ISR4331/K9,isr4300-universalk9.16.09.05.SPA.bin,2,$ 5162.00,30 -Jun-20
>>> f.close()

 Explanation

① As in a normal text file, you can use the for loop method to read each line and print one line at a time. 
Make sure you use the strip() method to remove any leading or trailing whitespaces, newline, or 
tabs.

 Exercise 3-22: Find the Price of a Cisco ISR 4331 Router from a CSV 
File

①
#1

#2

#3

#4
#5

>>> f = open('C://Users//brendan//Documents//2020_router_purchase.csv', 'r')
>>> x = f.read().split('\n')
>>> x
['Site,Router_Type,IOS_Image,No_of_routers,Unit_price($),Purchase_Date', 
'NYNY,ISR4351/K9,isr4300- universalk9.16.09.05.SPA.bin,4,$ 9100.00,1-Mar-20', 
'LACA,ISR4331/K9,isr4300- universalk9.16.09.05.SPA.bin,2,$ 5162.00,1-Mar-20', 
'LDUK,ISR4321/K9,isr4300- universalk9.16.09.05.SPA.bin,1,$ 2370.00,3-Apr-20', 
'HKCN,ISR4331/K9,isr4300- universalk9.16.09.05.SPA.bin,2,$ 5162.00,17 -Apr-20', 
'TKJP,ISR4351/K9,isr4300- universalk9.16.09.05.SPA.bin,1,$ 9100.00,15 -May-20', 
'MHGM,ISR4331/K9,isr4300- universalk9.16.09.05.SPA.bin,2,$ 5162.00,30 -Jun-20', '']
>>> y = x[2]
>>> y
'LACA,ISR4331/K9,isr4300-universalk9.16.09.05.SPA.bin,2,$ 5162.00,1-Mar-20'
>>> z = y.split(',')
>>> z
['LACA', 'ISR4331/K9', 'isr4300-universalk9.16.09.05.SPA.bin', '2', '$ 5162.00', '1-
Mar-20']
>>> price_4331 = z[4]
>>> print(price_4331)
$ 5162.00



Chapter 3 ■ More python exerCises

133

 Explanation

① In this example, you have just practiced reading data from a CSV file and extracting specific 
information.

#1.  The read().split() method reads the file, splits the items, and saves the items in a list for each 
line.

#2. x’s index 2 was assigned to variable y.
#3. Once again, split() breaks the string into a list. The list was assigned to a variable z.
#4. z’s fifth or index 4 elements were assigned to a variable called price_4331.
#5. The price of a Cisco 4331 was printed on the screen.

 Exercise 3-23: Calculate the Total Cost of the Router Purchases: No 
Module

① # ex3_23.py

total = 0.0
with open ('C://Users//brendan//Documents//2020_router_purchase.csv', 'r') as f:

headers = next (f)
for line in f:
line = line.strip ()
devices = line.split (',')
devices[4] = devices[4] .strip ('$')
devices[4] = float (devices[4])
devices[3] = int (devices[3])
total += devices[3] * devices[4]

print('Total cost: $', total)

② C:\Users\brendan\Documents> python ex3_23.py
Total cost: $ 78842.0

 Explanation

① Using the method learned in Exercise 3-23, create a program that calculates the total cost of routers 
called ex3_23.py. We set the initial value of the total at 0.0 dollars. Use indexes 3 and 4 in the list to 
find the sum spent on the router purchase. To avoid errors that can occur during calculations, we use 
header=next(f) to skip the first line’s header information. Split, strip, and convert between various 
data types. Save the script in the Document folder, and make sure you change the file path to suit your 
computer settings.

② Run the Python application to find the total cost of the router purchases. According to our script, the 
total cost was $78,842. These exercises seem very anal and meaningless but will become useful while 
processing meaningful data and developing real work applications.



Chapter 3 ■ More python exerCises

134

 Exercise 3-24: Calculate the Total Cost of the Router Purchases: Using 
the csv Module

① # ex3_24.py

import csv

total = 0.0
with open ('C://Users//brendan//Documents//2020_router_purchase.csv') as f:

rows = csv.reader (f)
headers = next (rows)
for row in rows:
row [4] = row [4].strip ('$')
row [4] = float(row [4])
row [3] = int(row [3])
total += row[3] * row[4]

print('Total cost: $', total)

② C:\Users\brendan\Documents> python ex3_24.py
Total cost: $ 78842.0

 Explanation

① We re-created the same application using Python’s built-in csv module. First, import the csv module 
and follow the same process of striping and converting between data types. There is a famous saying in 
programming, “There’s more than one way to skin a cat.”

② Run the new code, but the total cost will be the same.

As we discussed earlier, this chapter only covers basic and specific Python topics. I recommend you 
pick up other basic Python books and go deeper into the topics discussed in this book. Well done! You have 
completed the basic Python exercises to get you ready for some Python network automation, but more 
advanced topics will follow in the later chapters.

 Exercise 3-25: Convert dd-mmm-yy and Calculate the Difference 
in Days and Then in Years
While working in networking, you’ll notice that different vendors have different date and time formats in 
their software. One good example is the date format of Cisco routers and switches. While I was manipulating 
the data collected from actual Cisco IOS software, I had to spend an hour converting and manipulating the 
release date of Cisco IOS in a particular format and work out how old the IOS image was since its release 
date. This exercise is from a real production example script. Here’s the format of the IOS release date given: 
12-Jul-17.

The objective is to manipulate and convert the date to the correct format so Python can work out how 
old the IOS is since its release date. Note, your date will differ from the result given in this example as it uses 
today() as the calculation date. Follow along with example ① first and then follow through with the iteration 
example ②.



Chapter 3 ■ More python exerCises

135

①
#1
#2
#3
#4
#5

#6

#7
#8

#9

#10
#11
#12

#13

# Follow this exercise in Python IDLE
>>> from datetime import datetime
>>> IOS_rel_date = '12-Jul-17'
>>> x = IOS_rel_date.replace('-', ' ')
>>> y = datetime.strptime(x, '%d %b %y')
>>> y
datetime.datetime(2017, 7, 12, 0, 0)
>>> y.date() datetime.date(2017, 7, 12)
>>> y_day = y.date()

>>> datetime.today()
datetime.datetime(2020, 4, 15, 11, 56, 3, 370515)
>>> datetime.today().date()
datetime.date(2020, 4, 15)
>>> t_day = datetime.today().date()
>>> delta = t_day - y_day
>>> print(delta.days)
1008
>>> years = round(((delta.days)/365), 2)
2.76

② # Reiterated and reduced version of example 1:
>>> from datetime import datetime
>>> x = IOS_rel_date.replace('-', ' ')
>>> y_day = (datetime.strptime(x, '%d %b %y')).date()
>>> t_day = datetime.today().date()
>>> delta = t_day - y_day
>>> years = round(((delta.days)/365), 2)
>>> print(years)
2.76

 Explanation

① #1.  Import the datetime module from the datetime library. We need this library to complete our 
challenge.

#2. Enter the IOS release date as a string to begin this exercise.
#3. Replace - with blank spaces.
#4.  Use the datetime module’s strptime method to convert x to the correct date format. %d represents 

days, %b represents abbreviated months such as JAN, Jun, and Jul, and %y represents the 
abbreviated year without the first two leading digits. Python’s datetime module expects the date to 
be in a specific format, and we are trying to normalize the format to achieve our goal.

#5.  Now type y to check the current format. It has two 0s separated by a comma, which is the hour and 
minute. We have to lose these two zeros.

#6.  Now use the date() method on y to drop the hour and minute information. Check first before 
applying this. This is the date format required to solve half of our challenge. We are at 50 percent now.

#7. Now we are happy with the date format, so assign it to the variable y_day.



Chapter 3 ■ More python exerCises

136

#8.  It is time to work with today’s date. To find the number of days since the IOS release, we need to 
work out what today is and then minus the day of the release date. Use the datetime() module 
again, this time on today().

#9.  If the result is acceptable, then append .date() at the back to drop the time elements. This will 
return the date in the correct format.

#10. Now assign the object from #9 to a variable, t_day.
#11. The delta or the difference between the two dates is t_day – y_day.
#12. Print the result, and it will return the delta in the number of days.
#13.  Now divide the delta by 365 days to convert the days to years. Use the round() function to give 

the last two decimals. This single exercise will give you some insight into how to massage specific 
data, in this case, dates.

② This example is a reiterated version of example 1. I have crunched some functions into one line to 
shorten the conversion processes. This is just one example of data manipulation, and there are many 
other ways to do the same conversion. Still, the important thing is to understand the thought process 
so you can adapt it to your situation. Finally, if you have 10 minutes, please visit the following site to 
review what strftime code formats are available: https://strftime.org/.

 Exploring the Python IDE Environment
After completing this chapter, you need to start thinking about an integrated development environment 
(IDE) for Python code development. Working in a text editor is straightforward, but it has its limitations. 
Working within an IDE is not compulsory, but as you write more complex and longer Python code, your 
coding efficiency drops when using text editors such as Notepad, EditPlus, or Notepad++ on Windows or vi, 
Emacs, Gedit, or nano on Linux. IDEs provide many features not available from standard text editors. When 
you work in collaboration with team members, suddenly the version control of your documents becomes 
essential. Many organizations use GitHub with cloud storage as their code version control solution. Still, 
you do not have to worry about GitHub or version control at this stage. You have to learn to crawl before 
you can walk. Hence, this topic is not discussed beyond this section in this book. You do not have to start 
using an IDE application in this book, but I encourage you to explore them one at a time and find the perfect 
match for your coding style. On enterprise Linux systems, you rarely see graphical user interfaces (GUIs), so 
only Windows-compatible IDEs are discussed here. To help you explore various Python IDEs available for 
Windows, see Table 3-1. Although Jupyter Notebook (Anaconda) is not an IDE, it is included in Table 3-1 to 
give you another path to studying Python.

https://strftime.org/


Chapter 3 ■ More python exerCises

137

 Summary
This chapter was brief but contained a lot more substance than Python’s print() function and syntax. This 
chapter served as a test-drive chapter that gives you the feel for what is ahead of us in the next chapter; you 
learned more Python basics by looking at some new Python modules, handling files, and processing data 
using simple Python code. Chapters 2 and 3 should serve as a good foundation for the Python network 
automation labs to be presented later in this book. If you still do not fully comprehend some parts of the 
exercise, it is OK to go back and repeat the exercises two to three times. If you have the time, you should 
repeat the exercises in both chapters three times by the time you get to Chapter 11. Chapters 4 to 6 will focus 
on building the virtually integrated Python network automation labs, starting with VMware Workstation Pro 
installation. It’s time to move on to Chapter 4 to learn VMware Workstation basics and general virtualization 
technology basics. VMware Workstation and its virtualization technologies will help you to build your 
complete virtual networking lab and serve as the glue holding together virtual machines in your lab, so I 
encourage you to read the next chapter in its entirety.

Table 3-1. Python IDEs and Anaconda (Jupyter Notebook)

Recommended IDE Pros and Cons, Download URL
PyCharm* Pros: Feature-rich, intuitive user interface, supports cross-platform, made for 

Python, free Community version, friendly for both beginners and experts
Cons: Paid Professional version
URL: https://www.jetbrains.com/pycharm/download/

Microsoft Visual 
Studio

Pros: Windows-friendly, easy to use (especially if you are a Windows user), feature-
rich, Community version free
Cons: The interface can be slow to start up.
URL: https://visualstudio.microsoft.com/vs/features/python/

Eclipse Pros: Multiple programming language support,  familiar user interface, free
Cons: JRE (JDK) dependency, tricky to set up for beginners, older IDE
URL: https://www.eclipse.org/downloads/packages/installer

Atom Pros: Developed by GitHub’s Electron text editor, supports cross-platform and 
multiple programming languages, feature-rich via extensions and plug-ins, good 
documentation on application programming interface (API), free, easy to use, light 
yet still powerful
Cons: Not as intuitive as PyCharm, closer to a text editor than PyCharm
URL: https://atom.io/

Sublime Text 3 Pros: Popular code editor with fast, stable, and mature user interface; many 
features with modular approach and extendability
Cons: Not as versatile as other IDEs, still feels more like a text editor than an IDE, 
have to purchase a license for continued use, no debugging option
URL: https://www.sublimetext.com/3

Anaconda – Jupyter 
Notebook

Pros: Beginner friendly, excellent Python learning tool, web-based, used by 
scientific communities for data analytics
Cons: Not an IDE, web-based, system resource–heavy
URL: https://jupyter.org/install

https://www.jetbrains.com/pycharm/download/
https://visualstudio.microsoft.com/vs/features/python/
https://www.eclipse.org/downloads/packages/installer
https://atom.io/
https://www.sublimetext.com/3
https://jupyter.org/install


Chapter 3 ■ More python exerCises

138

 Storytime 2: Machine vs. Human, The First Confrontation 

According to Wikipedia, the first machine versus human confrontation took place in the United States 
of America around the 1870s, when a miner named John Henry challenged an automatic steam drilling 
machine to make a railway tunnel. The story of John Henry has been passed down to younger generations 
in American nursery rhymes. In the olden days, to drill a railway tunnel, the railway miners had to use 
hammers, chisels, and drills to make holes and use dynamite to blow up the landmass to make a tunnel. This 
human to machine competition became so famous in America that the story of John Henry versus the steam 
engine became an American folk legend. According to the story, the competition for tunnel boring went on 
for a day and a half to bore dynamite holes and lay the tracks.

According to the folk story, John Henry beat the steam drill and was victorious while defending his job. 
Sadly, according to the story, John Henry died of a heart attack due to fatigue and the severe stress after the 
competition. Of course, the steam drill continued to drill the holes the next day and the following days. What 
is clear here is that John Henry and his colleagues' jobs were getting automated out, and the U.S. Railroad 
Corporation did not hesitate to replace the miners with machines. The same thing happened in farming and 
manufacturing during the first Industrial Revolution, and automation of human tasks continues today and 
will continue in the future.

According to Wikipedia, “Automation is the technology by which a process or procedure is performed 
with minimal human assistance.” We all agree that automation generally improves human life’s quality, 
but there are always two sides to the automation coin. John Henry was a simple miner, digging holes for a 
living with little education in machinery or machine operations. It would have been challenging for him to 
learn how to operate the heavy machinery, the steam drill, which was the latest and greatest technology in 
the 1870s. So, transitioning from an old job to a new job would have been almost impossible for the poor 
fellow. Looking at today’s automation and IT automation, in particular, the existing engineers are already 
finding themselves in the same situation as John Henry, and more will face the music in the future as IT 
technologies are evolving rapidly. The advancement in IT technologies will replace many existing IT jobs. 
Still, the good news is that new technologies will also create new jobs and opportunities for those who keep 
learning to survive our cutting-edge IT industry. If your work gets automated and you find yourself out of 
your job, you will feel miserable for losing your job, but you may also enjoy it if you have been preparing to 
transition to IT automation.

Source: https://en.wikipedia.org/wiki/John_Henry_(folklore)

https://en.wikipedia.org/wiki/John_Henry_


139
© Brendan Choi 2021 
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_4

CHAPTER 4

Introduction to VMware 
Workstation

VMware Workstation Pro is one of the most popular end-user desktop virtualization solutions used by enterprise 
IT personnel. It allows IT engineers to build and test real-world-like virtual machines and network devices from 
their own PC/laptop. Learning to build a fully functioning and integrated virtual lab on a single computer and 
master Python network automation basics on a single PC is this book’s underlying goal. This chapter is designed 
to teach you the basics of the most popular and versatile VMware product, VMware Workstation 15 Pro, and 
basic virtualization concepts. After reading this chapter, you will gain the following knowledge: you’ll understand 
the difference between Type-1 and Type-2 hypervisors, understand various IT vendors offering different desktop 
virtualization solutions, learn how to install VMware Workstation, learn how to perform general administration 
on VMware Workstation, and understand how VMware Workstation’s network adapters operate.

 

 VMware Workstation at a Glance
VMware was created in Palo Alto, California, in 1998, and the company has been growing and leading the 
enterprise virtualization market for more than two decades. With the exceptions of the first three chapters in 
this book, this book will rely on VMware’s desktop virtualization technology, namely, VMware Workstation 
15 Pro. Before embarking on your journey into Python automation, you must approach your studies with an 
open mind into the various IT technologies. Learning to write Python code does not guarantee you will be 
successful with your network automation attempts. You will need to learn about regular expressions and Linux 
administration, which are topics often outside of a network engineer’s comfort zone but are essential to writing 
functional code. That’s right; it is a rocky road to Python network automation. For a novice Python learner, 
learning Python syntax on its own may take months, and it may take years to be able to call yourself an expert 
in that programming language. Still, the more significant challenge is applying Pythonic concepts and syntax 
to your work. You need to learn and build Python knowledge on top of your current networking and general 
IT knowledge. Writing Python code is only the first step of your journey. It requires you to better understand 
Linux, networking, simple mathematics, regular expressions, interaction with several APIs, and much more.

With limited time and resources, you are trying to learn essential skills required to make the right start 
in network automation using Python, where all the learning will take place on a single Windows PC (or a 
laptop). To do this, we must leverage the power of VMware’s desktop virtualization solution. The reason for 
using VMware Workstation 15 is straightforward. It ticks all the boxes for novice Python coders like you to 
make a practical yet straightforward virtual lab for learning in multiple scenarios.

https://doi.org/10.1007/978-1-4842-6806-3_4#DOI


Chapter 4 ■ IntroduCtIon to VMware workstatIon

140

First, we have to get comfortable with the basic virtualization concepts and some basic functions 
of VMware Workstation 15. Even if you are a longtime user of various virtualization solutions, including 
VMware products, there will be something new that you will take away from this chapter, so I hope you can 
read this chapter in its entirety. After reading this chapter, you will have no problem following the rest of 
the book’s content and eventually building a Python network automation lab. In the previous chapter, you 
installed Python 3 on your host Windows PC and learned Python basics on Windows 10. However, in this 
chapter and the coming chapters, you will be guided through installing two flavors of Linux distribution 
servers on the same Windows host using VMware Workstation 15 Pro. Therefore, you can also comfortably 
learn the Python basics of Linux servers and start picking up Linux basic administration skill sets in  
Chapters 7 and 8. To run various operating systems, we have to use virtualization technology to help us run 
multiple machines on the same host platform; VMware Workstation 15 can help us. As part of the pre-tasks 
for this chapter, you will download and install VMware Workstation 15 on your PC. After that, you will learn 
the basics of VMware Workstation 15 and then install the latest version of the Ubuntu 20 and CentOS 8 
servers in the following two chapters. Throughout the book, these servers will be used to teach you Linux 
administration, Python installation, and Python module installation, and how to build the CentOS server as 
an all-in-one IP services server, which can be used as a pocket knife tool in our proof-of-concept (PoC) labs 
at the end of this book.

The more you know about VMware Workstation 15’s features and basic virtualization functions, the 
more you will become more effective in building this testing lab environment. When designing and building 
a PoC lab for enterprise IT solutions, often expensive and extremely powerful devices are deployed only to 
test the most straightforward concept. Sometimes real equipment is required and justified, for example, for 
stress testing in hardware-related system performance tests. Also, the procurement process to purchase the 
right equipment can take weeks, if not months. And what about finding the rack space with the sufficient 
power voltage and cooling to keep your lab running smoothly? Also, physical labs involve the right cables 
with the correct connector types to suit the vendor’s equipment interfaces, which can slow you down while 
building your company’s PoC lab. Too often, thousands of dollars are wasted on a company lab when 
it is only utilized by a couple of people in your company. This is a total waste of the company’s money, 
and definitely, there is no green IT on this side of the court. Thanks to advancements in virtualization 
technologies in the past decade, more and more equipment is moving to virtualization platforms, as you 
have seen with the explosion of cloud-based computing and software-as-a-service IT offerings, and anything 
IT-as-a-service leverages off the power of virtualization technology in one form or another.

VMware Workstation 15 Pro is VMware’s most popular, cross-platform desktop virtualization program 
that supports both Windows and Linux. For the macOS operating system, VMware Fusion provides the 
same features. There is a VMware Workstation Player for the free version, but it lacks all the features you 
need to make your lab a complete lab. For this reason, you will use VMware Workstation 15 Pro. You will 
install a series of software applications, one at a time, on the Microsoft Windows 10 host system. According 
to Wikipedia, the 2017 figures suggested that the percentage of desktop/laptop users using the Windows 
operating system accounts is around 88 percent, macOS users account for roughly 10 percent, and finally, 
there are only 2 percent of Linux desktop/laptop users in the world. From my own experience, even within 
the IT industry, similar user percentages are reflected. However, with enterprise-level automation solutions 
based on Python as the preferred programming language, Linux is the default operating system for added 
flexibility, higher performance, low cost of ownership, and better security.

You can download Workstation 15 Pro Evaluation for Windows from VMware's official website and 
take advantage of the 30-day free trial period. After 30 days, you can purchase a 15.5 version license and 
permanently activate the evaluation software. When writing this book, the latest VMware Workstation for 
Windows version was 15.5.1, build 15018445, but your downloaded version will be newer (version 15.5 or 
even version 16.x), but it should still work with most of the software recommended in this book. For your 
reference, version 13 of VMware Workstation has never been released, and version 14 was released, but 
it had multiple bugs with GNS3 integration. Strangely enough, GNS3 and Cisco VIRL IOS software will 
work best on either VMware Workstation 12.5.x or 15.x, but not with the 14.x version. So if you are using 
VMware 14, you must upgrade to the latest VMware Workstation 15.x version to avoid any problems. It is 



Chapter 4 ■ IntroduCtIon to VMware workstatIon

141

also recommended that you disable auto-update features to keep your version of software stable at all times. 
This compatibility recommendation is based on my software compatibility testing. Figure 4-1 shows the 
product information for VMware Workstation 15 Pro used in this book (filename: VMware-workstation-
full-15.5.1-15018445.exe).

Even if you are not yet familiar with the concept of virtualization and this software, you will not have any 
problem following this chapter’s content, as this book assumes that you have had no previous experience with 
this VMware product. Those who are not familiar with a desktop virtualization program such as this still can 
read through the chapter to get familiar with this software and some basic desktop virtualization concepts. 
For those who have many years of virtualization experience, please skim through this chapter and jump to the 
next two chapters, which cover installing Ubuntu 20.04 and CentOS 8 Linux virtual machines (VMs).

 Type-1 vs. Type-2 Hypervisors
The first thing to understand about virtualization (hypervisor) software is the difference between Type-1 
and Type-2 hypervisors. To explain the difference between Type-1 and Type-2 virtualization software, if 
the hosting hardware does not require separate operating system software, the virtualization software is 
executed directly on the hosting hardware. It is classified as a Type-1 hypervisor. If the hosting hardware 
requires separate operating system software, it is classified as a Type-2 hypervisor. To put it more bluntly, 
the Type-1 hypervisor is typically used for business use, and the Type-2 hypervisor is designed and used for 
personal and experimental use. That doesn’t mean that Type-2 shouldn’t be used for business use. However, 

Figure 4-1. About VMware Workstation 15 Pro



Chapter 4 ■ IntroduCtIon to VMware workstatIon

142

there is very little reason to use Type-2 hypervisors over Type-1 in a commercial environment as Type-1 
hypervisors provide better stability, high availability, and better scalability features. The Type-1 hypervisor 
family, also known as bare metal, refers to enterprise-level server platforms released without built-in OS 
software. Typical Type-1 hypervisor products include VMware’s ESXi, Microsoft’s Hyper-V for Servers, 
Citrix’s XenServer, and Oracle VM.

In contrast, examples of Type-2 hypervisors being developed for desktop applications include VMware’s 
VMware Workstation, Fusion, Player, Oracle’s VM VirtualBox (formerly Sun Microsystems), Microsoft’s 
VirtualPC, and Red Hat’s Enterprise Virtualization. Type-2 hypervisors are also known as desktop (or hosted) 
hypervisors. VMware Workstation 15 Pro, used in this book, runs on top of a Windows 10 host machine, 
making it a Type-2 hypervisor.

 VMware Workstation Pro for a Proof-of-Concept Lab
VMware Workstation 15 Pro is VMware’s flagship desktop virtualization program. Version 1 was released  
in 1999, and the latest version was 16 at the time of authoring this book. Although this book is based on 
version 15.x, you will not have a problem building the lab based on version 16.x. Installing this desktop 
program and using it are intuitive tasks, and it can be used without user training. It supports both Windows 
and Linux operating systems. Virtual programs running on top of the operating system, such as VMware 
Workstation, are sometimes called experimental virtualization programs, and the latest software trial versions 
are available from VMware’s official download page. The basic installation is simple, and the installation gets 
completed by pressing a few buttons. If you do not have a valid license, the program will run on a 30-day trial 
license. After a 30-day trial period, you can continue using the software after purchasing a license.

Of course, while choosing desktop virtualization software for lab use, you will find other popular 
software from Microsoft and Oracle. Oracle’s VirtualBox and Microsoft’s Hyper-V were considered a 
replacement of VMware Workstation, but because of software compatibility and system stability, we will use 
VMware Workstation 15 Pro. Enterprise-level virtualization programs such as VMware’s ESXi and Microsoft’s 
Hyper-V were considered, but Type-1 hypervisors such as these have higher hardware specification 
requirements. For example, Type-1 hypervisor software needs to be installed on hypervisor-specific 
hardware (bare-metal) servers. Also, you will need a separate client PC to remote console to the server to 
operate the Type-1 hypervisor software. Also, Type-1 hypervisors usually get deployed in data centers or 
company communication rooms and are not meant to be mobile.

 Before Using VMware Workstation
When installing Type-1 hypervisor software such as ESXi 6.5, there are a few stringent hardware 
requirements during the installation process. The software has a built-in process to check the minimum 
hardware requirements. Luckily, for VMware Workstation 15 Pro installation on your host’s operating 
system, there are no or minimal hardware prerequisites. If your computer’s CPU and motherboard support 
virtualization technology, then you can start the installation. The BIOS of the newer PCs or laptops come 
out of the factory with the Virtualization Technology option enabled. If you are using an older type of PC 
or laptop, this setting needs to be enabled, but this is the only thing you have to change before installing 
the software on your PC. Until recently, VMware’s virtualization solutions tended to favor Intel’s CPU 
architecture slightly more than AMD’s CPU architecture. Intel CPUs are far superior to AMD CPUs in terms 
of performance, compatibility, and efficiency in my own experience. Of course, AMD has invested heavily in 
CPU development lately, but AMD CPUs are better geared toward individual users who enjoy PC gaming.

Before installing VMware Workstation 15 Pro, ensure that the virtualization support is set to Enabled 
after entering the BIOS of your laptop/PC motherboard, as shown in Figure 4-2.



Chapter 4 ■ IntroduCtIon to VMware workstatIon

143

If the use of Intel VT (or AMD-V) is set to Disabled in the BIOS, change the setting to Enabled, and then 
press the F10 key to save the changes and log into Windows 10 normally. Tables 4-1 and 4-2 list the BIOS 
entry keys for the major motherboard and laptop manufacturers. The function key or key combo to enter the 
BIOS varies from one manufacturer to another, and the most common manufacturers’ keys are provided for 
your reference. If you can’t find your laptop manufacturer in the table, go to the manufacturer’s website and 
locate the BIOS information to change the BIOS settings.

Figure 4-2. Checking the Intel CPU motherboard virtualization support setting

Table 4-1. BIOS Setup Entry Key by Laptop Manufacturer

Manufacturer BIOS Key Combo
Acer F2/Del (new)

F1/Ctrl+Alt+Esc (old)

Asus F2/F10/Del/Insert/Alt+F10

Compaq F1/F2/F10/Del

Dell F1/Del/F12/F3 (new) (press when the Dell logo appears on the screen)
Ctrl+Alt+Enter/Fn+Esc or Fn+F1/Ctrl+F11 (old)

eMachines F2/Del

Fujitsu F2

Gateway F1/F2

HP F1/F2/F6/F9/F10/F11/Esc
Tablet PC: F10/F12

(continued)



Chapter 4 ■ IntroduCtIon to VMware workstatIon

144

Table 4-2. BIOS Setup Entry Key by Motherboard

Manufacturer BIOS Key/Key Combo
ASROCK F11

ASUS F12/F2/F8/F9

BIOSTAR F7/F9

Compaq F10

EMTec F9

Foxconn F7/Esc

GIGABYTE F12

HP F9

Intel F10

LG F12

MSI F11

Pegatron F11

Samsung ESC

Other Refer to the respective vendor website

Manufacturer BIOS Key Combo

Lenovo F1/F2/F11 (new)
Ctrl+Alt+F3/Ctrl+Alt+Ins/Fn+F1 (old)

LG F10/F11/F12

Samsung F2/F4

Sony F1/F2/F3/Assist

Toshiba F2/F1/ESC/F12

Other Refer to the respective vendor website

Table 4-1. (continued)

Here’s one more reminder on the VMware Workstation version: the latest version of VMware 
Workstation 15 Pro at the time of publication was 15.5.1 build-15018445. Also note that version 14 showed 
compatibility issues with some applications used in this book. The problem was identified as the security 
file and VIRL integration requirement for the GNS3 Docker program download process. Please use the 
latest 15.5 version, which is compatible with GNS3. This book uses version 15.5.1, the latest version of 15.5 
at the time of writing this chapter. If you do not have a copy of version 15, then use version 12. Version 12 
is also compatible and stable with GNS3, VIRL software, and GNS3 Docker images. After the first draft and 
technical review of this book, VMware released version 16. You should be able to use version 16 or the latest 
version and still follow the contents of this book. For now, please use VMware Workstation 15.x Pro or 16.x or 
12.x but not 14.x.



Chapter 4 ■ IntroduCtIon to VMware workstatIon

145

 download and install VMware workstation 15 (or 16) pro on your windows pC before reading this chapter. 
the download and installation is straightforward, but in case you need help, the link to download the installation 
guide is provided with this book.

download VMware workstation 15/16 from the following urL:

urL: https://www.vmware.com/au/products/workstation- pro/workstation- pro- evaluation.html

the “Chapter 4 pre-task – Installing VMware workstation” guide is available from here:

urL: https://github.com/pynetauto/apress_pynetauto

 What’s Next on VMware Workstation 15 Pro?
As a pre-task to this chapter, you must install VMware Workstation 15 Pro on your host PC. We will quickly 
review the menu options for those who are new to virtualization technology and this program before 
installing two Linux virtual servers and importing the GNS3 VM. If you are confident that you know the 
VMware Workstation feature inside and out, skip to Chapter 5. Anyway, you can think of a virtual machine 
(VM) as another independent computer running on a host computer's operating system (Type-2).  
Users can interact with the VM through the Workstation 15 Pro’s main user console and use various 
operating system installation media files to initially create and install VMs and then configure, import, 
export, control, and manage all aspects of the VMs. You already saw the main user console of VMware 
Workstation 15 Pro after the pre-task, and you already noticed that the user interface is concise and intuitive. 
However, the operation and behavior of VMs are much more sophisticated than you might think at first. 
A VM looks like an application, but it is a computer with many of the native features of a real hardware 
computer. The best way to get to know Workstation 15 Pro is to use it, but to make your learning a little 
easier, we will go through some console-related terminology in the next section. Let’s look at the user 
interfaces, menus, and the Virtual Network Editor.

After a quick review, you will be guided to links to download and install a couple of VMs and also 
download and import a VM using the GNS3 .ova file. You must create all three VMs by the end of this 
chapter as the rest of the book will rely on these VMs to learn Linux, learn regular expressions, install Python 
and network-related modules, and learn how to write Python network automation scripts in the virtual 
labs. To emulate the real lab scenarios, you will test various networking concepts and get familiar with the 
most commonly used file-sharing services. For instance, this book’s last few chapters will have lab scenarios 
involving FTP, SFTP, and TFTP servers based on a CentOS 8 virtual machine.

Optionally, if you want to create new VMs here and then export them to a real production environment, 
you can do so by using the VMware Converter software. VMs can be prestaged on VMware Workstation and 
then converted later, converting the VMs to Type-1 VMs running on VMware’s vSphere 6.5. For now, let’s first 
look at the main user console and its menus of Workstation 15 Pro.

 VMware Workstation 15 Pro User Console
The Workstation 15 Pro user window (or console) lets you install, control, and manage various types of VMs. 
Figure 4-3 shows the main user interface and default buttons of VMware Workstation 15 Pro. This figure will 
provide you with information on various features of menus and keys. No special skills are required to use 
this program, and you can easily create and use a VM after installation. Now, let’s learn the menus and key 
features.

https://www.vmware.com/au/products/workstation-pro/workstation-pro-evaluation.html
https://github.com/pynetauto/apress_pynetauto


Chapter 4 ■ IntroduCtIon to VMware workstatIon

146

 Basic Operations of VMware Workstation 15 Pro
Figure 4-4 depicts the main user interface for VMware Workstation 15 Pro, and this is the primary interface 
where you will manage your VMs. Compared to Microsoft Hyper-V on Windows 10 and Oracle VirtualBox, 
VMware Workstation Pro has the most friendly user interface and powerful features at the user’s fingertips. 
Let’s quickly learn the most basic functions of this program.

Figure 4-3. VMware Workstation, user window



Chapter 4 ■ IntroduCtIon to VMware workstatIon

147

VMware Workstation Pro: Basic Operations

To start VMware Workstation 15 Pro  
(Figure 4-5a):
You can start the program by using the VMware 
shortcut on the Windows desktop or Windows 
10’s Start menu: Start ➤ Programs ➤ VMware 
➤ VMware Workstation.

Figure 4-5a. Starting VMware Workstation Pro

Figure 4-4. VMware Workstation, main user window



Chapter 4 ■ IntroduCtIon to VMware workstatIon

148

To power on/off, suspend or reset a VM 
(Figure 4-5b):
One way to power on/off or pause a VM is to 
select a VM from the VM menu: VM ➤ Power ➤ 
Start Up Guest.

The second way to power on/off, suspend or 
reset a VM is to select a VM on VM Library 
(Figure 4-5c).
Right-click a VM and select Power ➤ Start Up 
Guest.

The third way to power on/off, suspend or reset 
a VM is to use the power key options on the top 
of the user window (Figure 4-5d).

Figure 4-5b. Power Options 1

Figure 4-5c. Power Options 2

Figure 4-5d. Power Options 3



Chapter 4 ■ IntroduCtIon to VMware workstatIon

149

To move to a VM (from the host PC), press 
Ctrl+G.
To use a running VM, click the VM console 
using the left mouse or press Ctrl+G on your 
keyboard (Figure 4-5e).

To exit a VM (to move the cursor back to the 
host PC), press Ctrl+Alt.
To exit the mouse cursor back to the Windows 
host while using the VM, press the Ctrl+Alt keys 
to exit the host (Figure 4-5f).

For more detailed user instructions, please refer to https://docs.vmware.com/en/VMware- Workstation- 
Pro/15.0/workstation- pro- 15- user- guide.pdf.

 VMware Workstation Menu
Table 4-3 shows all the menus at a glance. The most commonly used features are marked with an asterisk (*). 
You may find it helpful to check the features and skip to creating virtual machines.

Figure 4-5e. To move to a VM

Figure 4-5f. To exit a VM

Table 4-3. Menus at a Glance

Menu Screen Capture Menu Function

File menu

File menu:
Create a new VM
Open a new window
Open a VM*
Scan for VMs
Close tab
Connecting to external servers, vCenter, and vSphere 
servers
Connect to vCloud Air
Create p2v (physical to virtual)
Export to OVF file*
Connecting to a virtual disk
Exit*

Edit menu

Edit menu:
Cut
Copy
Paste
Virtual Network Editor*
Preferences*

(continued)

https://docs.vmware.com/en/VMware-Workstation-Pro/15.0/workstation-pro-15-user-guide.pdf
https://docs.vmware.com/en/VMware-Workstation-Pro/15.0/workstation-pro-15-user-guide.pdf


Chapter 4 ■ IntroduCtIon to VMware workstatIon

150

Table 4-3. (continued)

Menu Screen Capture Menu Function

View menu

View menu:
View in full-screen*
Unity mode
Console view
Fit screen to guest OS
Fit screen to window
Auto size
Custom view

VM menu

VM (Virtual Machine):
Power*
Removable devices
Pause
Send Ctrl+Alt+Del key*
Catch typing
Snapshot Management*
Screen capture
Manage
VMware Tools installation
Settings*

Tabs menu

Tabs Menu:
Home
Go to Home Tap
Next tab
Previous tab

(continued)



Chapter 4 ■ IntroduCtIon to VMware workstatIon

151

Table 4-3. (continued)

Menu Screen Capture Menu Function

Help menu

Help:
Help
Online documentation
support
hint
Enter License Key*
VMware Workstation Registration
Software update
About VMware Workstation

VM power icon

VM power icon:
Guest On*
Guest Off*
Guest Suspend
Resume Guest*
Power on
Power off
Pause
reset
Enters BIOS when powered on *

Send Ctrl+Alt+Del icon

Send Ctrl+Alt+Delete to the VM

Snapshot icons

Take a snapshot of this VM
Revert this VM to its parent snapshot
Manage snapshots for this VM

(continued)



Chapter 4 ■ IntroduCtIon to VMware workstatIon

152

 Virtual Network Adapters
One of the most common questions beginners ask about VMware Workstation 15 Pro is how to use different 
virtual network adapter settings. It is difficult to provide an answer in a nutshell; you could read the 
unnecessarily lengthy documents on the VMware website, but most of us do not have hours to read vendor-
provided documentation. Here, we will cover the very basics to get started with the VM network. First-time 
users need to know how each virtual network adapter differs from one another and how to use each one. The 
best way to explain this is to review which virtual network adapters are available to a user. Try to understand 
each network adapter types’ definition and then look at different adapter settings in your programs to reveal 
how each adapter is configured on your PC. First, let’s look at the Virtual Network Editor to review out-of-
the-box virtual network adapter settings.

 Virtual Network Editor Overview
VMware Workstation provides virtual network features in virtual switches, where three virtual switches are 
mapped to three specific networks and up to 17 virtual switches can be created by the user as needed. The 
different networking types will be discussed in detail in the next section. So, you can have up to 20 virtual 
switches (VMnet0 through VMnet19), with each virtual switch representing a single flat network or a subnet. 
Like in a real production environment, you can connect multiple VMs to the same network (virtual switch). 
First, open the Virtual Network Editor menu to review which default connection types are available.

Menu Screen Capture Menu Function

Screen mode option icons

Show or hide the library
Show or hide the thumbnail bar
Enter full-screen mode
Enter Unity mode

Show or hide Console view icon

Show or hide console view

Free stretch icon

Free stretch

Table 4-3. (continued)



Chapter 4 ■ IntroduCtIon to VMware workstatIon

153

# Task
1a When starting VMware Workstation Pro, it is a best practice to start the program by right-clicking the 

desktop icon and selecting the “Run as administrator” option, as shown in Figure 4-6. This way, you are 
launching the program with a full administrator-level privilege to change any program settings.

1b If you don’t want to click the “Run as administrator” option every time you start the program, you 
can change the shortcut properties to make the program run in administrator mode. Go to VMware 
Workstation Pro’s Desktop icon and right-click your mouse and select Properties, as shown in Figure 4-7.

Figure 4-6. VMware Workstation Pro, running as administrator

Figure 4-7. VMware Workstation Pro, shortcut icon Properties

(continued)



Chapter 4 ■ IntroduCtIon to VMware workstatIon

154

# Task

In the shortcut properties menu, click Compatibility, and under the Settings option, check “Run this 
program as an administrator” and then click the Apply and OK buttons. Now your program will always 
run as an administrator (see Figure 4-8).

2 Now, to open and view virtual network adapters from the menu, select Edit ➤ Virtual Network Editor 
(Figure 4-9).

Figure 4-9. Selecting Virtual Network Editor

Figure 4-8. VMware Workstation Pro, changing the properties Compatibility settings



Chapter 4 ■ IntroduCtIon to VMware workstatIon

155

# Task

3 When the Virtual Network Editor opens for the first time, as expected, there are three virtual switches 
(VMnets). Like a real network adapter, a virtual adapter can be referred to as a virtual NIC or a virtual 
network interface. The Virtual Network Editor is the default control tower to manage different virtual 
networks, such as adding/removing networks, enabling/disable DHCP, and more (Figure 4-10).

 In the Virtual network editor window shown in Figure 4-10, click the help button, which will open the 

documentation on the official VMware site to “using the Virtual network editor.”

 Virtual Network Interface Description
Here is a quick overview of the different network modes and networking jargon we have been discussing. If 
you have studied or studied Cisco CCNA, you will be already familiar with these networking terminologies 
in the network industry. If you are studying for CCNP or completed CCNP studies, you probably will be 
able to relate these network adapter modes to the real production environment. However, even if you are 
not familiar with the networking technologies, you will not have any trouble understanding the following 

Figure 4-10. Virtual Network Editor, default adapter types



Chapter 4 ■ IntroduCtIon to VMware workstatIon

156

explanations. As mentioned earlier, there are three out-of-the-box network adapters, but you can add or 
remove more adapters as required. Also, the subnets can be specified to your preference as you build your 
lab. Table 3-4 describes the three virtual network modes and one user (custom) mode.

VIRTUAL NETWORK ADAPTER MODES EXPLAINED

By default, in bridged network adapter mode, all virtual machines share the host machine’s network 
connection. By default, the bridged network uses VMnet0 in VMware workstation, and all computers use 
the same gateway and hence the same dhCp and dns server used by the host pC. Both the host pC 
and virtual machines acquire the same subnet’s Ip addresses with the same default gateway address. 
Figure 4-11 depicts a typical bridged network on VMware workstation pro.

host-only mode is perfect for testing two or more VMs in an isolated network within the virtual 
environment. By default, a host-only mode connects to VMnet1, and VMs are connected in the same 
subnet for experimenting with no interaction outside of the experimental network. Your host pC and 
VMs can still communicate via VMnet1. In Figure 4-12, notice that the workstation provides the dhCp 
service.

Figure 4-11. VMware network adapters, bridged mode

https://doi.org/10.1007/978-1-4842-6806-3_3#Tab4


Chapter 4 ■ IntroduCtIon to VMware workstatIon

157

network address translation (nat) mode connects via VMnet8 by default. network address translation 
means that the VM’s internal Ip address and the host’s external Ip address are different. In an external 
network, you can only see the host’s subnet address. If the host can connect to the Internet, it can 
communicate with the Internet. Figure 4-13 depicts an example of a nat configuration on VMware 
workstation pro.

Figure 4-12. VMware network adapters, host-only mode



Chapter 4 ■ IntroduCtIon to VMware workstatIon

158

In custom networking, you can select one of the previous modes and customize it to suit your scenarios. 
It is the same mode as nat mode but with some changes in the default settings.

You are encouraged to spend enough time understanding different virtual network modes, compared 
to how they are different from the real physical network, and then visualize how you can use different modes 
in your PoC labs. Getting familiar with how each network mode interacts with your host machine and other 
networks will help you build a lab that can test more advanced IT theories. Open the Virtual Network Editor 
from the menu and spend some time exploring the settings, adding/removing new VMnets, and customizing 
settings. In the following section, you will review VM settings in more detail.

 why perform a poC? In the field of It, the abbreviation poC stands for proof of concept, and it means 
proving an existing or new It concept (or a problem) in a given scenario. a poC experimental lab tests that a 
certain theory works the same way as the technology was designed for. to better understand and go beyond 
your colleagues, you must spend many hours in poC labs because you will gain broader knowledge than a book 
or real-life scenarios can teach you. You always learn more by studying a theory and testing the theory in a poC 
lab as you will not encounter all the theories or problems in the real production environment.

Figure 4-13. VMware network adapters, NAT mode



Chapter 4 ■ IntroduCtIon to VMware workstatIon

159

 Revealing Each Virtual Network Interface Types
Let’s look at each type.

 Host-Only Networking
In this mode, your VMs share a private network with the host and other virtual devices in the same subnet. 
This mode is useful if your VMs do not need communications outside of your host. If you are using the 
default host-only networking, all VMs will connect to VMnet1, and you can think of VMnet1 as a single 
virtual network switch. In this mode, a built-in DHCP server provides IP addresses to hosts connecting 
to this network for convenience. Figures 4-14 to 4-18 display how VMnet1 is configured, and related 
configuration settings can be found on your host’s operating system. Refer to the following tutorial for 
even more clarification on VMware networking concepts: https://rednectar.net/2011/07/20/vmware- 
interfaces- tutorial/.

Figure 4-14 displays that the out-of-the-box VMnet1 subnet assigned to this network is 192.168.65.0/24. 
Of course, the subnet and CIDR can be changed as required. Also, there is an option to disable the DHCP 
service so you can manually assign IP addresses within a VM’s OS.

Figure 4-14. Virtual Network Editor, VMnet1 host-only network

https://rednectar.net/2011/07/20/vmware-interfaces-tutorial/
https://rednectar.net/2011/07/20/vmware-interfaces-tutorial/


Chapter 4 ■ IntroduCtIon to VMware workstatIon

160

Figure 4-15 shows you the VM settings where the relevant network connection is configured.

Figure 4-16 displays the result from the netsh interface ip show addresses "VMware Network 
Adapter VMnet1" command, which reveals configuration settings for VMnet1 on your host PC. As expected, 
the IP address assigned to the host’s VMnet1 adapter is 192.168.65.1/24 with an interface metric of 35. The 
interface metric 35 means that the DHCP service configured this IP address.

Figure 4-15. Virtual machine settings, host-only network connection

Figure 4-16. Windows host PC, VMware network adapter VMnet1



Chapter 4 ■ IntroduCtIon to VMware workstatIon

161

As shown in Figure 4-17, when you start a VM and check the network interface settings, the DHCP 
server–assigned IP to your VM will be from the same subnet as your VMnet1 network. Since you have 
not created and installed any VMs, you can check this setting after completing the Linux installation in 
Chapters 5 and 6. Note that the interface name assigned to the Ubuntu VM is ens33; the network adapter 
name for Linux machines depends on your Linux OS version and distro type.

Refer to the earlier Figure 4-12 to visualize and help you understand the host-only network mode. Now 
you know where to find the information on the host-only virtual network for your VMs. Next, let’s look at the 
bridged mode.

 Bridged Networking
In bridged mode, a VM will act as if it is another computer on the same network as the host computer, so 
the VM receives an IP address from the real network. For default bridged mode, the VMnet0 network is 
assigned. If you are connecting to the Internet using your home network, your home network router usually 
provides DHCP services. By default, ISP-provided internet modems/routers will have an IP subnet of either 
192.168.0.0/24 or 192.168.1.0/24, with the default gateway taking the first IP (.1) and last IP (.254) addresses 
on the network. In bridged mode, other physical computers can communicate to your VMs, and you can 
also emulate multiple computers from one computer. In bridged network mode, by default, your VMs can 
communicate to the Internet physically and VMs on your network.

Figure 4-18 displays the default bridged network in the Virtual Network Editor. The IP address will be 
assigned from the real network device on the host’s physical adapter network, so the DHCP options are 
grayed out under the settings.

Figure 4-17. Virtual machine, ens33 network adapter



Chapter 4 ■ IntroduCtIon to VMware workstatIon

162

Figure 4-19 shows the VM settings where the bridged network is configured and used.

Figure 4-18. Virtual Network Editor, VMnet0 bridged network



Chapter 4 ■ IntroduCtIon to VMware workstatIon

163

Figure 4-20 reveals the host’s physical adapter network configuration from the DHCP server at 
192.168.0.1; the default gateway doubles as a DHCP server in a typical home network. My host connects to 
the Internet via wireless, so a Wi-Fi 3 interface is shown as the adapter name, but your settings will differ 
from Figure 4-20.

Figure 4-19. Virtual machine settings, bridged network connection



Chapter 4 ■ IntroduCtIon to VMware workstatIon

164

Figure 4-21 shows a VM terminal session revealing the IP address received from the home network’s 
DHCP server. Also, refer to the previous Figure 4-11 to visualize and help you understand the bridged 
network mode.

 Network Address Translation Networking
In Network Address Translation (NAT) mode, a VM shares the host’s IP and MAC addresses. The outside 
network (Internet) sees your network as a single network identity, and the internal network is not visible 
outside the network. Typically and in the traditional sense, NAT is used to hide the internal network from 
outsiders and extend the number of useful IPv4 IP addresses within your network. If you have already 
undertaken Cisco CCNA routing and switching studies, understanding NAT or PAT is part of the study 
curriculum, so understanding this type of networking mode will also make immediate sense. Throughout 
this book, you will utilize NAT’s features for your entire lab configuration to keep the networking 
configuration to a minimum.

Let’s look at Figure 4-22 and review how NAT is configured under VMware Workstation Pro 
configuration. In NAT mode, VMware Workstation provides the DHCP service, meaning that another subnet 
is used inside the network; in this case, the subnet assigned to NAT is in the 192.168.183.0/24 range, and this 
is the primary method in which our lab will connect to the Internet and host.

Figure 4-21. Virtual machine, ens33 network adapter

Figure 4-20. Windows host PC, local PC's internet adapter (Wi-Fi)



Chapter 4 ■ IntroduCtIon to VMware workstatIon

165

Click the NAT settings button in Figure 4-21; it reveals NAT or VMnet8 settings below. You will notice 
that the gateway IP address for this subnet is 192.168.183.2, and we can assume that 192.168.183.1 would 
have been assigned to the VNnet8 adapter on the host PC; this will be verified in Figure 4-23.

Figure 4-22. Virtual Network Editor, VMnet8 NAT adapter



Chapter 4 ■ IntroduCtIon to VMware workstatIon

166

Figure 4-24 shows the network connection configuration of a VM.

Figure 4-23. Virtual Network Editor, NAT settings



Chapter 4 ■ IntroduCtIon to VMware workstatIon

167

Figure 4-25. Windows host PC, VMware network adapter VMnet8

Figure 4-24. Virtual machine settings, NAT network connection

Figure 4-25 shows the IP address configuration from the DHCP server; as discussed, 192.168.183.1/24 is 
assigned to VMnet8 on the host. However, the default gateway for the VMs is 192.168.183.2.



Chapter 4 ■ IntroduCtIon to VMware workstatIon

168

As expected, a VM on the NAT network within VMware Workstation Pro will assign an IP address from 
the same 192.168.183.0/24 network. In Figure 4-26, 192.168.183.129/24 has been assigned to the Linux 
server’s ens33 network interface. Refer to the previous Figure 4-13 to help you better understand the NAT 
mode.

 Summary
Virtualization technology makes cloud services possible, so we discussed the difference between Type-1 
and Type-2 hypervisors of current virtualization technology. This chapter also introduced you to VMware 
Workstation 15 Pro and why we are using this solution over others. We also looked at this software’s basic 
operations on our Windows PC and delved into different networking modes that users can use to build a 
virtual lab environment for our work and leisure use. Now that you know the VMware Workstation essential 
features, it is time to download, install, and create virtual machines, namely, Ubuntu 20.04 LTS (Chapter 5) 
and CentOS 8.1 servers (Chapter 6).

Figure 4-26. Virtual machine, ens33 network adapter



169
© Brendan Choi 2021 
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_5

CHAPTER 5

Creating an Ubuntu Server  
Virtual Machine

In this chapter, you will be downloading the latest Ubuntu Server 20 bootable image to install and create 
a virtual machine on your VMware Workstation instance. Ubuntu is a Debian Linux–derivative distro and 
provides one of the best user experiences on Linux. For most Windows users, Ubuntu Desktop would be the 
first Linux entry point. However, for this book, we will be using Ubuntu Server 20 instead with a little twist: 
we will choose to install a UI to add more flexibility to our lab. At the end of this chapter, you will be able to 
create a Ubuntu Server virtual machine from the ground up, customize selective settings on the operating 
system, take a snapshot of a virtual machine, and clone a virtual machine

 

You can create virtual machines (VMs) using bootable image files of different operating systems and load a 
VM image prepared by others in advance. If you choose the second option and import or convert premade VMs, 
you will miss out on learning how to build the virtual server from scratch. Anyway, with more powerful desktops 
and laptops, building and installing a VM from scratch does not take a lot of time, so you will be guided through 
the entire installation process starting from downloading the image files to doing basic configurations. Although 
the VMs in this book are simplified versions of more powerful, scalable enterprise and cloud infrastructure and 
network solutions, the VM provisioning concepts and techniques are much the same.

In the last five years, the buzzword in IT has been cloud computing. In its most basic form, cloud 
computing is squeezing a lot of powerful servers into centralized or decentralized data centers to provide on-
demand services via the Internet. Everything is off-premise, and users are connecting via thin client machines 
or applications running on remote nodes. Underneath the cloud computing machines are the virtualization 
technologies, and understanding virtualization means you can get a step closer to cloud services.

After installing VMware Workstation 15 Pro on your laptop, you will need to download a bootable 
image file for your preferred operating system to build a VM. This image can be any flavor of Windows or 
Linux image. Our intention is clear that we want to move away from the Windows operating system and get 
comfortable with the Linux operating system, so our choice is evident. We will download Linux-installable 
images and start the installation. Since we also want to know the difference between two of the most 
popular Linux distro versions, namely, Ubuntu and CentOS, we will work with them both. Ubuntu is one 
of the most popular Debian-based Linux distros, and CentOS is the most widely used Red Hat–based free 
distribution version. To give you more hands-on experience with both Linux distributions, Ubuntu Server 
will be installed in this chapter, followed by the CentOS server installation in the next chapter. These two 
servers will be used throughout this book with full flexibility. The basic kernels are almost identical between 

https://doi.org/10.1007/978-1-4842-6806-3_5#DOI


Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

170

the two Linux distributions. Still, there are subtle differences that you can learn if you use them side by side, 
so installing both and trying to learn basic and general administration tasks will add more value to your 
learning and to your career.

For the remainder of this chapter, you will concentrate on installing the latest Ubuntu, which will be 
used as the primary Python network automation server. When you are ready, let’s create a Ubuntu Server 
20.04 LTS virtual machine.

 We are using the latest Ubuntu Server 20.04 ltS and CentOS 8.1 in this book, but in production 
environments, often system administrators choose to use the n–1 version of the latest software. the n–1 
software concept is to use the previous software version to avoid bugs and software compatibility issues, 
aiming for the five 9s (99.999 percent uptime each year). also, you have the flexibility to go one version up if the 
n–1 version does not deliver the performance or services you are looking for.

if you are going to run these servers in the production, consider using Ubuntu 18.04 ltS or CentOS 7.5 for 
better software compatibility. this makes more sense now for CentOS 8 as it will be supported only until the 
end of 2021, whereas CentOS 7.5 will still enjoy support until 2024. You’ll learn more about this in Chapter 6.

 Downloading and Installing a Ubuntu Server 20 Image
To install the latest Ubuntu server, you first need to download a bootable Ubuntu Server image (.iso) file 
from Ubuntu’s official download site. Make sure you have a reliable Internet connection for the download 
and follow the directions in the next sections.

 Ubuntu Server 20.04 ltS: what’s in a name?

traditionally, Ubuntu linux server versions are named with a YY.MM format for the release year and month.  
So, Ubuntu Server 20.04 indicates that it was first released on the market in the fourth month of 2020. ltS stands 
for long term Support and indicates that this software version is supported for five years as opposed to beta 
versions. it’s the same naming convention for Ubuntu 18.04 ltS, which was released in the fourth month of 2018.



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

171

 Downloading the Ubuntu Server 20.04 LTS Image

# Task
01 Open your favorite web browser, and then go to the Ubuntu download page. The expected file size is 

approximately 908MB.

https://www.ubuntu.com/download/server

Download the Ubuntu server version, which is the 64-bit PC (AMD64) server install image; the 
downloaded installable filename is ubuntu-20.04-live-server-amd64.iso. See Figure 5-1.

Figure 5-1. Ubuntu Server 20.04 LTS image download page
(continued)

https://www.ubuntu.com/download/server


Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

172

# Task

02 To check whether the downloaded ISO file has been correctly downloaded, use WinMD5 or a similar 
tool to check the MD5 value before your installation. See Figure 5-2.

WinMD5 can be downloaded for free from here:

www.winmd5.com/ or www.winmd5.com/download/winmd5free.zip

The Ubuntu Server 20 LTS MD5 value can be found at the following link:

https://releases.ubuntu.com/20.04/MD5SUMS

You will see something like this:

MD5 value: f03d31c11136e24c10c705b7b3efc39f

Filename: *ubuntu-20.04-live-server-amd64.iso

 Installing Ubuntu Server 20.04 LTS
Installing a Linux VM on VMware Workstation is easy, but you have to learn how to create and install various 
VMs using different bootable ISO images. The Ubuntu Server 20.04 installation process is as follows:

Figure 5-2. Ubuntu Server 20.04 ISO MD5 checksum verification

http://www.winmd5.com/
http://www.winmd5.com/download/winmd5free.zip
https://releases.ubuntu.com/20.04/MD5SUMS


Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

173

# Task
01 First, start VMware Workstation 15 Pro using the shortcut icon on the host PC (Windows 10). See 

Figure 5-3.

02 Then select the File menu and then choose New Virtual Machine, as shown in Figure 5-4.

Figure 5-3. VMware Workstation shortcut icon

Figure 5-4. Creating a new virtual machine

(continued)



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

174

# Task

03 When the New Virtual Machine Wizard window appears, leave “Typical (recommended)” selected and 
click the Next button at the bottom. See Figure 5-5.

Figure 5-5. New Virtual Machine Wizard



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

175

# Task

04 In the next window, select “Installer disk image file (iso)” and click the Browse button on the right. See 
Figure 5-6.

Figure 5-6. Ubuntu installation, selecting installation media

(continued)



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

176

# Task

05 When the Browse for ISO image window appears, navigate to the Downloads folder where you have 
downloaded and saved the Ubuntu Server 20.04 installable file and select it. Click the Open button at 
the bottom. See Figure 5-7.

Figure 5-7. Ubuntu installation, selecting an installable image



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

177

# Task

06 When you return to the previous screen, click the Next button. See Figure 5-8.

Figure 5-8. Ubuntu installation, selected installable image

(continued)



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

178

# Task

07 Enter your name, user ID, and password and click the Next button. See Figure 5-9.

Figure 5-9. Ubuntu installation, entering user credentialss



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

179

# Task

08 Choose a meaningful server name for your Ubuntu server. This example is using the default folder, but 
if you want to store and run your VMs from another folder, you can change the settings now. 
ubuntu20s1 is the server name given to my Ubuntu Server 20 server. See Figure 5-10.

Figure 5-10. Ubuntu installation, VM folder selection

(continued)



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

180

# Task

09 By default, 20GB will be allocated to your VM. I have enough disk space on my SSD, so I will increase 
this to 30GB for future use. Also, I prefer to store the virtual disk file as a single file as this makes 
migration and VM conversions easier. Click the Next button. Since thin provisioning is used, the entire 
30GB of disk space is not used, but the disk size will gradually increase on demand while using up the 
VM’s disk space. See Figure 5-11.

Figure 5-11. Ubuntu installation, disk size allocation, and single virtual disk file option



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

181

# Task

10 On the next screen, click the Finish button with the default setting “Power on this virtual machine after 
creation” selected. See Figure 5-12.

Figure 5-12. Installing Ubuntu, finishing VM configuration

(continued)



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

182

# Task

11 The new VM will use the Ubuntu boot image to begin the Ubuntu Server installation on the first screen. 
See Figure 5-13.

Figure 5-13. Ubuntu installation, server installation’s first screen



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

183

# Task

12 Language selection: You are prompted to select a language. English is selected as the default language. 
If you speak another language, select your native language from the selection. See Figure 5-14.

Figure 5-14. Ubuntu installation, default language selection

(continued)



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

184

# Task

13 Keyboard configuration: Leave the keyboard configuration at the default settings, highlight the Done 
button, and hit the Enter key. See Figure 5-15.

Figure 5-15. Ubuntu installation, keyboard selection



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

185

# Task

14 Network connections: If you did change the default network settings during VM creation, your VM 
will use a Network Address Translation (NAT) network. The first available IP address will be assigned 
to your VM from VMware Workstation’s NAT DHCP subnet pool, and the default IP range is from 
192.168.183.128 to 192.168.183.254. If you changed the subnet, your IP subnet and IP address range 
will differ from the example shown in this book. If your NAT network’s DHCP service has not been 
disabled, you will receive a valid IP address similar to Figure 5-16.

Figure 5-16. Ubuntu installation, network connections

(continued)



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

186

# Task

15 Configure proxy: No proxy server is used on the current network, so there is no need to specify a proxy 
IP address. However, if you connect to the Internet via your company’s proxy server at work, then add 
the proxy information here. Of course, this information can be changed later. Assuming that you are 
also connecting via your home network, leave this blank, and let’s move on. See Figure 5-17.

Figure 5-17. Ubuntu installation, configuring the proxy



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

187

# Task

16 Configure Ubuntu archive mirror: Leave the default selection for this section, then highlight the Done 
key, and hit the Enter key. See Figure 5-18.

Figure 5-18. Ubuntu installation, configuring the Ubuntu archive mirror

(continued)



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

188

# Task

17 Guided storage configuration: Confirm that the /dev/sda size is the same as what you have allocated, 
then highlight the Done key, and hit the Enter key again. See Figure 5-19.

Figure 5-19. Ubuntu installation, guided storage configuration



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

189

# Task

18 Storage configuration: Once again, review and confirm the configuration, then highlight Done, and hit 
the Enter key on your keyboard to move to the next screen. See Figure 5-20.

Figure 5-20. Ubuntu installation, storage configuration

(continued)



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

190

# Task

19 Storage configuration: In the “Confirm destructive action” box, highlight the Continue button and hit 
the Enter key to complete storage configuration. See Figure 5-21.

Figure 5-21. Ubuntu installation, storage configuration (confirm destructive action)



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

191

# Task

20 Profile setup: Fill in your profile with a unique user ID and password. Make the server’s name the same 
as what you have specified during VM creation; in this case, it is ubuntu20s1 for Ubuntu Server 20 1. 
Highlight the Done key and hit the Enter key again. See Figure 5-22.

Figure 5-22. Ubuntu installation, setting up the profile

(continued)



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

192

# Task

21 SSH Setup: You will connect to this server via an SSH connection, so installing the OpenSSH server for 
an SSH connection is recommended. We can install this service after the OS installation, but it makes 
sense to install the SSH server now rather than later. Use the spacebar to select the “Install OpenSSH 
server” option, then highlight the Done key, and hit the Enter key again. See Figure 5-23.

Figure 5-23. Ubuntu installation, setting up SSH



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

193

# Task

22 Featured Server Snaps: If you plan to use any of the services immediately after the installation, make 
your selections using the spacebar. Docker and PowerShell have been selected in Figure 5-24, as they 
are often useful services on any Linux server. Once all the selections are made, then highlight the Done 
key and hit the Enter key on your keyboard.

Figure 5-24. Ubuntu installation, featured server snaps

(continued)



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

194

# Task

23 Installation complete: Once you get to the final installation screen, click the Reboot option, and press 
the Enter key to restart your first VM. See Figure 5-25.

Figure 5-25. Ubuntu installation, installation completed



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

195

# Task

24 After the reboot, your screen will look similar to Figure 5-26.

Figure 5-26. Ubuntu operation rebooted, initial screen

(continued)



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

196

# Task

25 Now use your user ID and password to log into your Ubuntu VM. Now your server is ready to serve you, 
but how well you will use this server in your study is entirely up to you. See Figure 5-27.

 Logging In to a New Ubuntu Server 20 via SSH
As you will soon discover, accessing the new VM via VMware Workstation’s console screen is cumbersome. 
An easier way to manage our server is to connect to this server via an SSH connection, using an SSH client 
software from our Windows host PC. This is like how system administrators manage their systems on their 
network. Suppose you have already memorized the server’s allocated IP address during the Ubuntu server 
installation process in the “Network connections” section. In that case, you have a sharp mind, but if you 
have forgotten the assigned IP address, let’s find the IP address so we can SSH into the server.

Figure 5-27. Ubuntu installation, first login screen



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

197

01a The first and most straightforward way to find the IP address on an Ubuntu is to issue an IP address or 
IP adds command. A NATted IP address from the VM NAT network should be assigned to your ens33 
network adapter. The server in this example received the 192.168.183.129/24 IP address. Your server’s 
allocated IP address does not have to match, but if you have a valid IP address, that is a good indicator 
that your VM’s network is working correctly. If you received an IP address from a different subnet or 
have not received a valid IP address, then you must go back and review your VM network editor or VM 
network settings. See Figure 5-28.

01b The second and more traditional way to find the IP address on any Linux server is to issue the 
ifconfig command. If you are only starting to transition to Linux OS from Windows OS, you will 
immediately notice that this command is like an ipconfig command at the Windows command 
prompt. On Ubuntu Server 20.04, we need to install net-tools first to enable this command. Run the 
sudo apt install net-tools command to install net-tools; this is also an excellent test for your 
Internet connectivity from the virtual Ubuntu server. See Figure 5-29.

Figure 5-29. Ubuntu operation, net-tools installation to enable the ifconfig command

Figure 5-28. Ubuntu operation, finding the server IP address using ip add



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

198

Once the installation has been completed, issue the ifconfig command to check the IP address. 
Because we installed the Docker service during the Ubuntu installation, the tool even picked up 
the docker0 interface and is displaying it in Figure 5-30. But here, we are only interested in the 
information from the ens33 network adapter, and as expected, an IP address of 192.168.183.129/24 is 
given to the ens33 adapter with a broadcast address of 192.168.183.255.

Figure 5-30. Ubuntu operation, finding the server IP address using ifconfig



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

199

02 Stop here for one moment and think! The gateway IP for the 192.168.183.0/24 subnet is 192.168.183.2, 
not 192.168.183.1. 192.168.183.2 is the NAT gateway IP, and 192.168.183.1 is the assigned IP address of 
the Windows 10 host’s VMnet8 (VMware Network Adapter VMnet8) interface. See Figure 5-31.

You can confirm this information from the Ubuntu server console by running ip route | grep 
^default (or ip r | grep ^def). The meaning of this command is to look at the IP route with a 
general regular expression (grep) and find a string that begins with ^ and the word default. See 
Figure 5-32.

Run the netsh interface ip show addresses "VMware Network Adapter VMnet8" command from 
your Windows 10 host PC. See Figure 5-33.

Figure 5-32. Ubuntu operation, confirming default gateway on VMware Workstation

Figure 5-31. Ubuntu operation, confirming default gateway on Linux



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

200

03 Now, if you have not yet downloaded PuTTY from the Internet, go to PuTTY's home page (https://
www.putty.org/) and download a copy of PuTTY. Launch PuTTY from your Windows 10 host and 
then type in Ubuntu Server’s IP address with port 22 for the SSH connection. Click the Open button at 
the bottom-right corner of the PuTTY Configuration window. See Figure 5-34.

04 The server will send the server’s rsa2 key fingerprint to your PuTTY (SSH) session. Click Yes to 
proceed to the server’s login screen. See Figure 5-35.

Figure 5-34. Ubuntu operation, SSH client login from PuTTY

Figure 5-33. Ubuntu operation, VMnet8 host IP address

https://www.putty.org/
https://www.putty.org/


Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

201

05 Enter your username and password and hit the Enter key on your keyboard to log into your Ubuntu 
server. Now you are connected to your server via SSH. See Figure 5-36.

Figure 5-35. Ubuntu operation, accepting the PuTTY security alert from the server

Figure 5-36. Ubuntu operation, SSH server login



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

202

06 Customize the PuTTY configuration to suit your preferences. In Figure 5-37, I have changed the font 
and background color of my PuTTY console session and then saved the settings.

 Customize Ubuntu Server
After creating your Ubuntu Server 20 LTS virtual machine, it works out of the box; however, Ubuntu has a few 
critical settings disabled by default. We want to get full access to these settings for our testing lab purposes 
to add more flexibility. We can tweak a few things to make this server more user-friendly to add more value 
to your learning. If you are running an Ubuntu server in production, do not enable these settings as they are 
not the best practice. Since this is our lab VM, we are going to perform some system customizations. First, 
enable root user ssh login from remote clients; this allows you to connect to this server via SSH as the 
root user, saving time during system administration. Second, install a desktop GUI; this will allow you to log 
into the desktop settings and then use it as a standard end-user machine and use the available applications 
via the Linux GUI. Third, enable root user GUI access. This feature is disabled by default too, but root user 
GUI access to the server may be required for quick troubleshooting.

Figure 5-37. Ubuntu operation, PuTTY background and font color change



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

203

 Ubuntu VM Customization 1: Enable Root User SSH Login on Ubuntu 
Server 20.04
In general, most recent Ubuntu servers do not allow root users to log into the terminal console or log in 
via SSH for security reasons. Still, this security feature can often slow you down during your lab scenarios, 
demanding you to enter sudo in front of every command you type in and deny you permission to work 
with flexibility in your lab. For this reason, we can allow SSH logins to add a little flexibility to your lab. 
However, it is best practice to leave the root console and SSH login disabled for security purposes in the real 
production environment. First, to enable direct root user SSH access, log into your server as yourself, and 
run the command sudo passwd. Type in your password, and you are immediately prompted to enter a new 
UNIX password. Entering the password twice here will enable the root user password. Asterisks are used for 
illustration purposes, but the password will be hidden while you are typing it.

# Task
01 Enable the root user password by performing the following tasks:

pynetauto@ubuntu20s1:~$ sudo passwd
sudo password for pynetauto: **********
Enter new UNIX password:********
Retype new UNIX password:********
passwd: password updated successfully

02 The previous action does not automatically allow SSH login to the server; this needs to be manually 
enabled by updating the SSH server configuration file. To enable root user SSH login, take the next 
steps:

pynetauto@ubuntu20s1:~$ sudo nano /etc/ssh/sshd_config

■ Note if you have logged in as a root user at this stage, you do not have to add sudo in front of your 
command.

if you have been using the older Ubuntu version, first you may have to install the nano text editor or use vi as 
your text editor.

03 The line starting with #PermitRootLogin prohibit-password prevents root user SSH login, and we 
have to uncomment this line to allow root user SSH login. For simplicity and best practices, leave the 
default line unchanged and add a new line as you may have to restore the configuration to the original 
setting. Add the following line after the original line and save the file:

PermitRootLogin yes

See Figure 5-38.

(continued)



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

204

04 To make the previous change take effect, you must restart the SSH server service.

pynetauto@ubuntu20s1:~$ sudo service ssh restart

05 Now from your Windows 10 host PC, launch PuTTY, enter the IP address of your server, and SSH in 
with port 22. Once you successfully logged into your server via an SSH session, you will see a screen 
similar to Figure 5-39.

Figure 5-38. Ubuntu VM customization 1, changing sshd_config

# Task



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

205

 You can use a single-line command to grant the SSh access to the root user. Simply run the command 
from your terminal session.

sudo sed -i 's/#PermitRootLogin prohibit-password/PermitRootLogin yes/' /etc/ssh/sshd_config

[sudo] password for pynetauto: ********

 Ubuntu VM Customization 2: Install a Desktop GUI and Other 
Packages
Optionally, you can install a desktop GUI to run on an Ubuntu Server. In a testing lab, GUI can provide 
the extra features required while testing various IT networking scenarios, for example testing an HTTPS 
connection via a web browser. In a typical production environment, Linux is usually installed as a headless 
server without a GUI for increased server performance and security; a GUI for Linux server is not a 
prerequisite in the production environment. Anyway, you should know how to install a GUI on Ubuntu 
Server, so let’s learn how to install a desktop GUI and other software packages from the initial Ubuntu Server 
20 terminal console.

Figure 5-39. Ubuntu VM customization 1, root user SSH login



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

206

# Task
01 First, we have to install tasksel on the newly installed Ubuntu Server 20.04. Run the following 

command from the VMware Workstation Console or SSH session:

sudo apt install tasksel

See Figure 5-40.

02 After the tasksel installation finishes, you can run tasksel by issuing the sudo tasksel command. 
This will launch the Ubuntu package configuration application to select and install other useful 
applications; Ubuntu desktop is one option under this package manager.

Select “Ubuntu desktop” and move to OK to start the desktop installation. See Figure 5-41.

Figure 5-40. Ubuntu VM customization 2, installing tasksel



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

207

03 Wait until the desktop installation is 100 percent complete, and then issue the sudo reboot command 
to restart your server. See Figure 5-42.

Figure 5-41. Ubuntu VM customization 2, selecting “Ubuntu desktop” (GUI)

# Task

(continued)



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

208

04 After the reboot, you will be prompted with the Ubuntu GUI login interface. Enter your login 
credentials and log into your server. See Figure 5-43.

Figure 5-42. Ubuntu VM customization 2, Ubuntu desktop installation

# Task



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

209

05 You have successfully installed Ubuntu desktop on an Ubuntu Server. See Figure 5-44.

Figure 5-43. Ubuntu VM customization 2, Ubuntu desktop login

# Task



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

210

 Ubuntu VM Customization 3: Enable Root User GUI Access
If you have sharp eyes, you probably noticed that root user GUI login does not work, and you are 
questioning, how can I enable root user GUI login? Since this is our lab server and we can explore and 
customize as much as we want, let’s enable the root user GUI login. First, you have to be logged into the 
server as a normal user (yourself) to complete this task or, optionally, SSH into the server from PuTTY.

Figure 5-44. Ubuntu VM customization 2, Ubuntu desktop GUI

# Task



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

211

# Task
01 Open and edit /etc/gdm3/custom.conf, which is the GDM configuration file, using the nano text editor 

to allow root login. Add AllowRoot=true, as shown in Figure 5-45, and save the file.

02 Next, edit the PAM authentication daemon configuration file at /etc/pam.d/gdm-password and 
comment on the specific line that denies root access to the graphical user interface. Use the nano or 
vi editor and open the /etc/pam.d/gdm-password file. Put # at the beginning of the line, which starts 
with auth required  pam_succeed_if.so user!= root quiet_success, that you are commenting 
out, which means you are disabling the feature. See Figure 5-46.

Figure 5-45. Ubuntu VM customization 3, updating the gdm3/custom.conf file

(continued)



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

212

03 A mandatory reboot is required here once again. Reboot your Ubuntu server using the sudo reboot 
command or using the power button on the top-right corner of your Ubuntu desktop. Once the server 
has been restarted, log in as another user and enter root as the username and enter the root user’s 
password. See Figure 5-47.

Figure 5-46. Ubuntu VM customization 3, updating the pam.d/gdm-password file

# Task



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

213

# Task

04 Congratulations! You can log into Ubuntu desktop as a root user. See Figure 5-48.

Figure 5-47. Ubuntu VM customization 3, root user GUI login



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

214

 Taking a Snapshot of a Virtual Machine
One of the most powerful features of running an operating system as a VM is the power of snapshots. In 
a real production environment with ESXi and vCenter-based solutions, taking snapshots and cloning are 
potent ways to prevent system failure and recover from failures. In the VMware technology world, other 
system recovery features include high availability, vMotion, and DRS. But on the VMware Workstation Pro 
solution, we have snapshots and clones to preserve the current state of our VMs. A snapshot is like taking a 
photo of your system, so you can reverse unintended or failed system changes back to the prime system state 
of a VM. The cloning feature allows you to make a partial or full backup of your VMs to preserve the system 
state in the case of system failure.

For Python network automation labs, you can choose to use a snapshot or full cloning as a fail-safe 
recovery feature. Snapshots will allow us to move in time to various points during our lab. Follow the next 
tasks to make a snapshot of your Ubuntu server before installing other software on the server.

Figure 5-48. Ubuntu VM customization 3, Ubuntu desktop root user login

# Task



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

215

# Task
01 To take a snapshot of your current server state, from your VMware Workstation menu, select VM ➤ 

Snapshot ➤ Take Snapshot. See Figure 5-49.

02 Enter the name and tasks performed as a description, and click the Take Snapshot button to create a 
snapshot, as shown in Figure 5-50.

Figure 5-49. VMware snapshot, navigating to the Snapshot menu

(continued)



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

216

03 At the bottom-left corner of the window, the percentage of snapshot progress will be displayed. Once it 
reaches 100 percent, navigate to the Snapshot Manager from the menu, and confirm the snapshot. See 
Figure 5-51.

Figure 5-50. VMware snapshot, creating a VM snapshot

Figure 5-51. VMware snapshot, confirming snapshot

# Task



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

217

 Cloning a Virtual Machine
Now you have a customized Ubuntu virtual server; if you want to make another VM, you can do so by 
cloning the same VM. Cloning allows you to re-create the same machine at the speed of lightning compared 
to how much time you spent installing a new VM from scratch. Cloning also can make a full backup of the 
current VM state and preserve the server state. Now let’s take a look at this process.

# Task

01 To clone a VM, navigate to VM ➤ Manage ➤ Clone. (See Figure 5-52) Alternatively, you can also start 
the cloning process within the Snapshot Manager.

02 Leave the default settings and click the Next button. See Figure 5-53.

Figure 5-52. VMware cloning 1, making a clone



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

218

03 Select “Create a full clone” and click the Next button. See Figure 5-54.

Figure 5-53. VMware cloning 1, clone source

Figure 5-54. VMware cloning 1, clone type, a full clone

# Task



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

219

04 Rename the cloned VM and click the Finish button. See Figure 5-55.

Figure 5-55. VMware cloning 1, renaming the cloned VM

# Task



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

220

05 Now click the Close button. See Figure 5-56.

06 You will see another Ubuntu server added to your VM library. See Figure 5-57.

Figure 5-56. VMware cloning 1, closing the VM cloning wizard

# Task

 



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

221

07 Optionally, if you want to copy and duplicate your VM simply, simply copy the folder containing all the 
VM files to other storage. This method will take up a lot of hard disk space, so if you are using a smaller 
SSD, then a snapshot is a better option than fully cloning a VM. See Figure 5-58.

Figure 5-57. VMware cloning 1, cloned VM added to the library

# Task

 



Chapter 5 ■ Creating an UbUntU Server virtUal MaChine 

222

 Summary
Installing an Ubuntu Server as a virtual machine is a straightforward process, but installing a graphical user 
interface is an option. Now you have successfully installed, customized, backed up, and cloned a newly 
created Ubuntu server VM, and it is time to create another Linux server as our second server. In the next 
chapter, you will follow similar steps to create a virtual machine for CentOS 8.1, which will serve as an all-in-
one IP services server for our network automation labs.

Figure 5-58. VMware cloning 2, copying the VM folder to an external drive

# Task



223
© Brendan Choi 2021 
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_6

CHAPTER 6

Creating a CentOS 8 Server  
Virtual Machine

In this chapter, you will download a CentOS 8 bootable image to install and create a second virtual machine 
on your VMware Workstation. The CentOS 8 server is based on a community version of Red Hat Enterprise 
Linux 8 (RHEL8), one of the most popular enterprise Linux OSs among the Linux community users because 
of its stability and security. By the end of this chapter, you will be able to create a CentOS 8 Server VM from 
scratch and customize the network settings using the nmtui package to add flexibility to your network 
automation lab. In preparation, you will download the GNS3 .ova template file and import and create a 
GNS3 VM for Cisco IOS and IOSv image integrations later.

 

In the previous chapter, you created an Ubuntu server machine and learned how to customize its 
settings to make it more usable for our lab. This chapter is one of the shorter chapters in this book, and 
in it you will create another Linux virtual machine using a CentOS 8 bootable image. Although we could 
simply clone the existing Linux VM to create more virtual machines, this prevents us from learning the basic 
operations of other Linux distributions. Therefore, we will download and install a second and different 
Linux distribution. You will learn how to turn this server into a server with multiple IP services for lab testing 
purposes in Chapter 8. As in the previous process, you will search for and download the bootable image 
and then install the image and create a virtual machine. After creating the CentOS 8 virtual machine, you 
will test the server’s connection via SSH and learn an easy way to manage the network adapter on a Linux 
server. To prepare for GNS3 integration, we will need to download the correct copy of GNS3 VM for VMware 
Workstation, so using the downloaded GNS3 VM .ova file, the GNS3 VM will be created ahead of time for 
smoother integration. Let’s quickly create your second virtual machine.

 Downloading and Installing a CentOS 8 Server Image
The actual process of downloading and installing a CentOS VM is identical to the Ubuntu 20.04 server 
installation. As in the Ubuntu 20.04 LTS VM installation, you must first download a bootable CentOS 8 
installation image (.iso) file. First, check your Internet connection and follow the steps in this chapter to 
create and install your new CentOS 8 VM on VMware Workstation 15 Pro. At the time of writing this book, 
the latest CentOS version was 8.1.1804. By the time you read this book, newer versions will be available, but 
as long as you stick with the main 8.x (or 7.x) version, you will be able to follow along and successfully install 

https://doi.org/10.1007/978-1-4842-6806-3_6#DOI


Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

224

your CentOS server illustrated in this book. If you opt to download and install another CentOS version, the 
installation steps will still be almost identical. In Chapter 8, you will be installing different software to turn 
this server into a multipurpose lab server, so you may have to follow the software installation procedures 
suggested for your version of CentOS system because one version of software compatible on this CentOS 
version may not be compatible on previous or newer software versions. This CentOS VM also can be used as 
a multipurpose lab server running several IP services for any future IT certification preparations.

 as iBM has purchased red hat, there have been some changes for future developments and support for 
CentOS servers. the community support for CentOS 8 servers will cease on December 31, 2021, and only 
CentOS 8 Stream or a newer Stream versions of CentOS will be available to community users. CentOS Stream is 
positioned between Fedora (the beta version of red hat enterprise linux) and red hat enterprise linux, so we 
can say it is the early release version of red hat enterprise linux. if you use Stream in production, there will be 
issues getting support from red hat (iBM), as this removes red hat’s obligation to support a bug or problems in 
no longer supported CentOS server versions. however, using a Stream version in a lab environment is still 
acceptable as most functions will meet our testing needs.

First, let’s download the latest CentOS 8 installation ISO file from the official CentOS site.

 Downloading the CentOS 8 Server Image

# Task
01 From your favorite web browser, go to the CentOS’s official site suggested and click the x86_64  

link on the web page. Optionally, you can choose to download the CentOS Stream version. See 
Figure 6-1.

URL: https://www.centos.org/download/

https://www.centos.org/download/


Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

225

02 Next, locate the closest CentOS image download server to your location and download the latest 
CentOS 8 ISO from the FTP server. The estimated file size will vary depending on which file you 
download, but here you will download the file ending with –x86-64-dvd1.iso, which is more 
than 7GB in size. At the time of writing this book, the latest CentOS 8 file available was CentOS-
8.1.1911-x86_64-dvd1.iso. See Figure 6-2.

URL: http://isoredirect.centos.org/centos/8/isos/x86_64/

Figure 6-1. CentOS official download page

(continued)

# Task

http://isoredirect.centos.org/centos/8/isos/x86_64/


Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

226

After the software download completes and is saved to your Downloads folder, you are ready to create a 
CentOS VM from VMware Workstation 15 Pro.

Installing CentOS 8 Server
The CentOS 8 server VM installation process is like the Ubuntu server installation process, so let’s quickly go 
through this process and create a new server VM.

# Task
01 In your VMware Workstation menu, select File ➤ New Virtual Machine. See Figure 6-3.

Figure 6-3. CentOS 8 installation, creating a new VM

Figure 6-2. CentOS 8, official download page mirror example

# Task



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

227

# Task

02 When the New Virtual Machine Wizard appears, click the “Typical (recommended)” option and 
click the Next button. See Figure 6-4.

03 When you come back to the New Virtual Machine Wizard window shown in Figure 6-5, choose the 
“I will install the operating system later” option. If you choose the “Installer disc image file (iso)” 
option here, the CentOS 8 image will return Pane is a dead error, and you won’t be able to 
install the operating system. See Figure 6-5.

■ Note Make sure you select “i will install the operating system later” here.

Figure 6-4. CentOS 8 installation, New Virtual Machine Wizard start page

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

228

# Task

04 Depending on the version of VMware Workstation 15 you have installed on your host PC, the 
CentOS 8.x version may not be available. If you encounter this problem, you can always choose the 
Red Hat Enterprise Linux (REHL) 8 64-bit version of your choice as CentOS 8 is the same version as 
RHEL 8 without the logo and proprietary contract. See Figure 6-6.

■ Note note that iBM acquired red hat in July 2019. CentOS has been the community version of the 
current production red hat enterprise linux; when rhel runs into a bug, red hat provided a fix for CentOS 
within three days. this made CentOS dependable as the rhel linux, but the users could still use CentOS in 
production. By contrast, CentOS Stream is a development preview or experimental version of rhel’s pre-
release, and Fedora is ahead of CentOS Stream and even more experimental. On December 9, 2020, red hat 
(iBM) announced that CentOS linux 8 will be unsupported at the end of 2021. this does not affect your lab 
environment; however, avoid deploying CentOS 8 in production. For your lab build, we can use CentOS Stream 
or Fedora to replace CentOS 8 after 2021.

Figure 6-5. CentOS 8 installation, selecting the “I will install the operating system later” option



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

229

# Task

05 In the next window, enter the user credentials as requested and click Next. See Figure 6-7.

Figure 6-6. CentOS 8 installation, OS selection

Figure 6-7. CentOS 8 installation, entering user credentials

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

230

# Task

06 Use some imagination to give your server a meaningful name that is easy to recognize. The server 
was named CentOS8s1, referring to CentOS8 Server 1. Click the Next button. See Figure 6-8.

Figure 6-8. CentOS 8 installation, server name and folder configuration



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

231

# Task

07 Allocate the desired free disk space; in the following example, 30GB disk space was allocated to the 
GUI, and other software will be installed. By default, the disk is set to thin provisioning, increasing 
disk size incrementally until it reaches 30GB so that the initial disk space will be a lot less. Also, click 
“Store virtual disk as a single file” for easier file management later. Then click Next. See Figure 6-9.

Figure 6-9. CentOS 8 installation, allocating disk capacity for use

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

232

# Task

08 Click the Finish button to finish the VM configuration. See Figure 6-10.

09 Now click “Edit virtual machine settings” to change the CD/DVD selection. See Figure 6-11.

Figure 6-10. CentOS 8 installation, finishing the configuration

Figure 6-11. CentOS 8 installation, selecting “Edit virtual machine settings”



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

233

# Task

10 Click CD/DVD (SATA) in the left pane, click “Use ISO image file,” and then click the Browse button. 
See Figure 6-12.

11 Select the CentOS installation file already downloaded in your Downloads folder, and then click 
Open. See Figure 6-13.

Figure 6-12. CentOS 8 installation, selecting virtual machine settings

Figure 6-13. CentOS 8 installation, selecting the CentOS ISO file

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

234

# Task

12 Now click “Power on this virtual machine” to start the CentOS installation. See Figure 6-14.

13 Click Install CentOS Linux 8 to begin the installation. See Figure 6-15.

Figure 6-14. CentOS 8 installation, powering on hte VM

Figure 6-15. CentOS 8 installation, selecting installation options



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

235

# Task

14 Leave the default language as English (United States) and click Continue to move to the next page. 
See Figure 6-16.

Figure 6-16. CentOS 8 installation, language selection

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

236

# Task

15 In the Installation Summary window, select Installation Destination under System to enter and 
select the operating system installation disk. See Figure 6-17.

Figure 6-17. CentOS 8 installation, installation summary



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

237

# Task

16 Highlight VMware Virtual NVMe Disk 30 GiB and click the Done button to return to the previous 
installation window. See Figure 6-18.

Figure 6-18. CentOS 8 installation, installation destination selection

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

238

# Task

17 Next, click on “Software Selection Server with GUI” to install extra software during the installation.  
See Figure 6-19.

Figure 6-19. CentOS 8 installation, software selection



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

239

# Task

18 In the Software Selection window, select Server with GUI and select other software such as FTP 
Server, Mail Server, and more. Here, install at least FTP Server to save time for later. Other IP 
services will be installed manually in the next chapter. Once you are happy with your selection, 
click the Done button.

Figure 6-20, Figure 6-21, and Figure 6-22 show the additional software you can select under 
Software Selection.

Figure 6-20. CentOS 8 installation, software selection 1

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

240

Figure 6-21. CentOS 8 installation, software selection 2

# Task



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

241

Figure 6-22. CentOS 8 installation, software selection 3

# Task

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

242

# Task

19 Next click Network & Hostname. See Figure 6-23.

Figure 6-23. CentOS 8 installation, installation summary



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

243

# Task

20 The network adapter of the CentOS server is turned off by default. Click the ON button to switch on 
the network adapter. Once the switch is powered on, an IP address will be automatically assigned 
from the NAT’s DHCP subnet. Figure 6-24 received an IP address of 192.168.183.130/24. Once you 
have confirmed the DHCP allocates the IP assignment, click Done to exit. See Figure 6-24.

Figure 6-24. CentOS 8 installation, connecting to a network

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

244

# Task

21 Once you return to the Installation Summary window, click the Begin Installation button to begin 
the OS installation. See Figure 6-25.

Figure 6-25. CentOS 8 installation, begin installation



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

245

# Task

22 While downloading packages, you can try to set the root user’s password before entering the 
installation mode. Click Root Password. See Figure 6-26.

Figure 6-26. CentOS 8 installation, setting up the root user password

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

246

# Task

23 Enter a root user password twice and click the Done button to exit. See Figure 6-27.

Figure 6-27. CentOS 8 installation, entering the root user password



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

247

# Task

24 As soon as you return to the previous screen, the CentOS8 server installation will begin. Now, wait 
for about five minutes for the installation to complete. See Figure 6-28.

Figure 6-28. CentOS 8 installation, server installation in progress

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

248

# Task

25 Once the CentOS 8 installation completes, you will be prompted for a reboot. Click Reboot to 
restart your new Linux server. See Figure 6-29.

Figure 6-29. CentOS 8 installation, installation completed and reboot



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

249

# Task

26 After rebooting the server, you will see an initial configuration screen. Click License Information to 
agree to the end-user license agreement to use CentOS for free. See Figure 6-30.

Figure 6-30. CentOS 8 installation, initial configuration window

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

250

# Task

27 Click the “I accept the license agreement” checkbox and click Done. See Figure 6-31.

Figure 6-31. CentOS 8 installation, accepting the end-user license agreement



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

251

# Task

28 When you return to the initial setup window, you notice that the warning sign has disappeared in 
the License Information field. Now click the Finish Configuration button to log into CentOS for the 
first time. See Figure 6-32.

Figure 6-32. CentOS 8 installation, initial setup completed

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

252

# Task

29 Click Next. See Figure 6-33.

Figure 6-33. CentOS 8 installation, welcome window



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

253

# Task

30 Click the Next button. See Figure 6-34.

Figure 6-34. CentOS 8 installation, privacy location services

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

254

# Task

31 Click the Skip button to skip the online accounts configuration. See Figure 6-35.

Figure 6-35. CentOS 8 installation, online accounts



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

255

# Task

32 Enter your details and click Next. See Figure 6-36.

Figure 6-36. CentOS 8 installation, About You screen

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

256

# Task

33 You will be taken to the Password screen next. Enter your password twice and click the Next button. 
See Figure 6-37.

Figure 6-37. CentOS 8 installation, setting a password



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

257

# Task

34 On the Ready to Go screen, click Start Using CentOS Linux to complete the configuration. See 
Figure 6-38.

Figure 6-38. CentOS 8 installation, Ready to Go screen

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

258

# Task

35 Enter your password and click the Sign In button. See Figure 6-39.

Figure 6-39. CentOS 8 installation, first sign-in



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

259

# Task

36 You will now see the Getting Started screen. It is safe to close the window and begin using your 
CentOS server now. See Figure 6-40.

Figure 6-40. CentOS 8 installation, password configuration

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

260

# Task

37 Launch an application such as the Terminal Console to use the server. See Figure 6-41.

 Logging In to a New CentOS 8 Server via SSH
On CentOS 8, you do not have to change any settings to connect to the server remotely using an SSH 
connection; both the user and root user will be allowed to connect to the server using the SSH protocol by 
default. Do not take my word for this. Let’s quickly validate this by opening up PuTTY on your host Windows 
10 and connecting via SSH into the host Windows 10 desktop server.

Figure 6-41. CentOS 8 installation, first-time use



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

261

1 First, from your host’s Windows desktop, open PuTTY and enter the IP address of your CentOS 8 
VM. The example shown here uses an IP address of 192.168.183.130, but your IP address may be 
different, and that is still OK. Click the Open button. See Figure 6-42.

2 When the PuTTY security alert is prompted, accept the rsa2 key, and click the Yes button. See 
Figure 6-43.

3 Now use your user ID and password to confirm that the SSH login works. See Figure 6-44.

Figure 6-42. CentOS 8 SSH login, PuTTY SSH login to CentOS 8

Figure 6-43. CentOS 8 SSH login, accepting the rsa2 server key

# Task



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

262

4 Optionally, start another PuTTY session and, this time, log in as the root user. You have made no 
system changes, but CentOS 8 will allow you to connect to the server using the SSH protocol. As 
you will discover, just like Ubuntu, CentOS has real potential to become one of your favorite Linux 
distro systems. See Figure 6-45.

Figure 6-44. CentOS 8 SSH login, user login

# Task



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

263

This completes the CentOS 8 installation and initial setup. Before moving onto the next topic, here are 
some of my thoughts on the Linux operating system.

Quick Internet research reveals that the total percentage of PC users preferring the Linux operating system 
over Windows OS is only a minor percentage; however, at the enterprise level of IT services, the percentage 
of Linux OS used is almost equal to Microsoft Windows OS, and the popularity of the Linux system is gaining 
momentum. If you are a new IT technician entering the IT industry, this is actually important news as more 
opportunities are offered to those who can tame and master Linux as their preferred OS at the enterprise level.

I have been a network engineer for many years now. I admit I have gotten too cozy with my Windows 
desktop and server operating systems; I have also been guilty of refusing to open my mind and start learning 
Linux. This changed as soon as I started teaching myself Python as I was getting frustrated and struggling 
to do more using Windows OS. After studying Python, I think network automation using Python is easier on 
Linux OS than Windows OS; hence, if you are serious about making Python your profession, start learning 
Linux. For network automation using Python, Linux knowledge is a prerequisite, not an option. Learn 
Python and Linux at the same time based on your substantial networking knowledge and experience.

 Managing a Network Adapter on Linux
If you want to change the network settings on your Linux machine, for example, give your CentOS server a 
static IP address, so the IP address does not change after the DHCP lease expires. You can easily change this 
setting using the nmtui tool. If you forgot to power on the network adapter during Linux installation, you 
could change the settings using this tool. Quickly run the sudo nmtui command from your CentOS. If you 
are logged in as a sudo user, you can omit sudo in front of your command.

Figure 6-45. CentOS 8 SSH login, root user login

# Task



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

264

# Task
01 You can run the nmtui command from the VMware Workstation Console or PuTTY SSH session. 

Type in sudo nmtui and hit the Enter key on your keyboard. See Figure 6-46.

02 When CentOS’s NetworkManager TUI appears, select “Edit a connection.” See Figure 6-47.

Figure 6-46. CentOS 8 configuration, sudo nmtui command

Figure 6-47. CentOS 8 configuration, NetworkManager TUI



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

265

# Task

03 Select ens160 and click Edit. See Figure 6-48.

Figure 6-48. CentOS 8 configuration, selecting a network adapter

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

266

# Task

04 Click the Automatic option on the right side of IPv4 Configuration and change it to Manual. Click 
the Show option on the right. See Figure 6-49.

Figure 6-49. CentOS 8 configuration, selecting a manual configuration



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

267

# Task

05 Now enter your server IP address and the NAT gateway’s IP address. Move down and click OK. See 
Figure 6-50.

Figure 6-50. CentOS 8 configuration, saving manual changes

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

268

# Task

06 Press the Tab key to move down and select Back to return to the first TUI interface. See Figure 6-51.

Figure 6-51. CentOS 8 configuration, Back option



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

269

# Task

06 Click Quit to save your changes and exit the application. See Figure 6-52.

At this stage, consider how you are going to use this server in your lab and install any software. Once you 
are satisfied with the current state of your CentOS 8.1, Linux VM customization takes a snapshot of the VM while 
running or makes a full clone of powered-off VM files. Taking a snapshot or cloning is the same as in the previous 
Ubuntu 20 process. Later in this chapter, you will create a third VM from an ova file, which is another way to 
create your VMs. An ova file is a virtual appliance used by VMware Workstation and Oracle VM VirtualBox. 
An ova file is a packaged file that contains files used to describe a VM, which includes an ova descriptor file, 
optional manifest (.MF) and certificate files, and other related files. In other words, an ova file is a predefined VM 
template that another VM administrator has prepared in advance to deploy a specific server instantly. You will 
download a GNS3 VM ova file from the GNS3 GitHub site and create a GNS3 VM by importing the file; this is a 
preparation step for GNS3 installation and integration, which will take place in Chapter 10. So, do not skip the 
GNS3 VM creation process here.

 Creating a GNS3 VM by Importing an .ova File
A GNS3 VM .ova file is maintained by community developers at www.gns3.org and is used to create a VM 
that hosts network, security, and system images running on the GNS3 application. This server is a Linux 
server purposefully built to offload the workload of the physical host of GNS3, so the emulated GNS3 devices 

Figure 6-52. CentOS 8 configuration, saving and exiting TUI

http://www.gns3.org


Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

270

run smoothly without affecting the underlying physical host. You will soon find out that the GNS3 VM  
offers a lot more than running routers and switches. It can also host containerized Linux servers and more.  
GNS3 and the GNS3 VM are open source and free to everyone. In this book, we are using VMware 
Workstation on Windows 10, so we need to download the GNS3 VM files that work on Windows. When 
writing this chapter, the latest GNS3 version was v2.2.8, and this version will be used here, but try to 
download the latest version of GNS3 files as the newer versions always offer performance improvements, 
and many of the bugs have been ironed out. Here we will use GNS3 v2.2.8 so that we will download the 
corresponding GNS3.VM.VMware.Workstation.2.2.8.zip file. You will be reminded to download the GNS3-
2.2.8-all-in-one.exe file again, but you can also download it now to save time.

 Downloading and Installing the GNS3 VM from an .ova File
The process for downloading the GNS3 VM file and creating a GNS3 VM is as follows:

# Task
01 First, go to GNS3’s GitHub site specified here to download the GNS3 VM file. Download the latest 

version of the GNS3 VM file. The latest version is GNS3.VM.VMware.Workstation.2.2.8.zip at 
the time of writing this book. At the time of writing this book, the latest GNS VM release version is 
2.2.8. See Figure 6-53.

https://github.com/GNS3/gns3- gui/releases

Figure 6-53. GNS3 and GNS3 VM, downloading the .ova file from GitHub

https://github.com/GNS3/gns3-gui/releases


Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

271

# Task

02 Now go to your Downloads folder and unzip the downloaded file in the same location. See 
Figure 6-54.

03 Now go back to your VMware Workstation 15 Pro and select the File ➤ Open menu. See  
Figure 6-55.

Figure 6-54. Unzipping the GNS3 VM .ova file to a folder

Figure 6-55. VMware Workstation menu, File ➤ Open

(continued)



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

272

# Task

04 Locate the extracted GNS3 VM .ova file, select the file, and then click Open. See Figure 6-56.

05 In the next window, click the Import button to import the GNS3 VM. You can leave the storage 
path as the default location. See Figure 6-57 and Figure 6-58.

Figure 6-56. VMware Workstation, GNS3 VM .ova file open

Figure 6-57. VMware Workstation, GNS3 VM import



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

273

# Task

06 Now, GNS3 VM has been created on your VMware Workstation 15 Pro and ready for use. You do 
not have to do anything with this VM at this stage as GNS3 software installation and integration 
are required for this VM to become useful. See Figure 6-59.

This completes downloading, importing, and installing the GNS3 VM for GNS3 integration later. Now 
that we have all the required VMs, we can learn about Linux basics, Python on Linux, GNS3, and Python 
network automation. Now the learning platform is almost complete.

Figure 6-58. VMware Workstation, GNS3 VM import in progress

Figure 6-59. VMware Workstation, GNS3 VM installed



Chapter 6 ■ Creating a CentOS 8 Server virtual MaChine 

274

 Summary
You downloaded, installed, and created a CentOS 8 virtual machine in this chapter. You tested the SSH 
login to the newly created CentOS VM and learned an easy way to manage network adapter settings using 
the nmtui package method. Finally, you added the GNS3 VM in preparation for Cisco IOS integration later. 
Now you have two different flavors of Linux servers; you will learn the Linux basics in Chapter 7, followed by 
Linux software installation and administration in Chapter 8.

 Storytime 3: The Origin of Hypervisors
Earlier, you studied two different virtualization programs, and they are classified into either a Type-1 or 
Type-2 hypervisors. The hype around the cloud and cloud computing and on-demand IT concepts has 
been made because of the rapid development in hardware and software, specifically the virtualization 
technologies. If you look up the dictionary definition of hypervisor, you will soon discover that this word is a 
compound word made up of two words: hyper and visor. You can trace the origin to the Greek word hyper, 
meaning above, and the word visor is derived from the Old Anglo-French word visor, meaning to hide. 
Wikipedia.com suggests that hypervisor is a variant of the word supervisor. According to Wikipedia, the word 
hypervisor is the supervisor of supervisors. The word hyper carries a stronger synonymic meaning, at least 
linguistically, than the word super.

If you are also interested in DC Comics superhero characters, you know the most powerful character 
is Superman (although many will argue here). But if a Hyperman character was created and made famous 
through DC Comics, the Hyperman would be even stronger than Superman.

To understand the concept of virtualization more realistically, think of a hypervisor as the lubricant 
used in your car engine. A typical combustion engine car has larger components such as an engine and 
transmission. And inside a larger component, there are many smaller moving parts. Consider the hypervisor 
as the car engine’s lubricant to prevent friction and wear on several smaller parts that reside inside the larger 
part. VM can run smoothly on its hosting server with very little or no compatibility issues. The hypervisor 
hides (or fabricates) the real hardware from the VM, thinking it is a real computer, but the VM is a handful 
of files running on hypervisors. The hypervisor is associated with the word fabrication in this sense, and the 
word fabrication means false. VMs think they are running on real hardware based servers, but all hardware 
are files, so the VMs are bunch of files running on a software.

Some of my clients’ environments that I support still use the Cisco 6500/4500 Series of enterprise 
switches and Cisco 9000 Series switches with supervisor modules inserted into a large-framed switch body. 
If you are studying CCNA, you probably have heard of these enterprise-level switches. These switches can 
become a router, a switch, or both based on the OS and feature sets switched on. Some older engineers refer 
to these devices as SRouters because they can support multiple OSI layers. A supervisor in these devices is 
a modular hardware version of virtualization technology, running as a separate OS with its CPU and RAMs. 
Cisco had already begun hardware-based virtualization using various modules even before virtualization 
technologies took off years ago. For reference, the Nexus 3K/ 5K/6K/7K and Enterprise 9K switches offered 
on the current networking market support the Python APIs and come with Python 2.7.2 or newer by default. 
However, like many Cisco products, the Python version built into these switches has several restrictions and 
is limited to what you can do with it. For more information on these switches, visit Cisco.com  
(https://www.cisco.com/c/en/us/products/switches/catalyst- 9400- series- switches/index.html).

http://wikipedia.com
http://cisco.com
https://www.cisco.com/c/en/us/products/switches/catalyst-9400-series-switches/index.html


275
© Brendan Choi 2021 
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_7

CHAPTER 7

Linux Fundamentals

In this chapter, you will learn Linux basics to get you up to speed with the essential Linux administration 
skills that you will learn in Chapter 8. Since you probably already work in network automation, you do not 
have to become a full-time Linux administrator. However, you must know what you are doing on these 
systems so that you do not bring down the critical services running on enterprise Linux systems. Other 
Python network automation books often forget to mention the importance of general Linux administration 
skills for network automation purposes. In fact, Linux and Python network automation go hand in hand.

In this chapter, you will learn how to get started with Linux and about directories and the file structure. 
Then you will learn to use vi and nano for basic file and directory management. By the end of this chapter, 
you will be able to use the Linux terminal and text editors to manage directories and files.

 There are no pre-installation tasks for this chapter, but this chapter assumes you have read and 
completed Chapters 1–3. You will be using both the Ubuntu Server 20 LTS and CentOS 8.1 virtual servers 
installed in the previous chapters. If you have not completed those installations, please go back to the previous 
chapters and create your virtual machines. You can download additional installation guides from the following 
GitHub website:

URL: https://github.com/pynetauto/apress_pynetauto

In this chapter, you will learn Linux basics using the CentOS 8.1 and Ubuntu Server 20 LTS virtual 
machines. Figure 7-1 shows the logical lab topology required for this chapter. You will need both Linux 
servers up and running, connected via the VMnet8 (NAT) network, and your Windows host connected to 
the Internet. The third octet of your VMnet8 network subnet could be different from the one shown in the 
figure. If so, you will work within your given subnet, or you can update the VMnet8 subnet from VMware 
Workstation’s Virtual Network Editor so the subnet is also sitting on the 192.168.183.0/24 subnet.

https://doi.org/10.1007/978-1-4842-6806-3_7#DOI
https://github.com/pynetauto/apress_pynetauto


CHapTeR 7 ■ LInUx FUndamenTaLS

276

 Why Learn Linux?
This chapter is dedicated to learning Linux basics. You will learn about the history of Linux, different types 
of Linux distributions, basic file and directory management, and how to use the vi/nano text editors for 
fundamental Linux administration. You might be a content Windows user or asking, “Why should an IT 
technician learn Linux?” or “Why should anyone learn Linux?” My simple answer to this question is that 
there is nothing to lose by learning Linux as an IT technician; this includes network, security, systems, and 
software engineers alike. The current IT industry lacks IT engineers who possess good Linux administration 
skills, which indicates that there could be significant job opportunities for you if you know both Linux and 
Windows administration.

To be direct, from a Microsoft Windows user’s perspective, it is a rocky road ahead trying to tame and 
master the Linux operating system (OS) and make a smooth transition to Linux. The thought of losing 
Windows or the graphical user interface (GUI) is a big deal for many people. If you are already savvy with 
Linux, that is fantastic; you got a head-start and a well-deserved one indeed. Almost 20 years ago, when 
I got my first IT support job, I met a mentor, and he suggested that I take more interest in Linux and then 

Figure 7-1. Logical network topology



CHapTeR 7 ■ LInUx FUndamenTaLS

277

pursue a career as a Linux administrator. Back then, I was more interested in Cisco networks, unified 
communications, and Windows, so I did not find a convincing reason to take up Linux seriously. It wasn’t 
until 2015 that I began taking an interest in Python coding. I realized how sorry I was for not taking my old 
mentor’s advice to study Linux. A lot of IT engineers, especially network engineers, make this same mistake 
in our industry. I am sharing my story with other Windows users now so they keep their minds open to 
Linux. Do not miss out on this opportunity.

At least at the enterprise (business) level, a high percentage of application servers are running on some 
sort of Linux-based operating system. It could be Amazon Web Services (AWS) or Facebook or Google in the 
cloud; an application server requires a secure and reliable operating system to run day in, day out. In the 
past 15 years, the usage of Linux servers has dramatically increased at the same rate as the cloud, and Big 
Data businesses have gained momentum. Over the years, more and more enterprise systems have migrated 
to Linux from Windows in enterprise IT and data center environments. There are many reasons behind 
this trend, but to name a few, Linux offers more performance for the buck; it has better reliability, security, 
scalability, and high availability with flexibility that is not seen in the Windows server environment. Linux is 
now the new norm for how we live our lives. In 2020, Microsoft released a Windows 10 patch that has built-in 
Linux kernel support and supports Windows Subsystem for Linux (WSL). So, now you can even run a Linux 
VM on Windows.

 Visit the microsoft Windows documentation site to read more about WSL.

URL: https://docs.microsoft.com/en- us/windows/wsl/install- win10

If you have been in enterprise networking industry for some time, you will be most familiar with Cisco 
technologies. Just looking at Cisco as an example, about 20 years ago, most of Cisco’s network, security, and 
voice services applications were based on Windows 2000 and 2003. An excellent example of this is Cisco’s IP 
PABX servers, known as Cisco CallManager (version 3 and 4.1), which were built on Windows 2000 servers. 
Other examples include the old UCCX, UCCE, and CiscoWorks servers; they all used Windows servers as 
their base platforms. However, in 2010, Cisco decided to ditch Windows servers and go with the appliance 
model; it migrated many of its application servers to a Red Hat–based Linux operating system (OS). Cisco’s 
decision to drop Windows servers and replace them with Linux was in line with the IT trend even before 
2010. In addition, an adaptation of the Linux OS can be found in Juniper’s core operating system, such as 
Junos and Palo Alto’s PAN products; they both use Linux as their base operating systems.

As mentioned earlier, some benefits of Linux over Windows include stability, high security, and lower 
ownership cost. Linux is an effective enterprise operating system that all IT engineers must learn and apply 
to their work. Not all of us indeed want to make a living as Linux system administrators, but we have to know 
enough to keep our jobs as IT technicians. In this book, you want to learn enough Linux fundamentals to 
be comfortable performing the basic lab tasks. If you’re going to study Linux professionally to become a 
Linux system administrator, you can study Red Hat 8 certification systematically. In this book, we will learn 
selective Linux materials to get started with Python networking automation.

To get to know a technology, it is always good to start with a little history, or where it all began. Let’s get 
started with some Linux history, learn the different types of Linux distributions available to us, study Linux 
file and directory structures, and master both the vi and nano text editors to do things without the aid of a 
graphical user interface (GUI). But just in case you may need a GUI for some reason, we already have the 
optional GUI-based Linux desktop on our servers. You are expected to perform some basic administration 
on both Ubuntu and CentOS Linux servers at the end of this chapter.

https://docs.microsoft.com/en-us/windows/wsl/install-win10


CHapTeR 7 ■ LInUx FUndamenTaLS

278

 The Beginning of Linux
To understand Linux, let’s quickly examine the early history of Linux and then review what kinds of Linux 
distributions are most popular today. For your reference, the timeline in Table 7-1 shows only the initial 
development highlights until 1991, when the first Linux distribution was released. If you would like to find 
other timelines, please refer to https://en.wikipedia.org/wiki/Linux.

As you can see from Table 7-1, Linux has its roots in UNIX. We can guess that Linux syntax and 
operations will be similar to UNIX. Since Linus Torvalds released the free Linux kernel in 1991, many Linux 
distributions have been developed and distributed under GNU. Some Linux types are commercially driven 
for business use, and some are created for community or personal use. Most Linux distributions can run 
business applications, but some also offer great desktop versions such as Ubuntu desktop.

Table 7-2 lists the ten most popular Linux distributions since 2017 and some characteristics of each 
Linux type. If you need a Linux OS in your enterprise infrastructure, the most recommended Linux system 
is Red Hat Enterprise Server. If you have to use it for work and study, Ubuntu, CentOS, and Debian are 
incredibly flexible and user-friendly Linux distributions. Out of these three very popular Linux distributions, 
Ubuntu has the most user-friendly features, has a great GUI if required, and is an excellent choice for 
beginners. Note that Ubuntu is a Debian derivative. CentOS uses the same Linux kernels and software as Red 
Hat and Fedora. The three Linux mentioned here, Red Hat, CentOS, and Fedora, are the same Linux distros 
with a minor aesthetical difference. Fedora is a development version of Red Hat. Red Hat is the enterprise-
level commercialized Linux for large enterprises, and CentOS is the open source version of Red Hat. Fedora 
offers the latest beta software but lacks the stability of CentOS and Red Hat Linux. Hence, when learning 
Linux, any version of the CentOS server or CentOS Stream should be your preferred Linux distribution for 
Red Hat–derived Linux versions. The main difference between the open source versus commercial versions 
of Linux is whether you will get full technical support from a vendor support team or get best-effort support 
from a Linux developer community. Now quickly review Table 7-2 and find the Linux distribution you want 
to use. Most of the Linux software is free for personal use with no commercial restrictions.

Table 7-1. Early Linux Development Timeline

Year Linux Development Highlights
1969 First developed UNIX at AT&T Labs, with Ken Thompson, Dennis Ritchie, Douglas 

Mcilroy, and Joe Ossanna.

1971 Unix was first written in assembly language.

1973 Dennis Richie first wrote UNIX using the C language.

1983 Richard Stallman introduced the GNU Project.

1984 Complete UNIX-compatible software system. Free software development begins.

1985 Richard Stallman establishes the Free Software Foundation.

1989 General Public License (GNU) is introduced.

1990 Many programs are developed for the operating system.

August 25, 1991 Linus Benedict Torvalds, then a 21-year-old Finnish student, publicly announces the 
free version of the Linux kernel. The 1991 Linux kernel is released under the GNU GPL 
license.

Source: https://en.wikipedia.org/wiki/Linux

https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Linux


CHapTeR 7 ■ LInUx FUndamenTaLS

279

 Understanding the Linux Environment
Linux is an operating system (OS) installed on a physical or virtual machine for personal or commercial use. 
The significant difference between Linux Desktop and Linux Server is the graphical user interface. Linux 
servers are usually installed to provide a specific service to users or business and usually managed by Linux 
administrators, who are well versed in Linux commands. Linux usually gets installed with the minimum 
software for better performance, stability, and higher security. This difference aside, the Linux desktop and 
server versions use the same base kernel for each release version of a Linux OS. As shown in the previous 
chapters, you can optionally install the GUI on Linux servers. Earlier in this book, you installed a desktop 
on a Linux server for learning and convenience. As you get familiar with Linux and its command line, you 
will slowly move away from the GUI and will be able to run all of the basic Linux administration tasks using 
the command line only. As you will discover, in Linux, everything is made up of files and directories; it is a 
free and very flexible operating system. Once again, if you are used to administrating Cisco devices through 
a command-line interface (CLI), then you will feel right at home. Even you do not have a Cisco networking 
background or have zero Linux experience, you will be able to follow along; we will only cover the very basics 
of Linux so you can run the labs to reach the end of your first Python network automation journey.

Table 7-2. Top 10 Linux Server Distributions for 2017

Rank Linux Distro OS Derivative User Skill Level Advantages
1 Ubuntu Server Debian-based Intermediate Performance, stable, flexibility, DC 

support, secure

2 Red Hat Enterprise 
Linux (RHEL)

Fedora-based Advanced Vendor support, performance, secure, 
cloud and IoT support, data and 
virtualization support

3 SUSE Linux 
Enterprise Server

RPM-based Intermediate Open source, stable, secure, cloud service 
support

4 CentOS RHEL-based Intermediate Free community support; same as RHEL 
without the logo

5 Debian Debian-based Intermediate to 
advanced

Free, open source, stable, educational, 
commercial, government and NGO can 
use

6 Oracle Linux
(Oracle Enterprise 
Linux)

RHEL-based Advanced Free, open source, off-cloud, SMB and 
enterprise use, cloud and data center 
support

7 Mageia Mandriva- 
based

Intermediate Free, stable, secure, community support, 
range of software, MariaDB support

8 ClearOS RHEL/CentOS-
based

Intermediate to 
Advanced

Open source, SMB support, commercial 
use, network gateway and server support, 
web server support

9 Arch Linux Other Advanced Open source, simplicity, optimized 
performance, stable, flexibility

10 Slackware Linux Slackware-
based

Advanced Free, open source, closest UNIX system, 
simplicity, stable

Source: https://www.tecmint.com/10- best- linux- server- distributions/

https://www.tecmint.com/10-best-linux-server-distributions/


CHapTeR 7 ■ LInUx FUndamenTaLS

280

 Understanding Linux Directories and File Formats
Earlier, we briefly looked at the Linux development timeline and learned about popular Linux distribution 
types. Next, let’s take a quick look at the Linux directory structure. In Linux, everything is written in text 
and saved in various directories. Since the Windows operating system can also trace its roots to *nix, the 
Windows file and folder structure is similar. But Linux does not have a C: drive like Windows; instead, it has 
the root folder, or /. Figure 7-2 depicts a general Linux directory structure and what kinds of files usually 
reside in each directory. Of course, you can create your custom directories and files just like in Windows 
OS. Review the figure and use it as a point of reference if you forget the purpose of each directory. You don’t 
have to memorize it all at this stage, but take a look and see if you can find anything interesting.

Figure 7-2. Typical Linux directory and file structure



CHapTeR 7 ■ LInUx FUndamenTaLS

281

 Figure 7-2 shows a typical Linux directory structure. different Linux types will have slightly different 
directory and file structures but are generally identical to one another.

Figure 7-3 shows the CentOS 8 server’s root directory. Carefully look and compare the listed directories; 
you will see the similarities to Figure 7-2.

 vi vs. nano
You’ve briefly learned about the typical Linux directory and file structures. Now let’s think about Linux file 
and directory management. Readers who already have good Linux knowledge will ask, “Why do you teach 
how to use the vi text editor here?” If you are an experienced Linux user, you can skip most of this chapter, 
but make sure you read Chapter 8 to install the various IP services on the CentOS 8.1 server before moving 
on to Chapter 9. If you have little exposure to Linux, you must learn vi (visual editor) and nano before 
jumping to the next chapter. You need to get comfortable with a Linux text editor and perform most of the 
tasks through the terminal console or command lines. On Linux servers, pretty much everything is made 
up of text files, and you are expected to use the terminal console to manage your day-to-day tasks. In other 
words, you have to become familiar with the Linux file structure, file, and directory management through 
the command line. Usually, when you perform a task on Linux servers, your intention must be clear, and you 
exactly know what you want to achieve from your actions. Learning to use Linux’s text editors is essential to 
learning Python, as script-based coding will involve many hours in your favorite text editor.

Figure 7-3. CentOS 8 Linux directory example



CHapTeR 7 ■ LInUx FUndamenTaLS

282

Of course, there are various text editors for Linux, but the standard text editor on most of the modern 
Linux systems is vi. Learning how to use it is not optional but mandatory to become good at Linux. Yes, vi 
lacks user controls on a black background and may be awkward for first-time Linux users. Let’s learn how 
to use the vi editor once and for all so you don’t have to worry about learning this dreadful text editor again 
(initially dreadful anyway).

In this chapter, you are encouraged to explore file and directory management using vi and a secondary 
text editor called nano. This is another Linux text editor that is best suited for beginners because it uses 
pseudo-graphic layouts. Unlike vi, it is not pre-installed on all Linux distributions, but it is good to know 
both. As stated, learning how to use vi is not optional. It might be the only text available to you while 
managing your enterprise servers and networking devices in the client’s production environment.

First, let’s learn how to use the vi text editor, which will become the primary Linux text editor of your 
choice, and then you’ll learn how to use the nano text editor as the second text editor of your choice.

 Introduction to vi
We can say that vi in Linux has its roots in vi in UNIX. vi in Linux is almost identical to vi in the UNIX 
operating system, so it is clear where Linux OS and its applications have their origins. First, vi (“visual 
editor”) uses two modes to prevent unintentional edits by keeping the command and insert modes separate. 
There are two modes of operation in vi.

• Command mode: This is the starting point when a file is first opened. In this mode, 
every character typed is a command to change the text file being opened.

• Insert mode: This is editing mode. In this mode, every character typed is added to 
the text in the file; pressing the Esc key turns off Insert mode and gets you back to 
Command mode.

Second, in Command mode, vi has many useful commands, but you are going to need only a handful 
of commands to get you started. Table 7-3 contains basic but the most useful vi commands. With some 
practice, your fingers will remember these commands before your brain can.

Table 7-3. vi Text Editor Basic Commands

Vi Commands Description
BASIC vi Open the vi text editor

i Enter Insert mode

Esc Exit Insert mode

:x Quit vi without saving changes

:q or :q! Quit or quit forcefully

:w Write

:wq or :wq! Save and quit

(continued)



CHapTeR 7 ■ LInUx FUndamenTaLS

283

Vi Commands Description

MOVE j Move cursor down one line

8 key

$ key

k Move cursor up one line

# key

h Move cursor left one character

Backspace key

! key

l (lowercase L) Move cursor right one character

Spacebar

" key

0 (zero) Move the cursor to the start of the current line (cursor line)

$ Move the cursor to the end of the current line

w Move the cursor to the beginning of the next word

b Move the the cursor back to the beginning of the preceding 
word

:0 Move the the cursor to the first line in the file

:n Move the cursor to line n

:$ Move the cursor to the last line in the file

COPY/ PASTE dd Copy (cut)

p Paste under the cursor

P Paste on top of the cursor

UNDO u Undo the last change, a simple toggle

SEARCH TEXT /string Search forward for the occurrence of a string in text

?string Search backward for the occurrence of a string in text

n Move to the next occurrence of the search string

N Move to the next occurrence of the search string in the 
opposite direction

Table 7-3. (continued)



CHapTeR 7 ■ LInUx FUndamenTaLS

284

If you have browsed through Table 7-3 about five times and memorized some of vi’s key commands, 
you can now open VMware Workstation and SSH into either Ubuntu or the CentOS server to prepare for the 
first exercise in this chapter (Figure 7-4). In the real production environment, system administrators usually 
remotely connect to Linux servers and networking devices using SSH clients such as Putty, Tera Term, or 
SecureCRT. It does not matter which Linux server you prefer to use. Although we are working on a single 
computer, think of your server as a remote Linux server and your host’s Windows OS as the remote client. 
Let’s practice some essential vi and Linux commands.

 Basics of vi
For some people, learning how to use vi could be the first hurdle to Linux, but for others, vi is just another 
tool they have to acquire so they proudly can hang it on their belt. As you practice, you will get familiar with 
vi and a step closer to developing good Linux administration skills.

 after typing in each Linux command, you have to press the enter key on your keyboard. In some parts of 
the exercises where you have to press the enter key, you may see the left arrow (  ) symbol.

Here’s an example: :wq (  ).

The previous example means after you type in :wq, you have to press the enter key.

Figure 7-4. Logging in to CentOS 8.1 via SSH using PuTTY



CHapTeR 7 ■ LInUx FUndamenTaLS

285

For the following exercise, the user is logged into the CentOS 8.1 server with the username pynetauto 
via an SSH connection.

① Check the present working directory (pwd), make a working directory (mkdir) called ex_vi, list (ls) 
files and directories in the current working folder, and change the directory (cd) to the ex_vi directory. 
Finally, check the present working directory (pwd) again.

Objective: Learn how to check, create, and navigate to a new directory.

---------------------------------------------------------------------
[pynetauto@localhost ~]$ pwd
/home/pynetauto
[pynetauto@ localhost ~]$ ls
Desktop  Documents  Downloads  Music  Pictures  Public  Templates  Videos
[pynetauto@ localhost ~]$ mkdir ex_vi
[pynetauto@ localhost ~]$ ls
Desktop    Downloads  Music     Public     Videos
Documents  ex_vi      Pictures  Templates
[pynetauto@ localhost ~]$ cd ex_vi
[pynetauto@ localhost ex_vi]$ pwd
/home/pynetauto/ex_vi
---------------------------------------------------------------------

② As soon as the text file opens in vi, you will notice that this is a proper minimalistic text editor. 
The most exciting thing about vi is the information shown at the base of the application about the 
filename and line number. Try to type something on the keyboard; you cannot type anything in 
Command mode. Go to the next exercise to add data (text) to this file.

You may create a new file by typing vi filename and then pressing the Enter key.

Objective: Learn how to create/open a file.

---------------------------------------------------------------------
[pynetauto@localhost ex_vi]$ vi myfile01.txt
---------------------------------------------------------------------

When the new file opens, you will see blank lines, each line with a tilde (~) and a line at the bottom 
with the filename and status of the new file.

---------------------------------------------------------------------

~

~

~

"myfile01.txt" [New File]                          0,0-1         All

---------------------------------------------------------------------



CHapTeR 7 ■ LInUx FUndamenTaLS

286

③ If you want to enter text to your text file, you must first enter Insert mode. First, press the I key on your 
keyboard to enter -- INSERT -- mode. If you see --INSERT-- in the lower-left corner, vi is now ready 
for your input.

Objective: Learn how to get into Insert mode in vi.

Press the I key on your keyboard.

---------------------------------------------------------------------
~
~
~
-- INSERT --                                        0,1           All
---------------------------------------------------------------------

④ Now type some text into this file and press the Esc key on your keyboard to exit Insert mode and move 
back into Command mode. As soon as you press the Esc key, look at the lower-left corner. -- INSERT -- 
disappears from the screen, and you are in Ex mode. Now enter :wq or :wq! and press the Enter  key 
to save the changes and exit vi.

Objective: Learn how to write, save, and exit a file in vi by pressing :wq  .

Python lives in the jungle.
Also, python lives on my computer.
Have a Pythonic day!
~
:wq 

⑤ Like the previous example, after making changes to your file, you usually want to save the modified 
file while exiting vi. Another way to exit vi is by typing :x in Command mode.

Objective: Learn another way to save and exit a file in vi.

Python lives in the jungle.
Also, python lives on my computer.
Have a Pythonic day!
~
:x 

⑥ Once you have exited vi and are back in the Linux terminal console, issue ls (list) and then cat 
myfile01.txt to verify the changes.

Objective: Learn to list (ls) files under the current directory and view the file content in vi.

[pynetauto@localhost ex_vi]$ ls
myfile01.txt
[pynetauto@localhost ex_vi]$ cat myfile01.txt
Python lives in the jungle.
Also, python lives on my computer.
Have a Pythonic day!



CHapTeR 7 ■ LInUx FUndamenTaLS

287

⑦ Now you will be introduced to a few new Linux commands here to perform the following tasks. You 
will learn how to log in as a sudo user, check the current working directory, find your text file, copy the 
file to the root directory, and then return to normal user mode. You have just seen a glimpse of what 
will follow in this chapter.

Objective: Learn to log in as the root user, check that a file exists, search for the file, and copy a file to 
the root user folder.

[pynetauto@localhost ex_vi]$ pwd
/home/pynetauto/ex_vi
[pynetauto@localhost ex_vi]$ su -
Password: **********
[root@localhost ~]# pwd
/root
[root@localhost ~]# ls myfile*
ls: cannot access 'myfile*': No such file or directory
[root@localhost ~]# find / -name myfile*
/home/pynetauto/ex_vi/myfile01.txt
[root@localhost ~]# cp /home/pynetauto/ex_vi/myfile01.txt ~/
[root@localhost ~]# ls myfile*
myfile01.txt
[root@localhost ~]# find / -name myfile*
/root/myfile01.txt
/home/pynetauto/ex_vi/myfile01.txt

 Reopening a File in vi
Here you will practice reopening and closing a file in vi.

① If you are continuing from the previous exercise, you should still be in root user mode. Now let’s go 
back to user mode using su – username. Check the current working directory and then move to the 
original ex_vi directory.

Replace the username with your own. Now you should be back to the user’s home directory and in the 
ex_vi directory.

Objective: Learn to log back in as a standard user.

[root@localhost ~]# su - pynetauto
[pynetauto@localhost ~]$ pwd
/home/pynetauto
[pynetauto@localhost ~]$ ls
Desktop    Downloads  Music     Public     Videos
Documents  ex_vi      Pictures  Templates
[pynetauto@localhost ~]$ cd ex_vi
[pynetauto@localhost ex_vi]$ pwd
/home/pynetauto/ex_vi



CHapTeR 7 ■ LInUx FUndamenTaLS

288

② To reopen an existing file, simply type in vi followed by the filename. If you opened a file by mistake 
and did not want to make any changes, simply type in :q and hit the Enter key.

Objective: Learn to reopen existing file and exit (quit) without modifying the file from vi.

[pynetauto@localhost ex_vi]$ ls
myfile01.txt
[pynetauto@localhost ex_vi]$ vi myfile01.txt

Python lives in the jungle.
Also, python lives on my computer.
Have a Pythonic day!
~
:q 

③ If you opened the file, entered into Insert mode, and started editing the file but decided to quit 
without saving your changes, you can use :q!. In this example, “Goodbye.” was added to the fourth 
line, but we want to discard it and exit without saving the change.

Objective: Learn to quit after modifying the file.

Python lives in the jungle.
Also, python lives on my computer.
Have a Pythonic day!
Goodbye.
~
:q!  

If you modified the file and only use :q and press Enter, vi will ask you to add ! after :q.

Python lives in the jungle.
Also, python lives on my computer.
Have a Pythonic day!
Goodbye.
~
E37: No write since last change (add ! to override)                                                                         
4,8          All

④ To view a file’s content without opening it in vi, you can use the cat, more, and  less commands. Try 
all three commands, but you can exit by using Ctrl+Z keys when you use the less command.

Objective: Learn to view file content using the cat, more, and less commands.

[pynetauto@localhost ex_vi]$ cat myfile01.txt
Python lives in the jungle.
Also, python lives on my computer.
Have a Pythonic day!
[pynetauto@localhost ex_vi]$ more myfile01.txt
Python lives in the jungle.
Also, python lives on my computer.
Have a Pythonic day!
[pynetauto@localhost ex_vi]$ less myfile01.txt

[2]+  Stopped                 less myfile01.txt



CHapTeR 7 ■ LInUx FUndamenTaLS

289

 Copying and Pasting a Line in vi
You can use dd to copy a line in vi and use the P key to paste a line below the cursor position. Or use the P 
key to paste a line above the cursor position. You can easily remember this operation. Try to use the P key to 
paste below the cursor position and use the P key to paste above the cursor position.

① Open myfile01.txt in vi again. Move the cursor to the third line as you are going to cut the third line.

Objective: Move the cursor in vi Command mode.

Python lives in the jungle.
Also, python lives on my computer.
|Have a Pythonic day!                                             # cursor line
~
"myfile01.txt" 3L, 84C                                        3,1           All

② Press the D key twice in a row. This operation will cut the line where the cursor was positioned.

Objective: Cut strings on the active line using dd.

dd
Python lives in the jungle.
|Also, python lives on my computer.                                                                           # cursor line
~
~
"myfile01.txt" 3L, 84C                                        3,1           All

③ Now press the P key to paste “Have a Pythonic day!” before “Also, python lives on my computer.” You 
have successfully swapped the second and third lines.

Objective: Paste the copied line to the line above the cursor position.

P
Python lives in the jungle.
|Have a Pythonic day!                                             # cursor line
Also, python lives on my computer.
~
"myfile01.txt" 3L, 84C                                        2,1           All

④ Now you want to add the same sentence in the fourth line. Move the cursor to the third line position.

Objective: Move the cursor down.

Python lives in the jungle.
Have a Pythonic day!                                                                                                                # cursor line
|Also, python lives on my computer.
~
"myfile01.txt" 3L, 84C                                        3,1           All

⑤ This time press the P key to paste “This is my file 01.” above the first line.

Objective: Paste the copied line to the line below the cursor position.

p
Python lives in the jungle.
Have a Pythonic day!
Also, python lives on my computer.
|Have a Pythonic day!                                                                                                             # cursor line
~
4,1           All



CHapTeR 7 ■ LInUx FUndamenTaLS

290

⑥ Now press the Esc key once and then use :wq to save the changes and exit vi.

Objective: Save changes and exit vi.

:wq 
Python lives in the jungle.
Have a Pythonic day!
Also, python lives on my computer.
Have a Pythonic day!
~
:wq 

 Undo Last in vi
If you make a mistake, you can undo the last action using :u in Command mode.

① :u (undo) is one of the essential commands as it allows you to undo your last action. In vi, this acts 
as a toggle, undoing and redoing your most recent action. First, reopen myfile01.txt and type 
something in line 5 while you are in –INSERT-- mode, as shown here.

Objective: Learn to undo the last action in vi.

Python lives in the jungle.
Have a Pythonic day!
Also, python lives on my computer.
Have a Pythonic day!
You can do it!|                                                                                     # cursor line
~
-- INSERT --                                                All

Press the Esc key to exit Insert mode and move back to Command mode. Type in :u and press the 
Enter key on your keyboard to undo your last action.

Python lives in the jungle.
Have a Pythonic day!
Also, python lives on my computer.
Have a Pythonic day!
You can do it!
~

:u 

As soon as you hit the Enter key, the fifth line you have just added will be removed (undone).

Python lives in the jungle.
Have a Pythonic day!
Also, python lives on my computer.
Have a Pythonic day!
~
1 line less; before #1  23:18:48               4,20          All



CHapTeR 7 ■ LInUx FUndamenTaLS

291

 Some people like the vi editor so much they will install a Windows version of vi called gvim on Windows and 
use it as their preferred Windows text editor. For most new users, it may take some time for vi to grow on you.

URL: https://www.vim.org/download.php

 Searching for Text in vi
The vi editor also offers a string search. You can use /string in Command mode to search for the string you 
are looking for. This feature is also available with the Cisco IOS show commands. For example, while running 
the show run command, on your Cisco router, you can use /line vty to jump across to the end of the line.

① Again, open the myfile01.txt file in vi. You can use a string to search through the text. Place the 
cursor at the beginning of the file and type /Python in Command mode. The search words will be 
highlighted. Remember that the P in Python is in capital letters, so this search is case-sensitive. Notice 
that the word python on the third line is not highlighted.

Objective: Learn to search a string and navigate through a text file in vi.

Python lives in the jungle.
Have a Pythonic day!
Also, python lives on my computer.
Have a Pythonic day!
~
/Python                                         # cursor line

Press the Enter key once to move to the first occurrence of the string Python. The cursor moves to the 
first letter of the searched word.

Type in /Python one more time and press the Enter key to locate the next occurrence of the string.

Python lives in the jungle.
Have a Pythonic day!
Also, python lives on my computer.
Have a Pythonic day!
~

/Python 

https://www.vim.org/download.php


CHapTeR 7 ■ LInUx FUndamenTaLS

292

Press the Enter key and then the N key once to move to the last occurrence of the string Python.

Python lives in the jungle.
Have a Pythonic day!
Also, python lives on my computer.
Have a |Pythonic day!                                         # cursor line
~
/Python                           4,8          All

Press Shift+N to move backward. Notice that the / sign changes to ? at the bottom-left corner.

Python lives in the jungle.
Have a |Pythonic day!                                          # cursor line
Also, python lives on my computer.
Have a Pythonic day!
~
?Python                           2,8          All

 If you want to make vim into an Ide, refer to the following article for a reference.

URL: https://realpython.com/vim- and- python- a- match- made- in- heaven/

 Display the Line Number in vi
While working in the vi text editor, a few text lines or code is manageable, but as the lines of text/codes 
increase, you can easily get lost in the lines of text/code. To keep track of the current working position, vi has 
a numbering feature. You can turn on the line numbering by typing :set number in Command mode.

① Reopen myfile01.txt in vi, type in :set number, and press the Enter key.

Objective: Enable and disable the line number.

1 Python lives in the jungle.
2 Have a Pythonic day!
3 Also, python lives on my computer.
4 Have a Pythonic day!
~
:set number 
4,1          All

https://realpython.com/vim-and-python-a-match-made-in-heaven/


CHapTeR 7 ■ LInUx FUndamenTaLS

293

 ■ Note If you want to turn off the numbering, type :set nonumber in Command mode.

Python lives in the jungle.
Have a Pythonic day!
Also, python lives on my computer.
Have a Pythonic day!
~
:set nononumber 
4,1          All

There are many more commands in vi, but the exercise you have completed contains the very basics 
you will need to get started in Linux OS. Next, you will learn about the nano text editor. For most Windows 
PC users, nano could be a better text editor while working with files in a Linux OS environment.

 If you want to learn more about vi, visit these URLs for more details:

URL: https://www.tecmint.com/vi- editor- usage/

URL: https://www.washington.edu/computing/unix/vi.html

 Introduction to nano
Unlike vi, nano has almost no learning curve on Linux; it is an easy-to-use text editor with a versatile and 
straightforward user interface. The nano text editor is installed by default on most newer Linux distributions 
but probably not on older distributions. It also works well in conjunction with the sudo command. On the 
latest CentOS 8.1, nano 2.9.8 or newer version should be pre-installed and available for immediate use. If 
you are using Ubuntu Server 20 for the Linux exercises, you should have nano 4.8 or newer pre-installed 
already. If it is not pre-installed, then it takes only a single yum command to install the program on your 
Linux machine. Before installing the nano text editor, let’s look at some key commands used in nano. 
These commands are available from the nano interface, so you do not have to memorize them. Review the 
available commands in Table 7-4 and read the descriptions at least once before moving to the next section.

Table 7-4. nano Text Editor Primary Keys

Command Description
nano[filename] Open editor command.

Ctrl+X Exit edit mode key combo.

Y Press Ctrl+X and choose Y to save the file.

N Press Ctrl+X and choose N to ignore edit.

Cancel Press Ctrl+X and select Cancel to return to the nano editor.

Ctrl+K Copy (Cut).

Ctrl+U Paste.

https://www.tecmint.com/vi-editor-usage/
https://www.washington.edu/computing/unix/vi.html


CHapTeR 7 ■ LInUx FUndamenTaLS

294

 Installing nano
Let’s quickly see how we can check if your Linux OS already has nano pre-installed. In the following 
example, the username pynetauto was used for logging into Linux. If you used another username during the 
Linux installation section, your username will be different.

① From your Linux terminal console, run nano –V or nano --version. The following example shows the 
output of the nano –V command on CentOS 8.

Objective: Lean how to check the nano version or the availability of nano on Linux.

nano –V or nano --version

# On CentOS 8.1 server
[pynetauto@localhost ~]$ nano -V
GNU nano, version 2.9.8
(C) 1999-2011, 2013-2018 Free Software Foundation, Inc.
(C) 2014-2018 the contributors to nano
Email: nano@nano-editor.org    Web: https://nano- editor.org/
Compiled options: --enable-utf8

# On Ubuntu 20.04 LTS server
pynetauto@ubuntu20s1:~$ nano --version
GNU nano, version 4.8
(C) 1999-2011, 2013-2020 Free Software Foundation, Inc.
(C) 2014-2020 the contributors to nano
Email: nano@nano-editor.org    Web: https://nano- editor.org/
Compiled options: --disable-libmagic --enable-utf8

② Another way to check if nano is installed on your Linux system is to create and open a new file using 
the nano [filename] command. If the nano text editor is not installed on your Linux system, Linux 
will return a “No such file or directory” –bash error. Also, when we  studied the Linux directory 
structure earlier, we saw that the executable program files typically reside in /usr/bin/; quickly 
check if nano exists under this directory to reconfirm.

Objective: Check if nano is available on your Linux system by looking at the /usr/bin directory.

[pynetauto@localhost ~]$ nano -V
bash: nano: command not found...
Install package 'nano' to provide command 'nano'? [N/y] N
[pynetauto@localhost ~]$ nano myfile02.txt
bash: nano: command not found...
Install package 'nano' to provide command 'nano'? [N/y] N
[pynetauto@localhost ~]$ ls /usr/bin/nano
ls: cannot access '/usr/bin/nano': No such file or directory



CHapTeR 7 ■ LInUx FUndamenTaLS

295

② If you encountered a similar error as earlier, then it is time to install nano on your Linux OS. You can install 
nano with a single line with a –y handle for yes. If you log in as a standard user like the following example, 
run the sudo yum install –y nano command and enter the sudo password. If you log in as a root user, 
you can drop sudo before the yum command. Replace the word install with remove to uninstall nano.

Objective: Install and uninstall nano on your Linux server.

# To install nano on CentOS/Red Hat/Fedora Linux
[pynetauto@localhost ~]$ sudo yum install nano
[sudo] password for pynetauto: **********

# To uninstall nano
[pynetauto@localhost ~]$ sudo yum remove -y nano

# To install nano on Ubuntu/Debian/Mint Linux
pynetauto@ubuntu20s1:~$ sudo apt-get install -y nano
[sudo] password for pynetauto: **********

# To uninstall nano
pynetauto@ubuntu20s1:~$ sudo apt-get remove -y nano

If you are using Ubuntu Server 20 and are missing the nano editor, install nano using the apt-get 
install nano command. The subtle syntax differences between CentOS and Ubuntu are usually from 
the use of different installer programs. On Red Hat–based distributions such as CentOS, Red Hat, and 
Fedora, you have to run the yum (Yellowdog Updater Modified) command. And the new kid on the 
block slowly replacing yum is dnf, which is using RPM Package Manager. Debian-based distributions 
such as Ubuntu, Debian, and Mint Linux use apt (Advanced Package Tool) as an installer program.

④ Now quickly run the ls /usr/bin/nano command to confirm the installation success.

Objective: Check for nano installation success.

# On CentOS 8.1 server
[pynetauto@localhost ~]$ ls /usr/bin/nano
/usr/bin/nano

# On Ubuntu 20.04 LTS server
pynetauto@ubuntu20s1:~$ ls /usr/bin/nano
/usr/bin/nano

 Create/Open a File with nano
You have confirmed that nano has been installed successfully, and you are ready to edit files using the new 
application. As mentioned, you can use either your Ubuntu or CentOS virtual server for this exercise.

Let’s log back in as a standard user and create a new directory to begin the nano exercises.

① First, make a new directory called ex_nano by typing mkdir ex_nano. You will use this directory to store 
exercise files created during your exercises. Change the working directory to ex_nano by typing cd ex_nano.

Objective: Create a new directory to practice using the nano text editor.

[pynetauto@localhost ~]$ mkdir ex_nano
[pynetauto@localhost ~]$ cd ex_nano
[pynetauto@localhost ex_nano]$ ls
[pynetauto@localhost ex_nano]$ pwd
/home/pynetauto/ex_nano



CHapTeR 7 ■ LInUx FUndamenTaLS

296

② If you execute the command nano myfile02.txt as shown next, if a file with the same name does not 
exist, a new file will open. If a file with the same name exists, then it will reopen the existing file.

Nano has a pseudographical user interface, and as soon as you open a file, you feel at home with the 
help menu displaying at the base; you want to jump right in and use it. If you are used to Notepad on 
Windows, you will have no problem using this user-friendly tool.

Objective: Create a new file using the nano command.

nano filename 

[pynetauto@localhost ex_nano]$ nano myfile02.txt

GNU nano 2.9.8                     myfile02.txt
|

^G Get Help  ^O Write Out   ^W Where Is  ^K Cut Text    ^J Justify     ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace   ^U Uncut Text  ^T To Spell    ^_ Go To Line

③ After opening a new file and immediately deciding to exit nano without editing the file, the file will 
be discarded. To exit nano, use ^X (the Ctrl+X keys). If you want to create a new file first, use touch 
myfile02.txt and then open it with the nano myfile02.txt command. In nano, if you see the ^ 
symbol, that means the Ctrl key.

Objective: Use the touch command to create a new file.

[pynetauto@localhost ex_nano]$ nano myfile02.txt
[pynetauto@localhost ex_nano]$ ls
[pynetauto@localhost ex_nano]$ touch myfile02.txt
[pynetauto@localhost ex_nano]$ ls
myfile02.txt

④ Now rerun the nano myfile02.txt command and enter a few text lines. As you have discovered, the 
nano editor does not require you to press the I  key to move you into -- INSERT -- mode as in the vi 
editor. After you have finished, to exit nano, you have to press Ctrl+X (^X).

Objective: Write to a new file and exit.

GNU nano 2.9.8                     myfile02.txt                     Modified

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
3. Configuration backup
4. Life-cycle management

Save modified buffer?  (Answering "No" will DISCARD changes.)
Y Yes
N No           ^C Cancel



CHapTeR 7 ■ LInUx FUndamenTaLS

297

⑤ To save the file, press Y (Yes) and then press the Enter key. Or to ignore change, press N (No). To go 
back to the file for further editing, press ^C (Ctrl+C). On the Linux operating system, most of the 
programs are case sensitive, but the nano menu is an exception; it is not case sensitive, so you can use 
y for Y and n for N interchangeably.

Objective: Save a changed file.

Y 

GNU nano 2.9.8                     myfile02.txt                     Modified

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
3. Configuration backup
4. Life-cycle management

File Name to Write: myfile02.txt
^G Get Help         M-D DOS Format      M-A Append          M-B Backup File
^C Cancel           M-M Mac Format      M-P Prepend         ^T To Files

⑥ Use the more, less, or cat command followed by the saved filename, myfile02.txt. If you used the 
less myfile02.txt command, you could use the Q key to exit less.

Objective: View content of the file using cat, more, or less.

[pynetauto@localhost ex_nano]$ ls -l
total 4
-rw-rw-r--. 1 pynetauto pynetauto 127 Jan  3 01:27 myfile02.txt
[pynetauto@localhost ex_nano]$ more myfile02.txt

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
3. Configuration backup
4. Life-cycle management

You have just learned how to create/open, save, and close a file in nano. Many great text editors are 
available in Linux, such as emacs, gedit, leafpad, and Komodo, but these text editors will not be discussed in 
this chapter or this book. When you have some spare time, you should explore other Linux-based text editing 
tools from a Google search.



CHapTeR 7 ■ LInUx FUndamenTaLS

298

 Reopen a File with nano

① To reopen an existing text file in nano, you use nano [filename], just like in the previous exercise.  So, 
type nano myfile02.txt to open an existing file.

Objective: Reopen an existing file.

[pynetauto@localhost ex_nano]$ nano myfile02.txt
GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
3. Configuration backup
4. Life-cycle management

[ Read 5 lines ]
^G Get Help  ^O Write Out   ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace   ^U Uncut Text  ^T To Spell  ^_ Go To Line

 Cut (Delete) and Paste with nano

① While working in nano, to cut a line, first move to the line you want to cut (or copy) and then use the 
Ctrl+K key combination to paste (UnCut) using Ctrl+U key combination. If you do not paste the cut 
information, the information in the computer’s memory will be discarded and works like delete.

Reopen myfile02.txt and place the cursor on line 4.

Objective: Cut (delete) a line in nano.

[pynetauto@localhost ex_nano]$ nano myfile02.txt

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
3. Configuration backup
4. Life-cycle management

[ Read 5 lines ]
^G Get Help  ^O Write Out ^W Where Is  ^K Cut Text     ^J Justify      ^C Cur Pos
^X Exit      ^R Read File ^\ Replace   ^U Uncut Text   ^T To Spell     ^_ Go To Line

To delete line 4, press Ctrl+K. Line 4 appears to have been deleted to us, but nano cuts and puts the 
line 4 in your server’s memory.

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
|4. Life-cycle management                                          # cursor line



CHapTeR 7 ■ LInUx FUndamenTaLS

299

[ Read 5 lines ]
^G Get Help  ^O Write Out   ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace   ^U Uncut Text  ^T To Spell  ^_ Go To Line

② If you want to copy and paste specific strings, first move your cursor to the first position where you 
want to begin your copy. In this example, we want to cut the word Life-cycle from line 4.

Objective: Learn how to copy and past a specific string.

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
4. |Life-cycle management                                          # cursor line

[ Read 5 lines ]
^G Get Help  ^O Write Out  ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace   ^U Uncut Text  ^T To Spell  ^_ Go To Line

Then press Ctrl+6 and use the right arrow [→] to a highlight word or string.

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
4. Life-cycle| management                                          # cursor line

[ Read 5 lines ]
^G Get Help  ^O Write Out  ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace   ^U Uncut Text  ^T To Spell  ^_ Go To Line

Then press Ctrl+K to cut the string.

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
4. | management                                          # cursor line

[ Read 5 lines ]
^G Get Help  ^O Write Out  ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace   ^U Uncut Text  ^T To Spell  ^_ Go To Line



CHapTeR 7 ■ LInUx FUndamenTaLS

300

③ Now move the cursor to line 3 using the arrow keys and cut line 3. We want to move line 3 to line 2. 
Press Ctrl+K to copy the line.

Objective: Use the cut-and-paste function in nano.

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
1. IOS upgrade
|2. Network monitoring                          # cursor line
4. management

[ Read 5 lines ]
^G Get Help  ^O Write Out  ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File  ^\ Replac    ^U Uncut Text  ^T To Spell  ^_ Go To Line

Now move the cursor to line 2.

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
|1. IOS upgrade                                          # cursor line
4. management

[ Read 5 lines ]
^G Get Help  ^O Write Out  ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace   ^U Uncut Text  ^T To Spell  ^_ Go To Line

Press Ctrl+U to paste (insert) the copied line.

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
2. Network monitoring
|1. IOS upgrade                                          # cursor line
4. management

^G Get Help  ^O Write Out  ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace   ^U Uncut Text  ^T To Spell  ^_ Go To Line



CHapTeR 7 ■ LInUx FUndamenTaLS

301

④ If you want to cut multiple lines, place the cursor in the first position, and press the Ctrl+K keys 
multiple times. The copied multiple lines will be stored in computer memory. I have put the cursor at 
the beginning of line 2 and then pressed Ctrl + K   three times consecutively.

Objective: Cut and paste multiple lines in nano.

Position the cursor in the first line to cut.

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
|2. Network monitoring
1. IOS upgrade                                          # cursor line
4. management

^G Get Help  ^O Write Out  ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace   ^U Uncut Text  ^T To Spell  ^_ Go To Line

Use Ctrl+K multiple times to cut three lines.

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
|

^G Get Help  ^O Write Out  ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace   ^U Uncut Text  ^T To Spell  ^_ Go To Line

Now the cursor should be positioned on the second line; press the Ctrl+U keys twice to paste the three 
lines copied twice.

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
2. Network monitoring
1. IOS upgrade
4. management
2. Network monitoring
1. IOS upgrade
4. management
|                                          # cursor line

^G Get Help  ^O Write Out  ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace   ^U Uncut Text  ^T To Spell  ^_ Go To Line

Use Ctrl+X and press N to discard changes and exit nano. When you open the file again, the content of 
the file should remain as it was in the original file.

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
3. Configuration backup
4. Life-cycle management

^G Get Help  ^O Write Out  ^W Where Is  ^K Cut Text    ^J Justif    ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace   ^U Uncut Text  ^T To Spell  ^_ Go To Line



CHapTeR 7 ■ LInUx FUndamenTaLS

302

 String Search and Replacing String(s)

① In nano, you can use Ctrl+W to search for a string, and the search is case insensitive. In the following 
example, you will search for the word backup.

Objective: Search for a specific word or string in nano.

Press Ctrl+W, and then type in the word backup  .

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
3. Configuration backup
4. Life-cycle management

Search: backup|    # cursor line
^G Get Help  ^O Write Out  ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace   ^U Uncut Text  ^T To Spell  ^_ Go To Line

As soon as you hit the Enter key, the cursor moves to the word backup.

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
3. Configuration |backup                                          # cursor line
4. Life-cycle management

^G Get Help  ^O Write Out  ^W Where Is  ^K Cut Text    ^J Justif    ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace   ^U Uncut Text  ^T To Spell  ^_ Go To Line

② To search for a string and replace matched string(s), you can use ^\ (Ctrl+\).
Objective: Search and replace words in nano.

Ctrl+\

First, let’s append the fifth item, “5. Device database management,” in our list as follows:

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
3. Configuration backup
4. Life-cycle management
5. Device database management|                                          # cursor line

^G Get Help  ^O Write Out  ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace   ^U Uncut Text  ^T To Spell  ^_ Go To Line



CHapTeR 7 ■ LInUx FUndamenTaLS

303

Use Ctrl+\ to search for a string, a word in this case: management. We want to replace this word with 
administration.

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
3. Configuration backup
4. Life-cycle management
5. Device database management

Search (to replace): management|                                        # cursor line
^G Get Help  ^O Write Out  ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace   ^U Uncut Text  ^T To Spell  ^_ Go To Line

Enter the replacement word, administration, and press the Enter key on your keyboard.

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
3. Configuration backup
4. Life-cycle management
5. Device database management
Replace with: administration

^G Get Help               ^Y First Line             ^P PrevHstory
^C Cancel                 ^V Last Line              ^N NextHstory

nano will highlight the first instance of the search word management. We want to replace all matches 
with administration, so select A.

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
3. Configuration backup
4. Life-cycle management
5. Device database management

Replace this instance?
Y Yes           A All
N No           ^C Cancel

All instances will be replaced as highlighted here:

GNU nano 2.9.8                     myfile02.txt



CHapTeR 7 ■ LInUx FUndamenTaLS

304

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
3. Configuration backup
4. Life-cycle administration
5. Device database administration

[ Replaced 2 occurrences ]

^G Get Help  ^O Write Out  ^W Where Is  ^K Cut Text    ^J Justify  ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace   ^U Uncut Text  ^T To Spell  ^_ Go To Line

③ You can use ^O (Ctrl+O) and then the Enter key to save the changes without closing the nano editor. 
This command works like a Save button.

Objective: Save the file using the Ctrl+O option.

Ctrl+O 
GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
3. Configuration backup
4. Life-cycle administration
5. Device database administration

File Name to Write: myfile02.txt
^G Get Help  ^O Write Out  ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace   ^U Uncut Text  ^T To Spell  ^_ Go To Line

 Customize nano for Python Coding
While coding in Python using nano, you will notice some missing features such as a four-space tab to avoid 
pressing the spacebar four times and line numbering options to quickly tell the current working position. To 
customize these settings, you have to change a couple of settings in the /etc/nanorc file.

① To make a tab character four spaces instead of eight spaces in nano, perform these steps:
Use sudo nano /etc/nanorc to open a nanorc file. Enter the sudoer password if it prompts for the 
password.

Objective: Enable four-space tabbing in nano for Python coding.

Search the nanorc file using the ^W (Ctrl+W) command with key set tabsize.

GNU nano 2.9.8                     /etc/nanorc
## Allow nano to be suspended.
# set suspend

## Use this tab size instead of the default; it must be greater than 0.
# |set tabsize 8

## Convert typed tabs to spaces.
# set tabstospaces
Search: set tabsize
^G Get Help  ^O Write Out  ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace   ^U Uncut Text  ^T To Spell  ^_ Go To Line



CHapTeR 7 ■ LInUx FUndamenTaLS

305

Remove the # (hash) to activate this configuration setting; change 8 to 4. Then add the next line, set 
tabstospaces, as shown next. Make sure you save the updated nanorc configuration file.

GNU nano 2.9.8                     /etc/nanorc
## Allow nano to be suspended.
# set suspend

## Use this tab size instead of the default; it must be greater than 0.
set tabsize 4
set tabstospaces|

## Convert typed tabs to spaces.
# set tabstospaces

[ line 172/279 (61%), col 3/16 (18%), char 5826/9448 (61%) ]
^G Get Help  ^O Write Out ^W Where Is  ^K Cut Text     ^J Justify      ^C Cur Pos
^X Exit      ^R Read File ^\ Replace   ^U Uncut Text   ^T To Spell     ^_ Go To Line

Now it is time to check the changes, reopen myfile02.txt, and use the Tab key to add four spaces to 
lines 3–6 to confirm. Every time you use the Tab key, you are adding four spaces to working Python 
code. Four spaces to the second line, eight spaces to the third line, and twelve spaces to the fourth line 
have been added.

GNU nano 2.9.8                     myfile02.txt

List of tasks to be automated this year.
1. IOS upgrade
2. Network monitoring
3. Configuration backup
4. Life-cycle administration
|5. Device database administration

^G Get Help  ^O Write Out ^W Where Is  ^K Cut Text     ^J Justify      ^C Cur Pos
^X Exit      ^R Read File ^\ Replace   ^U Uncut Text   ^T To Spell     ^_ Go To Line

If you want to reverse the previous change, you can open the /etc/nanorc file and add the # to the two 
lines and save.

② Use sudo nano /etc/nanorc to reopen the nanorc file one more time. Search for set linenumbers 
and remove the # sign at the beginning of this line and save the changes.

Objective: Enable line numbering in nano.

[pynetauto@localhost ex_nano]$ sudo nano /etc/nanorc
[sudo] password for pynetauto: **********

Remove the # in front of set linenumbers; this will enable line numbering in nano.

GNU nano 2.9.8                     /etc/nanorc                      Modified

## Remember the used search/replace strings for the next session.
# set historylog

## Display line numbers to the left of the text.
set linenumbers

## Enable vim-style lock-files.  This is just to let a vim user know you
## are editing a file [s]he is trying to edit and vice versa.  There are

^G Get Help  ^O Write Out ^W Where Is  ^K Cut Text     ^J Justify      ^C Cur Pos
^X Exit      ^R Read File ^\ Replace   ^U Uncut Text   ^T To Spell     ^_ Go To Line



CHapTeR 7 ■ LInUx FUndamenTaLS

306

Open myfile02.txt in nano and check if the line numbers are visible.

GNU nano 2.9.8                     myfile02.txt

1 List of tasks to be automated this year.
2 1. IOS upgrade
3     2. Network monitoring
4         3. Configuration backup
5             4. Life-cycle administration
6                 5. Device database administration
7

[ Read 6 lines ]
^G Get Help  ^O Write Out ^W Where Is  ^K Cut Text     ^J Justify      ^C Cur Pos
^X Exit      ^R Read File ^\ Replace   ^U Uncut Text   ^T To Spell     ^_ Go To Line

If you want to reverse the changes, you can open the /etc/nanorc file and add the # back to the same 
line and save.

At first, the vi and nano text editors are challenging to use for Windows users, but this is because you 
are not familiar with these programs. As you spend more time using these applications, you will become 
more comfortable. So, take it slow, but never give up on these applications. If you know how to use the vi 
text editor properly, you have mastered a significant part of Linux administration. This is my dad joke, but 
it’s so true: “Learning the first half of Linux administration is learning how to use vi.” Of course, the nano text 
editor supports lots more features. If you want to learn more about other commands, please refer to this link: 
https://www.cheatography.com/pepe/cheat- sheets/nano/.

Many readers will not like the Linux chapters as this involves users distancing themselves from the 
GUI and being stuck in the terminal console for hours, but this is an extremely important process to get 
comfortable with in Linux and, later, when writing code in Python on Linux.

 Linux Basic Administration
Now that you are getting familiar with vi and nano text editors, let’s learn some fundamental Linux 
administrations to get you started.

 Changing the Hostname
In Chapters 5 and 6, you installed the Ubuntu 20 and CentOS 8.1 servers with the desktop options, but the 
server name (hostname) on the CentOS 8.1 server was left as localhost. In contrast, on Ubuntu Server 20, 
the server name (hostname) was configured during the installation of the OS. In this section, let’s change the 
hostname of the CentOS server to centos8s1, which gives more meaning to what the server is. Although the 
desktop is available, we will update the hostname via terminal console. The following hostname-changing 
process will work on both Red Hat (CentOS) and Debian (Ubuntu) Linux servers:

https://www.cheatography.com/pepe/cheat-sheets/nano/


CHapTeR 7 ■ LInUx FUndamenTaLS

307

① First, let’s learn how to check the hostname. There are a few ways to check the hostname currently 
assigned to your server, and here are some of the Linux commands. The hostnamectl command 
provides the most useful information if you are checking more than the hostname itself. Also, the file 
that contains the name is under the /etc/hostname file. All these commands are Linux commands, so 
they are case sensitive.

Objective: Learn how to change the hostname on Linux using the command line.

[pynetauto@localhost ~]$ hostname
localhost
[pynetauto@localhost ~]$ echo "$HOSTNAME"
localhost
[pynetauto@localhost ~]$ printf "%s\n" $HOSTNAME
localhost
[pynetauto@localhost ~]$ hostnamectl
  Static hostname: localhost
        Icon name: computer-vm
          Chassis: vm
        Machine ID: e53c131bb54c4fb1a835f3aa435024e2
            Boot ID: 9acca137c1f04ca0ae0db3b6b28db63e
    Virtualization: vmware
  Operating System: CentOS Linux 8 (Core)
        CPE OS Name: cpe:/o:centos:centos:8
            Kernel: Linux 4.18.0-193.14.2.el8_2.x86_64
      Architecture: x86-64
[pynetauto@localhost ~]$ cat /etc/hostname
localhost

② Use sudo hostnamectl set-hostname [new_name] to update the server hostname.

Objective:

[pynetauto@localhost ~]$ sudo hostnamectl set-hostname centos8s1
[sudo] password for pynetauto:
[pynetauto@localhost ~]$

If you use a text editor such as nano, you can open the /etc/hosts file and update the current 
hostname (localhost) to the new server name using the Ctrl+\ method. In this example, the new 
hostname is centos8s1.

GNU nano 2.9.8                     /etc/hosts

1 127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
2 ::1         localhost localhost.localdomain localhost6 localhost6.localdomain6

[ Read 2 lines ]
^G Get Help  ^O Write Out ^W Where Is  ^K Cut Text     ^J Justify      ^C Cur Pos
^X Exit      ^R Read File ^\ Replace   ^U Uncut Text   ^T To Spell     ^_ Go To Line



CHapTeR 7 ■ LInUx FUndamenTaLS

308

Use nano’s Ctrl+\ to change all localhost instances to centos8s1.

GNU nano 2.9.8                     /etc/hosts

1 127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
2 ::1         localhost localhost.localdomain localhost6 localhost6.localdomain6

Search (to replace) : localhost
^G Get Help  ^O Write Out ^W Where Is  ^K Cut Text     ^J Justify      ^C Cur Pos
^X Exit      ^R Read File ^\ Replace   ^U Uncut Text   ^T To Spell     ^_ Go To Line

GNU nano 2.9.8                     /etc/hosts

1 127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
2 ::1         localhost localhost.localdomain localhost6 localhost6.localdomain6

Replace with: centos8s1
^G Get Help               ^Y First Line             ^P PrevHstory
^C Cancel                 ^V Last Line              ^N NextHstory

GNU nano 2.9.8                     /etc/hosts
1 127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
2 ::1         localhost localhost.localdomain localhost6 localhost6.localdomain6

Replace this instance? A
Y Yes           A All
N No           ^C Cancel

After modifying the hosts file, it should look similar to this:

GNU nano 2.9.8                /etc/hosts                                Modified

1 127.0.0.1   centos8s1 centos8s1.localdomain centos8s14 centos8s14.localdomain4

2 ::1         centos8s1 centos8s1.localdomain centos8s16 centos8s16.localdomain6

[ Replaced 8 occurences ]

^G Get Help  ^O Write Out ^W Where Is  ^K Cut Text     ^J Justify      ^C Cur Pos

^X Exit         ^R Read File   ^\ Replace      ^U Uncut Text^T To Spell  ^_ Go To Line

Now use the sudo reboot command to restart your server for the new hostname to take effect.

[pynetauto@localhost ~]$ sudo reboot

[sudo] password for pynetauto: **********

When your CentOS server reboots, SSH into the server using PuTTY, and you should see the 
hostname changed to centos8s1.

login as: pynetauto

pynetauto@192.168.183.130's password: **********

Activate the web console with: systemctl enable --now cockpit.socket

Last login: Mon Jan  4 11:23:12 2021 from 192.168.183.1

[pynetauto@centos8s1 ~]$



CHapTeR 7 ■ LInUx FUndamenTaLS

309

③ Note, Ubuntu’s hostname is already set during the installation process, and you do not have to 
perform any other actions here.

pynetauto@ubuntu20s1:~$ hostname
ubuntu20s1
pynetauto@ubuntu20s1:~$ echo "$HOSTNAME"
ubuntu20s1
pynetauto@ubuntu20s1:~$ printf "%s\n" $HOSTNAME
ubuntu20s1
pynetauto@ubuntu20s1:~$ hostnamectl
  Static hostname: ubuntu20s1
        Icon name: computer-vm
          Chassis: vm
        Machine ID: ea202235f9834d979436db10d89b1347
          Boot ID: 6a4035617bf348cba128be8e9d29d6a9
    Virtualization: vmware
  Operating System: Ubuntu 20.04.1 LTS
            Kernel: Linux 5.4.0-47-generic
      Architecture: x86-64
pynetauto@ubuntu20s1:~$ cat /etc/hostname
ubuntu20s1

 Linux Basic File and Directory Commands
We will first learn the necessary commands to manage basic files and directories of the Linux operating 
system. It usually takes a lot of time to get a deeper understanding of the Linux commands. This book was not 
written for a general Linux administration, so this chapter aims to help you build up the Linux administration 
basics, so you can comfortably perform the basic tasks on Linux systems. Only the most basic commands are 
covered here. Please take the time to review each command in Table 7-5 before starting the exercises. You do 
not have to memorize all of the commands right now, but try to get familiar with some command syntax.

Table 7-5. Linux File and Directory Basic Commands

Command Description and Example
pwd Present working directory

$pwd

ls List segment: Lists files and directories in the present working directory

$ ls

ls [directory] $ ls /home/pynetauto/Documents

ls –a List all files, including hidden directories and files

$ ls -a .bashrc

dir Directory

$dir

(continued)



CHapTeR 7 ■ LInUx FUndamenTaLS

310

Table 7-5. (continued)

Command Description and Example

mkdir Make directory

$ mkdir myapps

cd Change directory

$ cd myapps
$ cd /usr/local

cd .. Change current directory to parent directory.

/myapps$ cd ..

cd ~ Move to user’s home directory from anywhere.

$ cd /usr/sbin
:/usr/sbin$ cd ~
$ pwd
/home/pynetauto

cd - Switch back to previous directory where you were working earlier.

$ cd /usr/local
:/usr/local$ cd -
/home/pynetauto

rm OR rm –r Remove file(s).

/myapps$ rm router_app.py

rmdir Remove directory

$ rmdir myapps

mv Rename a filename.

$ mv file01.py myfile01.py

mv file directory Move file to another directory.

$ mv file01.py ./Documents

mv directory_A 
directory_B

Rename one directory to another directory.

$ mv myapps myscripts

touch filename Create a file(s).

$ touch myfile04.txt
$ touch myfile05.txt myfile06.txt

cp Copy a file to another directory or copy and paste with another filename.

$ cp myfile01.py /home/pynetauto/Documents

cp –a directory_A 
directory_B

Copy one directory to another directory.

$ cp -a Documents Mydocs

find Find a file.

$ find /home/pynetauto -name "myfile*"

grep Search for a string from a file.

$ grep pynetauto /etc/passwd

$ grep 'Python' /home/pynetauto/myfile10.py



CHapTeR 7 ■ LInUx FUndamenTaLS

311

 Linux File and Directory Exercises
Now let’s learn Linux basic file and directory management with some exercises.

Up until this point, the previous exercises were completed on the CentOS server. In the following 
exercises, the Ubuntu Server 20 LTS server will be used. Please log into your Ubuntu virtual machine as 
a root user this time and complete the exercises. If you are an experienced Linux administrator, you can 
jump to the next chapter and start installing IP network applications on CentOS 8.1. For any commands 
highlighted in bold, you must type them in to your Linux console terminal.

login as: root
root@192.168.183.132's password: **********
Welcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-47-generic x86_64)

[omitted for brevity]

Last login: Sun Jun  7 08:37:49 2020 from 192.168.183.1
root@ubuntu20s1:~#

 Exercise 7-1
① Use the pwd command to check the current working directory. As you learned in the previous section, 

pwd stands for present working directory. Think of this as your compass to navigate around the Linux 
system.

root@ubuntu20s1:~# pwd
/root

② ls is a Unix/Linux-specific command to view files and directories. You will learn about the ls 
command options in detail later. Make a directory with the mkdir command and use ls to list the new 
directory.

root@ubuntu20s1:~# mkdir directory1
root@ubuntu20s1:~# ls
Desktop     Documents  Music     Pictures  snap       Videos
directory1  Downloads  myscript  Public    Templates

③ Use the ls directory_name command to see the files and child directories in your directory. 
Continuing from the previous exercise, create a file under directory1 using the touch command and 
then use the ls command to see the newly created file under directory1.

root@ubuntu20s1:~# touch directory1/myfile01.txt
root@ubuntu20s1:~# ls directory1/
myfile01.txt

④ The ls –d command instructs ls to simply list directory entries rather than the contents. You can use 
the ls –l command to see details of files and directories. l stands for long listing. Now compare the 
three outputs: ls, ls -d, and ls –l.

root@ubuntu20s1:~# ls directory1
myfile01.txt
root@ubuntu20s1:~# ls -d directory1
directory1
root@ubuntu20s1:~# ls -l directory1
total 0
-rw-r--r-- 1 root root 0 Jan  4 01:39 myfile01.txt



CHapTeR 7 ■ LInUx FUndamenTaLS

312

⑤ Use the ls –a command to show hidden files and folders together. a stands for all and reveals even 
the hidden directories and files.

root@ubuntu20s1:~# ls -a
.              .cache      Documents  Music     Public  Templates
..             .config     Downloads  myscript  .rpmdb  Videos
.bash_history  Desktop     .gnupg     Pictures  snap
.bashrc        directory1  .local     .profile  .ssh

⑥ You have already used this command a couple of times; you can use the mkdir command to create a 
new directory. A directory is similar to the folders in Windows OS; it can contain child directories and 
files. Make another directory to get more practice.

root@ubuntu20s1:~# mkdir directory2
oot@ubuntu20s1:~# ls -d directory*
directory1  directory2

⑦ The cp –a command allows you to copy an entire directory, including the files and child directories 
inside the original directory. In this exercise, you are copying directory1 to make another directory 
containing the same myfile01.txt.

root@ubuntu20s1:~# cp -a directory1 directory3
root@ubuntu20s1:~# ls -d directory*
directory1  directory2  directory3
root@ubuntu20s1:~# ls directory*
directory1:
myfile01.txt

directory2:

directory3:
myfile01.txt

⑧ rmdir will allow you to remove an empty directory; this command will delete the entire directory. 
directory2 is empty, so go ahead and delete it using the rmdir command.

root@ubuntu20s1:~# ls directory2/
root@ubuntu20s1:~# rmdir directory2
root@ubuntu20s1:~# ls -d directory*
directory1  directory3

⑨ If you want to delete a directory that contains other files and directories, you can use rm –rf 
directory_name. The rm –rf command should be used with caution as this option will not prompt 
user confirmation and delete items instantly.

root@ubuntu20s1:~# ls directory3
myfile01.txt
root@ubuntu20s1:~# rm directory3
rm: cannot remove 'directory3': Is a directory
root@ubuntu20s1:~# rm -rf directory3
root@ubuntu20s1:~# ls -d directory*
directory1



CHapTeR 7 ■ LInUx FUndamenTaLS

313

⑩ The mv command can be used to move or rename both files and directories. You can also use this 
command to move a file or directory to another directory; let’s learn this through the following 
exercise:

# Renaming a directory
root@ubuntu20s1:~# ls -d directory*
directory1
root@ubuntu20s1:~# mv directory1 directory5
root@ubuntu20s1:~# ls -d directory*
directory5

# Moving a directory to another directory
root@ubuntu20s1:~# mkdir directory3
root@ubuntu20s1:~# ls -d directory*
directory3  directory5
root@ubuntu20s1:~# mv directory3 directory5
root@ubuntu20s1:~# ls -d directory*
directory5
root@ubuntu20s1:~# ls directory5
directory3  myfile01.txt

 Is there a better way to see directories and files in Linux at a glance?

Yes, there is a handy directories tool called tree in Linux. after installing tree, type the command tree in 
the current working directory to display directories and files listed in tree format. Use the apt install tree 
command to install the software.

root@ubuntu20s1:~# apt-get install tree

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following NEW packages will be installed:

tree

0 upgraded, 1 newly installed, 0 to remove and 125 not upgraded.

[...omitted for brevity]

Preparing to unpack .../tree_1.8.0-1_amd64.deb ...

Unpacking tree (1.8.0-1) ...

Setting up tree (1.8.0-1) ...

Processing triggers for man-db (2.9.1-1) ...

root@ubuntu20s1:~# tree

.



CHapTeR 7 ■ LInUx FUndamenTaLS

314

├── Desktop
├── directory5
│    ├── directory3
│  └── myfile01.txt

├── Documents
├── Downloads
├── Music
├── Pictures
├── Public
├── snap
│   ├── docker
│  │    ├── 423
│  │    ├── common
│  │  └── current -> 423

│  └── lxd

│       ├── 14804
│       ├── 15223
│       ├── common
│    └── current -> 15223
├── Templates
└── Videos

 ■ Note If you cannot install tree on Ubuntu, you may have to enable the universe repository. Run the 
following commands on your Ubuntu before installing tree:

root@ubuntu20s1:~# sudo add-apt-repository "deb http://archive.ubuntu.com/ubuntu $(lsb_
release -sc) main universe restricted multiverse"

root@ubuntu20s1:~# apt update

root@ubuntu20s1:~# apt-get install tree

 Exercise 7-2
① Use the ls -d $PWD/* command to display the path of working directories.

root@ubuntu20s1:~# ls -d $PWD/*

/root/Desktop     /root/Downloads  /root/Pictures  /root/Templates
/root/directory5  /root/Music      /root/Public    /root/Videos
/root/Documents   /root/myscript   /root/snap



CHapTeR 7 ■ LInUx FUndamenTaLS

315

② The cd, cd .., and cd ~ change directory commands can be used to move the user’s working 
directory location. Get some practice, and you will save a lot of time while working with files and 
directories. Let’s look at some examples and follow through.

Let’s make multiple directories using the mkdir command.

root@ubuntu20s1:~# mkdir directory1 directory2 directory4
root@ubuntu20s1:~# ls -d directory*
directory1  directory2  directory4  directory5
root@ubuntu20s1:~# mv directory2 directory4
root@ubuntu20s1:~# ls -d directory*
directory1  directory4  directory5
root@ubuntu20s1:~# tree directory*
directory1
directory4
└── directory2
directory5
├── directory3
└── myfile01.txt

2 directories, 1 file

Type cd (change directory) and press Enter key, and you always return to the user's home directory. 
Move to root/directory4/directory2 and use cd to return to root’s working folder. Notice the use 
of the shortcut ./ to specify the current working directory. ./directory4/directory2 is short for /
root/directory4/directory2.

root@ubuntu20s1:~# pwd
/root
root@ubuntu20s1:~# cd ./directory4/directory2
root@ubuntu20s1:~/directory4/directory2# pwd
/root/directory4/directory2
root@ubuntu20s1:~/directory4/directory2# cd
root@ubuntu20s1:~# pwd
/root

③ The cd .. command moves the working directory up one level from the child directory. This time 
let’s move down to /root/directory5/directory3 and use the cd .. command to move up to the 
parent directories. Notice that you can also use cd ../../ to jump up multiple levels.

root@ubuntu20s1:~# cd /root/directory5/directory3
root@ubuntu20s1:~/directory5/directory3# pwd
/root/directory5/directory3
root@ubuntu20s1:~/directory5/directory3# cd ..
root@ubuntu20s1:~/directory5# pwd
/root/directory5
root@ubuntu20s1:~/directory5# cd ..
root@ubuntu20s1:~# pwd
/root
root@ubuntu20s1:~# cd ./directory5/directory3
root@ubuntu20s1:~/directory5/directory3# pwd
/root/directory5/directory3
root@ubuntu20s1:~/directory5/directory3# cd ../../
root@ubuntu20s1:~# pwd
/root



CHapTeR 7 ■ LInUx FUndamenTaLS

316

④ If you know the exact directory path, you can jump from one working directory to the next directory 
by typing cd followed by a specific directory path. The following exercise shows jumping from 
directory3 under parent directory5 to directory2 under parent directory4:

root@ubuntu20s1:~# cd ./directory5/directory3
root@ubuntu20s1:~/directory5/directory3# pwd
/root/directory5/directory3
root@ubuntu20s1:~/directory5/directory3# cd
/root/directory4/directory2
root@ubuntu20s1:~/directory4/directory2# pwd
/root/directory4/directory2

⑤ cd ~ can also be used to return to the user’s home directory.

root@ubuntu20s1:~# cd /root/directory4/directory2
root@ubuntu20s1:~/directory4/directory2# pwd
/root/directory4/directory2
root@ubuntu20s1:~/directory4/directory2# cd ~
root@ubuntu20s1:~# pwd
/root

⑥ Unlike the ./ command, cd ~  also allows you to jump between directories that are not dependent on 
the present working directory.

root@ubuntu20s1:~# cd /root/directory4/directory2
root@ubuntu20s1:~/directory4/directory2# pwd
/root/directory4/directory2
root@ubuntu20s1:~/directory4/directory2# cd ~/directory5/directory3
root@ubuntu20s1:~/directory5/directory3# pwd
/root/directory5/directory3

⑦ The dir (directory) command is the same as the ls –C –b command and said to have been included 
for both Linux and Windows users. The difference is that when you use dir, the directory names are 
black, but using ls –C –b returns colored directory names.

root@ubuntu20s1:~# dir
Desktop     directory4  Documents  Music     Public  Templates
directory1  directory5  Downloads  Pictures  snap    Videos

root@ubuntu20s1:~# ls -C -b
Desktop     directory4  Documents  Music     Public  Templates
directory1  directory5  Downloads  Pictures  snap    Videos

⑧ The touch command is used to create a file. If you enter touch file_name as shown here, a file will be 
created. You can also create multiple files using a single touch command.

root@ubuntu20s1:~# touch myfile02.txt
root@ubuntu20s1:~# ls myfile*
myfile02.txt
root@ubuntu20s1:~# touch myfile03.txt myfile04.txt
root@ubuntu20s1:~# ls myfile*
myfile02.txt  myfile03.txt  myfile04.txt



CHapTeR 7 ■ LInUx FUndamenTaLS

317

⑨ The cp (copy) command allows you to copy files or directories. Don’t forget to use the –r (recursive) 
option when copying a directory.

root@ubuntu20s1:~# ls myfile*
myfile02.txt  myfile03.txt  myfile04.txt
root@ubuntu20s1:~# cp myfile03.txt myfile05.txt
root@ubuntu20s1:~# ls myfile*
myfile02.txt  myfile03.txt  myfile04.txt  myfile05.txt

root@ubuntu20s1:~# ls -d directory*
directory1  directory4  directory5
root@ubuntu20s1:~# cp -r directory1 directory2
root@ubuntu20s1:~# ls -d directory*
directory1  directory2  directory4  directory5

⑩ rm (remove) can be used to delete a file(s) or delete directories. In the following example, directory4 
will be deleted using the –r option.

root@ubuntu20s1:~# ls myfile*
myfile02.txt  myfile03.txt  myfile04.txt  myfile05.txt
root@ubuntu20s1:~# rm myfile02.txt
root@ubuntu20s1:~# ls myfile*
myfile03.txt  myfile04.txt  myfile05.txt
root@ubuntu20s1:~# rm myfile*
root@ubuntu20s1:~# ls myfile*
ls: cannot access 'myfile*': No such file or directory

root@ubuntu20s1:~# tree directory*
directory1
directory2
directory4
└── directory2
directory5
├── directory3
└── myfile01.txt

2 directories, 1 file

root@ubuntu20s1:~# rm -r directory4
root@ubuntu20s1:~# tree directory*
directory1
directory2
directory5
├── directory3
└── myfile01.txt

1 directory, 1 file



CHapTeR 7 ■ LInUx FUndamenTaLS

318

 Exercise 7-3
① The mv (move) command allows you to change the filename or move files and directories to another 

directory. Let’s learn this through some examples.

# Rename myfile01.txt in root/directory5 to yourfile01.txt.
root@ubuntu20s1:~# ls ./directory5/
directory3  myfile01.txt
root@ubuntu20s1:~# mv ./directory5/myfile01.txt ./directory5/yourfile01.txt
root@ubuntu20s1:~# ls ./directory5/
directory3  yourfile01.txt

# Move yourfile01.txt to /root directory.
root@ubuntu20s1:~# mv ./directory5/yourfile01.txt ./
root@ubuntu20s1:~# ls ./directory5/
directory3
root@ubuntu20s1:~# pwd
/root
root@ubuntu20s1:~# ls your*
yourfile01.txt

② Now let’s rename directory5 to directory4. Then nest directory2 inside directory3 and then 
directory1 into directory2.

root@ubuntu20s1:~# mv directory5 directory4
root@ubuntu20s1:~# tree directory*
directory1
directory2
directory4
└── directory3

1 directory, 0 files
root@ubuntu20s1:~# mv directory2 ./directory4/directory3/
root@ubuntu20s1:~# mv directory1 ./directory4/directory3/directory2/
root@ubuntu20s1:~# tree directory*
directory4
└── directory3
└── directory2
└── directory1

3 directories, 0 files



CHapTeR 7 ■ LInUx FUndamenTaLS

319

③ Now using the . (dot) method, let’s move directory1, directory2, and directory3 to the root user’s 
folder, at the same level as the parent directory, directory4.

root@ubuntu20s1:~# tree directory*
directory4
└── directory3
└── directory2
└── directory1

3 directories, 0 files
root@ubuntu20s1:~# mv ./directory4/directory3/directory2/directory1 .
root@ubuntu20s1:~# mv ./directory4/directory3/directory2 .
root@ubuntu20s1:~# mv ./directory4/directory3 .
root@ubuntu20s1:~# tree directory*
directory1
directory2
directory3
directory4

④ Now let’s use the rm and rm –r commands to clean the file and directories to reset the clock. We have 
one text file and four directories to delete in this exercise.

root@ubuntu20s1:~# rm yourfile01.txt
oot@ubuntu20s1:~# ls -d directory*
directory1  directory2  directory3  directory4
root@ubuntu20s1:~# rm -r directory*
root@ubuntu20s1:~# ls -d directory*
ls: cannot access 'directory*': No such file or directory

⑤ Create the mysecrete file with your name and a secrete password. Create a hidden directory hideme 
using the . (dot) method and move the secrete file into the .hideme directory. To see the hidden 
files, use the –a option with the ls command.

root@ubuntu20s1:~# nano mysecrete
root@ubuntu20s1:~# cat mysecrete
pynetauto
fairdinkum
root@ubuntu20s1:~# ls my*
mysecrete
root@ubuntu20s1:~# mkdir .hideme
root@ubuntu20s1:~# ls
Desktop  Documents  Downloads  Music  Pictures  Public  snap  Templates  Videos
root@ubuntu20s1:~# ls -a
.              .bashrc  Desktop    .gnupg   Music     Public  Templates
..             .cache   Documents  .hideme  Pictures  snap    Videos
.bash_history  .config  Downloads  .local   .profile  .ssh

root@ubuntu20s1:~# mv mysecrete .hideme
root@ubuntu20s1:~# ls .hideme
mysecrete
root@ubuntu20s1:~# ls
Desktop  Documents  Downloads  Music  Pictures  Public  snap  Templates  Videos
root@ubuntu20s1:~# tree .hideme
.hideme
└── mysecrete

0 directories, 1 file



CHapTeR 7 ■ LInUx FUndamenTaLS

320

 How do I view command options?

You can use the --help or man command. The following example shows the ls --help and man ls commands:

root@ubuntu20s1:~# ls --help

root@ubuntu20s1:~# man ls

also, quickly search the words Linux command cheat sheet, and Google will return hundreds of searched 
results. One such site is listed here for your reference:

https://cheatography.com/davechild/cheat- sheets/linux- command- line/

 Linux File and Directory Exercise 7-2
You have just completed an essential Linux file and directory exercise in Exercise 7-1. Next, let’s learn some 
more commands. The user-friendly GUI is often a missing feature on enterprise Linux systems, and much of 
the administrator’s tasks are carried out via a command-line or console interface.

Your Linux study success depends on how well you can handle files and directories using the basic file 
and directory commands.

 Echo, Cat, More, and Less Command Exercise
① Create a new file called greet01 and use the echo command to write a question, “Can you say Hello in 

different languages?" into the greet01 file.

root@ubuntu20s1:~# touch greet01
root@ubuntu20s1:~# ls greet*
greet01
root@ubuntu20s1:~# echo "Can you say Hello in different languages?" > greet01
root@ubuntu20s1:~# more greet01
Can you say Hello in different languages?

② Create another file called greet02. This time write Hello in various languages and write to the file 
using the echo command again. You are going to learn how to say “Hi” in ten different languages in 
this exercise.

root@ubuntu20s1:~# touch greet02
root@ubuntu20s1:~# echo "Hi Bonjour Nihao Konichiwa Shalom Merhaba Ola Namaste Ciao 
Anyoung" > greet02
root@ubuntu20s1:~# cat greet02
Hi Bonjour Nihao Konichiwa Shalom Merhaba Ola Namaste Ciao Anyoung

https://cheatography.com/davechild/cheat-sheets/linux-command-line/


CHapTeR 7 ■ LInUx FUndamenTaLS

321

③ In the previous exercise, the cat command was used to display the content of greet02. Another use 
of the cat command is to merge multiple files into a single file. Here you will merge greet01 and 
greet02 and create the greet03 file.

root@ubuntu20s1:~# cat greet01 greet02 > greet03
root@ubuntu20s1:~# ls -d greet*
greet01  greet02  greet03
root@ubuntu20s1:~# more greet03
Can you say Hello in different languages?
Hi Bonjour Nihao Konichiwa Shalom Merhaba Ola Namaste Ciao Anyoung

④ If you want to add more content to the same file, use the cat >> command.

root@ubuntu20s1:~# cat >> greet03
How do you say "Love" in different languages?
Love Amour Ai Ai Ahaba Ask Amor Amore Mohabbat Sarang

#To exit, press Ctrl+D keys.

root@ubuntu20s1:~# more greet03
Can you say Hello in different languages?
Hi Bonjour Nihao Konichiwa Shalom Merhaba Ola Namaste Anyoung
How do you say "Love" in different languages?
Love Amour Ai Ai Ahaba Ask Amor Amore Mohabbat Sarang

⑤ You can also create a new file using the cat > command.

root@ubuntu20s1:~# cat > greet04
This is a test file created with the "cat >" command.
You can write something meaningful or anything you like.
#To exit, press Ctrl+D keys.
root@ubuntu20s1:~# cat greet04
This is a test file created with "cat >" command.

You can write something meaningful or anything you like.

⑥ You can also use more commands to view the content of your file. If the file is long, use the spacebar 
to scroll down the page or use the Enter key to scroll down by line. If you want to exit in the middle of 
reading, use the Ctrl+C or Ctrl+Z key.

root@ubuntu20s1:~# more greet03
Can you say Hello in different languages?
Hi Bonjour Nihao Konichiwa Shalom Merhaba Ola Namaste Anyoung
How do you say "Love" in different languages?
Love Amour Ai Ai Ahaba Ask Amor Amore Mohabbat Sarang

⑦ You can also use the less command to view your file’s content, but the less command will not print 
the content on the terminal. To scroll down the page, use the spacebar, and to scroll down by line, use 
the Enter key. To exit, use Ctrl+Z (or Ctrl+C and then :q).

root@ubuntu20s1:~# less greet03
Can you say Hello in different languages?
Hi Bonjour Nihao Konichiwa Shalom Merhaba Ola Namaste Anyoung
How do you say "Love" in different languages?
Love Amour Ai Ai Ahaba Ask Amor Amore Mohabbat Sarang
greet03 (END)



CHapTeR 7 ■ LInUx FUndamenTaLS

322

 Where can I find the best Linux study material?

Often, the best things in life are free. Thanks to paul Cobbaut sharing his book Linux Fundamentals on the 
Linuxfun website, more people can have fun with Linux. I highly recommend you download this free pdF file 
and use it to your advantage.

UR: https://linux- training.be/linuxfun.pdf

 ls Command with Options
You may be thinking that drilling into these exercises seems to be so far away from the goal of where you 
want to take your Python network automation. But you must do the drills and lay down one brick at a time to 
build a strong foundation. So, this is the process of building a strong foundation. Try to get as much practice 
from the chapter exercises and use other external Linux command study materials online and offline.

ls enumerates files and directories.

ls –l shows file and directory details.

ls –a lists all files in the current working directory.

ls –al shows details of files and directories in the current working directory.

① Use the ls command with the search keyword and the all-inclusive or greedy *. The following 
example lists all files or folders starting with the word greet in the current working directory.

root@ubuntu20s1:~# ls greet*

greet01  greet02  greet03  greet04

② Create a new directory called greetings and run the ls command with the –d and –l (list) options 
to compare the difference between files and directories. At the beginning of the directory greetings, 
notice the letter d. This indicates that this is a directory.

root@ubuntu20s1:~# mkdir greetings
root@ubuntu20s1:~# ls -d -l greet*
-rw-r--r-- 1 root root   42 Jun  3 11:45 greet01
-rw-r--r-- 1 root root   62 Jun  3 11:51 greet02
-rw-r--r-- 1 root root  204 Jun  3 12:10 greet03
-rw-r--r-- 1 root root  106 Jun  3 12:15 greet04
drwxr-xr-x 2 root root 4096 Jun  3 12:35 greetings

https://linux-training.be/linuxfun.pdf


CHapTeR 7 ■ LInUx FUndamenTaLS

323

③ This –a command lists all files, including hidden files. Hidden files start with . (dot).
root@ubuntu20s1:~# ls -a

.              .cache     Downloads  greet03    .local    Public     test01

..             .config    .gnupg     greet04    Music     snap       Videos

.bash_history  Desktop    greet01    greetings  Pictures  .ssh

.bashrc        Documents  greet02    .hideme    .profile  Templates

④ You can combine various ls options to list the files and directories as you like. Other options are –R, 
-o, -g, -i, -s, -t, -S, -r. If you have an hour to explore these options, please go to the Internet and 
spend an hour or two to find each one of them and mix and match. The following is the combined use 
of –l (list) and –h (human-readable) commands:

root@ubuntu20s1:~# ls -lh greet*
-rw-r--r-- 1 root root   42 Jun  3 11:45 greet01
-rw-r--r-- 1 root root   62 Jun  3 11:51 greet02
-rw-r--r-- 1 root root  204 Jun  3 12:10 greet03
-rw-r--r-- 1 root root  106 Jun  3 12:15 greet04

greetings:
total 0

Delete files and directories at once

① If you want to delete all files starting with the same name in a directory, you can use rm filename *. 
If you want to delete all files in a directory, use *. Continuing from the previous exercise, let’s move all 
files starting with the word greet into the greetings directory.

roroot@ubuntu20s1:~# pwd
/root
root@ubuntu20s1:~# ls
Desktop    Downloads  greet02  greet04    Music     Public  Templates  Videos
Documents  greet01    greet03  greetings  Pictures  snap    test01
root@ubuntu20s1:~# ls -lh greet*
-rw-r--r-- 1 root root   42 Jun  3 11:45 greet01
-rw-r--r-- 1 root root   62 Jun  3 11:51 greet02
-rw-r--r-- 1 root root  204 Jun  3 12:10 greet03
-rw-r--r-- 1 root root  106 Jun  3 12:15 greet04

greetings:
total 0

root@ubuntu20s1:~# mv ./greet0* ./greetings
root@ubuntu20s1:~# ls
Desktop    Downloads  Music     Public  Templates  Videos
Documents  greetings  Pictures  snap    test01
root@ubuntu20s1:~# ls ./greetings
greet01  greet02  greet03  greet04

Let's create another four files called bye01 – by04.

root@ubuntu20s1:~# cd greetings
root@ubuntu20s1:~/greetings# touch bye01 bye02 bye03 bye04
root@ubuntu20s1:~/greetings# ls
bye01  bye02  bye03  bye04  greet01  greet02  greet03  greet04



CHapTeR 7 ■ LInUx FUndamenTaLS

324

Now let’s check the files in the greetings directory one more time and delete files containing specific 
strings; our targets are the files ending with 04. * is a wildcard replacing all characters.

root@ubuntu20s1:~/greetings# ls
bye01  bye02  bye03  bye04  greet01  greet02  greet03  greet04
root@ubuntu20s1:~/greetings# find . -name "*04"
./bye04
./greet04
root@ubuntu20s1:~/greetings# rm *04
root@ubuntu20s1:~/greetings# ls
bye01  bye02  bye03  greet01  greet02  greet03

Next, let’s delete all the files containing greet using the rm greet* handle.

root@ubuntu20s1:~/greetings# rm greet*
root@ubuntu20s1:~/greetings# ls
bye01  bye02  bye03

Then let’s clean all files in the folder by using the rm * option. After this command, the directory 
should be empty.

root@ubuntu20s1:~/greetings# rm *
root@ubuntu20s1:~/greetings# ls
root@ubuntu20s1:~/greetings#

② If you want to delete the directory in the same way, you have to use rm –r. –r stands for recursive; 
if you do not use the –r option, Linux does not allow you to delete directories, but you have to use it 
with care. Working from the same directory, let’s make two directories below it and use the * wildcard 
character to remove the directories containing specific strings. To delete directories containing hi, 
you will be using a double wildcard, one at the front and one at the end. At the end of this exercise, 
your directory should be empty.

root@ubuntu20s1:~/greetings# mkdir sayhi01 sayhi02 saybye01 saybye02
root@ubuntu20s1:~/greetings# ls
saybye01  saybye02  sayhi01  sayhi02
root@ubuntu20s1:~/greetings# rm *hi*
rm: cannot remove 'sayhi01': Is a directory
rm: cannot remove 'sayhi02': Is a directory
root@ubuntu20s1:~/greetings# rm -r *hi*
root@ubuntu20s1:~/greetings# ls
saybye01  saybye02
root@ubuntu20s1:~/greetings# rm -r saybye*
root@ubuntu20s1:~/greetings# ls
root@ubuntu20s1:~/greetings#

 Create a Python Application, Make Your File Executable, Add a Shebang, 
and Run the Application
You can change the file’s permissions with the chmod command. This Linux command is handy when 
changing a Python script file’s properties to make it executable. There are currently no Python files in the 
root user directory. Let’s quickly create a simple Python script and see how this works with a Python script:



CHapTeR 7 ■ LInUx FUndamenTaLS

325

① To create a Python script on Linux, add a .py file extension to the end of the filename. To create your 
Python script, follow the echo and cat commands we have learned in section 4.4.2.1 or simply use 
the vi or nano text editor, which you have learned in this chapter. The \n after the word Automation 
denotes the newline and adds/changes the line. Create this file and run the application using python3 
print5times.py to verify that your script runs smoothly.

root@ubuntu20s1:~/myscript# echo "x = 'Python Network Automation\n'" > print5times.py
root@ubuntu20s1:~/myscript# more print5times.py
x = 'Python Network Automation\n'
root@ubuntu20s1:~/myscript# cat >> print5times.py
print(x*5)

#To exit, press Ctrl+D keys.

root@ubuntu20s1:~/myscript# more print5times.py
x = 'Python Network Automation\n'
print(x*5)
root@ubuntu20s1:~/myscript# python3 print5times.py
Python Network Automation
Python Network Automation
Python Network Automation
Python Network Automation
Python Network Automation

② Now we have created a working Python script (or application) and reviewed the file mode. Yes, this 
file can also be referred to as an application as it is an application that prints x five times each time 
you run the application.

Run ls –l print5times.py to review the access. You have to look at the result starting with -rw-
r--r--. As you can see, it is missing the x, or executable-level access. You need to modify this file’s 
property to include x to make this file an executable, so we can run the application without specifying 
Python 3 as the application.

root@ubuntu20s1:~/myscript# ls -l print5times.py
-rw-r--r-- 1 root root 43 Jun  6 10:42 print5times.py
root@ubuntu20s1:~/myscript# ./print5times.py
-bash: ./print5times.py: Permission denied

Use chmod +x print5times.py to make the script executable. The file color should change to green 
automatically, indicating that this is now an executable file.

root@ubuntu20s1:~/myscript# chmod +x print5times.py
root@ubuntu20s1:~/myscript# ls -l print5times.py
-rwxr-xr-x 1 root root 45 Jun  6 10:46 print5times.py

Try to run the application without the python3 command. But when you run the script, you will 
encounter an unexpected token error as follows because we forgot to add the infamous shebang (#!/
usr/bin/python3) line on the top; a shebang line defines where the interpreter is located.

root@ubuntu20s1:~/myscript# ./print5times.py
./print5times.py: line 1: x: command not found
./print5times.py: line 2: syntax error near unexpected token `x*5'
./print5times.py: line 2: `print(x*5)'



CHapTeR 7 ■ LInUx FUndamenTaLS

326

③ Let’s add #!/usr/bin/python3 (shebang) at the beginning of our script. This time, we’ll use the sed 
command with the –I and –e options. Sed or Stream Editor is also a powerful Linux/Unix tool for text 
manipulation. You do not have to be 100 percent familiar with this tool yet, but it will come in handy 
one day just knowing how it works.

root@ubuntu20s1:~/myscript# cat print5times.py
x = "Python Network Automation\n"
print(x*5)
root@ubuntu20s1:~/myscript# sed -i -e '1i#!/usr/bin/python3\' print5times.py
root@ubuntu20s1:~/myscript# cat print5times.py
#!/usr/bin/python3
x = "Python Network Automation\n"
print(x*5)

Now we checked that the shebang line is on the first line, let’s run the Python script from the working 
directory. It should print x five times, as shown here:

root@ubuntu20s1:~/myscript# ./print5times.py
Python Network Automation
Python Network Automation
Python Network Automation
Python Network Automation
Python Network Automation

④ What if you wanted to run the application even without ./?. You can use a Linux command 
PATH="$(pwd):$PATH", but as soon as your Linux terminal session ends, the added PATH disappears.

root@ubuntu20s1:~/myscript# ls -lh print5times.py
-rwxr-xr-x 1 root root 64 Jun  6 11:23 print5times.py
root@ubuntu20s1:~/myscript# PATH="$(pwd):$PATH"
root@ubuntu20s1:~/myscript# print5times.py
Python Network Automation
Python Network Automation
Python Network Automation
Python Network Automation
Python Network Automation

⑤ To permanently add the /root/myscript directory or the current directory you are working into the 
PATH variable, you can use the following command. Now even after you have exited the session and 
come back, you should still be able to run the script without ./. After adding the path, make sure you 
restart the bash by executing the source ~/.bashrc  or exec bash command to make the change take 
effect.

root@ubuntu20s1:~/myscript# echo "export PATH=\$PATH:$(pwd)" >> ~/.bashrc
root@ubuntu20s1:~/myscript# exec bash  #(source ~/.bashrc)  restarts bash
root@ubuntu20s1:~/myscript# print5times.py
Python Network Automation
Python Network Automation
Python Network Automation
Python Network Automation
Python Network Automation



CHapTeR 7 ■ LInUx FUndamenTaLS

327

 You want to study more Linux and get certified?

If you want to study Linux further, you will need to study Linux profession Institute 101 and Red Hat’s RHCSa/
RHCe. For those of you who have spare time and money, there are plenty of free and paid training programs 
available both online and offline. If you are interested in the LpI and RHCe certification track, please refer to the 
following link.

Linux professional institute URL:

https://www.lpi.org/our- certifications/exam- 101- objectives

Red Hat Certified System administrator (RHCSa) URL: https://www.redhat.com/en/services/certification/rhcsa

Red Hat Certified engineer:

https://www.redhat.com/en/services/certification/rhce

 Summary
Now, this completes the file and directory exercises. We have covered only the tip of an iceberg here, but it’s 
enough for you to perform your tasks in later Python network automation labs. You have to practice Linux 
file and directory navigation regularly, if not each day, to become accustomed to it. This is where all the 
magic begins with your Python network automation.

In the following chapter, we will quickly cover some basic Linux commands to locate important Linux 
system information. In the real production environment, you will not be fortunate enough to choose the 
flavor of Linux you like or always have root access to the servers. You must know how to find your new Linux 
system information and find compatible software for your Linux tools, Python, and related modules.

https://www.lpi.org/our-certifications/exam-101-objectives
https://www.redhat.com/en/services/certification/rhcsa
https://www.redhat.com/en/services/certification/rhce


329
© Brendan Choi 2021 
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_8

CHAPTER 8

Linux Basic Administration

There are plenty of books on Linux topics, and some of these books focus on only one Linux distribution 
while being hundreds of pages long. Continuing from the previous chapter, we will be covering the most 
fundamental Linux subjects in this chapter so that you can get through this book. If you are a newcomer 
to Linux and want to understand more about the Linux operating system (OS), it is a good idea to use a 
dedicated Linux book. You will learn to locate Linux system information, use Linux network commands, and 
then install TFTP, FTP, SFTP, and NTP services on your CentOS 8.1 server.

 

 Information on Linux: Kernel and Distribution Version
Most of the new Linux users come up with this first question, “How can I check the exact Linux distribution 
version and kernel?” The Linux kernel is the main component of a Linux OS and is the core interface 
between a computer’s hardware and processes. How do you check the Linux kernel and distribution 
versions on your OS? The exercises in this chapter are based on CentOS (a Red Hat–based OS), and due to 
the command syntax of different Linux distributions, some commands used might not work on Debian-
based OSs (Ubuntu). If this is the case, then you will be reminded of such differences. However, most of the 
Linux commands across different Linux distributions are similar.

https://doi.org/10.1007/978-1-4842-6806-3_8#DOI


Chapter 8 ■ Linux BasiC administration

330

① How do you check the Linux kernel version? Use the uname command with different options; the 
commands used on CentOS and Ubuntu are the same for uname commands.

For CentOS 8.1
[root@centos8s1 ~]# uname
Linux
[root@centos8s1 ~]# uname -o
GNU/Linux
[root@centos8s1 ~]# uname -r
4.18.0-193.14.2.el8_2.x86_64
[root@centos8s1 ~]# uname -or
4.18.0-193.14.2.el8_2.x86_64 GNU/Linux

For Ubuntu 20.04 LTS
root@ubuntu20s1:~# uname
Linux
root@ubuntu20s1:~# uname -o
GNU/Linux
root@ubuntu20s1:~# uname -r
5.4.0-47-generic
root@ubuntu20s1:~# uname -or
5.4.0-47-generic GNU/Linux

② The following exercise is an additional uname command exercise that stores null-terminated operating 
system information strings into structured references by name. Run the uname commands with 
different options. Note, the same commands can be used on a Ubuntu 20.04 LTS server.

[root@centos8s1 ~]# uname –a                     # -a option for all
Linux centos8s1 4.18.0-193.14.2.el8_2.x86_64 #1 SMP Sun Jul 26 03:54:29 UTC 2020 
x86_64 x86_64 x86_64 GNU/Linux
[root@centos8s1 ~]# uname -n                     # -n for name or hostname
centos8s1
[root@centos8s1 ~]# uname -r                     # -r for Linux kernel version
4.18.0-193.14.2.el8_2.x86_64
[root@centos8s1 ~]# uname -m                     # -m for system architecture
x86_64
[root@centos8s1 ~]# uname -v                     # -v for system time and timezone
#1 SMP Sun Jul 26 03:54:29 UTC 2020
[root@centos8s1 ~]# uname -rnmv                     # combined options
centos8s1 4.18.0-193.14.2.el8_2.x86_64 #1 SMP Sun Jul 26 03:54:29 UTC 2020 x86_64

③ On CentOS and Red Hat–based Linux OSs, you can also use the grep command to check the Grub 
Environment Block. Use the grep saved_entry /boot/grub2/grubenv command. This command 
does not work on Debian-based Linux distributions.

For CentOS 8.1
[root@centos8s1 ~]# grep saved_entry /boot/grub2/grubenv
saved_entry=e53c131bb54c4fb1a835f3aa435024e2-4.18.0-193.14.2.el8_2.x86_64



Chapter 8 ■ Linux BasiC administration

331

④ Use hostnamectl to check the hostname, OS, kernel version, architecture, and more.

For CentOS 8.1
[root@centos8s1 ~]# hostnamectl
   Static hostname: centos8s1
      Icon name: computer-vm
         Chassis: vm
      Machine ID: e53c131bb54c4fb1a835f3aa435024e2
         Boot ID: 648950d070634d3e856b015f4a7cf7cd
   Virtualization: vmware
Operating System: CentOS Linux 8 (Core)
   CPE OS Name: cpe:/o:centos:centos:8
      Kernel: Linux 4.18.0-193.14.2.el8_2.x86_64
   Architecture: x86-64

For Ubuntu 20.04 LTS
root@ubuntu20s1:~# hostnamectl
   Static hostname: ubuntu20s1
      Icon name: computer-vm
         Chassis: vm
      Machine ID: ea202235f9834d979436db10d89b1347
         Boot ID: 9bcbe4f6d00e407a81634dd61d74ff39
   Virtualization: vmware
Operating System: Ubuntu 20.04.1 LTS
      Kernel: Linux 5.4.0-47-generic
   Architecture: x86-64

⑤ You can also use the lsb_release –d command to check your OS. Unlike Ubuntu OS, CentOS does 
not have lsb pre-installed. You can install it by using the yum install –y redhat-lsb command or 
just running lsb_release –d and, when prompted, say Y to install.

For CentOS 8.1
[root@centos8s1 ~]# lsb_release -d
[root@centos8s1 ~]# yum install -y redhat-lsb
[root@centos8s1 ~]# lsb_release -d
Description:    CentOS Linux release 8.2.2004 (Core)

You can also use the –sc and –a options to view even more information about your Linux operating 
system.

For Ubuntu 20.04 LTS
root@ubuntu20s1:~# lsb_release -d
Description:    Ubuntu 20.04.1 LTS
root@ubuntu20s1:~# lsb_release -sc
focal
root@ubuntu20s1:~# lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description:    Ubuntu 20.04.1 LTS
Release:        20.04
Codename:       focal



Chapter 8 ■ Linux BasiC administration

332

⑥ You can also use the cat command to output information under the /etc/ directory. Notice that this 
works on CentOS, but not on Ubuntu, so the better way to view the system information is to use cat 
with a wildcard *. See the next exercise.

For CentOS 8.1
[root@centos8s1 ~]# cat /etc/centos-release
CentOS Linux release 8.2.2004 (Core)
[root@centos8s1 ~]# cat /etc/system-release
CentOS Linux release 8.2.2004 (Core)

⑦ To check your Linux’s distro release version information, use the cat /etc/*release command. This 
cat command is a good Linux command to remember as it provides an abundance of information on 
your Linux operating system. This command works on both CentOS and Ubuntu Linux OS.

[root@centos8s1 ~]# cat /etc/*release
CentOS Linux release 8.2.2004 (Core)
NAME="CentOS Linux"
VERSION="8 (Core)"
ID="centos"
ID_LIKE="rhel fedora"
VERSION_ID="8"
PLATFORM_ID="platform:el8"
PRETTY_NAME="CentOS Linux 8 (Core)"
ANSI_COLOR="0;31"
CPE_NAME="cpe:/o:centos:centos:8"
HOME_URL="https://www.centos.org/"
BUG_REPORT_URL="https://bugs.centos.org/"

CENTOS_MANTISBT_PROJECT="CentOS-8"
CENTOS_MANTISBT_PROJECT_VERSION="8"
REDHAT_SUPPORT_PRODUCT="centos"
REDHAT_SUPPORT_PRODUCT_VERSION="8"

CentOS Linux release 8.2.2004 (Core)
CentOS Linux release 8.2.2004 (Core)

Also, try to run the cat /etc/os-release command and check the difference.

 Information on Linux: Use the netstat Command to Validate 
TCP/UDP Ports
To get you ready for IP services installation, make your Linux servers useful for our lab, and apply what you 
have learned in the production, you first have to know how to use some Linux network tools. All devices are 
running on some network segment and are connected on the network; hence, we have to be aware of which 
ports are opened or closed. In other words, which IP services are running and available to your users are part 
of server network security, which can be part of network access control. Let’s see how we can check network 
configurations on Linux systems.



Chapter 8 ■ Linux BasiC administration

333

① First, to get the list of all network interfaces on your Linux server, use netstat –i.

[root@centos8s1 ~]# netstat -i

Kernel Interface table

Iface MTU RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg

ens160 1500 5601 0 0 0 2587 0 0 0 BMRU

lo 65536 0 0 0 0 0 0 0 0 LRU

virbr0 1500 0 0 0 0 0 0 0 0 BMU

② To practice our netstat commands, let’s install the nginx web services server on your CentOS server 
and start web services. After starting the Nginx web services, run the netstat –tulpn : grep :80 
command to confirm that your CentOS server is listening on port 80 on the local interface.

For CentOS 8.1, install and start the nginx web server.
[root@centos8s1 ~]# yum install -y nginx
[root@centos8s1 ~]# whatis nginx
nginx (3pm)          - Perl interface to the nginx HTTP server API
nginx (8)            - "HTTP and reverse proxy server, mail proxy server"
[root@centos8s1 ~]# whereis nginx
nginx: /usr/sbin/nginx /usr/lib64/nginx /etc/nginx /usr/share/nginx /usr/share/man/
man3/nginx.3pm.gz /usr/share/man/man8/nginx.8.gz
[root@centos8s1 ~]# systemctl start nginx
[root@centos8s1 ~]# netstat -tulpn | grep :80
tcp     0      0 0.0.0.0:80       0.0.0.0:*        LISTEN      6046/nginx: master
tcp6    0      0 :::80                 :::*        LISTEN      6046/nginx: master

At this point, if you log into your CentOS desktop through VMware’s main console, you will 
be able to open the Nginx home page in the Firefox web browser using http://localhost or 
http://192.168.183.130. See Figure 8-1.



Chapter 8 ■ Linux BasiC administration

334

③ To permanently enable HTTP connections on port 80 and allow other machines to connect via HTTP, 
add the HTTP service into the CentOS firewall’s services list. Then verify that the HTTP firewall 
service is running correctly. To apply the changes, you must reload the firewall service using the 
firewall-cmd --reload command. The full commands are listed here:

[root@centos8s1 ~]# firewall-cmd --permanent --add-service=http
success
[root@centos8s1 ~]# firewall-cmd --permanent --list-all
public
target: default
icmp-block-inversion: no
interfaces:
sources:
services: cockpit dhcpv6-client ftp http ntp ssh tftp
ports: 40000-41000/tcp
protocols:
masquerade: no
forward-ports:
source-ports:
icmp-blocks:
rich rules:

[root@centos8s1 ~]# firewall-cmd --reload
success

Figure 8-1. CenOS desktop, opening http://192.168.183.130



Chapter 8 ■ Linux BasiC administration

335

There is no DNS server in our network, so we have to use our CentOS server’s IP address. We already 
know that our server IP is 192.168.183.130, but to verify this information, let’s run the following 
command. Optionally, you can use the ip add command and browse through the information.

[root@centos8s1 ~]# ip addr show ens160 | grep inet | awk '{ print $2; }' | sed 
's/\/.*$//'
192.168.183.130
fe80::f49c:7ff4:fb3f:bf32

[root@centos8s1 ~]# ip add
[...omitted for brevity]
2: ens160: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group 
default qlen 1000
    link/ether 00:0c:29:85:a6:36 brd ff:ff:ff:ff:ff:ff
    inet 192.168.183.130/24 brd 192.168.183.255 scope global noprefixroute ens160
    valid_lft forever preferred_lft forever
    inet6 fe80::f49c:7ff4:fb3f:bf32/64 scope link noprefixroute
    valid_lft forever preferred_lft forever
[...omitted for brevity]

At this point, you can open a web browser from your Windows 10 host PC/laptop and open the Nginx 
home page using http://192.168.183.130. Now you have successfully installed Nginx and opened 
port 80 on your server. See Figure 8-2.

Figure 8-2. Windows host, opening http://192.168.183.130



Chapter 8 ■ Linux BasiC administration

336

④ To list all the TCP or UDP ports on your Linux server, you can use the netstat –a command; the  
 -a option stands for all. You can specify the -t option for TCP ports only or the -u option for UDP 
ports in use.

For TCP:

[root@centos8s1 ~]# netstat -at

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 centos8s1:smux 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:hostmon 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:sunrpc 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:http 0.0.0.0:* LISTEN

tcp 0 0 centos8s1:domain 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:ssh 0.0.0.0:* LISTEN

tcp 0 0 centos8s1:ipp 0.0.0.0:* LISTEN

tcp 0 64 centos8s1:ssh 192.168.183.1:54572 ESTABLISHED

tcp6 0 0 [::]:hostmon [::]:* LISTEN

tcp6 0 0 [::]:sunrpc [::]:* LISTEN

tcp6 0 0 [::]:http [::]:* LISTEN

tcp6 0 0 [::]:ftp [::]:* LISTEN

tcp6 0 0 [::]:ssh [::]:* LISTEN

tcp6 0 0 centos8s1:ipp [::]:* LISTEN



Chapter 8 ■ Linux BasiC administration

337

For UDP

[root@centos8s1 ~]# netstat -au

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

udp 0 0 0.0.0.0:48026 0.0.0.0:*

udp 0 0 centos8s1:58365 _gateway:domain ESTABLISHED

udp 0 0 centos8s1:domain 0.0.0.0:*

udp 0 0 127.0.0.53:domain 0.0.0.0:*

udp 0 0 0.0.0.0:bootps 0.0.0.0:*

udp 0 0 centos8s1:bootpc 192.168.183.254:bootps ESTABLISHED

udp 0 0 0.0.0.0:tftp 0.0.0.0:*

udp 0 0 0.0.0.0:sunrpc 0.0.0.0:*

udp 0 0 0.0.0.0:ntp 0.0.0.0:*

udp 0 0 0.0.0.0:snmp 0.0.0.0:*

udp 0 0 0.0.0.0:mdns 0.0.0.0:*

udp 0 0 0.0.0.0:hostmon 0.0.0.0:*

udp 0 0 centos8s1:323 0.0.0.0:*

udp6 0 0 [::]:tftp [::]:*

udp6 0 0 [::]:sunrpc [::]:*

udp6 0 0 [::]:mdns [::]:*

udp6 0 0 [::]:hostmon [::]:*

udp6 0 0 centos8s1:323 [::]:*

udp6 0 0 [::]:53619 [::]:*

⑤ If you want to list only the listening ports, then netstat –l can be used. The list was too long, so the 
following output only shows the top of the listening port information, but perhaps you can run this 
command on your CentOS VM and study the returned result.

[root@centos8s1 ~]# netstat -l

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 centos8s1:smux 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:hostmon 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:sunrpc 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:http 0.0.0.0:* LISTEN

tcp 0 0 centos8s1:domain 0.0.0.0:* LISTEN

[...omitted for brevity]



Chapter 8 ■ Linux BasiC administration

338

⑥ Like the netstat –a command, netstat –l also can be used with the –t or –u option for TCP- and 
UDP-only information. netstat –lt will only list TCP listening ports, whereas netstat –lu lists only 
UDP listening ports.

netstat -lt
netstat -lu

Run the previous commands on your Linux concole and see what output you receive from your 
CentOS server.

⑦ If you want to check which process uses a specific port, you can check it by typing netstat –an 
combined with a pipe (|) and grep ':port_number'.  So if you want to check who is using SSH (port 
22), you would issue the netstat –an | grep ':22' command.

netstat –an | grep ':22' <<< for SSH service
[root@centos8s1 ~]# netstat -an | grep ':22'
tcp        0     0 0.0.0.0:22                0.0.0.0:*                LISTEN
tcp        0     64 192.168.183.130:22       192.168.183.1:54572      ESTABLISHED
tcp6       0     0 :::22

netstat –an | grep ':80'  <<< for http service
[root@centos8s1 ~]# netstat -an | grep ':80'
tcp        0     0 0.0.0.0:80                0.0.0.0:*          LISTEN
tcp6       0     0 :::80                     :::*               LISTEN

⑧ To check which IP network services are running on your server, you can issue the netstat –ap 
command. Here is an example of the netstat –ap | grep ssh command:

[root@centos8s1 ~]# netstat -ap | grep ssh
tcp   0      0 0.0.0.0:ssh     0.0.0.0:*            LISTEN       1257/sshd
tcp   0     64 centos8s1:ssh   192.168.183.1:54572  ESTABLISHED  1609/sshd: root [pr
tcp6  0     0 [::]:ssh         [::]:*               LISTEN       1257/sshd
unix  2      [ ]         STREAM     CONNECTED     42663    1609/sshd: root [pr
unix  2      [ ]         STREAM     CONNECTED     35797    1609/sshd: root [pr
unix  2      [ ]         STREAM     CONNECTED     43450    2204/sshd: root@pts
unix  2      [ ]         DGRAM                    43437    1609/sshd: root [pr
unix  3      [ ]         STREAM     CONNECTED     43441    1609/sshd: root [pr
unix  3      [ ]         STREAM     CONNECTED     43440    2204/sshd: root@pts
unix  3      [ ]         STREAM     CONNECTED     32383    1257/sshd
unix  2      [ ]         STREAM     CONNECTED     32584    1257/sshd

⑨ Display the process ID (PID) and program names in your output; you can use the netstat –pt 
command. It will display the protocol, IP service, and IP address information for your reference. The 
following command displays the netstat –pt output of an active SSH connection:

[root@centos8s1 ~]# netstat -pt
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address  Foreign Address    State      PID/Program name
tcp   0   64 centos8s1:ssh   192.168.183.1:54572     ESTABLISHED 1609/sshd: root [pr



Chapter 8 ■ Linux BasiC administration

339

⑩ The last set of commands consists of statistics commands; since the output is quite long, you can 
run the following commands from your CentOS VM console. Your clue to the –s handle is the word 
statistics.

Please run the following commands from your CentOS Linux server to study the output at your own 
pace:

[root@centos8s1 ~]# netstat –s
[root@centos8s1 ~]# netstat –st
[root@centos8s1 ~]# netstat -su

 Installing TFTP, FTP, SFTP, and NTP Servers

 here is a quick vocabulary lesson for non-CCna readers:

FTP: File transfer protocol

SFTP: secure File transfer protocol

TFTP: trivial File transfer protocol

NTP: network time protocol

In the world of business, PC end users and IT engineers alike use all kinds of network services 
supported within their network. Among the many IP services, the most popular network services used 
and supported by network and system engineers today include FTP, SFTP, TFTP, and NTP services. Each 
service can be installed on multiple distributed servers or even on networking platforms if the installation 
and configuration are supported. But in the lab, there is no reason to distribute network services across four 
separate virtual servers to support four different network services. Since we already have installed Nginx 
services, this makes five IP services on a single server. You can install all services on a single Linux server 
for testing purposes, but these services could be distributed across multiple servers in a real production 
environment.

In the production environment, FTP, SFTP, and TFTP are file services that require a large amount of 
storage space. The mass storage requirement means that these services are usually almost always installed 
on enterprise Linux or Windows servers, but not on networking devices such as routers and switches. NTP 
is a time service, so this service can run from Cisco routers. In NTP’s case, the time synchronization service 
is provided so that both servers and network devices can run on standard time. All four of these IP services 
can be bundled into a single server and used as the IP services server in our lab for convenience. If you are 
coming from a pure networking background, you probably do not have a lot of experience building and 
supporting the Linux servers’ enterprise IP services. Wouldn’t it be great to have a better understanding of 
both the network and systems administration skill sets? Knowing more is freedom. Let’s install FTP, SFTP, 
TFTP, and NTP servers on the CentOS 8 server for lab purposes. Remember, we are reserving the Ubuntu 
server as a Python + Docker server for later labs.



Chapter 8 ■ Linux BasiC administration

340

 FTP Server Installation
File Transfer Protocol (FTP) is a secure and stable network service designed to send and receive many 
files between the server and clients. In other words, the simple advantage is that you can quickly send and 
receive files simultaneously compared to slower TFTP. FTP uses TCP port 21 by default and is less secure 
than its secure version, SFTP. There are several open source FTP servers available for Linux, for example, 
PureFTPd, ProFTPD, and vsftpd. In our example, we will install and use Very Secure FTP daemon (vsftpd) 
as it is secure, stable, and fast. First, let’s check if the FTP service is running on our CentOS 8 server.

The FTP server installation and verification in CentOS 8 are as follows:

① While installing the CentOS 8 virtual machine, we have selected to install the FTP server, but we do 
not know exactly which software version is installed. By default, CentOS will install vsftpd when you 
choose to install the FTP server from the installation media. Run the vsftpd –version command to 
check the current version of vsftpd on your CentOS server.

As expected, vsftpd version 3.0.3 is available.
[root@centos8s1 ~]# vsftpd -version
vsftpd: version 3.0.3

If you do not have the FTP software installed on your CentOS server, use the following two commands 
to complete your installation:

[root@centos8s1 ~]# sudo yum makecache
[root@centos8s1 ~]# yum install -y vsftpd

② Check if vsftpd is running on your server by typing systemctl status vsftpd.
[root@centos8s1 ~]# systemctl status vsftpd
● vsftpd.service - Vsftpd ftp daemon
    Loaded: loaded (/usr/lib/systemd/system/vsftpd.service; enabled; vendor preset: 

disabled)
    Active: active (running) since Mon 2021-01-04 19:15:34 AEDT; 1h 43min ago
    Process: 1238 ExecStart=/usr/sbin/vsftpd /etc/vsftpd/vsftpd.conf (code=exited, 

status=0/SUCCESS)
   Main PID: 1248 (vsftpd)
Tasks: 1 (limit: 11166)
Memory: 932.0K
CGroup: /system.slice/vsftpd.service
      ice248 /usr/sbin/vsftpd /etc/vsftpd/vsftpd.conf

Jan 04 19:15:33 centos8s1 systemd[1]: Starting Vsftpd ftp daemon...
Jan 04 19:15:34 centos8s1 systemd[1]: Started Vsftpd ftp daemon.

Use Ctrl+C to exit from the vsftpd status file.

③ You want the vsftpd daemon to start automatically during OS startup, so you must enable this service 
with the systemctl enable command. Once you have enabled the vsftpd service, use the same 
status command used previously to check the running status. When Active is active (running), then 
the vsftpd service is active and working correctly.

[root@centos8s1 ~]# systemctl enable vsftpd --now
[root@centos8s1 ~]# systemctl status vsftpd



Chapter 8 ■ Linux BasiC administration

341

④ To use FTP for the lab, a few lines of the vsftpd.conf file need to be updated. Open the vsftpd.conf 
file in nano, check the existing configuration, and add a few configuration lines.

[root@centos8s1 ~]# nano /etc/vsftpd/vsftpd.conf

The following configuration should be ready out of the box, but configure the settings as follows if 
they are different:

anonymous_enable=NO
local_enable=YES
write_enable=YES

To control the access to the FTP server using user_list, add the following lines after userlist_
enable=YES:

userlist_file=/etc/vsftpd/user_list
userlist_deny=NO

To grant writable access to your user to its home directory, use this:

allow_writeable_chroot=YES

Also, vsftpd can use any port range for passive FTP connections. It is best practice to specify the port 
range for this use. Append the following configuration at the end of the vsftpd.conf file and save the 
file:

pasv_enable=YES
pasv_min_port=40000
pasv_max_port=41000

To change where the files are uploaded and downloaded, update the local_root configuration. In 
this example, $USER will take your user’s ID and open FTP sessions from the /home/pynetauto/ftp 
directory.

user_sub_token=$USER
local_root=/home/$USER/ftp

After checking and updating the previous settings, append the following lines at the end of the  
/etc/vsftpd/vsftpd.conf file:

### ADDED by Admin ###
# Use user_list
userlist_file=/etc/vsftpd/user_list
userlist_deny=NO
# Allow writeable_chroot to the user
allow_writeable_chroot=YES
# Control passive port range to use between 40000-41000
pasv_enable=YES
pasv_min_port=40000
pasv_max_port=41000
# Use ftp directory under /home/user/
user_sub_token=$USER
local_root=/home/$USER/ftp

Remember the last line: local_root = /home/$USER/ftp. Make sure you create a local folder called 
ftp for the FTP access. We will be using the standard user to log into the FTP server, in my example, 
the /home/pynetauto/ftp directory.

[pynetauto@centos8s1 ~]$ mkdir ftp



Chapter 8 ■ Linux BasiC administration

342

⑤ Use the vi editor to change the FTP server configuration file so that all users can access it. Now add 
your user ID to the user_list file under /etc/vsftpd.

[root@centos8s1 ~]# vi /etc/vsftpd/user_list
# vsftpd userlist
# If userlist_deny=NO, only allow users in this file
# If userlist_deny=YES (default), never allow users in this file, and
# do not even prompt for a password.
# Note that the default vsftpd pam config also checks /etc/vsftpd/ftpusers
# for users that are denied.
root
bin
[...omitted for brivety]
nobody
pynetauto
~
"/etc/vsftpd/user_list" 21L, 371C

⑥ Once the changes have been saved to the file, open FTP and passive ports using the firewall-cmd 
commands. To allow firewall access to the FTP ports 20 and 21, run the following command:

firewall-cmd --add-service=ftp --permanent
(OR firewall-cmd --permanent --add-port=20-21/tcp)
firewall-cmd --permanent --add-port=40000-41000/tcp
setsebool -P ftpd_full_access on
firewall-cmd --reload

⑦ Make sure that systemctl enable vsftpd is issued to make vsftpd start automatically at the system 
startup. Also, here are the FTP troubleshooting commands for you to use. Use these commands as 
required to keep the service up and running.

systemctl enable vsftpd.service
systemctl start vsftpd.service
systemctl restart vsftpd.service
systemctl stop vsftpd.service
systemctl status vsftpd.service

We have learned netstat commands in the previous section, and you can use netstat commands to 
check that the FTP services are running smoothly.

netstat -ap | grep ftp
netstat -tupan | grep 21
netstat -na | grep tcp6

⑧ If the FTP service is working correctly, you should open your favorite web browser and open the 
FTP page using ftp://SERVER_IP_ADDRESS for your server. If you are prompted with the user ID and 
password, enter your details. See Figure 8-3.

ftp://192.168.183.130/



Chapter 8 ■ Linux BasiC administration

343

⑨ You can also download the FileZilla client from your Windows host PC or Linux desktop and connect 
to your new FTP server using port 21.

URL: https://filezilla- project.org/download.php?platform=win64

 ■ Tip enter ftp://192.168.183.130 in the host field. see Figure 8-4.

Figure 8-3. CentOS FTP server, FTP opened in Firefox web browser

https://filezilla-project.org/download.php?platform=win64


Chapter 8 ■ Linux BasiC administration

344

⑩ WinSCP is also another Windows application that comes in handy when connecting to your FTP 
server for file management. Upload or download between your host’s Windows OS and CentOS 8 
Linux server. See Figure 8-5 and Figure 8-6.

You can download WinSCP for free from the following URL:

URL: https://winscp.net/eng/download.php

Figure 8-4. FileZilla client connected to FTP server

https://winscp.net/eng/download.php


Chapter 8 ■ Linux BasiC administration

345

You have completed the setup and FTP server login testing. You can now use the FTP server to share 
various files, such as IOS and configuration files, between the server and other network devices. Of course, 
you can also use FTP to back up router and switch configurations.

Figure 8-5. WinSCP, connecting to CentOS FTP server

Figure 8-6. WinSCP, Connected to CentOS FTP server



Chapter 8 ■ Linux BasiC administration

346

 use the find command to determine the directory or file location containing a file or directory name. in 
the following example, we are looking for the pub directory, which is usually the ftp default directory under the 
./var/ftp/ directory.

[root @ localhost ~] # cd /
[root @ localhost /] # find . -name "pub"

 Installing the SFTP Server
Secure File Transfer Protocol (SFTP) refers to the Secure FTP method to share files securely over the 
network. The difference between SFTP and FTP is whether the data sent across the network is encrypted or 
unencrypted. SFTP uses TCP/UDP port 22 as its default port. In most of the file transfer scenarios over the 
SFTP protocol, TCP 22 port will be used. UDP 22 was included in the TCP/IP development process at the 
developer’s request but was not fully implemented. So, it is safe to say, SFTP mainly uses TCP port 22.

vsftpd was configured as FTP, but it is also an SFTP server. Since we already have vsftpd version 3.0.3 
installed, we will configure this as an SFTP server too, running alongside the FTP server.

① First, log into CentOS 8 VM as the root user via the SSH client, PuTTY. You do not need to install new 
software for SFTP, but to begin, you need to create an SFTP-specific user account. Use adduser and 
passwd to create a new user for SFTP file transfer; the username created here is sftpuser.

[root@centos8s1 ~]# adduser sftpuser
[root@centos8s1 ~]# passwd sftpuser
Changing password for user sftpuser.
New password: **********
Retype new password: **********
passwd: all authentication tokens updated successfully.

A quick tip: if you want to remove and re-create a user, you can use userdel command. To delete the 
user’s home directory and mail pool, add –r.

[root@centos8s1 ~]# userdel -r sftpuser

② Create a directory sftp under the /var/ directory and then create another child directory sftpdata 
under the /var/sftp/ directory, where you will store and share your files. The directory name given 
here is sftpdata.

[root@centos8s1 ~]# mkdir -p /var/sftp/
[root@centos8s1 ~]# mkdir -p /var/sftp/sftpdata



Chapter 8 ■ Linux BasiC administration

347

③ Change the ownership of the sftp directory so that sftpuser can change the contents of /var/sftp.
Make the root user become the owner of the /var/sftp/ directory. Change the permissions to 75 
5 so that sftpuser can modify directories and files. Make the sftpuser user the owner of the  
/var/sftp/sftpdata directory.

[root@centos8s1 ~]# chown root:root /var/sftp
[root@centos8s1 ~]# chmod 755 /var/sftp
[root@centos8s1 ~]# chown sftpuser:sftpuser /var/sftp/sftpdata

④ To restrict SSH access to the /var/sftp/sftpdata directory, you have to modify the sshd_config file 
in the /etc/ssh/ directory. Open the sshd_config file to add/modify the following configuration. 
Copy the contents specified here to the bottom of the configuration file and save it.

[root@centos8s1 ~]# vi /etc/ssh/sshd_config

# Add the following to the end of the file.

### ADDED by Admin ###
Match User sftpuser
ForceCommand internal-sftp
PasswordAuthentication yes
ChrootDirectory /var/sftp
PermitTunnel no
AllowAgentForwarding no
AllowTcpForwarding no
X11Forwarding no

⑤ Restart the sshd service for the previous change to take effect.

[root@centos8s1 ~]# systemctl restart sshd

⑥ If you try to SSH into the CentOS server using the sftpuser account, the connection will be refused 
and disconnected. Even though SSH and SFTP use the same connection port, the sftpuser account 
can only be used for SFTP connections but not SSH connections. Give it a try.

[root@centos8s1 ~]# ssh sftpuser@192.168.183.130
The authenticity of host '192.168.183.130 (192.168.183.130)' can't be established.
ECDSA key fingerprint is SHA256:b17PV5polHEKIcl+cFUCGA1KHGcl7xJkw/jhTf0kfZY.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '192.168.183.130' (ECDSA) to the list of known hosts.
sftpuser@192.168.183.130's password: ********
This service allows sftp connections only.
Connection to 192.168.183.130 closed.

⑦ This time, try to connect to the SFTP server using the sftp command. Enter the password to login, 
then use Ctrl+Z to disconnect from the SFTP server.

[root@centos8s1 ~]# sftp sftpuser@192.168.183.130
sftpuser@192.168.183.130's password: ********
Connected to sftpuser@192.168.183.130.
sftp>

Press Ctrl+Z to disconnect from the sftp server.

[1]+  Stopped                 sftp sftpuser@192.168.183.130



Chapter 8 ■ Linux BasiC administration

348

⑧ Use the following commands to check if port 22 and sshd are working correctly (see Figure 8-7):

[root@centos8s1 ~]# netstat -ap | grep sshd
[root@centos8s1 ~]# netstat -tupan | grep 22
[root@centos8s1 ~]# netstat -na | grep tcp6

⑨ Finally, verify that your SFTP server is working correctly. You can use Windows applications such as 
FileZilla or WinSCP with user ID sftpuser, your password, and connecting port 22. See Figure 8-8 and 
Figure 8-9.

Figure 8-7. CentOS, netstat -tupan | grep 22 example



Chapter 8 ■ Linux BasiC administration

349

Figure 8-8. FileZilla client, SFTP connection example

Figure 8-9. WinSCP, SFTP connection example



Chapter 8 ■ Linux BasiC administration

350

 How do you print out all the usernames configured on your Linux server?

Just run the following command:

[root@centos8s1 ~]# awk -F ':' '{print $ 1}' /etc/passwd

root

bin

daemon

adm

[... omitted for brevity]

tcpdump

pynetauto

nginx

sftpuser

tftpuser

Now your CentOS server is running SFTP services for secure file sharing over the network. Whenever 
possible, SFTP must be used over FTP or TFTP for secure file transfers between two nodes (devices). Next is 
the installation of TFTP and its configuration.

 Installing the TFTP Server
Trivial File Transfer Protocol (TFTP) uses UDP 69 as its default communication port. Because TFTP uses 
UDP, it has a much lighter operation than FTP or SFTP for file transfers. TFTP has been one of the most 
common file-sharing methods used to send and receive Cisco IOS or NX-OS images or configuration files 
across an internal network. It is still in use in many networks, but it still uses plain text for communication, 
and file transfer over UDP does not always guarantee the complete file transfer or security.

As mentioned, in the real production environment, you will not run all FTP, SFTP, and TFTP services on the 
same server at once, but we are working in the lab environment to collapse all three servers into one. Installing 
TFTP on CentOS 8 is similar to installing vsftpd. Let’s go ahead and install the TFTP server for our lab use. It is 
important to remember that you always learn more and take away more when you build the lab yourself.

① First, log in to CentOS 8.1 using the root user account and SSH into the server using PuTTY. As soon as 
you have logged in, check the firewall status by running the systemctl status firewalld command.

[root@centos8s1 ~]# systemctl status firewalld
●ifirewalld.service - firewalld - dynamic firewall daemon
   Loaded: loaded (/usr/lib/systemd/system/firewalld.service; enabled; vendor preset: 
enabled)

  Active: active (running) since Mon 2021-01-04 19:15:30 AEDT; 3h 18min ago
    Docs: man:firewalld(1)
Main PID: 1111 (firewalld)
  Tasks: 3 (limit: 11166)
  Memory: 33.8M
  CGroup: /system.slice/firewalld.service
       ervicewausr/libexec/platform-python -s /usr/sbin/firewalld --nofork --nopid



Chapter 8 ■ Linux BasiC administration

351

② Change the server firewall setting using the following command to enable TFTP traffic to 
communicate with your server:

[root@centos8s1 ~]# firewall-cmd --permanent --zone=public --add-service=tftp
[root@centos8s1 ~]# firewall-cmd --reload

③ Use yum install command to install tftp-server, xinetd service daemon and tftp client package. Run 
the following set of commands to complete your installation on your CentOS server:

[root@centos8s1 ~]# yum install xinetd tftp-server tftp
[root@centos8s1 ~]# systemctl enable xinetd tftp
[root@centos8s1 ~]# systemctl start xinetd tftp

[root@centos8s1 ~]# systemctl status xinetd
●ixinetd.service - Xinetd A Powerful Replacement For Inetd
  Loaded: loaded (/usr/lib/systemd/system/xinetd.service; enabled; vendor preset: 
enabled)
  Active: active (running) since Mon 2021-01-04 19:15:34 AEDT; 3h 20min ago
    Docs: man:xinetd
        man:xinetd.conf
        man:xinetd.log
  Process: 1245 ExecStart=/usr/sbin/xinetd -stayalive -pidfile /var/run/xinetd.pid 
(code=exited, status=0/SUCCESS)
  Main PID: 1281 (xinetd)
    Tasks: 1 (limit: 11166)
  Memory: 1.3M
  CGroup: /system.slice/xinetd.service
        ice281 /usr/sbin/xinetd -stayalive -pidfile /var/run/xinetd.pid

④ Now that we know the TFTP server service is running correctly, we want to create a user account 
named tftpuser to assign just enough privileges to do its job, which is file transfer over UDP port 69. 
The tftp account created here is for system use only, so you cannot use it as a user account.

[root@centos8s1 ~]# useradd -s /bin/false -r tftpuser

⑤ Create a directory called tftpdir under the /var directory. All future TFTP file-sharing will be 
through this directory.

[root@centos8s1 ~]# mkdir /var/tftpdir

⑥ Change the permissions of the tftpdir directory so the tftp system account has permissions to this 
directory. To allow some freedom, we’ll modify the directory with chmod 777.

[root@centos8s1 ~]# chown tftpuser:tftpuser /var/tftpdir
[root@centos8s1 ~]# chmod 777 /var/tftpdir



Chapter 8 ■ Linux BasiC administration

352

⑦ Next, create a service file called tftp in /etc/xinetd.d/, copy the following content, and save the file:

[root@centos8s1 ~]# nano /etc/xinetd.d/tftp

service tftp
{
    socket_type = dgram
    protocol = udp
    wait = yes
    user = root
    server = /usr/sbin/in.tftpd
    server_args = -c -s /var/tftpdir -v -v -v -u tftpuser -p
    disable = no
    per_source = 11
    cps = 100 2
    flags = IPv4
}

⑧ For TFTP to work well within SELinux, we must update the change context (chcon) of our tftp 
directory file tftpdir.

[root@centos8s1 ~]# chcon -t tftpdir_rw_t /var/tftpdir

Let’s restart the tftp and xinetd services once more.

[root@centos8s1 ~]# systemctl restart xinetd tftp

⑨ Before performing the verification task for the TFTP server, let’s check two configurations, which 
are important for the TFTP operation on the CentOS server. First, make sure that the /etc/selinux/
config configuration is adjusted, and second, check the setsebool settings to allow tftp write and 
directory access.

First, save the file after changing SELINUX = enforcing to SELINUX = permissive. See Figure 8-10.

[root@centos8s1 ~]# nano /etc/selinux/config



Chapter 8 ■ Linux BasiC administration

353

Second, we have to check the SELinux Boolean values of tftp_anon_write and tftp_home_dir, 
so SELinux allows TFTP file transfers. Check the tftp permissions using the following getsebool 
command if both tftp_anon_write and tftp_home_dir are showing as off. You must enable them 
using the subsequent commands.

[root@centos8s1 ~]# getsebool -a | grep tftp
tftp_anon_write --> off
tftp_home_dir --> off

Update the SELinux Boolean values of tftp_anon_write and tftp_home_dir.

[root@centos8s1 ~]# setsebool -P tftp_anon_write 1
[root@centos8s1 ~]# setsebool -P tftp_home_dir 1
[root@centos8s1 ~]# getsebool -a | grep tftp
tftp_anon_write --> on
tftp_home_dir --> on

Finally, give the last restart of the xinetd and tftp services on the CentOS server.

[root@centos8s1 ~]# systemctl restart xinetd tftp

Figure 8-10. CentOS, /etc/selinux/config update



Chapter 8 ■ Linux BasiC administration

354

⑩ On another Linux machine, the ubuntu20s1 (192.168.183.129) server, install the tftp client using the 
apt install –y tftp command and perform the following verification tasks.

First, install the tftp client on the ubuntu20s1 server.

root@ubuntu20s1:~# apt install tftp

Second, create transfer_file01 and add some text as shown here:

root@ubuntu20s1:~# nano transfer_file01
This is a file transfer test file only.
Please contact the administrator if you have any issues.

root@ubuntu20s1:~# cat transfer_file01
This is a file transfer test file only.
Please contact the administrator if you have any issues.

Third, to test the tftp login to the CentOS tftp server, run tftp 192.168.183.130. Once connected, 
use the put command to upload transfer_file01 to the TFTP server (192.168.183.130).

root@ubuntu20s1:~# tftp 192.168.183.130
tftp> put transfer_file01
Sent 99 bytes in 0.0 seconds
tftp>

Now go back to the centos8s1 server and use the ls /var/tftpdir command to check that the file 
has been uploaded correctly.

[root@centos8s1 ~]# ls -lh /var/tftpdir
total 4.0K
-rw-rw-r--. 1 tftpuser  tftpuser    97 Jan  4 22:54 transfer_file01

Fourth, now the other way around, let’s download a file from the TFTP server (cenos8s1: 
192.168.183.130) to the file client (ubuntu20s1: 192.168.183.132) with the filename transfer_
file77.

On the CentOS server, let’s copy the transfer_file01 file as transfer_file77.

[root@centos8s1 ~]# cp /var/tftpdir/transfer_file01 /var/tftpdir/transfer_file77
[root@centos8s1 ~]# ls /var/tftpdir
transfer_file01  transfer_file77

On the Ubuntu server, issue the get file_name command to download the transfer_file05 file 
from the CentOS TFTP server.

root@ubuntu20s1:~# tftp 192.168.183.130
tftp> get transfer_file77
Received 99 bytes in 0.0 seconds

tftp> ^Z # Use Ctrl+Z to exit tftp mode
[1]+  Stopped                 tftp 192.168.183.130
root@ubuntu20s1:~# ls transfer*
transfer_file01  transfer_file77

You have successfully installed TFTP software on the CentOS 8 server and verified the TFTP operations 
between the server and a client. So far, FTP, SFTP, and TFTP are all up and running on the CentOS server, 
and next, you will quickly install the time services (NTP server) software on CentOS. When we test various 
scenarios in our lab or study or work, these servers will come in handy.



Chapter 8 ■ Linux BasiC administration

355

 You can check if tFtp is working properly by using net-tool. if your Centos Vm does not recognize the 
netstat command, you can use yum install -y net-tool to install it and run the following set of commands 
to check the tFtp-related port operation:

netstat -na | grep udp6

netstat –lu

netstat –ap | grep tftp

netstat -tupan

netstat –tupan | grep 69

 Installing the NTP Server
Network Time Protocol (NTP) is used to synchronize the time for enterprise devices such as servers, firewalls, 
routers, and switches. The NTP services use UDP port 123 and an IP network service that must be present in 
the corporate network to keep the time correct. The devices running in the same network segment or time zone 
need to have a consistent time, and the NTP server can provide this service to other devices. If hundreds or 
thousands of networked devices on a network all run on their hardware clock time, there will be no consistent 
timestamps for log and system files. NTP servers serve as a time aid to help the network equipment agree 
on a single referenced time. Let’s go ahead and install the NTP server on the CentOS 8 server and perform 
a quick test run for our confirmation. On the previous version of CentOS, CentOS 7.5, NTP was available for 
installation, but on CentOS 8, the chrony daemon provides both NTP server and NTP client services.

① First, use the SSH client to log into the CentOS 8 VM using the root user credentials. After you have 
logged in, check whether the server time and time zone are correct. If any of this information is 
incorrect, follow these directions to set your clock and time zone correctly:

1a. Check the time on the server.

[root@centos8s1 ~]# clock
2021-01-05 09:09:56.710758+11:00

1b. Check the time zone, NTP status, and other time details.
[root@centos8s1 ~]# timedatectl1c. If your timezone is not correct, search the time zones list and find 
your country/city. Press Ctrl+Z to exit the list.

[root@centos8s1 ~]# timedatectl list-timezones

1d. Now set the correct time zone. If you are in another city and country, your time zone will be 
different mine, so adjust the time according to your geolocation.

[root@centos8s1 ~]# timedatectl set-timezone Australia/Sydney

1e. Confirm that your server is running at the correct local time.

[root@centos8s1 ~]# clock
2021-01-05 09:16:05.039324+11:00
[root@centos8s1 ~]# date
Tue Jan  5 09:16:13 AEDT 2021



Chapter 8 ■ Linux BasiC administration

356

② Next, if chrony is not yet installed, install the NTP server and client using the dnf command, dnf 
install chrony.

[root@centos8s1 ~]# dnf install chrony

③ To make chronyd run at startup, enable the chrony services by typing systemctl enable chronyd.

[root@centos8s1 ~]# systemctl enable chronyd

④ Open the chrony.conf file under /etc/chrony.conf and allow your server and lab network. chrony 
will work as an NTP server for a local network after the subnet is allowed under the configuration file. 
Make sure you update the subnet to reflect your VM NAT subnet. Also, to make this time server more 
believable, we will change the local stratum to 3. Most of the network devices and server will be happy 
to sync time with the NTP server with equal or less than stratum 5.

[root@centos8s1 ~]# vi /etc/chrony.conf

Update the following lines in bold in vi’s --INSERT-- mode and then save the change with the :wq 
command:

[...omitted for brevity]

# Allow NTP client access from local network.
#allow 192.168.0.0/16
# ADDED by pynetauto
allow 192.168.183.0/24         # Add this line to allow local communication

# Serve time even if not synchronized to a time source.
# local stratum 10
# ADDED by pynetauto
local stratum 5                        # Add this line to make this as a stratum 3 server

[...omitted for brevity]

:wq

Restart the chronyd service to make the changes take effect.

[root@centos8s1 ~]# systemctl stop chronyd
[root@centos8s1 ~]# systemctl start chronyd
[root@centos8s1 ~]# systemctl status chronyd

⑤ Open the firewall port to allow for incoming NTP requests on the network and reload the firewall.

[root@centos8s1 ~]# firewall-cmd --permanent --add-service=ntp
success
[root@centos8s1 ~]# firewall-cmd --reload
Success

⑥ Finally, to apply the change, restart the chronyd daemon.

[root@centos8s1 ~]# systemctl restart chronyd



Chapter 8 ■ Linux BasiC administration

357

⑦ Go to your Ubuntu 20 LTS server, set the time zone, install ntpdate, and use ntpdate 
192.168.183.130 to synchronize time with this server. If your NTP server IP is different, do not forget 
to update the IP address to reflect your NTP server IP.

7a. Update the time zone using the timedatectl commands.

Check the current time and date on your Ubuntu server.

root@ubuntu20s1:~# timedatectl
        Local time: Mon 2021-01-04 22:32:42 UTC
    Universal time: Mon 2021-01-04 22:32:42 UTC
        RTC time: Mon 2021-01-04 22:32:42
        Time zone: Etc/UTC (UTC, +0000)
System clock synchronized: yes
        NTP service: active
    RTC in local TZ: no

Update the time zone and check the time and date one more time.

root@ubuntu20s1:~# timedatectl set-timezone Australia/Sydney
root@ubuntu20s1:~# timedatectl
        Local time: Tue 2021-01-05 09:33:29 AEDT
    Universal time: Mon 2021-01-04 22:33:29 UTC
        RTC time: Mon 2021-01-04 22:33:29
        Time zone: Australia/Sydney (AEDT, +1100)
System clock synchronized: yes
        NTP service: active
    RTC in local TZ: no

7b. Check the date, hardware clock, and time zone.

root@ubuntu20s1:~# date
Tue 05 Jan 2021 09:35:23 AM AEDT
root@ubuntu20s1:~# hwclock --show
2021-01-05 09:35:33.118208+11:00
root@ubuntu20s1:~# cat /etc/timezone
Australia/Sydney

7c. Install ntpdate on your Ubuntu server.

root@ubuntu20s1:~# apt-get install ntpdate

 notice the use of apt-get here. apt (advanced package tool) merges the functionalities of apt-get 
and apt-cache, but for some packages, you still have to run apt-get to install certain packages. the apt 
command should work in most of the situations, but not always. there are plenty of articles on this 
difference on Google; you can do a quick lookup on this difference on Google.

urL: https://askubuntu.com/questions/445384/what- is- the- difference- between- apt-  
and- apt- get

urL: https://phoenixnap.com/kb/apt-vs-apt-get

https://askubuntu.com/questions/445384/what-is-the-difference-between-apt-and-apt-get
https://askubuntu.com/questions/445384/what-is-the-difference-between-apt-and-apt-get
https://phoenixnap.com/kb/apt-vs-apt-get
https://phoenixnap.com/kb/apt-vs-apt-get


Chapter 8 ■ Linux BasiC administration

358

7d. Synchronize the Ubuntu server time with the CentOS 8 NTP server time. If the NTP service is 
running correctly, the Ubuntu server will synchronize its clock and start referencing the NTP server 
for time requests.

root@ubuntu20s1:~# ntpdate –d 192.168.183.130
5 Jan 10:26:42 ntpdate[5667]: ntpdate 4.2.8p12@1.3728-o (1)
Looking for host 192.168.183.130 and service ntp
host found : 192.168.183.130
transmit(192.168.183.130)
receive(192.168.183.130)
[...omitted for brevity]

server 192.168.183.130, port 123
stratum 5, precision -26, leap 00, trust 000

[...omitted for brevity]
    0.000000 0.000000 0.000000 0.000000
delay 0.02592, dispersion 0.00006
offset 5.987462

5 Jan 10:26:58 ntpdate[5667]: step time server 192.168.183.130 offset 5.987462 sec

root@ubuntu20s1:~# date
Tue 05 Jan 2021 10:27:04 AM AEDT

Check the time on the NTP server (centos8s1). If time synchronization took place correctly as shown 
earlier, your NTP client’s time will be synced to the NTP server’s time.

[root@centos8s1 ~]# date
Tue Jan  5 10:27:10 AEDT 2021

Optionally, you can use the ntpdate 192.168.183.130 or ntpdate –u 192.168.183.130 command 
to update and resynchronize the time.

⑧ If you break this IP services server, now is the perfect time to take a snapshot of your CentOS server to 
preserve the server’s working state. See Figure 8-11.

Figure 8-11. CentOS, taking a snapshot



Chapter 8 ■ Linux BasiC administration

359

You have successfully installed the NTP server, and this completes NTP, FTP, SFTP, and TFTP 
installation and verification. These servers will make your lab scenarios a lot more interesting, and also, you 
will be able to study, break, and rebuild your labs like your childhood favorite toys.

 Linux TCP/IP Troubleshooting Exercise
This is the last exercise of this chapter. You will learn some Linux networking basic troubleshooting tips to 
test the TCP- and IP-related issues. When you encounter server networking issues, you can troubleshoot 
them yourself rather than palm them off to a Linux administrator.

① The first exercise is to check if your server allows ping (ICMP). Using cat /proc/sys/net/ipv4/icmp_
echo_ignore_all, you can check if your server will respond to ICMP requests. The output is either 0 or 
1. 0 indicates that ICMP is enabled and can respond; 1 indicates that ICMP is disabled, which means 
ICMP requests will be ignored.

For a CentOS server:

[root@centos8s1 ~]# cat /proc/sys/net/ipv4/icmp_echo_ignore_all
0

For a Ubuntu server:

root@ubuntu20s1:~# cat /proc/sys/net/ipv4/icmp_echo_ignore_all
0

For our testing purpose, let’s update the Ubuntu server’s value to 1 (from 0) so the ICMP response 
is disabled on the Ubuntu server. Then ping between two servers. After the testing, make sure you 
update this value back to 0.

root@ubuntu20s1:~# nano /proc/sys/net/ipv4/icmp_echo_ignore_all
root@ubuntu20s1:~# cat /proc/sys/net/ipv4/icmp_echo_ignore_all
1
[root@centos8s1 ~]# ping 192.168.183.130
root@ubuntu20s1:~# ping 192.168.183.130 -c 4
PING 192.168.183.130 (192.168.183.130) 56(84) bytes of data.
64 bytes from 192.168.183.130: icmp_seq=1 ttl=64 time=0.386 ms
64 bytes from 192.168.183.130: icmp_seq=2 ttl=64 time=0.602 ms
64 bytes from 192.168.183.130: icmp_seq=3 ttl=64 time=0.576 ms
64 bytes from 192.168.183.130: icmp_seq=4 ttl=64 time=0.607 ms

--- 192.168.183.130 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3053ms
rtt min/avg/max/mdev = 0.386/0.542/0.607/0.091 ms

As expected, there is no response from the Ubuntu server as ICMP requests from the CentOS server 
are ignored. If you ping the Ubuntu server from the CentOS server, 100 percent packet loss will result, 
as shown here:

[root@centos8s1 ~]# ping 192.168.183.132 -c 4
PING 192.168.183.132 (192.168.183.132) 56(84) bytes of data.

--- 192.168.183.132 ping statistics ---
4 packets transmitted, 0 received, 100% packet loss, time 79ms



Chapter 8 ■ Linux BasiC administration

360

② To test a server’s open ports from a remote machine, you can use telnet + the IP address of remote 
server + the TCP port number. Telnet can be used for testing simple network socket connectivity but 
will only work on TCP ports (it does not work with UDP ports). For example, if you want to test the 
FTP (21) and SFTP (22) TCP connections from the Ubuntu server to the CentOS FTP/SFTP server, you 
can perform the following telnet test and confirm the end-to-end connection. After connected, to 
quit, type in QUIT and press Enter.

2a. Here is the FTP connection test:

root@ubuntu20s1:~# telnet 192.168.183.130 21
Trying 192.168.183.130...
Connected to 192.168.183.130.
Escape character is '^]'.
220 (vsFTPd 3.0.3)
QUIT
221 Goodbye.
Connection closed by foreign host.

2b. Here is the SSH/SFTP connection test:

root@ubuntu20s1:~# telnet 192.168.183.130 22
Trying 192.168.183.130...
Connected to 192.168.183.130.
Escape character is '^]'.
SSH-2.0-OpenSSH_8.0
QUIT
Invalid SSH identification string.
Connection closed by foreign host.

③ To see if a program or process is listening on a port, ready to accept a packet, use the netstat 
command. netstat arguments (options) are listed here, so mix and match and try to run them on 
your Ubuntu server:

t—show TCP port
u—show UDP port
a—show all
l—show only listening processes
n—do not resolve network IP address names or port numbers
p—show process names listening on different ports

3a. Run the netstat –tulnp command from your Ubuntu server.

root@ubuntu20s1:~# netstat -tulnp



Chapter 8 ■ Linux BasiC administration

361

Here are the active Internet connections (only servers):

Proto Recv-Q Send-Q Local Address Foreign Address state PID/Program name

tcp 0 0 127.0.0.1:45715 0.0.0.0:* LISTEN 939/containerd

tcp 0 0 127.0.0.53:53 0.0.0.0:* LISTEN 843/systemd-resolve

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 1015/sshd: /usr/sbi

tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN 3251/cupsd

tcp6 0 0 :::22 :::* LISTEN 1015/sshd: /usr/sbi

tcp6 0 0 ::1:631 :::* LISTEN 3251/cupsd

udp 0 0 127.0.0.53:53 0.0.0.0:* 843/systemd-resolve

udp 0 0 0.0.0.0:5353 0.0.0.0:* 859/avahi-daemon: r

udp 0 0 0.0.0.0:43413 0.0.0.0:* 859/avahi-daemon: r

udp 0 0 0.0.0.0:631 0.0.0.0:* 3252/cups-browsed

udp6 0 0 :::51143 :::* 859/avahi-daemon: r

udp6 0 0 :::5353 :::* 859/avahi-daemon: r

3b. Run the netstat –tuna command from your Ubuntu server.

root@ubuntu20s1:~# netstat -tuna

Here are the active Internet connections (servers and established):

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 127.0.0.1:45715 0.0.0.0:* LISTEN

tcp 0 0 127.0.0.53:53 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN

tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN

tcp 0 0 192.168.183.132:22 192.168.183.1:56036 ESTABLISHED

tcp6 0 0 :::22 :::* LISTEN

tcp6 0 0 ::1:631 :::* LISTEN

udp 0 0 127.0.0.53:53 0.0.0.0:*

udp 0 0 0.0.0.0:5353 0.0.0.0:*

udp 0 0 0.0.0.0:43413 0.0.0.0:*

udp 0 0 0.0.0.0:631 0.0.0.0:*

udp6 0 0 :::51143 :::*

udp6 0 0 :::5353 :::*



Chapter 8 ■ Linux BasiC administration

362

④ You can also use ss command with arguments to see the listening ports or the port readiness. To see 
if a program or process is listening on a port, ready to accept a packet, use ss. The ss commands work 
on both Ubuntu and CentOS servers. See Figure 8-12.

t—display TCP sockets
u—display UDP sockets
l—display listening sockets
n—do not resolve names
p—display process using socket

[root@centos8s1 ~]# ss –nutlp

OR

root@ubuntu20s1:~# ss -nutlp

⑤ Use lsof to list the open ports on a Linux OS. To list the process name and PID numbers and open 
ports, type in lsof –i. You can use this command on most Linux OSs. See Figure 8-13.

[root@centos8s1 ~]# lsof –i

OR

root@ubuntu20s1:~# lsof -i

Figure 8-12. Ubuntu – ss –nutlp example



Chapter 8 ■ Linux BasiC administration

363

⑥ Use the iptables command to list more TCP IP communication information. Run iptables  
 -xvn –L to display packets, interfaces, source and destination IP addresses, and ports in use. See 
Figure 8-14.

root@ubuntu20s1:~# iptables -xvn –L

OR

[root@centos8s1 ~]# iptables -xvn -L

⑦ Perhaps you are connecting to your FTP server from a Windows client. Then how do you make an 
FTP connection to your FTP server from your Windows PC? You can use the Windows command-line 
prompt or Windows PowerShell. Test-NetConnection is a native PowerShell command and can be 
used to test simple connectivity such as FTP port 21.

Let’s start PowerShell from your Windows 10 host PC/laptop and quickly test if the FTP connection to 
the CentOS FTP server works correctly. See Figure 8-15.

PS C:\Users\brendan> test-NetConnection -ComputerName 192.168.183.130 -Port 21

Figure 8-13. Ubuntu – lsof –i example

Figure 8-14. CentOS, iptables -xvn –L example



Chapter 8 ■ Linux BasiC administration

364

 Summary
In this chapter, you learned some more Linux administration, starting with how to check system information 
and how to check TCP and UDP ports on the Linux systems. Then you were guided through IP services 
installation on a CentOS server to make an all-in-one lab server for TFTP, FTP, SFTP, and NTP services. 
This server will be used later for Python network automation labs in the second half of this book. Finally, 
you learned some basic TCP/IP and connection troubleshooting on Linux, so you can troubleshoot the 
connectivity issues on the move. I hope this was an interesting chapter for everyone. In the next chapter, 
Chapter 9, you will be tackling another challenging topic, regular expressions (a.k.a. regex). Understanding 
the inner workings of regex can boost your Python coding ability. You have to stay on course and complete 
the next chapter.

 Storytime 4: Becoming a Savvy Linux Administrator, 
Perhaps Every IT Engineer’s Dream?
Everyone in IT will agree that investing time and resources studying enterprise Linux is a worthwhile future 
investment while working in the IT industry. Becoming a savvy Linux administrator is many IT engineers’ 
dream, if not every engineer. At least it has been my dream for some time. Can you remember your first 
Linux experience? Here are some common experiences Linux users may go through while trying to learn 
Linux, especially if you have been a Windows user all your life.

• Everyone said Ubuntu Desktop is the best Linux for beginners, so you downloaded 
the latest Linux .iso file and installed it on your PC. Within a few days, you wiped it 
with Windows 10, and you are back on the Windows OS like nothing ever happened.

• Dual-booting sounded like a cool thing to do, so you installed both Windows and 
Linux on the same host and tried the multibooting option on your laptop. A few 
weeks later, you noticed a sizable unused partition on your Windows Partition 
Manager and thought, what a waste of storage space. Then you remembered: it was 
the partition for your Linux operating system.

Figure 8-15. Windows 10 host PC, PowerShell test-NetConnection example



Chapter 8 ■ Linux BasiC administration

365

• As time went by, you were logging into Windows more and more, even though your 
PC had a multibooting option.

• Ubuntu or Gnome Desktop experience seemed like an OK user interface connected 
to the Internet, but you were still craving the Windows graphical user interface. You 
are hooked to the Windows GUI.

• Everyone said you have to study Linux commands, but no one told you how to study 
Linux commands. All the websites and videos said you have to learn them by heart, 
so you tried your best to memorize as much as you can, squeezing every command 
into your tiny brain, and the next day, you could not even remember a single 
command from the previous day’s study.

• There is always some Linux guru at your work, and he is putting pressure on you to 
make sure you take on Linux again even though you left it for a few years. Never give 
up!

Perhaps you liked Linux from the get-go and enjoyed the experience of learning Linux. For some 
people, the Linux chapters could pose the first barrier in your Python network automation journey, but 
we must continue. Based on some quick Internet research, there is still only a small percentage of true 
Linux administrators in the IT industry. There were three Linux engineers out of 80 IT engineers at my last 
workplace, and on my current team, there are only two members (out of 20) who are well-versed in Linux. 
Almost every engineer who can write programming code will agree that it is impossible to develop code and 
run it as a service only on Windows servers. If you are a Microsoft guru, it is possible that the blue screen of 
death appears a couple of times a year, and your best fix for Windows Server is to press the Reboot button. 
In other words, as a novice network automation engineer, we have to become familiar with Linux systems 
and start using Python on Linux. After all, Python and Linux go hand in hand. If you want to become good 
at Python or any coding, you must cover the Linux basics well. I agree, it is challenging to learn and master 
Linux administration, but we can always take one step at a time, and over time, we will get there slowly but 
surely. Still, I hope the contents in this chapter and the previous chapter will be enough to get you through 
this book and keep your interest in Linux alive. Since studying Python, I improved my game with Linux, and 
Linux has made me rethink my career and take a different IT career path. I highly recommend everyone take 
another crack at Linux. Let’s keep trying!



367
© Brendan Choi 2021 
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_9

CHAPTER 9

Regular Expressions for Network 
Automation

This chapter is dedicated to learning regular expressions basics. Python provides native ways to process and 
dissect strings of text but requires many lines of code to locate the exact string. Although Python provides 
powerful string indexing methods, in real life you will face challenges each time you need to handle a 
large string. I find it fascinating that no other Python network automation books genuinely emphasize 
the importance of data wrangling (or massaging) with regular expressions. Many books sweep regular 
expressions under the rug as it is not the most exciting topic to discuss. I realized that I must master regular 
expressions to get anywhere with any programming language. Still, I also did not dare tackle it seriously 
at first. Only when I started working on real projects did I realize my ignorance over regular expressions. I 
understand that this chapter’s content will be painful to digest for many readers, but you should stick with it 
and focus on completing this chapter; you will thank me later.

 

Regular expressions universally apply to all computer programming languages and are not unique to 
Python. Once you have mastered them, you can apply them to all programming languages such as Java, 
C++, JavaScript, Ruby, and Perl. In Python, the re module provides you with the passageway to regular 
expressions. By having a deep understanding of regular expressions and applying this knowledge to your 
Python programs via re modules, you will become a better Python coder. What you learn here will be 
applied to network automation application development in the labs. Mastering regular expressions is one 
topic no Python coder should skip. Although this is one of the shorter chapters in the book, you will gain 
valuable skills that will last for a lifetime.

After learning basic Python syntax and concepts, you will want to write Python applications fluently. As 
I will be mentioning throughout the book, writing code in Python is not all about the syntax and concepts; 
as with all things in computing, writing code has everything to do with proper data handling. This data 
could come from the user and application variables, reading files, scraping the Web, or logs between 
two computers. Writing code in any programming language almost always involves handling data. After 
some time writing Python code, I soon realized that it is impossible to develop any network automation 
application without understanding regular expressions in full.

https://doi.org/10.1007/978-1-4842-6806-3_9#DOI


Chapter 9 ■ regular expressions for network automation

368

If you are serious about Python coding, you must master the art of regular expressions and the re 
module. You will learn the basics of regex and apply regular expressions on real Cisco router and switch text 
files so you can relate the information to the real production examples.

For the chapter requirements, you will need access to your Windows 10 host PC and Ubuntu Server 
virtual machine running on VMware Workstation 15 Pro, as depicted in Figure 9-1.

 Why Regex?
text. A regular expression (regex) is a standard method used in computing to process complicated strings of 
text and is not exclusive to Python; it is used everywhere while performing data processing. At first glance, 
learning regular expressions can be seen as a distant subject to learning Python. Still, as you move to the 
intermediate level, the real power of regular expressions will come to light. In Python, the regular expression 
is also supported through a built-in Python module called the re module. Some readers may argue that 
learning regular expressions is not an essential part of learning Python, but as you work on real problems 
to solve automation problems, you will need to extract specific strings (data) from a source file or large 
strings. In coding, every comma, full stop, and whitespace matters while handling data to create variables 
and run your applications to avoid data handling errors. If anyone asks me what programming languages 
such as C, C++, Java, Perl, Ruby, R, and Python do, without hesitation, my straightforward answer would 
be data processing. Every program written in a computer programming language must handle and process 
data to serve their purpose. In other words, we need a tool to improve our data handling and processing. As 
you have learned in Chapter 2, there are built-in methods to slice, concatenate, and index data in strings. 

Figure 9-1. Devices required in Chapter 9



Chapter 9 ■ regular expressions for network automation

369

When dealing with a more extensive set of data, you will run into many inconveniences as you might have 
to come up with your functions to handle big data better. The re module comes to the rescue as it is seen 
as a super-charged data handling method based on old regular expressions from the 1970s. Knowing when 
and where to use different Python modules can save you time from reinventing the wheel. First, you need 
to handle your data using the Python native methods. Second, explore data handling using the built-in re 
module. Third, explore even more advanced data handling methods using widely used Python libraries 
such as NumPy and Pandas. The NumPy library provides objects for multidimensional arrays, whereas 
Pandas provides an in-memory 2D table object called a dataframe. Every Python coder must learn regular 
expressions well and use them to their advantage to handle the data to extract a specific piece of string.

Another reason for including the topic of regex as a fully dedicated chapter was based on my recent 
experience while working on network automation. Regular expressions play a crucial role in coding, and I 
cannot emphasize enough their usefulness while working with Python code on various network automation 
projects. Once you reach an intermediate level in Python coding, inevitably you will confront data handling 
challenges, and if you refuse to learn how to use a regex, you will not progress. After following all exercises 
in this chapter, you will be well equipped with one of the most useful coding tools invented. The examples 
shown in this chapter may not be comprehensive enough for some, but enough scenarios are covered to 
help you get a grip on data handling through Python’s re module. Every string match requirements are 
unique, so I urge you to go beyond this book and spend time researching more regex tutorials. There are 
plenty of free online training materials to practice use cases that apply to your data handling situations.

 To re or Not to re
For starters, let’s consider a straightforward example. You have applied for a job as a Python developer with 
a networking background. After you passed the first technical interview, the hiring manager has given you 
a take-home task to analyze a string of texts to be analyzed and transformed. Your task is to extract switch 
names and their MAC addresses to present the information in a specific format.

You have been given the following string. Your task is to print the switch name followed by the MAC 
address in 12 hexadecimal characters, where the first six digits (OUI) must be preserved to identify the 
manufacturer’s ID. But the last six digits are masked with * to hide the real MAC address.

Here’s a given string:

sw_mac = '''pynetauto-sw01 84:3d:c6:05:09:11
pynetauto-sw17 80:7f:f8:80:71:1b
pynetauto-sw05 f0:62:81:5a:53:cd'''

Also, any letters, including the hexadecimal a–f, must be capitalized, so the result must match the 
expected output shown here:

PYNETAUTO-SW01 843DC6******
PYNETAUTO-SW17 807FF8******
PYNETAUTO-SW05 F06281******

If you have not studied regular expressions, you may take the following steps to write your program:

 1. Remove colons and convert the string to capital letters.

 2. Split the strings at the whitespace and add them to a list.

 3. Remove whitespaces using the strip() method and make an updated list.

 4. Use the len() method to identify names and MAC addresses based on the list’s 
length of items. If the item has 14 characters, then it is a switch name; add to the  
sw list. If the item has 12 characters, then it is a MAC address; add it to the MAC list. 
During MAC appending, add ****** to replace the second half of the MAC address.



Chapter 9 ■ regular expressions for network automation

370

 5. Use Python dictionary’s zip method to convert two lists into one dictionary.

 6. Use the for loop to print the key and value from the dictionary’s key-value pair.

In programming languages, they say, “There’s more than one way to skin a cat” but one of the ways 
(through code) that will achieve the desired result without using the re module will look similar to Listing 9-1.

 here’s a code and example string download tip: all the code presented in this book is available for  
download from pynetauto on github. for the code used in this chapter, look for a zip file called chapter9_
codes.zip.

url: https://github.com/pynetauto/apress_pynetauto

Listing 9-1. Native Python Methods

>>> sw_mac = '''pynetauto-sw01 84:3d:c6:05:09:11
... pynetauto-sw17 80:7f:f8:80:71:1b
... pynetauto-sw05 f0:62:81:5a:53:cd'''
>>>
>>> sw_mac = sw_mac.replace(":", "").upper()          # 1
>>> sw_mac
'\nPYNETAUTO-SW01 843DC6050911 \nPYNETAUTO-SW17 807FF880711B \nPYNETAUTO-SW05 
F062815A53CD\n'
>>> list1 = sw_mac.split(" ")          # 2
>>> list1
['\nPYNETAUTO-SW01', '843DC6050911', '\nPYNETAUTO-SW17', '807FF880711B', '\nPYNETAUTO-SW05', 
'F062815A53CD\n']
>>> list2 =           # 3
>>> for i in list1:          # 4
...     list2.append(i.strip())          # 5
...
>>> list2
['PYNETAUTO-SW01', '843DC6050911', 'PYNETAUTO-SW17', '807FF880711B', 'PYNETAUTO-SW05', 
'F062815A53CD']
>>>
>>> sw_list =           # 6
>>> mac_list =           # 7
>>> for i in list2:          # 8
...     if len(i) == 14:          # 9
...         sw_list.append(i)          # 10
...     if len(i) == 12:          # 11
...         i = i[:6] + "******"           # 12
...         mac_list.append(i)          # 13
...
>>> sw_list
['PYNETAUTO-SW01', 'PYNETAUTO-SW17', 'PYNETAUTO-SW05']
>>> mac_list
['843DC6******', '807FF8******', 'F06281******']
>>> sw_mac_dict = dict(zip(sw_list, mac_list))          # 14
>>> for k,v in sw_mac_dict.items():          # 15

https://github.com/pynetauto/apress_pynetauto


Chapter 9 ■ regular expressions for network automation

371

...     print(k, v)          # 16 lines

...
PYNETAUTO-SW01 843DC6******
PYNETAUTO-SW17 807FF8******
PYNETAUTO-SW05 F06281******

You do not need to worry about or understand how to read the previous code. What is important is that 
you can count the number of code lines needed to achieve the expected result. Not counting the newline 
and data lines, exactly 16 code lines were required to print the result using only Python methods (without 
using any modules). Yes, it works, but it takes many lines of code to achieve the goal.

After you have learned how to use a regular expression, you can use Python’s re module to do the same 
task, and the data manipulation becomes a breeze. The number of code lines drops, and it is easier to write 
and read. Count the number of code lines in Listing 9-2; exactly four code lines were needed to print out the 
expected result (not counting the newline and data lines). So, when you compare the number of code lines 
between the two listings, you can see significant savings in the number of code lines used. This was a simple 
example, but think about more complex tasks working with big data. It will take a lot of time and elbow 
grease to write lengthy custom code to achieve the end goal. Using the regular expression module in Python 
code, your application code will become more concise, easier to write, and easier to read.

Listing 9-2. re Example

>>> sw_mac = '''pynetauto-sw01 84:3d:c6:05:09:11
... pynetauto-sw17 80:7f:f8:80:71:1b
... pynetauto-sw05 f0:62:81:5a:53:cd'''
>>> import re           # 1
>>> sw_mac = sw_mac.replace(":", "").upper()          # 2
>>> pattern = re.compile("([0-9A-F]{6})" "([0-9A-F]{6})")           # 3
>>> print(pattern.sub("\g<1>******", sw_mac))          # 4
PYNETAUTO-SW01 843DC6******
PYNETAUTO-SW17 807FF8******
PYNETAUTO-SW05 F06281******
>>>

There is no need to write the code yourself at this stage. To download and run the code, you can go to 
my pynetauto GitHub site and download the code in Listings 9-1 and 9-2.

 Studying Regular Expressions Using Python
There are many ways you can study regular expressions with Python, and here we will discuss how you can 
study in a few different ways. Try a study method that suits you the best and stick to it until you complete the 
exercises in this chapter.

 if you want to follow along with listings 9-3 and 9-4, you can download the sh_ver.txt file from my  
github site and save it as sh_ver.txt in your linux directory.

url: https://github.com/pynetauto/apress_pynetauto

https://github.com/pynetauto/apress_pynetauto


Chapter 9 ■ regular expressions for network automation

372

 Method 1: Using Notepad++
You already installed Notepad++ in Chapter 2, and it is a great tool to use to explore regular expressions. With 
Notepad++, there are two ways to study regular expressions, and depending on the size of the data or text, you 
can choose either approach. You can use a single Python file for a short string, as shown in Figure 9-2, and 
execute the script by using Ctrl+F6 or Ctrl+F5 from Notepad++.

If the text data is lengthy or you have multiple files to read, you can use the file read method to read the 
files into your Python script and run the Python code you have written. This example is shown in Figures 9-3 
and 9-4.

Figure 9-2. Studying regular expressions using Notepad++ with a single script



Chapter 9 ■ regular expressions for network automation

373

Figure 9-3. Regular expression using Notepad++, read file method re script

Figure 9-4. Regular expression using Notepad++, read file method data file



Chapter 9 ■ regular expressions for network automation

374

 Method 2: Using the Linux Shell
Like the Notepad++ method, you can run one of your Linux VM servers and SSH into the server to practice 
regular expressions on Python. If you want to test a simple regular expression, you can start an interactive 
session with the Python interpreter (see Listing 9-3). After you type the expression and press the Enter key, 
it immediately returns the result, or no result if your expression did not match any strings. You can also 
use this method using Python 3 on your Windows 10 host machine. As in Notepad++, you can also write a 
Python code first and run it from the terminal console to run the re match script, as shown in Listing 9-4. 
This method may sound difficult, but when you practice a couple of examples, you will get familiar with it, 
and using regular expressions with Python becomes easier.

Listing 9-3. Regular Expression on Python Interpreter

pynetauto@ubuntu20s1:~$ pwd
/home/pynetauto
pynetauto@ubuntu20s1:~$ mkdir ex_regex
pynetauto@ubuntu20s1:~$ cd ex_regex
pynetauto@ubuntu20s1:~/ex_regex$ nano sh_ver.txt
pynetauto@ubuntu20s1:~/ex_regex$ ls
sh_ver.txt
pynetauto@ubuntu20s1:~/ex_regex
pynetauto@ubuntu20s1:~/ex_regex$ python3
Python 3.8.2 (default, Jul 16 2020, 14:00:26)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import re
>>> with open("/home/pynetauto/ex_regex/sh_ver.txt") as f:
...     read_file = f.read()
...
>>> # Only match Cisco router model number from show version output.
>>> rt_model = re.findall("[A-Z]{3}\d{4}\w+", read_file)
>>> print(rt_model)
['ISR4351/K9']
>>> my_router = rt_model[0]
>>> my_router
'ISR4351/K9'

Listing 9-4. Regular Expression Writing Python Code on Linux

pynetauto@ubuntu20s1:~/ex_regex$ pwd
/home/pynetauto/ex_regex
pynetauto@ubuntu20s1:~/ex_regex$ ls
sh_ver.txt
pynetauto@ubuntu20s1:~/ex_regex$ nano ex9.4_sh_ver.py
pynetauto@ubuntu20s1:~/ex_regex$ cat ex9.4_sh_ver.py
import re
with open("/home/pynetauto/ex_regex/sh_ver.txt") as f:
    read_file = f.read()

# Only match Cisco router model number from show version output.
rt_model = re.findall("[A-Z]{3}\d{4}\w+", read_file)
print(rt_model)



Chapter 9 ■ regular expressions for network automation

375

my_router = rt_model[0]
print(my_router)
pynetauto@ubuntu20s1:~/ex_regex$ python3 ex9.4_sh_ver.py
['ISR4351/K9']
ISR4351/K9

 Regular Expression Breakdown: [A-Z]{3}\d{4}[/]\w+

[A-Z]{3} \d{4} [/] \w+

Three capital letters Four digits Character / Any string with at least one occurrence

 Method 3: Using the Internet to Study Regular Expressions
One of the most effective ways to study regular expressions is to use a web browser and view content on 
the Internet. There are plenty of websites providing free regular expression exercises. Some sites are biased 
toward one programming language over another, but try to find programming language–neutral sites and 
practice more. Once you build your confidence in regular expressions, you can start using one of the first 
two Python re methods shown earlier. Practicing the re module in Python is important as that is the way you 
will be using a regular expression in Python. One of the better regular expression practice sites is regex101 
(https://regex101.com). See Figure 9-5.

Figure 9-5. Regular expressions practice website

https://regex101.com


Chapter 9 ■ regular expressions for network automation

376

If you are on the go all the time but still want to get regular expression practice, you can practice on 
Android devices or Apple iOS devices. Download RegexPal (for Android phones) or RegEx Lab (for iOS 
devices) or similar apps on your mobile device. These applications are useful for on-the-go simple regular 
expression practice at any time, anywhere. See Figure 9-6.

 Regex Operation: The Basics
Regular expressions use metacharacters to match static or dynamic data strings. The word meta is a Latin 
(Greek) word meaning beyond, after, or behind. When used in a programming language, metacharacters 
have special meaning from their real representation so that metacharacters can be defined as the characters 
having hidden meanings. The metacharacters include the following:

  . ^ $ * + ? \ | ( ) [ ] { }

When one of these metacharacters is used in regular expressions, it carries some special meaning. The 
last six characters are in pairs of two, so the brackets must be used in pairs in the regular expressions. Let’s 
start with the most straightforward regular expression and slowly build up our knowledge. Also, if you want 
to express these characters as a single literal character, then the metacharacter can be enclosed in a set of a 
square bracket ([ ]) or escaped using the backslash (\). However, pay special attention to metacharacters ^ 
and \; these two characters cannot be literally matched using the square bracket method. See Table 9-1.

Figure 9-6. Android regular expression app example



Chapter 9 ■ regular expressions for network automation

377

To get around with the literal matching method with ^ and \, you can add a backslash in front of the ^ 
and \ inside the square bracket. See Listing 9-5.

 as all other chapters, to get a full understanding of regular expression concepts, you are expected to open 
your python interpreter and type all the content marked in bold in each exercises. this includes everything after 
the three greater-than signs (>>>).

Listing 9-5. Matching Metacharacter ^ and \ Using Square Brackets ([ ])

>>> import re
>>> expr = " . ^ $ * + ? \ | ( ) [ ] { }"
>>> re.search(r'[\^]', expr)
<re.Match object; span=(3, 4), match='^'>
>>> re.search(r'[\\]', expr)
<re.Match object; span=(13, 14), match='\\'>

If ^ or \ is used inside a square bracket set, you are required to add the escape backslash in front of the 
metacharacters. There are good reasons for this, and when used inside square brackets, ^ is used to negate 
the character following it. Type in Listing 9-6 into your Python interpreter and study it carefully. [^a] would 
mean match all characters but a. In Listing 9-6, all characters are matched except the letter a.

Listing 9-6. Meaning of [^a]

>>> import re
>>> re.findall('[^a]', 'abracadabra')
['b', 'r', 'c', 'd', 'b', 'r']

Table 9-1. Regular Expression Meatacharacters

Metacharacter Terminology Escape with \ Match Literally Using [ ]

. Dot \. [.]

^ Caret \^ [\^]

$ Dollar \$ [$]

* Star \* [*]

+ Plus \+ [+]

? Question mark \? [?]

\ Backslash \\ [\\]

| Pipe \| [|]

( ) Round brackets \( \) [(] [)]

[ ] Square brackets \[ \] [[][]]

{ } Curly brackets \{ \} [{] [}]



Chapter 9 ■ regular expressions for network automation

378

The backslash inside the brackets, [\], also has a minor problem as the regular expression recognizes 
the backslash as a negating character for the closing square bracket, ]. So, we have to negate the backslash 
by adding another backslash. Look at Listing 9-7, where the backslash had to be used to match backslash 
and a closing square bracket, ].

Listing 9-7. Meaning of [\]]

>>> re.search(r'[\\]', 'match \ or ]')
<re.Match object; span=(6, 7), match='\\'>
>>> re.search(r'[\]]', 'match \ or ]')
<re.Match object; span=(11, 12), match=']'>

 Character Class ([])
The first metacharacter we will learn is the character class metacharacter. Usually, a regular expression made 
up of character classes is expressed between the left open square bracket ([) and the right closed square 
bracket (]). All characters are allowed inside the character class, [ ].

For example, a regular expression of [aei] will match any one of the vowel letters a, e, or i. Let’s look at 
the real use of words associated with alarms: ding, buzz, beep, clang.

Regular Expression Words (String) Matched Explanation
[aei] ding ding Matches the character i literally (case sensitive)

buzz buzz No match; buzz does not contain a, e, or i

beep beep Matches the character e twice

clang clang Matches the character a literally

When a hyphen (-) is used inside the square brackets with letters or numbers, it abbreviates the 
expressions of a range. For example, [a-z] takes a meaning of all lowercase letters. [A-Z] takes a meaning 
of all uppercase letters from A to Z. You already have guessed it: to express all letters in both lowercase 
and uppercase, the regular expression to match becomes [a-zA-Z]. If you want to express a hexadecimal 
number, you will use [0-9a-fA-F], meaning all whole numbers and both lower and uppercase letters 
starting from a to f. In a regex, capitalization does matter. A common example of [0-9] takes the meaning of 
from 0 to 9, meaning [0 1 2 3 4 5 6 7 8 9].

Almost all characters can be used between the square brackets, [ ], but with a single exception of ^ 
(caret) symbol (^ metacharacter). When ^ is used inside the square brackets, the expression used takes the 
opposite meaning or meaning of NOT. For example, if you want to use an expression to exclude any whole 
numbers, you can use [^0-9]. If you want not to match any uppercase letters, you can use [^A-Z].

For commonly used regular expressions such as [0-9] and [a-zA-Z], there are particular expressions to 
save time and make the regular expressions more compact and readable. These are tabulated here for your 
reference:



Chapter 9 ■ regular expressions for network automation

379

Regular Expression Interchangeable Expression Explanation
\d [0-9] Matches whole numbers from 0 to 9.

\D [^0-9] Matches all characters except whole numbers.

\s [ \t\n\r\f\v] Matches all whitespace. A whitespace is included.

\S [^ \t\n\r\f\v] Matches all characters except whitespace characters.

\w [a-zA-Z0-9] Matches all alphanumeric letters.

\W [^a-zA-Z0-9] Does not match alphanumeric letters. Matches all 
symbols such as % # @.

In the world of programming, the backslash (\) is commonly used to negate the meaning of the 
expression that comes after the backslash. For example, d is the letter d in the alphabet, but if it is combined 
with the backslash and becomes \d, this takes on a different meaning. Also, the particular expressions with 
capital letters always take the opposite meaning of the small, lettered expression.

 Dot (.): Single Character Match
The regular expression . (dot)  matches all characters except for line terminators such as \n. Interestingly, a 
regular expression provides a method to include \n, as we will see in an example later, but by using the re.
DOTALL option, the . (dot) can also include the newline character \n.

Let’s consider the following regular expression example.

Regular Expression Explanation

d.g Matches any single character between the letters d and g

Any character specified must match. For example, the letter d must be matched in the first position, and 
the letter g must match in the third position. The middle character can match any character except the new 
character \n.

Regular Expression Words (String) Matched Explanation
d.g dog dog Matches all characters d, o, and g.

d%g d%g Matches all characters d, % sign, and g.

d\ng None Not matched, \n is ignored and not matched. d and g 
are matched, but \n is ignored, so d\ng is not matched.

What if the dot character is in between the square brackets, [ ]?

Regular Expression Explanation

d[.]g The dot character between the brackets takes its literal meaning as a single dot (.). 
So, it will only match d.g but not dog or d%g.



Chapter 9 ■ regular expressions for network automation

380

 Asterisk (*): Repetition
Let’s zoom through this one and look at the following regular expression.

Regular Expression Explanation

zo*m Match if the character in front of the star occurs zero, one, or many times.  
The preceding expression is matched. In this case, the letter o.

The metacharacter * has the meaning of repetition, and it matches the preceding expression o zero, 
one, or almost infinite number of times. * becomes handy while trying to match unpredictable occurrences 
where a character may or may not appear; hence, it may or may not match.

All of the examples are matched by the * metacharacter.

Regular Expression Words (String) Matched Explanation
zo*m zm zm Matches o zero times. Even without o, zm is matched.

zom zom Matches o once.

zoom zoom Matches oo in the middle.

 Plus (+): Repetition
A plus sign (+) is another metacharacter associated with the repetition. It is a little bit similar to the star but 
slightly different because zero times is not considered a match. With the use of the + metacharacter, at least 
one character must be matched. Let’s use the same character again for an explanation.

Regular Expression Explanation

zo+m Matches if the letter o appears one or more times

The + metacharacter matches some words.

Regular Expression Words (String) Matched Explanation
zo+m zm None No o in the middle, so not matched

zom zom Matches z, o, and m

zoom zoom Matches z, oo, and m

 {m, n}: Repetition
Using the metacharacter {m, n }, you can match the number of repetitions. The letter m is the start of the 
match count, and n is the end of the match count. For example, o{1, 3} takes the meaning of matching 
the character o one to three times. Another example is o{3, }, which means that the repetition of the 
prepending character o must match at least three times or more. Another example is o{, 3} will match 
the same character o up to three times. So, the regular expression of {0,} is equivalent to + and {1,} is 
equivalent to *. Let’s study {m, n} by looking at some examples first.



Chapter 9 ■ regular expressions for network automation

381

 {m}
The reference letter or m is the exact number of repetitions required to match the prepending character. Look 
at a simple example and explanation.

Regular Expression Explanation

Zo{1}e Matches the first letter Z, then matches the letter o m number of times (m=1), in this 
case once only, and then matches the letter e. So, the expected match letter is Zoe. 
Note, the regular expressions are case sensitive.

Let’s look at more examples to help your understanding. If you can type these on your computer 
keyboard while following the book, you will learn a lot more.

Regular Expression {m} Words (String) Matched Explanation
o{2} oo oo Matches characters oo

zoo zoo Matches characters oo

boom boom Matches characters oo

zo{2}m zm None Missing oo, so not matched

zom None Missing oo, so not matched.

zoom zoom Matches characters z, oo, and m

 {m, n}
The first reference number, or m, is the minimum repetition number, and the second reference number, or n, 
is the maximum repetition number. First, a simple explanation of how {m, n} works.

Regular Expression Explanation

o{2, 5} Matches characters oo, ooo, oooo, or ooooo. Matches from two to five occurrences 
of the letter o.

Now let’s look at some simple examples.

Regular Expression {m, n} Words (String) Matched Explanation
zo{1,3}m zm None Not matched, o matches 0 times

zoom zoom Matches z, oo, and m

zoooom None Not matched, one too many o



Chapter 9 ■ regular expressions for network automation

382

 ? (Question Mark: Repetition)
The metacharacter uses the same meaning as {0, 1} and can be used interchangeably. Again using a simple 
example, here is more explanation of how ? works in a regular expression.

Regular Expression Explanation

Zoe? Matches Zo or Zoe. The character before the question mark, which is e, becomes 
optional. So, even the string is Zo. The regular expression will still match the 
word. This can be written as Zoe{0, 1}.

Use the same example as before to better understand the ?.

Regular Expression

     ?

Words (string) Matched Explanation

zo?m zm zm Matches z and m. Letter o is optional, so it does not 
have to match.

zom zom Matches z, o, and m.

zoom None Not matched as only expecting one o.

As shown earlier, *, +, and ? metacharacters can be replaced by {m, n} methods, but using *, +, and ? 
makes regular expression easier to read and understand, so whenever possible, try to use *, +, and ? instead 
of {m, n} format.

 Python’s re Module
As discussed earlier, Python provides the regular expression feature out of the box, and it is supported by a 
standard module called re (regular expression). This module will be pre-installed as part of the standard 
Python library when Python is installed on your OS.

To begin your journey into the Python re module, it is worth mentioning that there is some difference in 
the ways or styles you can write your Python code using the re module. You can choose to keep your script 
structure simple, standard, or structured. In a simple style, you can write the regular expression statement in 
a single line of code, as shown in the simple style example in Table 9-2. When you use the standard style, you 
do not have to use a re.compiler statement, but you can still add some style by separating the string and 
regular expression statement. If you choose to have a little more consistency in your code, you can use the 
compiler style, using the re.compiler statement. Any coding style will work fine, but the advantage of using 
a re.compiler statement in your code is obvious. It gives a little bit more control and structure to your code 
and hence also adds styling consistency.

Let’s compare three styles in questions quickly by looking at each example. All three examples will 
return the same result but written in two different styles.



Chapter 9 ■ regular expressions for network automation

383

In the third compiler style, we have given a separate variable p to the compiler statement, which 
contains the regular expression we want to match. And then the variable m performs the match function 
using variables expr and p. If the compiled regular expression has to be used more than two times, it would 
be advantageous to use this method over the simpler methods. You have to note that Python allows you to 
write shortcodes, but you lose the structure and style, whereas more code lines give you better control and 
structure, but you have to write more lines of code to achieve the same result. In my honest opinion, there 
are no right or wrong answers here; this all depends on your style and personal preference.

 Python re String Methods
There are four basic types of regular expression search methods we have to master. Let’s quickly go over the 
four methods and then review each by doing some exercises on the Python interpreter. See Table 9-3.

Table 9-2. Different Ways to Use re Module in Python

Style Example
Simple import re

m = re.findall('\dx\d{4}', "Configuration register is 0x2102")
print(m)

Standard import re

expr = "Configuration register is 0x2102"
m = re.findall('\dx\d{4}', expr)
print(m)

Compiler import re
expr = "Configuration register is 0x2102"    ← expr for expression
p = re.compile('\dx\d{4}')                                         ← p for pattern
m = p.findall(expr)                                                          ← m for match
print(m)

Result ['0x2102']

Table 9-3. re String Methods

Method Explanation
re.match() Search the regular expression pattern on the first line and return the match object. (Only 

searches the first line.) If a match is not found, returns None.

re.search() Search the regular expression pattern and return the first occurrence. Unlike the re.
match() method, this method will check all lines. If a match is not found, returns None.

re.findall() Search the regular expression pattern and match all occurrences. Unlike the re.match() 
or re.search() method, this method returns all the nonoverlapping matches of patterns 
in a string as a list of strings.

re.finditer() Search the regular expression pattern, and this method returns an iterator yielding 
MatchObject instances over all nonoverlapping matches for the string’s re pattern.



Chapter 9 ■ regular expressions for network automation

384

 re.match()
Listing 9-8, Listing 9-9, and Listing 9-10 will return the same matched objective but are written differently. 
Carefully study how each line is written differently. Again, there is no right or wrong answer here but 
different ways to write the same code to achieve the same objective.

Listing 9-8. re.match() method 1

>>> import re
>>> re.match(r'\d\w\d{4}', '0x2142 Configuration register is 0x2102')
<re.Match object; span=(0, 6), match='0x2142'>

Listing 9-9. re.match() method 2

>>> import re
>>> expr = '0x2142 Configuration register is 0x2102'
>>> re.match(r'\d\w\d{4}', expr)
<re.Match object; span=(0, 6), match='0x2142'>

Listing 9-10. re.match() method 3

>>> import re
>>> expr = '0x2142 Configuration register is 0x2102'
>>> p = re.compile(r'\d\w\d{4}')
>>> m = p.match(expr)
>>> print(m)
<re.Match object; span=(0, 6), match='0x2142'>

Let’s do another match exercise. In Listing 9-11, the match object is returned with the span containing 
the match string’s start and end positions. By contrast, if there is no matched object in Listing 9-12, the 
returned value is None. In Python, None serves the same purpose as null in other languages, meaning that it 
did not match anything.

Listing 9-11. re.match()

>>> import re
>>> p = re.compile('[a-z]+')
>>> expr = "five regular expression"
>>> m = p.match(expr)
>>> print(m)
<re.Match object; span=(0, 4), match='five'>

Listing 9-12. re.match()

>>> import re
>>> p = re.compile('[a-z]+')
>>> expr = "5 regular expression"
>>> m = p.match(expr)
>>> print(m)
Result: None



Chapter 9 ■ regular expressions for network automation

385

The previous exercises are essential in the way we structure our Python regular expression script flow. 
Looking at the returned values, it could be a best practice to structure our Python re scripts in the following 
format, so the script continues to run only if a match is found:

Recommended script flow for regular expression for this chapter

import re

p = re.compile("Enter_re_here")
expr = 'string_to_search_here'
m = p.match(expr)
if m:
    print('Match found: ', m.group())       
else:
    print('Match not found')

← import re module

← compile a pattern
← data or expression
← matching patterns using pattern

← execute only if a match is found

 re.search()
As shown earlier, let’s use the re.search() method to perform the match function, and in Listing 9-13, the 
returned result is the same as re.match() where the regular expression matched the string and returned the 
matched object.

Listing 9-13. re.search()

>>> import re
>>> p = re.compile('[a-z]+')
>>> expr = "five regular expression"
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(0, 4), match='five'

On the other hand, in Listing 9-14, unlike the re.match() method, the re.search() method regular 
expression did not match digit 5, so it jumped to the next match and returned the word months, which 
matched the regular expression. So, the match() method is typically used if searching from the beginning of 
the string, whereas the search() method can be used to match the first instance, searching the whole string.

Listing 9-14. re.search()

>>> import re
>>> p = re.compile('[a-z]+')
>>> expr = "5 regular expression"
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(2, 9), match='regular'>

 re.findall()
This time let’s get some practice with the findall() method using the same regular expression flow. Enter 
each line into your Python Interpreter console to get more practice. Unlike the previous two methods, the 
findall() method returns the matched objects as a list. In Listing 9-15, each word has been returned as 
strings in a list.



Chapter 9 ■ regular expressions for network automation

386

Listing 9-15. re.findall() exercise 1

>>> import re
>>> p = re.compile('[a-z]+')
>>> expr = "five regular expression"
>>> m = p.findall(expr)
>>> print(m)
['five', 'regular', 'expression']

In Listing 9-16, findall() matches all strings satisfying the regular expression condition but ignores the 
digit 5. This method will try to match and return all matched objects in a list format.

Listing 9-16. re.findall() exercise 2

>>> import re
>>> p = re.compile('[a-z]+')
>>> expr = "5 regular expression"
>>> m = p.findall(expr)
>>> print(m)
['regular', 'expression']

 re.finditer( )
The last exercise is on the finditer() method. As before, let’s type in the code and learn by doing some 
exercises (see Listing 9-17 and Listing 9-18). The finditer() method returns the same result as the 
finditer() method, but it returns an iterator over all nonoverlapping matches for the string’s regular 
expression pattern. It might be a powerful tool for text processing, but the use cases for the finditer() 
method are very narrow.

Listing 9-17. re.finditer() exercise 1

>>> import re
>>> p = re.compile('[a-z]+')
>>> expr = "five regular expression"
>>> m = p.finditer(expr)
>>> print(m)
<callable_iterator object at 0x000001E581F1B5E0>
>>> for r in m:
...     print(r)
...
<re.Match object; span=(0, 4), match='five'>
<re.Match object; span=(5, 12), match='regular'>
<re.Match object; span=(13, 23), match='expression'>

Listing 9-18. re.finditer() exercise 2

>>> import re
>>> p = re.compile('[a-z]+')
>>> expr = "5 regular expression"
>>> m = p.finditer(expr)
>>> print(m)
<callable_iterator object at 0x000001E581F1B5E0>



Chapter 9 ■ regular expressions for network automation

387

>>> for r in m: print(r)
...
<re.Match object; span=(2, 9), match='regular'>
<re.Match object; span=(10, 20), match='expression'>

 Match Object Method
Earlier, we saw the returned objects from regular expression matches using match and search methods, but 
we still had some questions about the matched strings and exactly how they work. To better understand the 
attributes of these returned objects, after running the match and search methods, we can use match object 
methods to answer some of our questions. First, let’s quickly review Table 9-4.

Now let’s learn match object methods through exercises to confirm the returned objects from the 
matched returned objects. In the first exercise with the match method, we can individually get the match 
object attributes using group, start, end, and span match methods. Enter the code in Listing 9-19 into the 
interpreter and check the result interactively.

Listing 9-19. re.match()

>>> import re
>>> p = re.compile('[a-z]+')
>>> expr = "automation"
>>> m = p.match(expr)
>>> print(m)
<re.Match object; span=(0, 10), match='automation'>
>>> m.group()
'automation'
>>> m.start()
0
>>> m.end()
10
>>> m.span()
(0, 10

In the search match method shown in Listing 9-20, if we want to find out the exact match object location 
in the memory, we can issue group, start, end, and span without the round bracket set at the end. Anyway, 
we should focus more on the group(), start(), end(), and span() result of the match object attributes.

Table 9-4. re Match Object Method

Match Method Explanation
group() Returns matched string

start() Returns the start position of the matched string

end() Returns the end position of the matched string

span() Returns the start and end position of matched string in tuple format



Chapter 9 ■ regular expressions for network automation

388

Listing 9-20. re.search()

>>> import re
>>> p = re.compile('[a-z]+')
>>> expr = "5. regular expression"
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(3, 10), match='regular'>
>>> m.group
<built-in method group of re.Match object at 0x000001E581F00C00>
>>> m.group()
'regular'
>>> m.start
<built-in method start of re.Match object at 0x000001E581F00C00>
>>> m.start()
3
>>> m.end
<built-in method end of re.Match object at 0x000001E581F00C00>
>>> m.end()
10
>>> m.span
<built-in method span of re.Match object at 0x000001E581F00C00>
>>> m.span()
(3, 10)

 Compile Options
When you compile regular expressions, you can also add options to your expressions. First, quickly review 
the options. When using these regular expression options, you can use the full descriptive option names like 
re.DOTALL, re.IGNORECASE, re.MULTILINE, and re.VERBOSE or use the abbreviated version such as re.S, 
re.I, re.M, and re.X. See Table 9-5.

Once again, no pain, no gain, so let’s type the following exercises into the Python Interpreter and learn 
from the examples.

Table 9-5. re Compile Options

Options Abbreviation Explanation
DOTALL S Matches any character including a newline, \n.

IGNORECASE I Makes the regex case-insensitive or ignore case. All major regex engines 
match in case-sensitive mode; I mode disables case sensitivity.

MULTILINE M ^ and $ will match the start and end of a line, instead of the whole string. 
It enables the regular expression engine to handle an input string that 
consists of multiple lines.

VERBOSE X Allows the use of verbose mode. Whitespace is ignored. Spaces, tabs, and 
carriage returns are not matched as spaces, tabs, and carriage returns.



Chapter 9 ■ regular expressions for network automation

389

 re.DOTALL (re.S)
The DOTALL option is used to include a newline in the match string, and let’s check how the DOTALL option 
works in real use. See Listing 9-21 and Listing 9-22,

Listing 9-21. Without re.DOTALL()

>>> import re
>>> expr = 'a\nb'
>>> p = re.compile('a.b')
>>> m = p.match(expr)
>>> print(m)
None                                  ← No match found due to newline

Listing 9-22. re.DOTALL()

>>> import re
>>> expr = 'a\nb'
>>> p = re.compile('a.b', re.DOTALL)
>>> m = p.match(expr)
>>> print(m)
<re.Match object; span=(0, 3), match='a\nb'>  ← Matches object

In Listing 9-21, \n literally represents a newline, and for this reason, the regular expression a.b alone 
cannot match a\nb. In Listing 9-22, when we enable the DOTALL option using re.DOTALL, we can confirm that 
even the \n character is matched as part of the string. Under normal circumstances, you will not be using the 
DOTALL option to match the newline character. Instead, it will be used to match strings in multiple lines by 
ignoring the newline characters.

 re.IGNORECASE (re.I)
When the IGNORCASE option is enabled, it makes the regular expression case insensitive so both uppercase 
and lowercase letters are matched, disregarding the casing of alphabet characters. Again, let’s do some 
exercises to see how re.IGNORECASE (re.I) works in action. See Listing 9-23.

Listing 9-23. re.IGNORECASE()

>>> import re
>>> expr1 = 'automation'
>>> expr2 = 'Automation'
>>> expr3 = 'AUTOMATION'
>>> p = re.compile('[a-z]+', re.IGNORECASE)
>>> m1 = p.match(expr1)
>>> print(m1)
<re.Match object; span=(0, 10), match='automation'>
>>> m2 = p.match(expr2)
>>> print(m2)
<re.Match object; span=(0, 10), match='Automation'>
>>> m3 = p.match(expr3)
>>> print(m3)
<re.Match object; span=(0, 10), match='AUTOMATION'>



Chapter 9 ■ regular expressions for network automation

390

Only a single exercise is enough to comprehend the use of re.IGNORECASE or re.I use. In Listing 9-23, 
the same pattern has been used three times to match the patterns in three different expressions (strings). 
Three casing types (all lowercase, first-letter capitalization, and all uppercasing expressions) are used as 
our target strings. The regular expression will match all three strings as the re.I option was enabled in the 
regular expression pattern.

 re.MULTILINE (re.M)
The re.MULTILINE or re.M option is used with ^ and $ regular expression metacharacters. As explained 
before, the ^ metacharacter is used to indicate the start of a string, and $ is used to mark the end of a string. 
In layman’s term, a regular expression of ^Network means the first string must begin with the word network, 
whereas automation$ means the last string must end with the word automation. Once again, let's learn 
MULTILINE by doing. See Listing 9-24 and Listing 9-25.

Listing 9-24. without re.MULTILINE()

>>> import re
>>> expr = '''Regular Engineers
... Regular Network Engineers
... Regular but not so regular Engineers'''
>>> p = re.compile('^R\w+\S')
>>> m = p.findall(expr)
>>> print(m)
['Regular']

Listing 9-25. ^ and re.MULTILINE()

>>> import re
>>> expr = '''Regular Engineers
... Regular Network Engineers
... Regular but not so Regular Engineers'''
>>> p = re.compile('^R\w+\S', re.MULTILINE)
>>> m = p.findall(expr)
>>> print(m)
['Regular', 'Regular', 'Regular']

In both exercises, the data (expression) consists of three lines starting with the common word 
Regular. Each line begins with the same word, and the regular expression ^R\w+\S matches the first word 
only, starting with a capital R followed by alphanumeric letters to nonwhitespace (\S). In Listing 9-24, 
without re.MULTILINE option, the search only matches the first occurrence of the word, Regular. Whereas 
in Listing 9-25, with re.MULTILINE option enabled, the search matches the word, Regular at the start of a 
new line on the multiple lines.



Chapter 9 ■ regular expressions for network automation

391

 re.VERBOSE (re.X)

 try to type as much as you can and as accurately as you can. if you need to cross-check your typos, you 
can download the exercises used in this chapter from my download site. You can optionally copy and paste the 
information for your exercise as required.

url: https://github.com/pynetauto/apress_pynetauto/

Most of the regular expression examples introduced in this chapter have been basic compared to the 
regular expressions used in real, production-ready scripts.

Now, look at the following two examples (Listing 9-26 and Listing 9-27); nevertheless, they are the same 
scripts returning the same value. For novice Python coders with limited exposure to regular expressions, the 
compiled regular expression in the first example (r'[1-9](?:\d{0,2})(?:,\d{3})*(?:\.\d*[1-9])?|0?\.\d* 
[1-9]|0') will look like nothing more than gibberish. The compiled regular expression seems somewhat over-
complicated. It is used to match the digits related to the dates and purposefully matches digits or digits with a 
comma used in the year. The first example will be what we are familiar with thus far, but the second example 
takes full advantage of the regular expression re.VERBOSE option to add comments and explain how the regular 
expression works. Although both return the same result, the latter increases the readability, perhaps even for 
the person who has written this regular expression. With the re.VERBOSE or re.X option, you can decode and 
add optional comments to add readability.

Listing 9-26. Without re.VERBOSE

import re

expr = 'I was born in 2,009 and I am 15 years old. I started my primary school in 2,010'
p = re.compile(r'[1-9](?:\d{0,2})(?:,\d{3})*(?:\.\d*[1-9])?|0?\.\d*[1-9]|0')

m = p.findall(expr)

print(m)

Listing 9-27. With re.VERBOSE

import re

expr = 'I was born in 2,009 and I am 15 years old. I started my primary school in 2,010'
p = re.compile(r"""
[1-9]           # Match a single digit between 1-9
(?:\d{0,2})     # Match digit equatl to [0-9] between 0 and 2 times
(?:,\d{3})*     # Match the character ,(Comma) literally, match a digit equal to [0-9] \
                  exactly 3 times) Zero and unlimited times
(?:\.\d*[1-9])? # Match the character. (Dot) literally, match a digit equal to [0-9] \
                  zero and unlimited times, match a single digit between [1-9]) \
                  zero and one time.
|               # OR

https://github.com/pynetauto/apress_pynetauto/


Chapter 9 ■ regular expressions for network automation

392

0?\.\d*[1-9]    # Match 0 zero or one time, match . (Dot) literally, match a digit \
                  equal to [0-9] zero or unlimited times, and match a digit between [1-9]
|               # OR
0               # Match one 0
""", re.VERBOSE)

m = p.findall(expr)

print(m)

Result:  ['2,009', '15', '2,010']

 \: Confusing Backslash Character
\ in Python gives special meaning to a metacharacter; it is an escape character in both Python strings and for 
the regex engine, to which you are eventually passing your patterns. When the slash character is used in the 
Python re engine, this can cause some confusion around how many escape characters you have to use to match 
the exact string you want to extract from your data. To remove confusion, when compiling a regular expression 
in Python, r (raw string notation) is appended immediately before the regular expression. Let’s type in the 
following two examples (Listing 9-28 and Listing 9-29), the first without the use of raw string notation, r, and the 
second using the raw string notation, r. In the following examples, we are trying to match the string \scored.

Listing 9-28. Backslashes Without Raw String Notation

>>> import re
>>> expr = 'Our team \scored three goals\\'
>>> p1 = re.compile('\scored')
>>> p2 = re.compile('\\scored')
>>> p3 = re.compile('\\\scored')
>>> p4 = re.compile('\\\\scored')
>>> p5 = re.compile('\\\\\scored')
>>> print(p1.findall(expr))
[]
>>> print(p2.findall(expr))
[]
>>> print(p3.findall(expr))
['\\scored']
>>> print(p4.findall(expr))
['\\scored']
>>> print(p5.findall(expr))
[]

In Listing 9-29, the compiled regular expression with three backslashes and four backslashes matched 
and returned the same result. This can be confusing as you might be unsure whether you have to use three 
or four backslashes to match the word with the literal backslash character, \scored.

Listing 9-29. Backslash with Raw String Notation

>>> import re
>>> expr = 'Our team \scored three goals\\'
>>> p1 = re.compile(r'\scored')



Chapter 9 ■ regular expressions for network automation

393

>>> p2 = re.compile(r'\\scored')
>>> p3 = re.compile(r'\\\scored')
>>> p4 = re.compile(r'\\\\scored')
>>> print(p1.findall(expr))
[]
>>> print(p2.findall(expr))
['\\scored']
>>> print(p3.findall(expr))
[]
>>> print(p4.findall(expr))
[]

In Listing 9-30, we are using the raw string notation, r, and it is clear that the result indicates that you 
have to use two backslashes to match the target string \scored. Using one, three, and four backslashes with 
raw string notation will not match the target string.

Listing 9-30. Backslash with Raw String Notation

>>> import re
>>> expr = 'Our team \scored three goals\\'
>>> p2 = re.compile(r'\\scored')
>>> m = p2.findall(expr)
>>> print(m)
['\\scored']
>>> n = m[0]
>>> n
'\\scored'
>>> for x in n:
...     print(x, end=")
...
\scored

In Listing 9-30, the raw string match method is used, and in this example, the raw string match method 
matches both \’s (backslashes) and returns the matched string, \\scored in a list. To convert an item in a list, 
you can use the indexing method.

 Regular Expressions: A Little Revision Plus More
In this section, let’s quickly review what we have learned so far and cover a few more metacharacters and 
regular expression methods such as grouping, lookahead search, etc.

 More Metacharacters
We have covered the most commonly used metacharacters so far, but we have to cover a few more common 
metacharacters to move forward. The characteristics of the metacharacters we discuss here are a little 
different from the ones discussed earlier in this chapter. We have already studied metacharacters such as +, 
*, [ ], and { }. These metacharacters will only search the strings once as they change their positions in a 
matching string. Let’s now extend our metacharacter vocabulary by introducing a few more new ones, and 
then we will look at the grouping and lookahead and lookbehind examples.



Chapter 9 ■ regular expressions for network automation

394

 OR Operator (|)
In a regular expression, the | (pipe) metacharacter has the same meaning as or. The regular expression of 
a|b has a similar meaning to [ab], but they operate differently. Both | and [ ] are OR operators, and they 
will try to match specified characters in the string, but the matched and returned results are a little different. 
Let’s look at the following examples and precisely understand the real difference between | and [ ]. See 
Listing 9-31 and Listing 9-32.

Listing 9-31. a[bc]

>>> import re
>>> re.findall('a[bc]', 'a, ab, ac, abc, acb, ad')
['ab', 'ac', 'ab', 'ac']

Listing 9-32. a(b|c)

>>> re.findall('a(b|c)', 'a, ab, ac, abc, acb, ad')
['b', 'c', 'b', 'c']

In Listing 9-31, you have used the [ ] regular expression to match b or c; the regular expression match’s 
returned values also contain the leading a. But in Listing 9-32, you replaced [ ] with |, and the returned 
values are only the matched values of either b or c but no leading a. So, the difference between [ ] and | is 
the way it matches the leading character(s), but one returns the leading character(s), and one doesn’t.

Now, looking at Listing 9-33 and Listing 9-34, this is illustrated with a regular expression’s range option, 
and it becomes more apparent that one prints the leading character and one doesn't.

Listing 9-33. 3[a-f ]

>>> re.findall('3[a-f]', '3, 3a, 3c, 3f, 3g')
['3a', '3c', '3f']

Listing 9-34. 3(a|b|c|d|e|f )

>>> re.findall('3(a|b|c|d|e|f)', '3, 3a, 3c, 3f, 3g')
['a', 'c', 'f']

Listing 9-35 and Listing 9-36 are simple examples of | (OR) with the words apple and raspberry. In 
Listing 9-36, re.findall match method matches both words, rasberry and apple. The matched words are 
returned as a list.

Listing 9-35. apple|rasberry

>>> re.match('apple|raspberry', 'raspberry pie')
<re.Match object; span=(0, 8), match='rasberry'>

Listing 9-36. apple|rasberry

>>> print(re.findall('apple|raspberry', 'raspberry and apple pie'))
['rasberry', 'apple']



Chapter 9 ■ regular expressions for network automation

395

 ̂  and $ (Anchors)
^ (caret) will look for a match beginning at the first character of a string. When you use it with the re.
MULTILINE or re.M option, you enable the regular expression at each newline of your data or strings. Let’s 
quickly do some exercises using your Python interpreter. Listing 9-37 and Listing 9-38.

Listing 9-37. ^Start

>>> re.findall('^Start', 'Start to finish')
['Start']

In Listing 9-38, ^ instructs the regular expression ^Start to match the word start at the start of the 
string.

Listing 9-38. finish$

>>> re.findall('finish$', 'Start to finish')
['finish']

In Listing 9-38, $ instructs the regular expression to match the word finish at the end of the string.
In Listing 9-39, combining both ^ and $, the regular expression matches the exact string starting with S 

and end with sh.

Listing 9-39. ^S.+sh$

>>> re.findall('^S.+sh$', 'Start to finish')
['Start to finish']

Listing 9-40. ^S.+sh$' and re.M

>>> re.findall('^S.+sh$', 'Start to finish\nSpecial fish\nSuper fresh', re.MULTILINE)
['Start to finish', 'Special fish', 'Super fresh']

In Listing 9-40, using the re.M module, you have matched three lines of strings starting with S and 
ending with sh.

Now let’s take a look at a simplified practical example through another exercise. The code is available 
for download from my GitHub website, and the filename is 5.7.1.2_5.py for this exercise (https://github.
com/pynetauto/apress_pynetauto). See Listing 9-41.

Listing 9-41. ^Gig.+up$ and re.M

>>> import re

>>> expr = '''SYDCBDPIT-ST01#sh ip int brief
... Interface              IP-Address      OK? Method Status                Protocol
... Vlan1                  unassigned      YES NVRAM  up                    up
... Vlan50                 10.50.50.11     YES NVRAM  up                    up
... FastEthernet0          unassigned      YES NVRAM  down                  down
... GigabitEthernet1/0/1   unassigned      YES unset  down                  down
... GigabitEthernet1/0/2   unassigned      YES unset  up                    up
... GigabitEthernet1/0/3   unassigned      YES unset  up                    up
... '''

https://github.com/pynetauto/apress_pynetauto
https://github.com/pynetauto/apress_pynetauto


Chapter 9 ■ regular expressions for network automation

396

>>> p = re.compile('^Gig.+down$', re.MULTILINE)
>>> m = p.findall(expr)
>>> print(m)
['GigabitEthernet1/0/1   unassigned      YES unset  down                  down']

You can easily apply this to the real scenario where you want to extract some interface information 
from your networking device show commands. In Listing 9-41, we use the first few lines of Cisco switch’s 
show ip interface brief commands to demonstrate this. Using the regular expression ^Gig.+up$, we 
can quickly match the interfaces that have down status. For demonstration purposes, the example has 
been oversimplified. Still, in the real environment where you have to manage hundreds and thousands of 
switchport interfaces, you need the power of regular expression to process the collected data.

 \A and \Z
In a single-line string match, ^ and \A work the same way, but the behavior differs while trying to match 
strings with multiple lines (see Listing 9-42 and Listing 9-43). The same applies to $ and \Z; the matching 
behaviors change while trying to match strings with multiple lines (see Listing 9-44). When re.M or re.
MULTILINE option is enabled, ^ can match at the start of strings and after each line break, but \A only ever 
matches at the start of the string (see Listing 9-45). Also, $ can match at the end of the string and before each 
line break (see Listing 9-46), but \Z only ever matches at the end of the string (see Listing 9-47).

Listing 9-42. ^S.+sh

>>> re.findall('^S.+sh', 'Start to finish')
['Start to finish']

Listing 9-43. \AS.+sh

>>> re.findall('\AS.+sh', 'Start to finish')
['Start to finish']

Listing 9-44. ^S.+sh with re.MULTILINE

>>> re.findall('^S.+sh', 'Start to finish\nSuper special fish\nSuper fresh fish\nSuper 
smelly fish', re.M)
['Start to finish', 'Super special fish', 'Super fresh fish', 'Super smelly fish']

Listing 9-45. \AS.+sh with re.MULTILINE

>>> re.findall('\AS.+sh', 'Start to finish\nSuper special fish\nSuper fresh fish\nSuper 
smelly fish', re.M)
['Start to finish']

Listing 9-46. S.+sh$ with re.MULTILINE

>> re.findall('S.+sh$', 'Start to finish\nSuper special fish\nSuper fresh fish\nSuper smelly 
fish', re.M)
['Start to finish', 'Super special fish', 'Super fresh fish', 'Super smelly fish']



Chapter 9 ■ regular expressions for network automation

397

Listing 9-47. S.+sh\Z with re.MULTILINE

>>> re.findall('S.+sh\Z', 'Start to finish\nSuper special fish\nSuper fresh fish\nSuper 
smelly fish', re.M)
['Super smelly fish']

The following exercises demonstrate how mixed use of ^ or \A and $ or \Z affects the matched return 
results. We artificially add newlines by separating each line with \n to create the newline effect. Come up with 
your examples and test these metacharacters to extend your understanding. See Listing 9-48, Listing 9-49, 
Listing 9-50, and Listing 9-51.

Listing 9-48. ^S.+sh$ with re.M

>>> re.findall('^S.+sh$', 'Start to finish\nSuper special fish\nSuper fresh fish\nSuper 
smelly fish', re.M)
['Start to finish', 'Super special fish', 'Super fresh fish', 'Super smelly fish']

Listing 9-49. \AS.+sh$ with re.M

>>> re.findall('\AS.+sh$', 'Start to finish\nSuper special fish\nSuper fresh fish\nSuper 
smelly fish', re.M)
['Start to finish']

Listing 9-50. ^S.+sh\Z with re.M

>>> re.findall('^S.+sh\Z', 'Start to finish\nSuper special fish\nSuper fresh fish\nSuper 
smelly fish', re.M)
['Super smelly fish']

Listing 9-51. \AS.+sh\Z with re.M

>>> re.findall('\AS.+sh\Z', 'Start to finish\nSuper special fish\nSuper fresh fish\nSuper 
smelly fish', re.M)
[]

 \b and \B
In a regular expression, \b represents a word boundary. In a sentence, the whitespacing between the leading 
word and the following word is represented by the usual word boundaries.

Word Boundary Description
\b Represents an anchor like ^ (similar to $ and ^) matching positions where one side  

is a word character (like \w), and the other side is not a word character; for example, 
it may be the beginning of the string or a space character.

\B It comes with its negation, \B. This matches all positions where \b does not match 
and could be if we want to find a search pattern surrounded by word characters.



Chapter 9 ■ regular expressions for network automation

398

According to regular expression literal rules, \b represents a backspace; hence, when you use it in a 
regular expression, you always have to use the raw string notation r to specify that this is not a backspace 
character.

In Listing 9-52, you are trying to match the word computers in the expression. In the pattern compiled, 
we have used the leading \b and ending \b as the word we are trying to match leading whitespace and 
ending with whitespace, so the word matches and returns the result.

Listing 9-52. \b(word)\b matched

>>> import re
>>> expr = "Small computers include smartphones."
>>> p = re.compile(r'\bcomputers\b')
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(6, 15), match='computers'>

In Listing 9-53, the word microcomputers has the word computers but starts with Micro, so the 
whitespace cannot match the word computers trailing the word Micro. The result is None as expected.

Listing 9-53. \b(word)\b not match

>>> import re
>>> expr = "Microcomputers include smartphones."
>>> p = re.compile(r'\bcomputers\b')
>>> m = p.search(expr)
>>> print(m)
None

In Listing 9-54, the first \b was dropped in our regular expression compiler, and now the match target 
word, computers, is matched and returns the expected result.

Listing 9-54. (word)\b matched

>>> import re
>>> expr = "Microcomputers include smartphones."
>>> p = re.compile(r'computers\b')
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(5, 14), match='computers'>

\B has an opposite meaning to \b and hence can be used to achieve the reverse of \b. In Listing 9-55, 
you try to match the word computer without the plural s at the end. So, use the leading \B and ending \B to 
match the word with pinpoint accuracy.

Listing 9-55. \B(word)\B matched

>>> import re
>>> expr = "Microcomputers include smartphones."
>>> p = re.compile(r'\Bcomputer\B')
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(5, 13), match='computer'>



Chapter 9 ■ regular expressions for network automation

399

 Grouping
Say you have a string consisting of up and down status from a flapping link on a router, and you want to 
perform a match to search for continuous up status. After searching and matching the continuous up status, 
you can use the group() option to print the output (Listing 9-56). To compile a group in a regular expression, 
you have to use ( ). This is an impractical example only to introduce you to the concept of regular 
expression grouping. The next example will be more within the real context.

Listing 9-56. Grouping exercise 1

>>> import re
>>> expr = "downupupupdowndownupdowndown"
>>> p = re.compile("(up)+")
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(4, 10), match='upupup'>
>>> print(m.group(0))
upupup

Now let’s consider a technical assistant center’s country name and the fully qualified number for the 
United States. First, we want to compile a regular expression to match the whole string, starting with the 
country name and then followed by the technical assistant center telephone number. See Listing 9-57.

Listing 9-57. Grouping exercise 2

>>> import re
>>> expr = "United States 1 408 526 1234"
>>> p = re.compile(r"\w+\s\w+\s\d\s\d{3}\s\d{3}\s\d+")
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(0, 28), match='United States 1 408 526 1234'>

In Listing 9-57, you have used a mix of alphanumeric shorthand character \w, whitespaces shorthand 
character \s, and digit shorthand character \d with repetition {n} to match all characters. If we stop the string 
matching here, the data captured in this example is not well utilized. By using grouping, we can extract specific 
information from the matched strings. Say we want to extract only the country name (see Listing 9-58).

Listing 9-58. Grouping exercise 3

>>> import re
>>> expr = "United States 1 408 526 1234"
>>> p = re.compile(r"(\w+\s\w+)\s\d?\s\d{3}\s\d{3}\s\d+")
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(0, 28), match='United States 1 408 526 1234'>
>>> country = m.group(1)
>>> country
'United States'

In Listing 9-58, we can use the group(1) method to separate the information from the whole matched 
string, and now we can use this data as a variable or data in our script. Now let's quickly review the group 
method index to understand how the regular expression groupings are numbered. See Table 9-6.



Chapter 9 ■ regular expressions for network automation

400

The grouping method indexing is better explained using practical examples, as shown in Listing 9-59.

Listing 9-59. Grouping Method Indexing exercise 1

>>> import re

>>> expr = "United States 1 408 526 1234"
>>> p = re.compile(r"(\w+\s\w+)\s(\d?\s\d{3}\s\d{3}\s\d+)")
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(0, 28), match='United States 1 408 526 1234'>
>>> phone_number = m.group(2)
>>> phone_number
'1 408 526 1234'

In Listing 9-60, the group(1) is (\w+\s\w+), which is the same group(1) from Listing 9-59 and (\d?\s\
d{3}\s\d{3}\s\d+) becomes the group(2), which captures the telephone number. See Figure 9-7.

Listing 9-60. Grouping Method Indexing exercise 2

>>> import re
>>> expr = "United States 1 408 526 1234"
>>> p = re.compile(r"(\w+\s\w+)\s((\d?)\s(\d{3})\s(\d{3}\s\d+))")
>>> m = p.search(expr)
>> m.group(0)
'United States 1 408 526 1234'
>>> m.group(1)
'United States'
>>> m.group(2)
'1 408 526 1234'
>>> m.group(3)
'1'
>>> m.group(4)
'408'
>>> m.group(5)
'526 1234'

Table 9-6. Group Method Index Meanings

Group Index Explanation
group(0) Whole matched string

group(1) Matched first group

group(2) Matched second group

group(3) Matched third group

group(n) Matched nth group



Chapter 9 ■ regular expressions for network automation

401

In Listing 9-61, the groups have been broken down into even smaller groups, and now we can separate 
the country code 1, area code 408, and local number 526 1234 from each other. Imagine all the possible 
things we can do with regular expression groupings in real networking automation scenarios. Imagine what 
you can do with the captured data from real production routers and switches and control your devices based 
on the collected and analyzed data.

Listing 9-61. Referencing Grouped String

>>> import re
>>> expr = "Did you know that that 'that', that that person used in that sentence, is wrong."
>>> p = re.compile(r'(\bthat)\s+\1')
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(13, 22), match='that that'>
>>> m = p.search(expr).group()
>>> print(m)
that that

Another advantage of using group indexing is that you can use shorthand like +\1 to re-reference the 
first group. In the regular expression of (\bthat)\s+\1, the + has the meaning of matching the same strings 
as the previous group, and \1 has the meaning of re-referencing group number 1. If there is a second group 
and you want to reference it, \2 can be used.

 Regular Expression Named Groups
Let’s assume that we are working on a project and writing a regular expression to process the data and 
fully utilizing the re grouping methods. This will make your regular expression extremely hard to decode 
and bring some confusion while trying to understand what the regular expression is trying to match. In 
networking, we have an access control list (ACL) and a named access control list (NACL); similarly, the 
regular expression also offers named groups to attach a name to a group for easier data manipulation. 
Named groups become handy when there are a large number of groups in a regular expression. Naming 
groups are for more convenience of use when you find and replace in advanced search and replace.

We have to work with a line extracted from a router’s show version command, and it contains the 
router name and uptime. We want to use regular expression groups to extract the router name, the precise 
number of years, weeks, days, hours, and minutes the device has been running.

expr = "SYD-GW1 uptime is 1 year, 9 weeks, 2 days, 5 hours, 26 minutes"

Figure 9-7. Group index in regular expression example



Chapter 9 ■ regular expressions for network automation

402

To match them as each group, one example of the grouping that will work will look similar to the regular 
expression. Still, since there are multiple groupings and you are reading somebody else’s code, you would 
probably feel overwhelmed with just a single regular expression line.

(\w+[-]\w+)\s.+((\d+\sy\w+),\s(\d+\sw\w+),\s(\d+\sd\w+),\s(\d+\sh\w+),\s(\d+\sm\w+))

After carefully studying the regular expression for 10 minutes, you have finally concluded that this is 
how the strings are matched and grouped. Unfortunately, with so many groups, you can easily get lost in 
translation. See Figure 9-8.

Now, let’s do the exercise to learn how this regular expression works in real Python. Again, you will 
follow the recommended regular expression flow and compile your regular expression and apply it to the 
string. As you have expected, you can separate the router name SYD-GW1 as group 1, print the whole uptime 
by printing out group 2, then followed by smaller groups embedded inside group 2 such as group 3 (year), 
4 (weeks), 5 (days), 6 (hours), and 7 (minutes). If you are not confused already, you are really on track and 
doing well at this stage. See Listing 9-62.

Listing 9-62. Multiple Numbered Groups exercise

>>> import re
>>> expr = "SYD-GW1 uptime is 1 year, 9 weeks, 2 days, 5 hours, 26 minutes"
>>> p = re.compile(r'(\w+[-]\w+)\s.+((\d+\sy\w+),\s(\d+\sw\w+),\s(\d+\sd\w+),\s(\d+\sh\w+), 
\s(\d+\sm\w+))')
>>> m = p.search(expr)
>>> print(m.group(0))
SYD-GW1 uptime is 1 year, 9 weeks, 2 days, 5 hours, 26 minutes
>>> print(m.group(1))
SYD-GW1
>>> print(m.group(2))
1 year, 9 weeks, 2 days, 5 hours, 26 minutes
>>> print(m.group(3))
1 year
[… omitted for brevity]
>>> print(m.group(7))
26 minutes

To make such an over convoluted use of grouping methods in the regular expression and add flexibility, 
regular expressions have a handy named group. You can simply add ?P<group_name> at the beginning of the 
group and refer to the group as the group name you have specified. If we have to give group names to the 
previous example, it will look similar to Listing 9-63. Giving a name to a group gives more meaning to the 
data it matches, and you do not have to spend much time decoding the regular expression.

Figure 9-8. Regular expression multiple numbered groups example



Chapter 9 ■ regular expressions for network automation

403

Listing 9-63. Named Group exercise

>>> import re
>>> expr = "SYD-GW1 uptime is 1 year, 9 weeks, 2 days, 5 hours, 26 minutes"
>>> p_named = re.compile(r'(?P<hostname>\w+[-]\w+)\s.+(?P<uptime>(?P<years>\d+\sy\w+),\
s(?P<weeks>\d+\sw\w+),\s(?P<days>\d+\sd\w+),\s(?P<hours>\d+\sh\w+),\s(?P<minutes>\d+\sm\
w+))')
>>> m = p_named.search(expr)
>>> print(m.group("minutes"))
26 minutes
[… omitted for brevity]
>>> print(m.group("uptime"))
1 year, 9 weeks, 2 days, 5 hours, 26 minutes
>>> print(m.group("hostname"))
SYD-GW1

When you analyze the groups named above against the string data, the groupings will look like Figure 9-9.

As you can see, the names relate to the information you are trying to match, and there is very little 
confusion coming from the multiple groupings. Rather than trying to decode someone else’s cryptic regular 
expressions, you should be spending the valuable work hours on more mission-critical issues or providing 
good customer support experiences.

 Lookahead and Lookbehind Assertions
Before diving into this section, I have to be up front with you. If you are a first-time regular expression 
apprentice, you may not understand the lookaheads and lookbehinds immediately. To ease the pain, I have 
used exercises and examples, but you may have to come back to this topic a few times before getting a full 
grasp of this concept.

 Lookahead, Lookbehind, and Noncapturing group
Lookaaheads and lookbehinds are known as lookarounds and often confuse novice regex learners. At first 
glance, lookaheads and lookbehinds look very confusing as they all start with a ?, and the difference comes 
from the second and third metacharacter use. But once mastered well, they are handy tools to shorten our 
regular expressions. You do not need to comprehend this section straightaway; you can take your time to 
learn the lookarounds. Also, use this section as a reference point for future reference. In lookarounds, there 
are four lookarounds and a noncapturing group, which all start with the ? mark.

Figure 9-9. Regular expression named groups example



Chapter 9 ■ regular expressions for network automation

404

As a quick reminder before getting our hands dirty, Table 9-7 shows quick lookarounds and simple 
examples.

Now go ahead and start typing in the text marked in bold in your Python interpreter and see how the 
returned objects differ from one another. In the following exercises, you will be using an abbreviated print 
function with a regular expression and the target string 'abc'. The explanation is included next to each 
exercise.

Exercise # Exercises Explanation
1 >>> print(re.search('a(?=b)', 'abc'))

<re.Match object; span=(0, 1), match='a'>

>>> print(re.search('a(?=b)', 'xbc'))
None

Matches a as the next letter is b.
No match as the first letter is not a before 
letter b.

2 >>> print(re.search('a(?!b)', 'abc'))
None

>>> print(re.search('a(?!b)', 'acd'))
<re.Match object; span=(0, 1), match='a'>

No match as the next letter is b.
Matches a as the next letter is not b (it 
is c).

3 >>> print(re.search('(?<=a)b', 'abc'))
<re.Match object; span=(1, 2), match='b'>

>>> print(re.search('(?<=a)b', 'xbc'))
None

Matches b as the previous letter is a.
No match as the previous letter is not a.

4 >>> print(re.search('(?<!a)b', 'abc'))
None

>>> print(re.search('(?<!a)b', 'xbc'))
<re.Match object; span=(1, 2), match='b'>

No match as the previous letter is a.
Matches b as the previous letter is not a.

5 >>> print(re.search('a(?:b)', 'abc'))
<re.Match object; span=(0, 2), match='ab'>

>>> print(re.search('a(?=b)', 'abc'))
<re.Match object; span=(0, 1), match='a'>

Matches a and b, because b is followed 
by a. Both ab are matched.
Matches a as the next letter is b. (This is 
the same as exercise 1.)

Table 9-7. The re Lookahead, Lookbehind, and Noncapturing Groups

Lookaround Name String Example Explanation
?= Lookahead abc a(?=b) Asserts that the regex must be matched

?! Negative 
lookahead

abc a(?!b) Asserts that it is impossible to match the regex

?<= Lookbehind abc (?<=a)b Asserts that the regex must be matched

?<! Negative 
lookbehind

abc (?<!a)b Asserts that it is impossible to match the regex

?: Noncapturing 
group

abc a(?:b) Regex inside the parentheses must be matched but 
doesn't create the capturing group



Chapter 9 ■ regular expressions for network automation

405

Exercise # Exercises Explanation

6 >>> import re
>>> expr = "+1 408 526 1234"
>>> p = re.compile(r"((?:(\+1)[ -])?\
(?(\d{3})\)?[ -]?\d{3}[ -]?\d{4})")
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(0, 15), match='+1 
408 526 1234'>
>>> print(m.group(2))
+1

?: represents noncapturing group, 
Without ?:, +1 and the trailing space 
are captured as a group. With ?:, the 
regular expression will not make a group 
by the match inside the parentheses 
like it would otherwise do (typically, 
parentheses create a group). In other 
words, when you use ?:, the group 
is matched but is not captured for 
backreferencing, which is why it’s called 
a noncapturing group.

 go to the rexegg regex site for more deep dives and regular expression examples. this is one of my favorite 
sites to learn about regular expressions.

url: www.rexegg.com/regex- lookarounds.html

 Practice More Lookarounds
You need a lot of practice to wrap your head around this topic. This time, let’s use the string 'abba' to make 
the exercise more exciting and use the full compile method to structure our learning.

expr = 'abba'

Please open the Python interpreter and enter the text marked in bold next to the three greater-than 
signs. Reading through this section will not help you retain the information, so you must do all exercises, 
from 1 to 10.

Exercise # Exercise Regex Explanation

1 >>> import re
>>> expr = 'abba'
>>> p = re.compile('a(?=b)')
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(0, 1), 
match='a'>

a(?=b) Find the a, which has b after it.

2 >>> import re
>>> expr = 'abba'
>>> p = re.compile('b(?=b)')
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(1, 2), 
match='b'>

b(?=b) Find the first b, which has b after it.

(continued)

http://www.rexegg.com/regex-lookarounds.html


Chapter 9 ■ regular expressions for network automation

406

Exercise # Exercise Regex Explanation

3 >>> import re
>>> expr = 'abba'
>>> p = re.compile('a(?!b)')
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(3, 4), 
match='a'>

a(?!b) Find the second a, which does not have 
b after it.

4 >>> import re
>>> expr = 'abba'
>>> p = re.compile('b(?!b)')
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(2, 3), 
match='b'>

b(?!b) Find the second b, which does not have 
b after it.

5 >>> import re
>>> expr = 'abba'
>>> p = re.compile('(?<=a)b')
>>> print(m)
<re.Match object; span=(1, 2), 
match='b'>

(?<=a)b Find the first b, which has a before it.

6 >>> import re
>>> expr = 'abba'
>>> p = re.compile('(?<=b)b')
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(2, 3), 
match='b'>

(?<=b)b Find the second b, which has b before it.

7 >>> import re
>>> expr = 'abba'
>>> p = re.compile('(?<!a)b')
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(2, 3), 
match='b'>

(?<!a)b Find the second b, which does not have 
a before it.

8 >>> import re
>>> expr = 'abba'
>>> p = re.compile('(?<!b)b')
>>> m = p.search(expr)
>>> print(m)
<re.Match object; span=(1, 2), 
match='b'>

(?<!b)b Find the first b, which does not have b 
before it.



Chapter 9 ■ regular expressions for network automation

407

Exercise # Exercise Regex Explanation

9 >>> import re
>>> expr = 'abc'
>>> p1 = re.compile('a(?:b)')
>>> m1 = p1.search(expr)
>>> print(m1)
<re.Match object; span=(0, 2), 
match='ab'>

a(?:b)

10 >>> p2 = re.compile('a(?=b)')
>>> m2 = p2.search(expr)
>>> print(m2)
<re.Match object; span=(0, 1), 
match='a'>

a(?=b)

 Lookaround Application Examples
For current and future engineers studying the Python programming language, there is a lot of ground to 
cover. Until you start working on real projects at work, you may not see real value and power of regular 
expressions. So far, you have been introduced to some basic regular expressions using exercises, and now 
you are gradually skilling up on regular expressions. However, unless you live and breathe regex every 
day on your job, it will take a long time to get to the top level. However, you can still learn the basics from 
this chapter and supplement with other materials found on the Internet and other books to get to the 
intermediary and advanced levels.

Let’s use Cisco TAC's URL http://www.cisco.com/techsupport to practice what we have learned. See 
Listing 9-64.

Listing 9-64. Only Use Lookahed Method to Print http

>>> import re
>>> m = (re.search(r"\w{4,5}(?=:)", "http://www.cisco.com/techsupport"))
>>> print(m.group())
http

In Listing 9-64, the regular expression \w{4,5}(?=:) matches the previous alphanumerics 4 to 5 times 
which occurs in front (lookahead) of the colon (:).

Listing 9-65. Only Use Lookahead and Lookbehind Method to Print www.cisco.com

>>> import re
>>> m = (re.search(r"(?<=\/)\w.+[.]\w+[.]\w+(?=/)", "http://www.cisco.com/techsupport"))
>>> print(m.group())
www.cisco.com

To match www.cisco.com only, we have used a lookbehind method (?<=), which starts with the forward 
slash, /, and then matched the www format. We then used a lookahead (?=) ending with /. Using lookrounds, 
you can match the strings quickly and more precisely.

http://www.cisco.com/techsupport
http://www.cisco.com
http://www.cisco.com


Chapter 9 ■ regular expressions for network automation

408

The following expression can match any filenames that have the format of the filename.
file_extension, such as vlan.dat, sw1.bak, config.text, and even a Cisco switch IOS name such as 
2960x-universalk9-mz.152-2.E6.bin. In the following example, we will compare the negative lookahead 
method compared to the ^, the negation method.

.*[.].*$

In the expr (expression or string), take special care that \n has been used between filenames to create 
a newline effect in a single string. This is to simplify our exercise and save pages. The explanations are 
followed after the lines of each exercise.

In Listing 9-66, you will be using regular expression .*[.].*$ to match all files in expr.

Listing 9-66. Match All File Types Using Regular Expression - .*[.].*$

>>> import re
>>> expr = "vlan.dat\nsw1.bak\nconfig.text\npynetauto.dat\nsw1_old.bak\n2960x-universalk9-
mz.152-2.E6.bin"
>>> m = re.findall(".*[.].*$", expr, re.M)
>>> m
['vlan.dat', 'sw1.bak', 'config.text', 'pynetauto.dat', 'sw1_old.bak', '2960x-universalk9-
mz.152-2.E6.bin']

In Listing 9-67 the ^ (caret) method is used to negate any files ending with the .dat extension and 
returns all the matched file names in a list. Make a special note that we are using the re.findall and re.M 
(MULTILINE) methods that we have learned earlier in this chapter.

In Listing 9-68 negative lookahead example returns the same result as Listing 9-67. There’s more than 
one way to extract the same data.

Listing 9-67. Filter files with file extensions not starting with the letter d (Not using lookaround method)

>>> import re
>>> expr = "vlan.dat\nsw1.bak\nconfig.text\npynetauto.dat\nsw1_old.bak\n2960x-universalk9-
mz.152-2.E6.bin"
>>> m = re.findall(r".*[.][^d].*$", expr, re.M)
>>> m
['sw1.bak', 'config.text', 'sw1_old.bak', '2960x-universalk9-mz.152-2.E6.bin']

Listing 9-68. Filter files with file extensions not starting with the letter d (using lookaround method)

>>> import re
>>> expr = "vlan.dat\nsw1.bak\nconfig.text\npynetauto.dat\nsw1_old.bak\n2960x-universalk9-
mz.152-2.E6.bin"
>>> m = re.findall(r".*[.](?!dat$).*$", expr, re.M)
>>> m
['sw1.bak', 'config.text', 'sw1_old.bak', '2960x-universalk9-mz.152-2.E6.bin']

In Listing 9-69 and Listing 9-6687, you have negated any filenames ending with the .dat or .bak using 
both negation methods. Still, the latter method has an advantage if the file extension extensions begin with 
the same letter or the length of the extension starts to vary.



Chapter 9 ■ regular expressions for network automation

409

Listing 9-69. Filter Any Files Ending with .dat and .bak Without Using Lookaround Method

>>> import re
>>> expr = "vlan.dat\nsw1.bak\nconfig.text\npynetauto.dat\nsw1_old.bak\n2960x-universalk9-
mz.152-2.E6.bin"
>>> m = re.findall(r".*[.][^d|^b].*$", expr, re.M)
>>> m
['config.text', '2960x-universalk9-mz.152-2.E6.bin']

Listing 9-70. Filter Any Files Ending with dat and bak Using Lookaround Method

>>> import re
>>> expr = "vlan.dat\nsw1.bak\nconfig.text\npynetauto.dat\nsw1_old.bak\n2960x-universalk9-
mz.152-2.E6.bin"

> m = re.findall(r".*[.](?!dat$|bak$).*$", expr, re.M)
>>> m
['config.text', '2960x-universalk9-mz.152-2.E6.bin']

Let’s check this in Listing 9-71.

Listing 9-71. Filter Any Files Ending with dat or bak Using ^ Negation Method

>>> import re
>>> expr = "file1.bak\nfile2.dat\nfile3.bakup\nfile4.data"
>>> m = re.findall(r".*[.][^d|^b].*$", expr, re.M)
>>> m
[]

In Listing 9-71 and Listing 9-72, the returned result is different as the regular expression used in 
Listing 9-71 filtered or negated all files, but in Listing 9-72, only the files ending with .dat or .bak files 
have been filtered. If we try to write a working regular expression without the negative lookahead method 
in Listing 9-72, the regular expression will be lengthy and cryptic. In Listing 9-72, using the negative 
lookahead method, you can simply append the exact extension name with the | (OR) sign in the regular 
expression.

Listing 9-72. Filter Any Files Ending with dat or bak Using Negative Lookahead Method

>>> import re
>>> expr = "file1.bak\nfile2.dat\nfile3.bakup\nfile4.data"
>>> m = re.findall(r".*[.](?!dat$|bak$).*$", expr, re.M)
>>> m
['file3.bakup', 'file4.data']

 sub Method: Substituting Strings
Using the sub method in the regular expression, you can change or swap out matched strings. Let’s do the 
first exercise and review the result.



Chapter 9 ■ regular expressions for network automation

410

 Substitute Strings Using sub
As always, let’s start with an exercise first and then review what you have learned from the exercise. See 
Listing 9-73.

Listing 9-73. Use sub to substitute multiple matching words

>>> import re
>>> p = re.compile('HP|Juniper|Arista')
>>> p.sub('Cisco', 'Juniper router, HP switch, Arista AP and Palo Alto firewall')
'Cisco router, Cisco switch, Cisco AP and Palo Alto firewall'

In Listing 9-73, using the sub method, “Juniper router, HP switch, Arista AP and Palo Alto firewall” 
was changed to “Cisco router, Cisco switch, Cisco AP and Palo Alto firewall.” Since Palo Alto was not in the 
compiled regular expression, only Juniper and HP were substituted with Cisco.

Follow through to Listing 9-74, what if we only want to control the number of replacement?

Listing 9-74. Use sub to substitute a matching word only once

>>> p.sub('Cisco', 'Juniper router, HP switch, Arista AP and Palo Alto firewall', count=1)
'Cisco router, HP switch, Arista AP and Palo Alto firewall'

You can control the substitutions using the count parameter. In the previous example, count 1 was used, 
so in Listing 9-74, only Juniper was replaced with Cisco but not HP or Arista.

What if we want to find out the number of replacements in a long string?

Listing 9-75. Use subn to count the number of replacements

>>> import re
>>> expr = '''Juniper router, HP switch, Palo Alto firewall, Juniper router, HP switch, Palo 
Alto firewall, Juniper router, HP switch, Palo Alto firewall, Juniper router, HP switch, 
Palo Alto firewall, Juniper router, HP switch, Palo Alto firewall, Juniper router, HP 
switch, Palo Alto firewall, and Arista router'''
>>> p = re.compile('HP|Juniper|Arista')
>>> p.subn('Cisco', expr)
('Cisco router, Cisco switch, Palo Alto firewall, Cisco router, Cisco switch, Palo Alto 
firewall, Cisco router, Cisco switch, Palo Alto firewall, Cisco router, Cisco switch, Palo 
Alto firewall, Cisco router, Cisco switch, Palo Alto firewall, Cisco router, Cisco switch, 
Palo Alto firewall and Cisco router', 13)

You can use the subn method to substitute the string and find out the number of replaced strings. In 
Listing 9-75, 13 strings have been replaced with the word Cisco.

 Using sub and \g to Swap Positions
When you use the sub method in a regular expression, you can combine it with relative group referencing 
(\g). Let’s say we have a string "Model Number : WS-C3650-48PD", and we want to switch the position of 
'WS-C3650-48PD' and 'Model Number'. So, it looks like this:

From To

Model Number : WS-C3650-48PD  WS-C3650-48PD : Model Number



Chapter 9 ■ regular expressions for network automation

411

On your Python interpreter, type in the code in each exercise. You will quickly learn how this works.
In Listing 9-76, you have compiled the match regular expression into three groups and, using the sub 

method, simply reversed the group sequence after matching each group. The group remains in the same 
place, but groups 1 and 3 have switched places.

Listing 9-76. Use sub and grouping to swap positions

>>> import re
>>> expr = "Model Number : WS-C3650-48PD"
>>> p = re.compile(r"(\w+\s\w+)(\s[:]\s)(\w+[-]\w+[-]\w+)")  (r"(grp1)(grp2)(grp3)")
>>> m = p.sub("\g<3>\g<2>\g<1>", expr)
>>> print(m)
WS-C3650-48PD : Model Number
Listing 9-x >>> p = re.compile(r"(?P<Desc>\w+\s\w+)(\s[:]\s)(?P<Model>(\w+[-]\w+[-]\w+))")
>>> m = p.sub("\g<Model>\g<2>\g<Desc>", expr)
>>> print(m)
WS-C3650-48PD : Model Number

In Listing 9-77, you can also apply the named grouping and give meaningful names to each group and 
achieve our goal. Note that the group was not given a name like (?P<comma>\s[:]\s) to demonstrate that 
you can mix-and-match the named groups and numbered groups.

Listing 9-77. Use sub and named group method to swap positions

>>> p = re.compile(r"(?P<Desc>\w+\s\w+)\s[:]\s(?P<Model>(\w+[-]\w+[-]\w+))")
>>> m = p.sub("\g<Model> : \g<Desc>", expr)
>>> print(m)
WS-C3650-48PD : Model Number

In Listing 9-77, you have only used two named groups and left the comma group out, but when you 
matched using sub method, you added the (:) in your expression to return the desired result.

 Insert a Function in sub Method
In network operations, we use binary, decimal, and hexadecimal values. Two examples where we use 
hexadecimal values are MAC addresses and IPv6 addresses. This becomes most useful in IPv6 addressing 
scheme; it is instrumental in understanding how you can calculate from hexadecimal to binary and decimal 
or the other way around.

In the following exercises, we will practice functions with the sub method.
In Listing 9-78, you have used standard Python methods to convert decimal a random IP address to 

binary numbers. The same conversion result can be achieved by using the sub commands in Listing 9-79.

Listing 9-78. Decimal to Binary Using the join Method

>>> ip = '172.168.123.245'
>>> print ('.'.join([bin(int(x)+256)[3:] for x in ip.split('.')]))
10101100.10101000.01111011.11110101



Chapter 9 ■ regular expressions for network automation

412

Listing 9-79. Decimal to Binary Using the sub Method

>>> ip = '172.168.123.245'
>>> def dec2bin(match):
...     value = int(match.group())
...     return bin(value)
...
>>> p = re.compile(r'\d+')
>>> p.sub(dec2bin, ip)
'0b10101100.0b10101000.0b1111011.0b11110101'

When the sub method is used, the compiled return result stars with 0b, which indicates that this is a 
binary number. In Listing 9-80, we have created a function called dec2bin and used it in the sub method to 
get the decimal IP address into binary numbers.

Listing 9-80. Binary to Decimal Using Join Method

>>> ip = "00001010.11010110.10001011.10111101"
>>> ip1 = ip.replace(".", "")
>>> ip1
'00001010110101101000101110111101'
>>> def bin2dec():
...     return ".".join(map(str, int(ip1, 2).to_bytes(4, "big")))
...
>>> bin2dec()
'10.214.139.189'

In Listing 9-81, we have selected a random binary IP address and demonstrate binary to decimal 
number conversion using the Python join method. After converting the binary number into the decimals, 
we know that the IP address we are trying to find is 10.214.139.189.

Listing 9-81. Hexadecimal to Decimal Numbers

>>> mac = "84:3d:c6:f5:c9:ba"
>>> mac1 = mac.replace(":", "")
>>> mac1
'843dc6f5c9ba'
>>> i = int(mac1, 16)
>>> str(i)
'145400865868218'

In Listing 9-82, we have captured a MAC address of a switch and want to convert this hexadecimal 
numbers into decimal numbers. Using the basic Python methods we can easily convert the hexadecimal 
number into a decimal. This is a good example of how efficient Python could be converting numbers from 
one form to another.

Listing 9-82. Decimal to Hexadecial

>>> def hexrepl(match):
...     value = int(match.group())
...     return hex(value)
...



Chapter 9 ■ regular expressions for network automation

413

>>> p = re.compile(r"\d+")
>>> p.sub(hexrepl, 'MAC address: 145400865868218')
'MAC address: 0x843dc6f5c9ba'

Once again, you have written a Python code with the sub method to reverse the decimal MAC address 
back into a hexadecimal number for demonstration purposes. 0x at the beginning of the number indicates 
that this number is a hex number.

 if you are new to regular expressions, this might have been pretty tough chapter. But as mentioned at the 
beginning of this chapter, in general programming, mastering the regular expressions is a must, not optional.

to get even more help on the topic, go to the following regular expressions Cheat sheets.

url: https://cheatography.com/davechild/cheat- sheets/regular- expressions/

url: http://web.mit.edu/hackl/www/lab/turkshop/slides/regex- cheatsheet.pdf

 Summary
Some people will find this chapter to be the most challenging chapter to digest. I do not expect anyone 
to understand this chapter in full in a single read. You will have to come back to this chapter over and 
over again and slowly let the regular expression syntax and concepts soak into your brain. You have just 
completed all the Chapter 9 exercises, and ideally, you will be able to find some spare time each week to 
practice regular expressions. As you write Python code, you will have to store and process more and more 
data. The real power in network programmability is also in the power of data processing. In the next chapter, 
you will be completing the necessary lab preparation and integration for Python network automation.

https://cheatography.com/davechild/cheat-sheets/regular-expressions/
http://web.mit.edu/hackl/www/lab/turkshop/slides/regex-cheatsheet.pdf


415
© Brendan Choi 2021 
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_10

CHAPTER 10

GNS3 Basics

If you do not build your lab yourself, then you will not know how everything works in the lab. Building your 
virtual lab on your own is one of the best ways to master IT skills in a particular technology. In this chapter, 
you will learn how to install and build a simple networking lab using GNS3 and VMware Workstation Pro. 
This chapter will guide you through each step of installing and configuring GNS3 correctly to get the most out 
of your setup. You will also learn various features of GNS3 on Windows. As you are aware by now, there is no 
need for hardware-based networking equipment. After completing the simple lab topology, you will integrate 
an old IOS image and test-drive the lab for verification purposes and get you familiar with the lab setup.

In this chapter, you will be learning GNS3 basics by building simple IOS labs. The GNS3 skills learned 
here will allow you to build various network automation labs on GNS3. You can extend the use of these labs 
to your work for proof-of-concept (POC) labs or vendor networking certifications.

 

 GNS3 at a Glance

 At the end of Chapter 6, you downloaded the GNS3 VM.ova file for your GNS3 version, and then you 
imported it as a virtual server to host your networking devices. If you have not completed this task yet, you must 
go back and complete the task detailed in the section “Downloading and Installing the GNS3 VM from an .ova 
File.” Then come back to this chapter and continue.

 In this chapter and throughout this book, the terms Cisco CML and Cisco VIRL (or CML and VIRL) are used 
interchangeably. They are basically the same software for emulating Cisco networking devices in virtual 
environments. VIRL stands for Virtual Internet Routing Lab, and CML stands for Cisco Modeling Lab. CML 
replaced VIRL in 2020.

https://doi.org/10.1007/978-1-4842-6806-3_10#DOI


ChApTeR 10 ■ GNS3 BASICS

416

GNS3 is a multivendor network emulator that was introduced in 2008. Supported on Windows, 
Linux, and macOS, GNS3 is also known as the graphical user interface (GUI) Dynamips. You only need to 
understand that the GUI-based GNS3 operates on top of Dynamips. GNS3 was developed and is supported 
on a community basis, and you can download it for free after user registration on the GNS3.org website. For 
this chapter, you will need the latest version of GNS3 to run GNS3 as a virtual server on VMware Workstation. 
Running GNS3 on VMware Workstation Pro as a virtual machine is recommended, and this is a best practice 
for our lab. When running GNS3 as a local server on the host operating system, your Windows performance 
degrades significantly; it is always better to run GNS3 as a separate VM on VMware Workstation; this will 
prevent any CPU and memory contention issues between the host PC and GNS3 server. Another reason for 
using GNS3 is to create a completely integrated lab with the Linux VMs. You can use the Linux servers as 
the Python servers to control virtual routers and switches in various PoC labs to study and test networking 
concepts.

When installing GNS3 on a Windows machine, you need only a single installation .exe file, but some 
additional software will be installed automatically during the installation. During the installation, your 
computer must be directly connected to the Internet. The installation procedures shown in this book 
include tips that I have learned over the years, and it is recommended that you follow each step closely to 
replicate all the tasks in this chapter.

To test routers, switches, or firewalls, you will need to locate the software separately and quickly 
integrate it into GNS3 for various labs. GNS3 does not support all IOS/IOS-XE/IOS-XR versions; it still 
supports older IOS 12.x trains for testing purposes. Although Cisco’s 7200 router IOS version 15.x is 
supported, two apparent problems exist with the 7200 router IOS 15.x version; it hogs your computer’s CPU 
and memory resources, and there is no support for the layer 2 switching function. Cisco’s IOU has been 
available to internal Cisco TAC engineers, and the spinoff from IOU seems to be the new VIRL L2 and L3 
software for networking studies. Cisco recently renamed VIRL to CML Personal Edition (PE). The new CML-
PE L2 and L3 images are identical to the preceding VIRL images, so in this book, you can use either image 
from Cisco.

GNS3 offers more useful features for other software integrations, and it is a great study tool for 
networking students and engineers alike. CME-PE, VIRL, and IOU images support using Qemu as the key 
features of the new GNS3. There is support for appliance integration via Docker images as well. That’s 
right—in GNS3, Docker and virtualization programs can run side by side on the GNS3 VM server. Since the 
introduction of IOU and VIRL, the most significant advantage of configuring such a lab setup has been the 
layer 2 switching function through L2 IOSv images. GNS3 continues to support both CML-PE’s L2 IOSv and 
L3 IOS images. If you want to study Cisco routing and switching, I highly recommend using either Cisco 
CML-PE or EVE-GN lab solutions. If you are new to GNS3, you will enjoy the installation procedures in this 
chapter; most of the installation process is straightforward. If you have been a longtime GNS3 user, then you 
will learn various installations and configuration tips in this chapter and improve on your existing GNS3 
integration skills.

GNS3 was briefly discussed in Chapter 1 while comparing various emulation and simulation tools 
for networking studies. Also, we looked at the advantages and disadvantages of each tool. At the end of 
Chapter 6, you learned how to build a virtual machine, namely, a GNS3 VM from an .ova file; the .ova 
file is a pre-installed virtual machine for faster deployment. You have already downloaded and created a 
virtual machine named GNS3 VM as part of the virtual machine creation. You have been slowly gaining the 
essential IT skills in Python, virtualization, Linux administration, and regular expressions to get ready for 
Python and network automation. Beginning in this chapter, you will build an environment where you can 
learn, test, validate, and master various network automation scenarios using Python.

The GNS3 installation in this chapter is a continuation of where we ended in Chapter 6. Let’s go ahead 
and install GNS3 to integrate Cisco IOS in this chapter and later to integrate the CML-PE L2 and L3 IOSv 
software with the Windows host PC and Linux VMs.



ChApTeR 10 ■ GNS3 BASICS

417

 Installing GNS3 for the First Time
Creating a virtual machine GNS3 VM on VMware Workstation 15 Pro in Chapter 6 was in preparation 
for GNS3 integration with VMware Workstation and Cisco software. Cisco’s IOS and VIRL images will be 
configured and controlled by GNS3 software, but the actual images will be running from the GNS3 VM and 
running on VMware Workstation. A virtual machine running within another virtual machines is known as a 
nested virtualization environment.

Before downloading the GNS3 installation file for Windows 10, check the installed version of your 
GNS3 VM machine and make sure that you download the version in line with your GNS3 VM version. If you 
want the newest and greatest GNS3 version, then you can download the GNS3 install file and GNS3 VM.ova 
file from the GNS3 official site or the GitHub site. For this book, I have downloaded the version 2.2.11 files, 
which was the latest version at the time of writing this chapter. As newer GNS3 software is released regularly, 
version 2.2.11 or the newer version of GNS3 will work just fine.

 Downloading the GNS3 Installation File
If you have not downloaded the GNS3 installation file yet, then first go to the GNS3 download URL at 
https://github.com/GNS3/gns3- gui/releases and download the correct GNS3 .exe file for your GNS3 VM 
version (see Figure 10.1). The version downloaded in this book is 2.2.11 (GNS3-2.2.11-all-in-one.exe). 
You can safely assume that the GNS3 VM version used in this book is also version 2.2.11, and this virtual 
machine has already been pre-installed on VMware Workstation 15. If you want to follow the steps in this 
book exactly, you can use the same software versions, but if you are using VMware Workstation 16 Pro and 
the latest GNS3 files, the installation and setup processes will be almost identical, so you should not have 
major drama setting up your GNS3 environment.

Figure 10-1. GNS3 installation file download for Windows

https://github.com/GNS3/gns3-gui/releases


ChApTeR 10 ■ GNS3 BASICS

418

In this example, the software is downloaded via the developer’s GitHub website using the Assets button. 
Alternatively, the same software can be downloaded from the GNS3.org site after registering your user 
account.

 GNS3 Installation and Setup
As part of the installation, GNS3 will install essential software such as Microsoft Visual C++ 2017 
Redistributable (x64), Wireshark, WinPcap, and Npcap. Suppose your PC already has the essential software 
installed. In that case, the GNS3 installation wizard will detect the software automatically, but if no software 
is installed, it will automatically install the essential software. Under most installation scenarios, the GNS3 
installation will go through without a hiccup, but if your installation does not go smoothly, then you can 
pre-install the correct versions of Wireshark, WinPcap, and Npcap before GNS3 installation. You will also 
be offered to sign up and install the SolarWinds software; in my opinion, it is bloatware, so if you care about 
your computer’s performance, ensure you decline SolarWinds’ free offer.

 GNS3 Installation
The most basic installation tasks have been documented in full and provided as an additional installation 
guide to include more quality content in this book. Installing GNS3 on the Windows host PC is as simple 
as clicking the Next buttons a few times until the installation completes. Please refer to Chapter 10 Pre-
task – Installing GNS3.pdf for the initial GNS3 installation steps; the installation guide is available at 
https://github.com/pynetauto/apress_pynetauto.

 Download and complete the GNS3 installation before proceeding to the next section!

 GNS3 Setup Procedures
Now we have to set up the GNS3 so you can use it to build your networking lab. There are other setup 
options available, but since we have imported the GNS3 VM on the Windows host PC, this will be our 
preferred setup method. Follow the instructions and begin the GNS3 setup.

https://github.com/pynetauto/apress_pynetauto


ChApTeR 10 ■ GNS3 BASICS

419

# Task

1 As soon as GNS3 launches, you will be prompted with the GNS3 server Setup Wizard. Here, we are 
using the GNS3 VM, so you must choose “Run appliances in a virtual machine.” Check the “Don’t 
show this again” box and click the Next button. See Figure 10-2.

Figure 10-2. GNS3 setup, GNS3 server Setup Wizard

(continued)



ChApTeR 10 ■ GNS3 BASICS

420

# Task

2 Under “Local server configuration,” leave everything as the default. GNS3 on Windows uses TCP port 
3080 for the server to localhost communication. This number is rarely altered unless you have an 
installation problem or want to configure it differently from out-of-the-box installation. Click the Next 
button again. See Figure 10-3.

3 There is nothing to select for the local server status, so click the Next button to proceed. See Figure 10-4.

Figure 10-3. GNS3 setup, local server configuration

Figure 10-4. GNS3 setup, local server status



ChApTeR 10 ■ GNS3 BASICS

421

# Task

4 The default GNS3 RAM recommendation is 2GB (2048MB); update this to 4GB (4096MB) or more 
based on your computer specification. My computer has 32GB memory, so my host will still have 
plenty of memory after allocating 8GB (8192MB) of memory to the GNS3 VM. If you have 16GB of 
memory, the recommendation is between 4GB and 6GB of memory to this VM. When you reset the 
memory allocation here, it will be reflected on VMware Workstation’s GNS3 VM server. If you are 
using an older CPU, leave the vCPU cores at 1, but if the CPU is newer, the vCPU cores can be 
increased to 2 or more. Click Next. See Figure 10-5.

Figure 10-5. GNS3 setup, GNS3 VM

(continued)



ChApTeR 10 ■ GNS3 BASICS

422

# Task

5 As soon as you click the Next button, the GNS3 VM on the workstation will boot up. And once it goes 
through the Power-On Self-Test (POST), you will see a blue welcome screen similar to Figure 10-6 on 
VMware Workstation 15 Pro. The GNS3 VM is a Linux (Ubuntu) appliance server configured to run 
various GNS3-compatible appliances from many vendors. GNS3 is a lot more than just a Cisco IOS 
emulator and has many use cases for studying other vendor products. Your GNS3 VM will be 
launched automatically; give it enough time to stabilize.

Figure 10-6. GNS3 setup, GNS3 VM server started on the workstation



ChApTeR 10 ■ GNS3 BASICS

423

# Task

6 The GNS3 Setup Wizard summary window appears, and you can review and click the Finish button to 
complete your setup. See Figure 10-7.

Figure 10-7. GNS3 setup, setup summary

(continued)



ChApTeR 10 ■ GNS3 BASICS

424

# Task

7 Now you will see the GNS3 GUI with the GNS3 VM and your hostname (local host) with green status 
lights. If you see a red or amber light, it is an indication that your GNS3 installation has not been 
completed cleanly, and you may need to review your installation and setup processes and 
troubleshoot the issue. See Figure 10-8.

 Getting Familiar with GNS3
Now that the GNS3 has been installed and launched, you are ready to use the application. Before jumping 
into GNS3 and creating test network topologies, let’s quickly study the user interface to understand each 
menu’s functionalities and options better. All the icon menus plus more menu options are available from the 
main drop-down menu options. The following sections are a quick introduction to the GNS3 menu and a 
couple of tips to help you run networking labs smoothly from GNS3.

 GNS3 Menus and GUI
Figure 10-9 shows GNS3’s main window, and Table 10-1 describes each option. Getting familiar with where 
each menu is located and where the most used features are placed as icons on the GNS3 GUI interface will 
help you save time as you use GNS3 on your host PC.

Figure 10-8. GNS3, first time started and running



ChApTeR 10 ■ GNS3 BASICS

425

Figure 10-9. GNS3 GUI

Table 10-1. GNS3 GUI Elements

# Menu Explanation

① Menu option Use the menu to access all the options from the drop-down menu.

② File option Open or save GNS3 projects.

③ Device and Topology 
option

Manage snapshots, show/hide connectors, and console into devices.

④ Simulation option Power on/off, pause, and restart devices.

⑤ Drawing tools Decorate the GNS3 Topology canvas with drawing tools.

⑥ Device Type icons Show devices based on different device types.

⑦ Add a Link tool Connect various devices.

⑧ Device List List installed devices. Use the search menu to filter displayed devices.

(continued)



ChApTeR 10 ■ GNS3 BASICS

426

 Gracefully Shutting Down GNS3 and GNS3 VM
This is a friendly reminder before you start plotting icons on GNS3’s Topology canvas. Because of the GNS3’s 
sensitivity with Windows installation and how the software tries to emulate the physical hardware, GNS3 
running on Windows OS never has been 100 percent reliable. To avoid headaches and time troubleshooting 
some minor issues, I cannot emphasize enough that you should take a softer approach when starting and 
shutting down GNS3 on your Windows OS. When you start GNS3, you must give it enough time to start all its 
background services and also the GNS3 VM if you are using the GNS3 VM for hosting all your virtual network 
devices. Most importantly, you must follow a stringent set of procedures while shutting down GNS3 to 
avoid any configuration loss and to avoid deleting the whole project due to file corruption caused by abrupt 
application closures. GNS3 is one of the best free study tools for studying the basic networking concepts, but 
unfortunately, it does not come with the enterprise level of reliability.

After you have finished Cisco or any other vendor labs on GNS3, it is crucial that you first save the 
running configurations. For the case of Cisco IOS devices, run copy running-config start-config or 
write memory to save the router’s or switch’s running configurations to the startup configuration. After 
that, bring any other devices to shutdown status using the big red stop button or individually selecting each 
device to shut down each one (see Figure 10-10). Once all configurations have been saved and the devices 
are properly powered off, then you can gracefully shut down GNS3 using the X in the top-right corner (see 
Figure 10-11).

# Menu Explanation

⑨ Topology canvas Select and drop devices on a canvas to make a working topology.

⑩ Log window Displays GNS3 operational status. You can also send some commands using 
this window.

⑪ Topology/Node 
Summary

Displays current GNS3 device summary.

⑫ Server Summary Displays the GNS3 VM and local server status. Also, it displays the CPU and 
memory utilization of each server.

Table 10-1. (continued)



ChApTeR 10 ■ GNS3 BASICS

427

After GNS3 shuts down, the GNS3 VM running on VMware Workstation 15 Pro will also shut down 
automatically. It would be best if you did not shut down the VM from the workstation; it is recommended 
that you use the X mark in the top-right corner to close the GNS3 application. As you become familiar with 
GNS3 and its quirks, this shutdown process becomes a standard procedure. If you are not careful, your 
working lab configuration and projects may often malfunction due to incorrect shutdown procedures.

Figure 10-10. GNS3, stopping a device using the right-click option



ChApTeR 10 ■ GNS3 BASICS

428

 Starting GNS3 as an Administrator
Here is a quick tip while starting GNS3 for the first time on your Windows operating system. When GNS3 gets 
installed on your Windows PC, if you did not deselect this option, the GNS3 startup icon will be created on your 
Windows desktop by default. Starting GNS3 using this icon is the quickest way to start the program; however, 
not starting GNS3 as an administrator can restrict you from making GNS3 configuration changes to network 
adapter settings and other settings. So, the best practice is to always launch GNS3 as an administrator. One tip 
to always start as the GNS3 administrator is to change the settings under the GNS3 icon.

# Task
1 First, go to the desktop of your host PC, locate the GNS3 icon, and right-click it to open Properties. See 

Figure 10-12.

Figure 10-12. GNS3, start icon on Windows host desktop

Figure 10-11. GNS3, graceful shutdown using the X key



ChApTeR 10 ■ GNS3 BASICS

429

# Task

2 Now, go to the Compatibility tab. Under Settings, select the “Run this program as an administrator” 
option, click the Apply button, and click the OK button to save the settings. See Figure 10-13.

Now you are ready to learn some GNS3 tricks to improve your skills. For the rest of this chapter, you will 
be introduced to some cool GNS3 tricks such as connecting GNS3 devices to the host, connecting GNS3 to 
the Internet, adding the Microsoft loopback into the lab topology, and cloning a GNS3 project for making 
your base lab template.

 Using GNS3 for the First Time: Cisco IOS and Windows Lab
Initially, the only way to study Cisco technologies and certifications was to use a physical hardware-based 
lab with a stack of routers and switches. When Dynamips was developed to emulate old Cisco router 
platforms by Christophe Fillot in August 2005, it permanently changed the way networking students study 
Cisco technologies. Before Dynamips, there was Cisco’s PacketTrace, but it was more of a simulator than an 
emulator. As mentioned, GNS3 is the GUI version of Dynamips, and GNS3’s underlying application is still 
Dynamips.

Figure 10-13. GNS3, changing the program icon startup settings



ChApTeR 10 ■ GNS3 BASICS

430

More recently, it was a known secret that Cisco was using UNIX-based Cisco IOU for its internal staff 
training, but IOU was not released as a product on the market. There was a transitional period where 
Cisco IOU was leaked to Cisco partners, and networking students were using Cisco IOU. Cisco has recently 
reinterpreted Cisco IOU into Cisco CML (previously VIRL) and developed it into a subscription-based 
product that is available as a paid product on the market.

Before GNS3 developers integrated VIRL and IOU images, old-school networking students used 
somewhat outdated Cisco IOS images on GNS3 to study for Cisco certifications. Even today, older Cisco 
IOS images are supported by GNS3; this is relevant to CCNA studies because it provides ways to emulate 
more than 90 percent of CCNA routing studies without using any physical equipment. Although there have 
been some new advancements in networking technologies and the networking education market, many old 
routing and switching concepts are still relevant to CCNA studies, so when studying the basic networking 
concepts, the Cisco IOS 12.4.x version will suffice for your learning needs.

There are two main disadvantages of learning networking using old IOS-based GNS3 labs. First, it can 
only support older IOS 12.4 versions on most router platforms, except for Cisco 7200. Second, layer 2 support 
for switching is only through the NM-16ESW module installed on router platforms. Using newer VIRL L2 and 
L3 images, you can build more functional Cisco routing and switching labs on GNS3 with many IOS features.

As part of the GNS3 introduction, integrating old Cisco IOS into a lab would be a good starting point. 
Actually, in the VIRL integration, the only thing replaced is the IOS image with more recent VIRL images. 
This chapter will gradually introduce you to a handful of techniques you can use on Cisco IOS running on 
GNS3. For the most part, all the techniques learned here in this chapter are extendable to the CML labs 
in Chapters 12, 13, and 14, and they will help you build various GNS3 labs with greater effectiveness and 
flexibility. Even if you are an old CCNA student familiar with the older IOS integration on GNS3, do not skip 
this chapter as there are some new skills you will acquire throughout the chapter.

Let’s begin with a quick discussion of the Cisco software license model, including Cisco IOS, IOU, and 
VIRL images.

 Cisco IOS Software License and Downloading an Older Cisco IOS
First, to configure your GNS3 lab with Cisco IOS, you must find and download Cisco Internet Operating 
System (IOS) images for GNS3-supported Cisco router models. As mentioned, this book works on the 
assumption that either you have completed Cisco CCNA R&S certification studies previously or you are 
currently completing Cisco’s associate-level certification studies. Another assumption is that you are 
interested in how Cisco carries out its business and you want to work in the enterprise networking space 
as a network/security/data center engineer for many years to come. Cisco increases its revenue by selling 
the hardware, software, and service support contract. To understand how Cisco raises revenue with 
software, you must understand the software proprietorship and licensing agreements for Cisco software. 
To understand Cisco’s software licensing model, you have to approach it from Cisco’s business model. 
You already know that Cisco is a leading vendor selling networking equipment for the enterprise and SMB 
market; it sells the technical support contract packages on its hardware and software to drive the company’s 
profit margins up. The technical support agreement also includes the right to use Cisco’s software. In 
other words, if you purchased equipment from one of Cisco’s partners through a regular channel, you as a 
customer have the rights to use platform-specific software running on your networking devices and receive 
24/7 support from Cisco TAC if you need technical support, which is until the last day of the service contract.

Second, note that if you purchased a device running Cisco IOS version 15, usually you are only allowed 
to minor patch upgrades within the same software version unless there is a field notice for a security 
vulnerability or a field notice to upgrade to the latest major software version. Usually, your devices age, 
and the newer software’s minimum hardware requirements are increased. You will be limited to upgrading 
the device’s software to a certain level, and you are forced to upgrade to the latest hardware models. As 
Cisco devices come to end of life (EoL), Cisco will not support any EoL devices. Most of Cisco’s software 
is regarded as Cisco proprietary and part of Cisco’s intellectual property, so Cisco owns all IOS and other 
software rights; therefore, individuals are not allowed to freely distribute this software. After purchasing 



ChApTeR 10 ■ GNS3 BASICS

431

Cisco equipment through a channel partner, the technical support service contract also allows for software 
downloads and technical support from Cisco TAC. If you are currently working for a Cisco partner, you will 
be able to download the most up-to-date IOS software with ease, but probably not the older IOS software. 
Another good way to get an older IOS for your study is to purchase used lab routers from online auction sites 
such as eBay, Craigslist, or Gumtree, or even from someone you know who no longer has any use for his old 
CCNA/CCNP lab equipment. You will find a working IOS in your device’s flash memory, and the IOS can 
be copied across to your PC using TFTP file transfer; then it can be used as a GNS3 IOS base image. Even if 
you have the right to download IOS from the Cisco site, locating an older GNS3-compatible IOS from Cisco’s 
official site can be challenging as most of the older devices already have reached EoL. Suppose you are a full-
time student who wants to work in the networking industry as a network or security engineer. In that case, 
Google searches can lead you to some sites where you might be able to locate older IOS versions. This book 
uses older versions of IOS from my older Cisco equipment, but ultimately downloading a working copy of an 
older IOS version is your responsibility to follow this book.

Third, when you visit GNS3’s official site, you will first notice that GNS3 supports older Cisco 
routers, namely, C1700, C2600, C2691, C3600, C3700, and C7200 series routers and older-style Cisco PIX 
firewalls. For quick demonstration purposes, this chapter uses an old Cisco 3725 router’s IOS version 
12.4.15 T15, which is compatible with the latest GNS 3.2.11. Although the Cisco 7200 router’s IOS version 
15.x is supported, the RAM requirement is 512MB, consuming more computer memory than older 3700 
series routers. If you have a PC with a relatively strong CPU and memory, you can choose to use Cisco 
7200 IOS version 15.x in place of the 3725’s IOS. In this chapter, the exact IOS version used is the c3725-
adventerprisek9-mz.124-15.T14.bin image, and this is the one supported currently by GNS3.2.11.

Here are some older IOS versions you can use for our study purposes:

• c3725-adventerprisek9-mz.124-15.T14.bin (old)

• c3745-adventerprisek9-mz.124-25d.bin (old)

• c7200-adventerprisek9-mz.124-24.T5.bin (old)

• c7200-adventerprisek9-mz.152-4.M7.bin (newer)

 You are responsible for purchasing and downloading required Cisco software used in this book. This book 
does not provide any software used in this book, but points you to the sources to locate and download the 
correct software. At the end of the day, each reader is responsible for any software usages for their own 
learning needs.

 Decompressing Cisco IOS for GNS3 Use
If you want to follow along with this book, you should have successfully located and downloaded  
c3725-adventerprisek9-mz.124-15.T14.bin in your Downloads folder. Then, you will decompress the 
.bin file into an .image file so the decompressed image file can be used in GNS3. There are different ways 
to decompress a Cisco IOS .bin file on different operating systems, but you will learn how to decompress 
an IOS file using the two most common Windows methods. The first method is to use Unpack-0.1_win.zip, 
and the second method is to decompress IOS by integrating GNS3 into Dynamips.



ChApTeR 10 ■ GNS3 BASICS

432

 Decompressing Cisco IOS Using the Unpack.exe Method
Here, you will download Unpack.exe for Windows and decompress a Cisco IOS file for GNS3 use. Follow 
these simple instructions to decompress the original .bin file and save it as an .image file for GNS3 use. 
Please note that the file must be saved with the .image file extension and moved to your Downloads folder of 
your PC at the end of this task.

# Task

1 First, download Cisco image unpacker 0.1 binary for Windows to your Downloads folder and extract 
it under the Downloads folder. The filename is Unpack-0.1_win.zip, and the download is available from 
SourceForge.net.

URL: https://sourceforge.net/projects/gns- 3/files/Cisco%20Image%20Unpacker/v0.1/

2 If you still have your IOS file in the Downloads folder, move it to the Unpack folder, as shown in 
Figure 10-14.

3 From the Windows command-line prompt, run the following unpack.exe command to extract the file 
in the same folder. Once the file is decompressed, the decompressed filename will have .bin.unpacked 
as its file extension: unpack.exe --format IOS [Your_IOS_Name].

C:\Users\your_name\Downloads\Unpack>unpack.exe --format IOS c3725-adventerprisek9-
mz.124-15.T14.bin

 ■ Note Replace your_name with your username.

Figure 10-14. Decompressing IOS, moving the IOS file to the unpack folder

http://sourceforge.net
https://sourceforge.net/projects/gns-3/files/Cisco Image Unpacker/v0.1/


ChApTeR 10 ■ GNS3 BASICS

433

 # Task

4 Now rename the .bin.unpacked file as a .image file. So, the filename changes from c3725-
adventerprisek9-mz.124-15.T14.bin.unpacked to c3725-adventerprisek9-mz.124-15.T14.image. 
Also, notice that the decompressed IMAGE file is almost twice the size of the .bin file. See Figure 10-15.

6 Once the filename has been updated with the correct file extension, copy and paste the file into the 
Downloads folder again. This step is essential as GNS3 will be searching for a compatible .image file in 
the Downloads folder on your Windows. See Figure 10-16.

If you want to find out how to decompress the IOS file using the second method, the Dynamips method, 
please read 10.4.2.2, but if you immediately want to begin network lab building tasks, jump to 10.5.

 Decompressing Cisco IOS Using Dynamips Method (Optional)
Follow these instructions to decompress your IOS .bin file into the .image file using the Dynamips server 
method. Once you have completed the task, make sure that a copy of the .image file has been placed 
under your host PC’s Downloads folder. Some readers may find this process more manageable than the first 
decompression method.

Figure 10-15. Decompressing IOS, renaming the decompressed .bin.unpacked file to .image

Figure 10-16. Decompressing IOS, moving the .image file to the Downloads folder



ChApTeR 10 ■ GNS3 BASICS

434

# Task
1 If you have not started your GNS3 and GNS3 VM, first launch it by double-clicking your desktop’s GNS3 

start icon. See Figure 10-17.

2 Give one to two minutes for the GNS3 VM to start up properly and settle down. Wait until both GNS3 
VM and your local server’s CPU and RAM levels settle down. See Figure 10-18.

3 GNS3 will prompt you with the Project window. Since we are interested only in decompressing the IOS, 
we will click the Cancel button. See Figure 10-19.

Figure 10-17. GNS3, GNS3 desktop icon

Figure 10-18. GNS3, Servers Summary window

Figure 10-19. GNS3, Project window cancel



ChApTeR 10 ■ GNS3 BASICS

435

# Task

4 To open the Preferences menu on GNS3, select Edit ➤ Preferences. See Figure 10-20.

5 Select the IOS routers under Dynamips, as shown in Figure 10-21.

Figure 10-20. GNS3, opening the Preferences menu

Figure 10-21. GNS3, Dynamips, IOS routers

(continued)



ChApTeR 10 ■ GNS3 BASICS

436

# Task

6 Click the New button to open the New IOS router template window. In the Server screen, select “Run this 
IOS router on my local computer.” You can also select the “Run this IOS router on the GNS3 VM” option, 
but we’ll use the old method and remove the image after decompressing the file. See Figure 10-22.

Figure 10-22. GNS3, new IOS router template



ChApTeR 10 ■ GNS3 BASICS

437

# Task

7 In the IOS image window, click the Browse button on the right. See Figure 10-23.

Figure 10-23. GNS3, selecting the IOS image

(continued)



ChApTeR 10 ■ GNS3 BASICS

438

# Task

8 Select your IOS image in the Downloads folder and click the Open button. See Figure 10-24.

9 Click Yes to decompress the IOS image. See Figure 10-25.

Figure 10-24. GNS3, selecting IOS and opening

Figure 10-25. GNS3, decompressing IOS image

(continued)



ChApTeR 10 ■ GNS3 BASICS

439

# Task

10 When you come back to the IOS image window, GNS3 will tell you where the .image file will be stored. 
For this demonstration, it is extracted to the user’s GNS3\images\IOS\ folder. See Figure 10-26.

C:\Users\your_name\GNS3\images\IOS\c3725-adventerprisek9-mz.124-15.T14.image

 ■ Note Replace your_name with your name.

Figure 10-26. GNS3, decompressed image location

(continued)



ChApTeR 10 ■ GNS3 BASICS

440

# Task

11 For the name and platform, leave all the settings as the defaults and click the Next button.

12 The recommended RAM size for 3725 is 256MB, but GNS3 will default the RAM to 128MB. This is 
only an example to demonstrate how to extract the .bin file into the .image file, so you can leave it as 
128MB and click the OK button. See Figure 10-27.

13 In the “Network adapters” window, click the Next button.

14 In the “WIC module” window, click the Next button again.

Figure 10-27. GNS3, memory



ChApTeR 10 ■ GNS3 BASICS

441

# Task

15 In Idle-PC window, click the Next button. See Figure 10-28.

 ■ Note If you choose to run the IOS router on the local machine and Dynamips, you can click the Idle-pC 
finder button to find a suitable Idle-pC, and it will automatically find an optimum value for your system. Since 
we will be configuring the IOS router to run from GNS3 VM, we can skip this process.

16 Now we extracted the .image file in a folder. We plan to run most of the devices on the GNS3 VM, so 
select the router and click the Delete button to remove the router from Dynamips ➤ IOS routers. Then, 
click OK to close the window. See Figure 10-29.

Figure 10-28. GNS3, IOS idle-PC finder example only

Figure 10-29. GNS3, selecting and deleting the IOS router

(continued)



ChApTeR 10 ■ GNS3 BASICS

442

# Task

17 Now go to the following folder path: C:\Users\your_name\GNS3\images\IOS. You will find a copy of 
the decompressed IOS image file with the extension .image. Copy the file to the Downloads folder. 

 ■ Note Replace your_name with your username. See Figure 10-30.

Now you are ready to install your Cisco IOS router on GNS3 VM. Let’s follow through with this task.

 Installing Cisco IOS on the GNS3 VM
You have successfully decompressed your IOS image and now are ready to create a GNS3 project using the 
.image file into either the local server (PC) or your GNS3 VM server. Since we are using the GNS3 VM as our 
GNS3 server and want to install most of the devices, this avoids high CPU utilization, idle PC, and memory 
contention issues associated with the local Dynamips server setup. We are going to install IOS on GNS3 VM 
instead of the local server. This is a recommended installation as the performance of the GNS3 VM will have 
less CPU and memory impact on your host PC’s performance than when you run devices on the local server.

If your GNS3 is not already running, start the application and let it initialize the GNS3 VM on 
Workstation. Wait about one to two minutes for the GNS3 VM to boot up properly. Wait until your PC’s CPU 
and memory settle down.

Assuming that both GNS3 and GNS3 VM on Workstation are correctly running on your PC, let’s go 
ahead and complete the following set of tasks to create our first GNS3 project and install the .image file on 
the GNS3 VM server:

Figure 10-30. Host PC, moving the .image file to the Downloads folder



ChApTeR 10 ■ GNS3 BASICS

443

# Task
1 After launching GNS3, when the GNS3 project window appears, create a new GNS3 project and give a 

name. Alternatively, you can use the New Project icon to open the Project menu and begin this task.
You can give any meaningful name of your choice. Here, the project name given was ios_lab. You do 
not have to follow this naming convention strictly. See Figure 10-31.

Figure 10-31. GNS3, creating a new project

(continued)



ChApTeR 10 ■ GNS3 BASICS

444

# Task

2 From the GNS3 menu, select File ➤ + New template. Or, click the Router icon under Devices on the left 
and click + New template. See Figure 10-32.

Figure 10-32. GNS3, opening the “New template” menu



ChApTeR 10 ■ GNS3 BASICS

445

# Task

3 When the “New template” window appears, select the "Install an appliance from the GNS3 server 
(recommended)" option. Click the Next button. See Figure 10-33.

Figure 10-33. GNS3, “New template” option

(continued)



ChApTeR 10 ■ GNS3 BASICS

446

# Task

4 Use the search field to locate your IOS device or use the drop-down device menu on the “Appliances 
from server” screen to select your device. Once you locate your IOS device, click it to select it and then 
click the Install button at the bottom. See Figure 10-34.

Figure 10-34. GNS3, searching your IOS device



ChApTeR 10 ■ GNS3 BASICS

447

# Task

5 Next, leave the “Server type” selection as the default, “Install appliance on the GNS3 VM 
(recommended),” and click the Next button one more time. See Figure 10-35.

Figure 10-35. GNS3, server type selection

(continued)



ChApTeR 10 ■ GNS3 BASICS

448

# Task

6 If you have successfully followed the previous steps, the “Required files” window will locate your 
.image file, and you will see the same or similar screen to Figure 10-36. Select the image file by 
highlighting the file and click the Next button again.

Figure 10-36. GNS3, required files



ChApTeR 10 ■ GNS3 BASICS

449

# Task

7 Of course, you want to install the Cisco IOS on GNS3. Click the Yes button. See Figure 10-37.

8 You are almost there; click the Finish button to finish the installation. See Figure 10-38.

Figure 10-37. GNS3, appliance installation confirmation message

Figure 10-38. GNS3, usage prompt

(continued)



ChApTeR 10 ■ GNS3 BASICS

450

# Task

9 If the installation is successful, you will be prompted with the message shown in Figure 10-39. Click the 
OK button.

10 Now let’s assign the correct RAM size for 3725 and add an extra FastEthernet interface for our lab.
Finally, go back to the GNS3 main window and click the router icon. You will see the installed Cisco 
IOS router. Under the Routers icon, select the router icon and right-click and select “Configure 
template.” See Figure 10-40.

Figure 10-39. GNS3, Adding the template success message

Figure 10-40. GNS3, configuring the template



ChApTeR 10 ■ GNS3 BASICS

451

# Task

11 On the “Memories and disks” tab, change the default RAM size to 256MB and PCMCIA disk0 to the 
recommended 64MB and then click the OK button. You can go to the Cisco Feature Navigator page to 
check the RAM requirement for Cisco devices. You can go to https://cfnng.cisco.com/archived- 
data and search for your platform and IOS version for older IOS devices. You can download the 
requirement in Excel format. See Figure 10-41.

Figure 10-41. GNS3, adding disk0 to IOS router

(continued)

https://cfnng.cisco.com/archived-data
https://cfnng.cisco.com/archived-data


ChApTeR 10 ■ GNS3 BASICS

452

# Task

12 On the Slots tab, add an NM-1FE-TX on slot 1. You can also add NM-4T for four more FastEthernet 
interfaces or NM-16ESW, which adds 16 L2 interfaces. If you want to use this router as an L2 switch, 
then NM-16ESW can be added, but this is an old GNS3 method with little relevance in the newer GNS3 
labs. You can also add WIC-1T or WIC-2T under the WICs option on this tab. Since you are only going 
to connect through FastEthernet, you can leave the WIC slots blank. Click the OK button. See 
Figure 10-42.

Figure 10-42. GNS3, adding interfaces on IOS router



ChApTeR 10 ■ GNS3 BASICS

453

# Task

13 Now click the router icon and then drag and drop into the Topology canvas on the right. You have 
successfully installed an IOS image on the GNS3 VM. See Figure 10-43.

14 Now close GNS3 by clicking the top-right X button to close GNS3 and the GNS3 VM running on 
Workstation. Your GNS3 will be closed, followed by GNS3 VM shutdown. If you have another virtual 
machine running on VMware Workstation, the other VMs on Workstation will continue to run. See 
Figure 10-44.

Figure 10-43. GNS3, checking the installation

Figure 10-44. GNS3, closing GNS3 (and GNS3 VM)

(continued)



ChApTeR 10 ■ GNS3 BASICS

454

 Creating an IOS Lab Topology on GNS3 and Connecting 
to the Internet

 

 For consistent and reliable lab results, the tasks involved in this section require an Internet connection, and 
it is recommended that your computer is connected by an ethernet cable connection, not a wireless connection. 
Labs connecting through the wireless adapters may lead to different results than in the book. For the most part, 
the labs are carried out with the ethernet cable connected to an ethernet port on a home router. After this 
chapter, most of the labs will work fine on a wireless connection, but if you suspect that something is not 
working correctly, consider connecting your pC to a physical ethernet port on your router or switch.

You have been asked to close both the GNS3 and GNS3 VMs in 10.5, and I have intentionally asked you to 
close the programs so you can properly reopen the previous lab. Now follow the steps to re-open the project 
to continue your IOS lab building.

# Task
1 First, launch GNS3 using the GNS3 icon on your Windows desktop. When the GNS3 project window 

appears, wait for one to two minutes for the GNS3 VM to boot up. See Figure 10-45.

2 Click the “Recent project” button under “Open project” to select the ios_lab.gns3 project, and then 
click the OK button to re-open the first project. If the IOS installation and GNS3 integration were all 
OK, the project should normally open with a GNS3 VM kick-start on Workstation. See Figure 10-46.

Figure 10-45. GNS3, GNS3 desktop icon



ChApTeR 10 ■ GNS3 BASICS

455

# Task

3 As soon as the ios_lab.gns3 project opens, click the “All devices” icon on the left and drop one NAT 
(NAT1), two routers (R1 and R2), and two VPCS (PC1 and PC2). When you drag and drop these 
devices, you will be prompted to select a server to run these devices. Pay close attention to which 
server you select here. See Figure 10-47.

For NAT1, I select pynetauto, which is my PC name; your PC name will be different, so you should 
select your server name. This means that this device will run on the local server’s NATted network, and 
the DHCP service will allocate an IP address from the VMnet8 (192.168.183.0/24) network.
You can also connect to the Internet via GNS3 VM’s NATted network (192.168.122.0/24), but 
connecting to the outside network via GNS3 VM sometimes could be unreliable. Using the local server 
NAT address via VMnet8 provides a more reliable connection to the Internet and the Linux servers 
running on VMnet8. See Figure 10-48.

Figure 10-46. GNS3, opening recent project

Figure 10-47. GSN3, “All devices” icon

Figure 10-48. GSN3, NAT1 server selection

(continued)



ChApTeR 10 ■ GNS3 BASICS

456

# Task

For routers and VPCSs, select GNS3 VM as the server. These devices will run on the GNS3 VM server. 
The GNS3 built-in service is usually used to provide a seamless virtual connection to other devices; it is 
not a managed switch like Cisco switches. VPCS is a handy GNS3’s built-in client, which allows the 
users to use them as end devices for simple ICMP tests. VPC saves a lot of computing power compared 
to running another virtual machine to run an end client. Using a VPC is like configuring a dummy 
loopback interface on a Cisco router or switch for end device reachability testing. Still, it is even better 
as you can still use ping and traceroute from VPCS, just like a real end device. See Figure 10-49.

4 Click the “Add a link” icon on the left bottom, and connect all devices as shown in Figure 10-50. Refer 
to the Topology and Servers summaries to connect your devices as shown.

Figure 10-49. GSN3, Switch1 and PC1 server selection

Figure 10-50. GSN3, connecting devices



ChApTeR 10 ■ GNS3 BASICS

457

# Task

5 When you are happy with your topology, click the big green play icon to start all devices. Note that if 
there are more than five devices, it is a best practice to right-click each device and start one device at a 
time to avoid the CPU and memory hangs during the device bootup. Once all devices have started, the 
lights on the connections should turn all green, as shown in Figure 10-51.

6 Make sure that all lights under the Topology and Servers summaries are green and there are no errors. 
See Figure 10-52.

Figure 10-51. GSN3, starting devices

(continued)



ChApTeR 10 ■ GNS3 BASICS

458

# Task

7 To start a console of R1, simply double-click the R1 icon on the topology or right-click and 
select the console menu. At the console prompt, let’s quickly configure R1 for our first lab.

hostname R1
!
ip name-server 8.8.8.8
!
interface FastEthernet0/0
 ip address dhcp
 no shut
!
interface FastEthernet0/1
 ip address 192.0.2.1 255.255.255.0
 no shut
!
router ospf 1
 network 192.0.2.0 0.0.0.255 area 0
 network 192.168.183.0 0.0.0.255 area 0
!
do write memory

Assigns R1 as the hostname

Configures name server

Fa0/0 gets the IP address from the DHCP server of 
VMnet8 (NAT)
Brings up the interface

Configures an IP address on f0/1
Connects to R2’s f0/0
Brings up the interface

OSPF 1 configuration to allow OSPF advertisement

Saves R1’s running configuration to startup 
configuration

Figure 10-52. GSN3, topology status



ChApTeR 10 ■ GNS3 BASICS

459

# Task

8 Now let’s configure R2. The configuration is similar to R1, but it has three interfaces on three 
different subnets.

hostname R2
!
ip dhcp excluded-address 172.168.2.1 
172.168.2.21
!
ip dhcp pool VPCS_2
   network 172.168.2.0 255.255.255.0
   default-router 172.168.2.1
!
interface FastEthernet0/0
 ip address 192.0.2.2 255.255.255.0
 no shut
!
interface FastEthernet0/1
 ip address 172.168.1.1 255.255.255.0
 no shut
!
interface FastEthernet1/0
 ip address 172.168.2.1 255.255.255.0
 no shut
!
router ospf 1
 network 172.168.0.0 0.0.0.255 area 0
 network 172.168.1.0 0.0.0.255 area 0
 network 172.168.2.0 0.0.0.255 area 0
 network 192.0.2.0 0.0.0.255 area 0
!
ip route 0.0.0.0 0.0.0.0 192.0.2.1
!
!
do write memory

Assigns R2 as hostname

Excludes reserved IP addresses

PC2 will get the next IP address, which is 172.168.2.22 
via DHCP

PC2’s DHCP pool configuration

Configure an IP address on f0/0
Connects to R1’s f0/1
Bring up the interface

Configure an IP address on f0/1
Connects to PC1
Bring up the interface

Configure an IP address on f1/0
Connects to PC2
Bring up the interface

Configure OSPF 1 for internal network advertisement

Configure a static route for Gateway of last resort; 
static route to R1

Save R2’s running configuration to startup 
configuration

(continued)



ChApTeR 10 ■ GNS3 BASICS

460

# Task

9 Now open the PC1 (VPCS) console and practice configuring PC1’s IP address manually. Type in the 
commands exactly shown below.

PC1> ip 172.168.1.11/24 172.168.1.1 <<< Assign IP address and Gateway
Checking for duplicate address...
PC1 : 172.168.1.11 255.255.255.0 gateway 172.168.1.1

PC1> ip dns 8.8.8.8 <<< Configure DNS IP address

PC1> show ip <<< Show ip address details

NAME               : PC1 1
IP/MASK            : 172.168.1.11/24
GATEWAY            : 172.168.1.1
DNS                : 8.8.8.8
MAC                : 00:50:79:66:68:00
LPORT              : 20000
RHOST:PORT         : 127.0.0.1:20001
MTU:               : 1500

Now validate your configuration by sending some ICMP messages from PC1 to R1, R2, and the 
Internet.

PC1> ping 172.168.1.1 –c 3 <<< To the Gateway f0/1
172.168.1.1 icmp_seq=1 timeout <<< first arp drop
84 bytes from 172.168.1.1 icmp_seq=2 ttl=255 time=3.098 ms
84 bytes from 172.168.1.1 icmp_seq=3 ttl=255 time=8.093 ms

PC1> ping 192.0.2.1 -c 3 <<< To R1's f0/1
84 bytes from 192.0.2.1 icmp_seq=1 ttl=254 time=25.297 ms
84 bytes from 192.0.2.1 icmp_seq=2 ttl=254 time=29.232 ms
84 bytes from 192.0.2.1 icmp_seq=3 ttl=254 time=31.170 ms

ping 8.8.8.8 -c 3 <<< To Google DNS server, Ethernet connection recommended
84 bytes from 8.8.8.8 icmp_seq=1 ttl=126 time=50.198 ms <<< On wireless you may get 
timeouts
84 bytes from 8.8.8.8 icmp_seq=2 ttl=126 time=31.918 ms
84 bytes from 8.8.8.8 icmp_seq=3 ttl=126 time=58.199 ms



ChApTeR 10 ■ GNS3 BASICS

461

# Task

10 This time, open the console of PC2 (VPCS) and configure the IP address using the ip dhcp command. 
Unlike the previous configuration, PC2 will get its IP from R2’s DHCP services. If you have configured 
everything precisely the same, then PC2 should be assigned with an IP address of 172.168.2.22.

PC2> ip dhcp
DDORA IP 172.168.2.22/24 GW 172.168.2.1

PC2> show ip

NAME                 : PC2 1
IP/MASK              : 172.168.2.22/24
GATEWAY              : 172.168.2.1
DNS                  : 172.168.2.1
DHCP SERVER          : 172.168.2.1
DHCP LEASE           : 86391, 86400/43200/75600
MAC                  : 00:50:79:66:68:01
LPORT                : 20002
RHOST:PORT           : 127.0.0.1:20003
MTU:                 : 1500

Now validate your configuration by sending some ICMP messages from PC2 to R2, R1, PC1, and the 
Internet.

PC2> ping 172.168.1.1 -c 3 <<< To R2’s f0/1 interface
84 bytes from 172.168.1.1 icmp_seq=1 ttl=255 time=4.515 ms
84 bytes from 172.168.1.1 icmp_seq=2 ttl=255 time=2.110 ms
84 bytes from 172.168.1.1 icmp_seq=3 ttl=255 time=5.558 ms
PC2> ping 172.168.1.11 -c 3 <<< To PC1, no entry in the ARP table.
172.168.1.11 icmp_seq=1 timeout <<< first arp drop
172.168.1.11 icmp_seq=2 timeout <<< second arp drop
84 bytes from 172.168.1.11 icmp_seq=3 ttl=63 time=12.709 ms

 ■ Note Whenever a router has to send a packet to the next hop (or directly attached destination) with no 
entry in the ARp table, the ARp request is sent out, but one to two original packets are dropped unconditionally.

PC2> ping 192.0.2.1 -c 3 <<< To R1’s f0/1
84 bytes from 192.0.2.1 icmp_seq=1 ttl=126 time=33.306 ms
84 bytes from 192.0.2.1 icmp_seq=2 ttl=126 time=27.037 ms
84 bytes from 192.0.2.1 icmp_seq=3 ttl=126 time=23.962 ms

PC2> ping 8.8.8.8 -c 3 <<< To Google’s DNS server
84 bytes from 8.8.8.8 icmp_seq=1 ttl=126 time=51.237 ms <<< On wireless you may get 
timeouts
84 bytes from 8.8.8.8 icmp_seq=2 ttl=126 time=35.299 ms
84 bytes from 8.8.8.8 icmp_seq=3 ttl=126 time=24.883 ms

Once you have completed a lab, follow the standard procedure to save the configuration, shut down 
the devices, and close your project.



ChApTeR 10 ■ GNS3 BASICS

462

You have completed a GNS3 basic OSPF routing lab using two Cisco IOS routers and two 
VPCS. Although this is not a routing and switching book, you have built a topology, configured it, and 
completed the following tasks:

• Assigned IP addresses to routers’ interface

• Configured a name server

• Configured DHCP services on R2

• Configured OSPF on R1 and R2 for internal routing

• Configured static router (gateway of last resort)

• Saved the running configuration to start up configuration

Also, you have learned how to configure and use GNS3’s virtual PC (VPCS) feature using the manual 
and DHCP configuration method.

Next, let’s learn how to install the Microsoft loopback adapter to manage GNS3 devices by 
communicating with the GNS3 topology from the host’s Windows operating system. The Microsoft loopback 
adapter helps Windows hosts communicate with devices running on GNS3.

 Installing the Microsoft Loopback Adapter
To communicate, control, and manage the Cisco devices running on GNS3 from the host PC, you can install 
the Microsoft loopback adapter and communicate to Cisco routers, switches, or other devices running on 
GNS3. The Microsoft loopback adapter is a virtual network adapter for testing purposes, which is provided 
by Windows. With Microsoft loopback, you can conveniently and reliably connect to the GNS3 devices from 
the host’s operating system and communicate to virtual devices. Here’s how to install the experimental 
Microsoft loopback on your host PC. Suppose you are a heavy Windows user and need some time to skill up 
on Linux administration. In that case, accessing and managing GNS3 devices from your Windows host will 
provide some more time for you to practice Linux while acquiring other skills.

If you are using your PC with a vanilla-flavored Windows 10 operating system, perform the following 
tasks. If you are using a company-provided standard operating environment (SOE) laptop or PC, adding 
a Microsoft loopback adapter may be slightly different. If you are using a personal computer, install the 
Microsoft loopback as described in the following steps. If you are using a company-provided SOE laptop or 
PC, menus may look different from the following example.

# Task
1 Right-click the Microsoft icon at the bottom left of the host window. When the list appears, select Device 

Manager.

2 In the Device Manager window, first click Network Adapters to highlight it, then click Action located in 
the menu, and finally click Add Legacy Hardware. See Figure 10-53.



ChApTeR 10 ■ GNS3 BASICS

463

# Task

3 When the Add Hardware pop-up window appears, click the Next button.

4 In the next window, select “Install the hardware that I manually select from a list (Advanced)” and then 
click the Next button.

5 Scroll down to highlight Network Adapter and click the Next button. See Figure 10-54.

Figure 10-53. Device Manager, network adapters, adding legacy hardware

(continued)



ChApTeR 10 ■ GNS3 BASICS

464

# Task

6 When the hardware device driver window appears, first select Microsoft under Manufacturer, and then 
select Microsoft KM-TEST Loopback Adapter under Model on the right. Click the Next button one more 
time. See Figure 10-55.

Figure 10-54. Device Manager, adding network adapters



ChApTeR 10 ■ GNS3 BASICS

465

# Task

7 On the next screen, click the Next button to install the hardware driver.

8 When the driver installation is completed and the “Complete Add Hardware Wizard” message appears, 
click the Finish button and also close the Device Manager. See Figure 10-56.

Figure 10-55. Device Manager, adding the Microsoft loopback adapter

(continued)



ChApTeR 10 ■ GNS3 BASICS

466

# Task

9 At the bottom-left corner, right-click the Windows icon and then select the Run menu. Next, type in 
ncpa.cpl in the Run window. This will open the Network Connections window with network adapters. 
See Figure 10-57.

10 Locate and right-click the Microsoft KM-TEST loopback adapter icon, right-click the icon, and select 
the Rename option. Now change the name from Ethernet 2 to Loopback. See Figure 10-58.

Figure 10-56. Device Manager, finishing the Microsoft loopback adapter installation

Figure 10-57. Windows 10, shortcut to running network connection



ChApTeR 10 ■ GNS3 BASICS

467

Figure 10-58. Windows 10, renaming the Microsoft loopback adapter

Figure 10-59. Windows 10, changing the Microsoft loopback adapter properties

# Task

11 Once again, right-click the loopback adapter and select Properties. See Figure 10-59.

12 Highlight Internet Protocol Version 4 (TCP/IP4) and then click the Properties button. See Figure 10-60.

(continued)



ChApTeR 10 ■ GNS3 BASICS

468

# Task

13 Give an IP address for testing purposes; in this example, the IP address of the 7.7.7.0/24 subnet is used. 
The loopback adapter’s address given is 7.7.7.1 with a subnet mask of 255.255.255.0. Leave the default 
gateway address blank; also, there’s no need to fill in the DNS information. See Figure 10-61.

Figure 10-60. Windows 10, selecting IPv4 properties



ChApTeR 10 ■ GNS3 BASICS

469

# Task

14 Click the OK button, and close all the windows and running applications, including GNS3. To make 
GNS3 recognize the newly installed MS loopback interface, we need to restart the PC one more time.

When your PC restarts and boots up correctly, let’s create a new GNS3 project using the Microsoft 
loopback adapter, set up a router, and connect the host machine with the virtual Cisco IOS router. Later, 
the same connection method can connect to other Cisco L2 and L3 devices and other types of GNS3 virtual 
devices.

 Accessing GNS3 Network Devices Using MS Loopback
After creating a basic GNS3 project, you will test the communication between R1 and the host PC. Figure 10-62 
shows the basic topology.

Figure 10-61. Windows 10, hard-coding the IP address for loopback adapter



ChApTeR 10 ■ GNS3 BASICS

470

To configure a simple Microsoft loopback lab, follow these instructions:

# Task
1 Use the GNS3 icon on the desktop to start GNS3. Wait until GNS3 VM starts and CPU settles down. See 

Figure 10-63.

2 Now create a new project named loopback_to_r1. You do not have to follow this naming convention, 
so use your imagination to give a meaningful name. See Figure 10-64.

Figure 10-63. GNS3, GNS3 desktop icon

Figure 10-62. Host PC to GNS3 router communication



ChApTeR 10 ■ GNS3 BASICS

471

# Task

3 Now put together a simple lab topology. Open the “All devices” menu and drop one IOS router and 
one cloud onto the Topology canvas. R1 will run on GNS3 VM, and Cloud-1 will be running on the 
host PC. Look at the server’s summary for your reference. See Figure 10-65.

Figure 10-64. GNS3, creating a new project, loopback_to_r1

Figure 10-65. GNS3, creating a topology

(continued)



ChApTeR 10 ■ GNS3 BASICS

472

# Task

4 Right-click Cloud-1, select Configure, and then select “Show special Ethernet interfaces.” Add the 
loopback interface from the drop-down menu; delete the Ethernet and any other interfaces, and click 
the Close button.

If you do not see the Microsoft loopback interface, you probably did not reboot your PC or incorrectly 
added the cloud to the GNS3 VM. Suppose the GNS3 does not recognize the Microsoft loopback 
even after rebooting. In that case, there may be a problem with the operating system you are using, or 
possibly, there was a problem during the interface installation. If you run into a problem at this point, 
go back to the previous steps and correct the issue. See Figure 10-66.

5 Right-click and rename Cloud-1 to Host-PC. Then connect the Loopback interface to R1s f0/0, as 
shown in Figure 10-67. Please note that if GNS3 throws an error and refuses to connect, you may need 
to change “User account control setting” on Windows 10.

Figure 10-66. GNS3, adding the loopback interface to Cloud-1



ChApTeR 10 ■ GNS3 BASICS

473

 how do you change the User account control setting?

From Control panel, open “User account control setting” and change the setting to “Never notify.” This will allow 
you to connect the MS Loopback interface with GNS3 devices. After making this change, you must restart the 
pC one more time. See Figure 10-68 and Figure 10-69.

Figure 10-67. GNS3, connecting the Microsoft loopback to R1’s f0/0

 # Task



ChApTeR 10 ■ GNS3 BASICS

474

Figure 10-68. User account control setting, default

 # Task



ChApTeR 10 ■ GNS3 BASICS

475

 how to open Windows Defender Firewall to allow ICMp?

To allow GNS3’s R1 to send ICMp (ping) packets to the host pC, you have to open Windows Defender Firewall 
with Advanced Security and enable the settings on the inbound rules shown in Figure 10-70.

Figure 10-69. User account control setting, changing to “Never notify”

 # Task



ChApTeR 10 ■ GNS3 BASICS

476

You can open Windows Defender Firewall in Figure 10-71.

• File and Printer Sharing (Echo Request – ICMPv4-In) Private

• File and Printer Sharing (Echo Request – ICMPv6-In) Private

Figure 10-70. Windows 10, opening Windows Defender Firewall with Advanced Security

Figure 10-71. Windows 10 Windows Defender Firewall with Advanced Security, enabling file and printer 
sharing to allow ICMP

 # Task



ChApTeR 10 ■ GNS3 BASICS

477

# Task
6 Open R1’s console and configure R1’s f0/0 interface as follows:

R1(config)#interface FastEthernet 0/0
R1(config-if)#ip address 7.7.7.2 255.255.255.0
R1(config-if)#no shut
R1(config-if)#end
R1#ping 7.7.7.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 7.7.7.1, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 8/11/12 ms
R1#write memory
Building configuration...
OK

7 On the host laptop/PC’s command-line prompt, ping the R1’s f0/0 interface IP address 7.7.7.2 to verify 
communication.

C:\Users\brendan>ping 7.7.7.2

Pinging 7.7.7.2 with 32 bytes of data:
Reply from 7.7.7.2: bytes=32 time=22ms TTL=255
Reply from 7.7.7.2: bytes=32 time=6ms TTL=255
Reply from 7.7.7.2: bytes=32 time=8ms TTL=255
Reply from 7.7.7.2: bytes=32 time=11ms TTL=255

Ping statistics for 7.7.7.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 6ms, Maximum = 22ms, Average = 11ms

8 Configure the username and Telnet on R1. For testing purposes, Telnet is configured here:

R1#configure terminal
R1(config)#username pynetauto privilege 
15 secret cisco123

R1(config)#line vty 0 15
R1(config-line)#transport input telnet
R1(config-line)#login local
R1(config-line)#logging synchronous

R1(config-line)#end
R1#copy running-config startup-config

Enter configuration mode
Add a local user named pynetauto with privilege 15 
and password cisco123

Enter vty line mode
Enable Telnet
Use local user credentials
Change lines when a log message is received

Move back to exec-mode
Save the running configuration to the startup 
configuration

9 Using PuTTY, Telnet into R1 using port 23. See Figure 10-72.

(continued)



ChApTeR 10 ■ GNS3 BASICS

478

10 Enter the user ID and password to log into R1 (7.7.7.2) from the host PC (7.7.7.1).

User Access Verification
Username: pynetauto
Password: ********
R1#

You have successfully connected to the IOS device running on GNS3 from the host PC. Now you can 
configure the GNS3 router from the comfort of your Windows PC.

 Configuring the GNS3 IOS Router Using a Python Script 
from the Windows Host PC
Here are some Python lab objectives:

• Locate Python resources and reuse the code for your learning

• Telnet into a single Cisco IOS device

• Configure a loopback interface and f0/1

Now let’s create a simple Python Telnet script on the host PC’s Windows and configure a loopback and 
FastEthernet 0/1 interfaces. Even if you have not written a working Python script before, just follow along 
and complete each task in this lab. Go to the URL mentioned in the task, scroll down to the bottom of the 
web page, and locate a Python Telnet example. Copying this example, you will create your first Cisco router 
interacting script via Telnet. This script uses Python built-in libraries to connect to your GNS3 R1 router 
using the getpass module to get the user input and password.

Figure 10-72. PuTTY, Telnet into R1

 # Task



ChApTeR 10 ■ GNS3 BASICS

479

A Python library is a collection of useful modules. The Python modules can be considered small 
programs that are written and tested for other users, so you do not have to reinvent the wheel every time. 
The built-in or standard libraries are libraries installed when Python gets installed on your machine. The 
external or nonstandard libraries are the set of modules that get installed on your OS on-demand.

 Do not try to understand everything in the sample code. I will provide explanations later. Try to focus on the 
given task and pay close attention to typing errors. When you write code, every comma, full stop, and space 
matters. Spacing really matters in python scripting.

# Task
1 First, go to the Python installation folder, C:\Python38, and create a new folder to store your scripts. 

Here I have created a folder named myscripts. See Figure 10-73.

Figure 10-73. Host PC, creating a new folder

(continued)



ChApTeR 10 ■ GNS3 BASICS

480

# Task

2 Both the getpass and telnet libraries used in this script are built-in (standard) Python libraries, so 
you do not need to install them separately. Just go to the following URL and follow along: https://
docs.python.org/3/library/telnetlib.html.

Telnet Example

Here’s a simple example illustrating the typical use:

import getpass
import telnetlib

HOST = "localhost"
user = input("Enter your remote account: ")
password = getpass.getpass()

tn = telnetlib.Telnet(HOST)

tn.read_until(b"login: ")
tn.write(user.encode('ascii') + b"\n")
if password:
    tn.read_until(b"Password: ")
    tn.write(password.encode('ascii') + b"\n")

tn.write(b"ls\n")
tn.write(b"exit\n")

print(tn.read_all().decode('ascii'))

3 Copy and paste the previous content using Notepad++. Save the file as telnet_script1.py under 
the C:\python38\myscripts folder on your Windows PC. Modify the file as follows; the modified 
part of codes are in bold. Save the script as a .py file once completed. This script will be explained in 
detail in a later chapter, but for now, simply follow the lab word by word. When you start your Python 
coding journey, you will often learn the most from mimicking or copying other people’s work; this is 
similar to how newborns learn to talk from their parents and others around them.

telnet_script1.py
import getpass
import telnetlib

HOST = "7.7.7.2" <<< Router ip
user = input("Enter your telnet username: ")
password = getpass.getpass()

tn = telnetlib.Telnet(HOST)

tn.read_until(b"Username: ") <<< Should be same as the router prompt, ensure to 
update this line.
tn.write(user.encode('ascii') + b"\n")
if password:
    tn.read_until(b"Password: ")
    tn.write(password.encode('ascii') + b"\n")

https://docs.python.org/3/library/telnetlib.html
https://docs.python.org/3/library/telnetlib.html


ChApTeR 10 ■ GNS3 BASICS

481

# Task

tn.write(b”conf t\n”)
tn.write(b”int loop 0\n”)
tn.write(b”ip add 1.1.1.1 255.255.255.255\n”)
tn.write(b”int f0/1\n”)
tn.write(b”ip add 20.20.20.1 255.255.255.0\n”)
tn.write(b”no shut\n”)
tn.write(b”end\n”)
tn.write(b”show ip int bri\n”)
tn.write(b”exit\n”)

print(tn.read_all().decode(‘ascii’))

4 Open R1’s console from GNS3, or use PuTTY to Telnet into R1 (7.7.7.2) and check the current 
interface status by running show ip interface brief. We confirmed that there is only one interface 
configured at this stage.

R1#show ip interface brief
Interface              IP-Address      OK? Method    Status                     
Protocol
FastEthernet0/0        7.7.7.2         YES NVRAM     up                         up
FastEthernet0/1        unassigned      YES NVRAM     administratively down      down

5 On R1’s console, enable debugging for Telnet authentication to confirm the authentication and 
activities. When you run the script and authenticate, keep R1’s console window open and 
observe the logs.

 R1# debug ip auth-proxy telnet Enables debugging for telnet authentication

6 Now open Windows PowerShell, navigate to the C:\Python38\myscripts\ folder, and run python 
telnet_script1.py. When prompted for a username and password, authenticate using the 
credentials created in the previous section. For a password, as you type in, you will not see any 
characters as the getpass module will hide this information automatically.

PS C:\Users\brendan> cd C:\Python38\myscripts\
PS C:\Python38\myscripts> python telnet_script1.py
Enter your telnet username: pynetauto
Password: ********

R1#conf t
Enter configuration commands, one per line.  End with CNTL/Z.
R1(config)#int loop 0
R1(config-if)#ip add 1.1.1.1 255.255.255.255
R1(config-if)#int f0/1
R1(config-if)#ip add 20.20.20.1 255.255.255.0
R1(config-if)#no shut
R1(config-if)#end
R1#show ip int bri
Interface                  IP-Address      OK? Method     Status               
Protocol
FastEthernet0/0            7.7.7.2         YES NVRAM      up                   up
FastEthernet0/1            20.20.20.1      YES manual     up                   up
Loopback0                  1.1.1.1         YES manual     up                   up
R1#exit

(continued)



ChApTeR 10 ■ GNS3 BASICS

482

# Task

7 Now go back to R1’s console, check the Telnet logs, and run the show ip interface brief command 
again. The result will look similar to the following, with Loopback0 and FastEthernet0/1 configured 
with new IP addresses and showing as up/up.

Telnet session logs during remote configuration
R1#
AUTH-PROXY Telnet debugging is on
R1#
*Mar  1 00:59:51.655: %SYS-5-CONFIG_I: Configured from console by pynetauto on vty0 
(7.7.7.1)
*Mar  1 00:59:51.687: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, 
changed state to up
R1#
*Mar  1 00:59:53.583: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
*Mar  1 00:59:54.583: %LINEPROTO-5-UPDOWN: Line protocol on Interface 
FastEthernet0/1, changed state to up
R1#show ip interface brief
Interface                  IP-Address      OK? Method     Status                
Protocol
FastEthernet0/0            7.7.7.2         YES NVRAM      up                    up
FastEthernet0/1            20.20.20.1      YES manual     up                    up
Loopback0                  1.1.1.1         YES manual     up                    up

 Cisco IOS and GNS3 Appliance Lab
GNS3 has many useful templates that you can use while studying networking, security, and systems 
concepts. You can add preconfigured templates and install them on the GNS3 VM as appliances and use 
them in your lab. You can even install Palo Alto firewalls with a full GUI interface and use them in your lab. 
For demonstration purposes, you will import a simple Linux Docker image and perform an interactive Telnet 
session from the Linux Docker image.

The objectives of this lab are as follows:

• Learn to install GNS3 appliance devices

• Learn to assign an IP address manually on a Linux server Ethernet interface

• Learn to run live interactive Telnet sessions to manage Cisco IOS devices

 Importing and Installing the GNS3 Linux Appliance Server
This lab continues from the last loopback lab. First, let’s add a Linux Docker appliance from the GNS3 
template and then add it to the existing topology.

# Task
1 In the GNS3 main window, go to File ➤ + New template (Figure 11-74). Introduce all the remaining 

figures. Alternatively, you can open “All devices” and click “+New template” as well.



ChApTeR 10 ■ GNS3 BASICS

483

# Task

2 In the “New template” wizard window, leave the selection on “Install an appliance from the GNS3 
server (recommended)” and click the Next button.

3 On the Appliances from the server screen, type in Network Automation or use the drop-down menu 
under Guests and select Network Automation Docker; then click the Install button. See Figure 10-75.

Figure 10-74. GNS3, +New template

Figure 10-75. GNS3 new template, selecting an appliance Linux server

(continued)



ChApTeR 10 ■ GNS3 BASICS

484

# Task

 There are a lot of pre-installed appliance Dockerized and Qemu images for our convenience on GNS3. 
Network Automation Docker image is basically an Ubuntu 18 LTS server Dockerized image for running quick 
network labs. When Docker powers off, what gets installed will be defaulted to the original settings. Docker is not a 
fully blown virtual machine like your CentOS or Ubuntu VMs as it is a light-weight appliance and relies on hosting 
server’s kernels for operation. You will learn more about Docker in the previous chapter.

4 On the Server screen, click the Next button to move to the next screen.

5 On the next screen, to finish and close the “New template” window, click the Finish button.

6 Click the OK button to add the Network Automation Server template. See Figure 10-76.

7 Now go back to GNS3’s main user interface and select the “End devices” icon on the left. The “End 
devices” icon is the one that looks like a computer screen. You will see your new appliance device, 
the Network Automation server, on the list. Make sure your computer is connected to the Internet 
and select the icon. Then drag and drop the icon onto the Topology canvas. This action will initiate 
the Docker pull action and start downloading the Docker image from the Internet (DockerHub). See 
Figure 10-77.

Figure 10-77. GNS3, pulling the Network Automation appliance from the DockerHub

Figure 10-76. GNS3 new template, “Add template” window



ChApTeR 10 ■ GNS3 BASICS

485

# Task

8 Now connect eth0 of NetworkAutomation-1 server to R1’s f0/1 interface and power on the server. See 
Figure 10-78.

9 Once the Docker server is booted up, check the OS version by running the cat /etc/*release Linux 
command. This server is a containerized (Docker) Ubuntu 18.04 LTS Server image.

root@NetworkAutomation-1:~# cat /etc/*release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=18.04
DISTRIB_CODENAME=bionic
DISTRIB_DESCRIPTION="Ubuntu 18.04.4 LTS"
NAME="Ubuntu"
VERSION="18.04.4 LTS (Bionic Beaver)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 18.04.4 LTS"
VERSION_ID="18.04"
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms- and- policies/privacy- policy"
VERSION_CODENAME=bionic
UBUNTU_CODENAME=bionic

Figure 10-78. GNS3, connecting NetworkAutomation-1 to R1



ChApTeR 10 ■ GNS3 BASICS

486

Congratulations! Now you have another server where you can practice your Python scripts. You will 
be learning more about how to create a Docker image later. Remember, a Docker image is a kind of ad 
hoc server. When the Docker machine powers off, everything resets to the default, and you will lose your 
previous work. To save the work, you may have to save it to a mapped drive or capture another Docker image 
while it is in the running state. This is beyond our topic, but take time to research the Docker and Kubernetes 
concept as this is another hot topic in the systems automation space.

 Manually Assigning IP Address to GNS3 Linux Appliance Server
Here, let’s practice assigning an IP address, default gateway, and DNS server to the Linux appliance server 
you just installed in the previous steps. Make sure you send a ping to the default gateway to confirm the 
communication is OK. You will be connecting to the Internet in the next section, so you do not need to ping 
any Internet addresses.

# Task

1 Run the following commands on your NetworkAutomation-1 Linux server to assign a new IP address 
and add a default gateway and Google’s public name server. This same method can be used to assign 
IP addresses on a live Linux server too.

root@NetworkAutomation-1:~# ifconfig eth0 <<< Check eth0 interface
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
    inet6 fe80::2cbb:cdff:fe4e:96fc  prefixlen 64  scopeid 0x20<link>
    ether 2e:bb:cd:4e:96:fc  txqueuelen 1000  (Ethernet)
    RX packets 105  bytes 10924 (10.9 KB)
    RX errors 0  dropped 91  overruns 0  frame 0
    TX packets 13  bytes 1006 (1.0 KB)
    TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

root@NetworkAutomation-1:~# ifconfig eth0 20.20.20.2 netmask 255.255.255.0 up <<< 
manually configure IP address and bring up eth0
root@NetworkAutomation-1:~# route add default gw 20.20.20.1 <<< Configure Gateway
root@NetworkAutomation-1:~# echo "nameserver 8.8.8.8" > /etc/resolve.conf <<< 
Configure DNS server
root@NetworkAutomation-1:~# ifconfig eth0 <<< Check configuration
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
    inet 20.20.20.2  netmask 255.255.255.0  broadcast 20.20.20.255
    inet6 fe80::2cbb:cdff:fe4e:96fc  prefixlen 64  scopeid 0x20<link>
    ether 2e:bb:cd:4e:96:fc  txqueuelen 1000  (Ethernet)
    RX packets 109  bytes 11470 (11.4 KB)
    RX errors 0  dropped 94  overruns 0  frame 0
    TX packets 13  bytes 1006 (1.0 KB)
    TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

root@NetworkAutomation-1:~# ping 20.20.20.1 -c 3 <<< test IP connectivity
PING 20.20.20.1 (20.20.20.1) 56(84) bytes of data.
64 bytes from 20.20.20.1: icmp_seq=1 ttl=255 time=30.8 ms
64 bytes from 20.20.20.1: icmp_seq=2 ttl=255 time=11.0 ms
64 bytes from 20.20.20.1: icmp_seq=3 ttl=255 time=6.54 ms

--- 20.20.20.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 6.546/16.167/30.877/10.565 ms



ChApTeR 10 ■ GNS3 BASICS

487

 You can also configure the network interface of an appliance machine by clicking the NetworkAutomation-1 
icon with the right button and selecting the “edit config” option. You can manually configure it from here or simply 
remove the # keys to get a valid Ip address from a DhCp server. We have not set a DhCp service on the 
20.20.20.0/24 network, so we chose to configure the Ip address manually. See Figure 10-79.

 Using the GNS3 Appliance Linux’s Python to Manage R1
In this lab, you will use the Python installed on the GNS3 appliance Linux server to manage R1 from the live 
Telnet session. This lab continues from the previous section.

# Task
1 First, check which Python versions are pre-installed on this server using the commands shown in 

Figure 10-79. If you have downloaded the same Dockerized Linux server as this book, it will be pre-
installed with Python 2.7.17 and 3.8.3.

root@NetworkAutomation-1:~# which python
/usr/bin/python
root@NetworkAutomation-1:~# python --version
Python 2.7.17
root@NetworkAutomation-1:~# which python3
/usr/bin/python3
root@NetworkAutomation-1:~# python3 -V
Python 3.8.3

Figure 10-79. NetworkAutomation-1, editing the config file

(continued)



# Task

2 Now start the Python 3 interactive session by typing python3.

root@NetworkAutomation-1:~# python3
Python 3.8.3 (default, May 14 2020, 20:11:43)
GCC 7.5.0 on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

3 Now in the Python interpreter window of the GNS3 Appliance Linux server, type in the following 
Python commands word by word. Do not worry too much about these commands’ deep meanings; 
for now, try to get familiar with the process within the environment.

Here, you add a loopback 5 to R1 via a Telnet session and then print out the session logs. After 
initiating the Telnet session, you send multiple tn.write commands for loopback 5 configurations. 
Then you must exit the session by sending the tn.write(b"exit\n") command to close the Telnet 
session; then, you can print them out of your Telnet session.

>>> import getpass <<< Import getpass module
>>> import telnetlib << Import telnetlib module
>>> tn = telnetlib.Telnet("20.20.20.1") <<< Create a telnet session to 20.20.20.1
>>> tn.write("pynetauto".encode('ascii') + b"\n") <<< Send username 'pynetauto' to R1
>>> tn.write("cisco123".encode('ascii') + b"\n") <<< Send password 'cisco123' to R1
>>> tn.write(b"configure terminal\n") <<< Enter config mode
>>> tn.write(b"interface loopback 5\n")
>>> tn.write(b"ip address 5.5.5.5 255.255.255.255\n")
>>> tn.write(b"end\n")
>>> tn.write(b"exit\n")
>>> print(tn.read_all().decode('ascii')) <<< Print all session logs in tn

On a successful interactive session, the output will look similar to the following. Watch out for every 
comma, full stop, and space and also avoid any typos. Python coding is not as glamorous as preached 
by some Python evangelists; your fingertips must touch the keyboard for every comma, full stop, 
space, and each character. Don’t buy the snake oil.

User Access Verification

Username: pynetauto
Password:
R1#configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
R1(config)#interface loopback 5
R1(config-if)#ip address 5.5.5.5 255.255.255.255
R1(config-if)#end
R1#exit

ChApTeR 10 ■ GNS3 BASICS

488



# Task

4 Now continue with the show ip interface brief command and print out the logs. Notice that you 
do not have to import the modules again as you have remained in the same session. The b before the 
router commands indicates that the commands in double quotation marks are sent as bytes, and \n 
represents a newline, which in this case means pressing down the Enter key once on your keyboard.

>>> tn = telnetlib.Telnet("20.20.20.1") <<< Create a telnet session to 20.20.20.1
>>> tn.write("pynetauto".encode('ascii') + b"\n") <<< Send username ‘pynetauto’ to R1
>>> tn.write("cisco123".encode('ascii') + b"\n") <<< Send password ‘cisco123’ to R1
>>> tn.write(b"show ip interface brief\n") <<< Send ‘show ip int brief’ command
>>> tn.write(b"exit\n") <<< Send ‘exit’ command
>>> print(tn.read_all().decode('ascii')) <<< Print all session logs in tn

Upon completing the lab task, you will see the result of the show ip interface brief command run 
on R1.

User Access Verification
Username: pynetauto
Password:
R1#show ip interface brief
Interface                  IP-Address      OK? Method Status                Protocol
FastEthernet0/0            7.7.7.2         YES NVRAM  up                    up
FastEthernet0/1            20.20.20.1      YES manual up                    up
FastEthernet1/0            unassigned      YES NVRAM  administratively down down
Loopback0                  1.1.1.1         YES manual up                    up
Loopback5                  5.5.5.5         YES manual up                    up
R1#exit

You have completed an interactive Telnet session using Python 3. When you develop code to validate 
and verify the Python interpreter or interactive session with network devices, you can test parts of your 
Python code. Now, copy and paste the same commands into a text editor of your choice and give a filename 
a .py file extension. The Python scripts used in this chapter are saved as chapter6_codes and available for 
download at https://github.com/pynetauto/apress_pynetauto.

 Summary
In this chapter, you learned many GNS3 techniques that will help you successfully run the rest of the labs in 
this book. You learned how to install GNS3, how to make simple GNS3 topologies, how to integrate a Cisco 
IOS router on GNS3, how to install a GNS3 appliance server to manage an IOS router running on GNS3, and 
how to install the Microsoft loopback interface for communication between a GNS3 device to the host PC. 
Also, you learned how to connect a GNS3 router to the GNS3’s appliance Linux Python server. In Chapter 11,  
we will create a new GNS3 project to communicate with Ubuntu and CentOS virtual servers with the IOS 
router R1 via Telnet. We will expand on what we have learned in this chapter and get enough practice to step 
forward.

ChApTeR 10 ■ GNS3 BASICS

489

https://github.com/pynetauto/apress_pynetauto


491
© Brendan Choi 2021 
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_11

CHAPTER 11

Cisco IOS Labs

This will be one of the shortest chapters in this book. You will test-drive your Linux virtual machines (VMs) 
to interact with the IOS router, R1, via Telnet. You will learn to create a new GNS3 project, run a quick file 
transfer testing lab using simple Cisco configurations, and then finally make a clone of the GNS3 project. You 
are making progressive steps toward Python network automation.

 

 Cisco IOS and the Linux VM Lab
In this lab, you are going to connect your Linux virtual machines to GNS3 devices. In most production 
environments, running Python on Linux platforms is the norm to gain the numerous advantages of using 
Linux in an enterprise environment. So, merely understanding how to write Python code is insufficient 
to create a useful application to automate and streamline a network engineer’s tasks. You need to have a 
deeper understanding of the whole IT ecosystem and know how different systems and technologies live 
harmoniously in an IT ecosystem. You have to be willing to step outside of your comfort zone and put 
personal effort into understanding other technologies in the IT ecosystem.

In this Cisco IOS and Linux VM example, we will configure a new topology to prepare for the next 
chapter. Figure 11-1 shows the topology that you are going to configure. Note that the CentOS 8.1 and 
Ubuntu 20 LTS Linux servers are already connected to VMnet8 on the VMware Workstation in the topology 
shown. In GNS3, we will use representational icons to mark that they are on the 192.168.130.0/24 subnet. If 
you are using a different IP subnet for VMnet8, your IP address will be different.

The topology uses NAT-1 running on the host PC, connected to VMnet8 of VMware Workstation; it also 
acts as a DHCP server and a gateway to connect to the Internet. The host PC with IP address 7.7.7.1 is the 
cloud with the Microsoft loopback interface connecting to R1’s F0/1 on the 7.7.7.0/24 network.

https://doi.org/10.1007/978-1-4842-6806-3_11#DOI


Chapter 11 ■ CisCo ios Labs

492

 Creating a New GNS3 Project for the Linux VM Lab
Let’s create a new project to connect Linux VM servers to a new IOS router. The process of creating a new 
project is similar to the previous projects in Chapter 10. Let’s create a new project to connect our Linux 
virtual machines to an IOS router.

# Task
1 From the GNS3 main menu, select File ➤ New Blank Project to open a new project window.

2 Give your new project a new name. The new project name is linuxvm2ios for this lab. You do not 
have to follow the same naming convention. Feel free to give your project a unique and meaningful 
name. See Figure 11-2.

Figure 11-1. linuxvm2ios lab topology



Chapter 11 ■ CisCo ios Labs

493

Figure 11-2. linuxvm2ios project, creating a new GNS3 project

# Task

3 Configure the GNS3 topology as shown in Figure 11-3. While building a new topology, refer to 
GNS3’s topology and server summary window for more information. You will be able to see how 
each device is connected. When all devices are connected, start R1 and PC-1.

The following points are connection references while connecting and configuring the topology on 
the GNS3 canvas:

• Run NAT-1 on the host server. (Use NAT from VMnet8 of Workstation.)

• Ethernetswitch-1 is installed on the GNS3 VM server and only serves as a dummy switch to 
connect multiple devices.

• PC-1 is a VPCS installed on GNS3. VPCS makes it easy to test communication between 
devices. This is similar to configuring dummy loopback interfaces on the router.

• Host-PC marked with the Microsoft loopback is cloud-1, with a changed icon for aesthetics 
only.

• Lastly, the CentOS 8.1 and Ubuntu 20.4 LTS servers are directly connected to VMnet8 on 
VMware Workstation and will not show up on the GNS3 topology. These server icons are also 
for aesthetic representation.

(continued)



Chapter 11 ■ CisCo ios Labs

494

# Task

Note that in the topology in Figure 11-3, when you drag and drop NAT-1 and Host-PC (cloud-1), the 
network of VMnet8 should be used, so the host PC (pynetauto) should be selected. Your PC name 
will be different. See Figure 11-4.

Use the Servers Summary window shown in Figure 11-5 as a reference point while configuring and 
running the GNS3 topology.

Figure 11-3. linuxvm2ios project, GNS3 topology connection

Figure 11-4. linuxvm2ios project, selecting the host server for NAT-1 and cloud-1



Chapter 11 ■ CisCo ios Labs

495

# Task

When you connect Ethernetswitch-1, a VPCS (PC-1), and an IOS router (R1), select GNS3 VM as the 
server, as shown in Figure 11-6.

Refer to the Topology Summary window shown in Figure 11-7 to connect each device.

Figure 11-5. linuxvm2ios project, Servers Summary window

Figure 11-6. linuxvm2ios project, selecting the GNS3 VM server for all other devices

(continued)



Chapter 11 ■ CisCo ios Labs

496

# Task

4 Next, go to VMware Workstation’s main user window and start the CentOS 8.1 VM. When the server 
boots up, log in as the pynetauto user or your username. See Figure 11-8.

Figure 11-7. linuxvm2ios project, topology summary



Chapter 11 ■ CisCo ios Labs

497

# Task

5 Open a terminal on CentOS 8.1 and first check the IP address of this server. Use the ifconfig 
ens160 command on the terminal to get or confirm the IP address of your server. You can 
alternatively SSH into your CentOS 8.1 server. An IP address from the 192.168.183.0/24 subnet 
should be assigned for this example, but if you are using a different subnet for VMnet8, you should 
receive a different IP address.

In this example, an IP address of 192.168.183.130 has been allocated to the Ethernet 160 interface. 
Your IP address allocation may differ based on your virtual machine subnet.

[pynetauto@centos8s1 ~]$ ifconfig ens160
ens160: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
    inet 192.168.183.130  netmask 255.255.255.0  broadcast 192.168.183.255
    inet6 fe80::f49c:7ff4:fb3f:bf32  prefixlen 64  scopeid 0x20<link>
    ether 00:0c:29:85:a6:36  txqueuelen 1000  (Ethernet)
    RX packets 87  bytes 10302 (10.0 KiB)
    RX errors 0  dropped 0  overruns 0  frame 0
    TX packets 118  bytes 15005 (14.6 KiB)
    TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

Figure 11-8. CentOS 8.1, login screen

(continued)



Chapter 11 ■ CisCo ios Labs

498

# Task

6 Still on the VMware workstation, start the Ubuntu 20 LTS server and find out the IP address of this 
server in the same manner. Issue the ifconfig ens33 or ifconfig or ip address command.
An IP address of 192.168.183.132 has been assigned to the ens33 interface. Your IP address 
allocation may differ based on your virtual machine subnet.

pynetauto@ubuntu20s1:~$ ifconfig ens33
ens33: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
    inet 192.168.183.132  netmask 255.255.255.0  broadcast 192.168.183.255
    inet6 fe80::20c:29ff:fef3:877c  prefixlen 64  scopeid 0x20<link>
    ether 00:0c:29:f3:87:7c  txqueuelen 1000  (Ethernet)
    RX packets 222  bytes 18369 (18.3 KB)
    RX errors 0  dropped 0  overruns 0  frame 0
    TX packets 442  bytes 41326 (41.3 KB)
    TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

7 Now on GNS3, start R1 and wait for 1 minute. Open the console of R1 and configure the IP domain 
lookup and FastEthernet 0/0 interface to get an IP address from VMnet8’s DHCP server. Also, 
configure interface FastEthernet 0/1 with an IP address of 7.7.7.2 255.255.255.0; this interface 
connects to the Microsoft loopback of the host PC.

R1(config)# ip domain lookup
R1(config)#interface FastEthernet0/0
R1(config-if)#ip address dhcp
R1(config-if)#no shut
R1(config-if)#
*Mar  1 00:01:15.543: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
*Mar  1 00:01:16.543: %LINEPROTO-5-UPDOWN: Line protocol on Interface 
FastEthernet0/0, changed state to up
*Mar  1 00:01:26.003: %DHCP-6-ADDRESS_ASSIGN: Interface FastEthernet0/0 assigned DHCP 
address 192.168.183.133, mask 255.255.255.0, hostname R1

# Confirm the interface status by running "show ip interface brief"

R1#show ip interface brief
Interface                  IP-Address      OK? Method Status                Protocol
FastEthernet0/0            192.168.183.133 YES DHCP   up                    up
FastEthernet0/1            unassigned      YES unset  administratively down down
FastEthernet1/0            unassigned      YES unset  administratively down down



Chapter 11 ■ CisCo ios Labs

499

# Task

Now configure interface f0/1 to be connected to the Microsoft loopback and ping 7.7.7.1.

R1#configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
R1(config)#interface FastEthernet 0/1
R1(config-if)#ip address 7.7.7.2 255.255.255.0
R1(config-if)#no shut
R1(config-if)#exit
R1#
*Mar  1 00:47:12.911: %SYS-5-CONFIG_I: Configured from console by console
R1#ping 7.7.7.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 7.7.7.1, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 8/12/20 ms

8 From R1’s console, ping the NAT-1 gateway (192.168.183.2), Centos 8.1 server (192.168.183.130), and 
Ubuntu 20 LTS server (192.168.183.132). If all the ICMP responses are received, you are on the right 
track.

If you see the first packet dropped, that is the expected and normal ARP behavior, as explained earlier.

R1#ping 192.168.183.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.183.1, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 8/13/24 ms
R1#ping 192.168.183.130

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.183.130, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 8/13/20 ms
R1#ping 192.168.183.132

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.183.132, timeout is 2 seconds:
.!!!!

(continued)



Chapter 11 ■ CisCo ios Labs

500

# Task

9 Similarly, start PC-1 (VPCS) on GNS3 and run the ip dhcp command to receive an IP address from 
the VMnet8 DHCP server. Use show ip to check the IP configuration.

PC1> ip dhcp
DDORA IP 192.168.183.129/24 GW 192.168.183.2

PC1> show ip

NAME        : PC1[1]
IP/MASK     : 192.168.183.129/24
GATEWAY     : 192.168.183.2
DNS         : 192.168.183.2
DHCP SERVER : 192.168.183.254
DHCP LEASE  : 1719, 1800/900/1575
DOMAIN NAME : localdomain
MAC         : 00:50:79:66:68:00
LPORT       : 20010
RHOST:PORT  : 127.0.0.1:20011
MTU:        : 1500

PC1’s interface received an IP address of 192.168.183.129. DDORA is not the name of a kid’s cartoon 
character (Dora the Explorer). Here, DORA stands for Discovery, Offer, Request, Acknowledge, 
which is a communication message used when assigning an IP address through DHCP services 
between a server and a client.

10 Finally, from your host PC’s Windows desktop, SSH into both Linux servers using PuTTY and 
perform similar ICMP tests. Enter the IP address of each server and save the sessions for easier 
access, as shown in Figure 11-9.



Chapter 11 ■ CisCo ios Labs

501

# Task

If there is no communication problem, you are now ready to write some Python scripts on Linux 
servers and communicate to the Cisco IOS router. From your Linux servers, send ICMP messages to 
R1’s f0/0 interface for a quick verification.

[pynetauto@centos8s1 ~]$ ping 192.168.183.133 -c 3
PING 192.168.183.133 (192.168.183.133) 56(84) bytes of data.
64 bytes from 192.168.183.133: icmp_seq=1 ttl=64 time=0.547 ms
64 bytes from 192.168.183.133: icmp_seq=2 ttl=64 time=0.318 ms
64 bytes from 192.168.183.133: icmp_seq=3 ttl=64 time=0.372 ms

--- 192.168.183.133 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 44ms
rtt min/avg/max/mdev = 0.318/0.412/0.547/0.099 ms

pynetauto@ubuntu20s1:~$  ping 192.168.183.133 -c 3
PING 192.168.183.133 (192.168.183.133) 56(84) bytes of data.
64 bytes from 192.168.183.133: icmp_seq=1 ttl=255 time=5.92 ms
64 bytes from 192.168.183.133: icmp_seq=2 ttl=255 time=6.85 ms
64 bytes from 192.168.183.133: icmp_seq=3 ttl=255 time=5.70 ms

--- 192.168.183.133 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 5.699/6.158/6.851/0.498 ms

Figure 11-9. PuTTY, saving Linux sessions for convenience

(continued)



Chapter 11 ■ CisCo ios Labs

502

# Task

11 On R1, configure enable password, a username with level 15 privilege, and enable Telnet.

R1#configure terminal
R1(config)#enable password cisco123
R1(config)#username pynetauto privilege 15 password cisco123
R1(config)#line vty 0 15
R1(config-line)#login local
R1(config-line)#transport input telnet
R1(config-line)#no exec-timeout
R1(config-line)#end
R1#write memory

You can test the Telnet settings from the router itself, so on R1, run the telnet 192.168.183.133 
command. Also, use the show user command to check the logged-in user.

R1#telnet 192.168.183.133
Trying 192.168.183.133 ... Open

User Access Verification

Username: pynetauto
Password:
R1#show user
Line       User       Host(s)              Idle       Location
0 con 0                192.168.183.133      00:00:00
* 98 vty 0     pynetauto  idle                 00:00:00 192.168.183.133

Interface    User               Mode         Idle     Peer Address

12 From your ubuntu20s1 Linux server, Telnet to R1’s f0/0 interface (192.168.183.133) using PuTTY. 
Your allocated IP address may be different, so replace the IP address with your IP.

Run the show user command to check which users are logged in and the lines used for Telnet 
sessions. The asterisk (*) indicates access information from your active connection.

pynetauto@ubuntu20s1:~$ telnet 192.168.183.133
Trying 192.168.183.133...
Connected to 192.168.183.133.
Escape character is '^]'.

User Access Verification

Username: pynetauto
Password:
R1#show user
Line       User       Host(s)              Idle       Location
0 con 0                192.168.183.133      00:05:07
98 vty 0     pynetauto  idle                 00:05:07 192.168.183.133
* 99 vty 1     pynetauto  idle                 00:00:00 192.168.183.132

Interface    User               Mode         Idle     Peer Address

Note, if you are using CentOS to Telnet into R1, then you many need to first install the Telnet client 
after connecting to the Internet.

[pynetauto@centos8s1 ~]$ sudo yum -y install telnet

or

[pynetauto@centos8s1 ~]$ sudo dnf -y install telnet



Chapter 11 ■ CisCo ios Labs

503

# Task

13 Now, from your Windows host PC, open another PuTTY session, and this time log in to R1 via f0/1 
(7.7.7.2). The * indicates access information from the current connection. Let’s run write memory to 
save the current configuration of R1.

R1#show user
Line       User       Host(s)              Idle       Location
0 con 0                idle                 00:05:43
98 vty 0     pynetauto  idle                 00:00:40 192.168.183.133
99 vty 1     pynetauto  idle                 00:01:10 192.168.183.132
*100 vty 2     pynetauto  idle                 00:00:00 7.7.7.1

Interface    User               Mode         Idle     Peer Address
R1#write memory

Now you have completed the communication and Telnet tests from all devices. Now you are ready to 
tackle another interesting IOS lab.

 Uploading and Downloading Files to the GNS3 IOS Router 
from Linux VMs (File Transfer Testing Lab)
In this lab, you will add flash memory to GNS3’s IOS router, R1, and upload and download files from a TFTP 
server (CentOS8.1). You will write and run the script from the Ubuntu 20 LTS server.

Write a Python script to achieve the following tasks:

• Check the TFTP service is running correctly on CentOS8.1.

• Make a backup of R1’s running configuration to the TFTP server.

• Upload an IOS to the flash memory of R1 for a quick test.

# Tasks
1 On GNS3, while creating the Cisco 3725 IOS router template, you have already added 64MB to Cisco 

3725’s PCMCIA disk0.

If your router was not configured with a flash drive, first save the work and shut down the router. 
Then right-click, choose Configure, and move to the “Memories and disks” tab of R1. Add 64MB, click 
Apply, and then click the OK button. Once the flash memory has been configured, start R1 again. See 
Figure 11-10.

(continued)



Chapter 11 ■ CisCo ios Labs

504

# Tasks

2 Remember that in 8.3.3 we configured a TFTP server on CentOS8.1? Go to the PuTTY session of 
CentOS8.1 and now confirm the status of TFTP services. TFTP was configured during the IP Services 
installation on CentOS8.1 Linux.

Use the following commands to check for TFTP services running on CentOS8.1.

sudo systemctl status tftp
sudo systemctl enable tftp
sudo systemctl start tftp

Checks TFTP service status
Enables TFTP services on system startup
Starts TFTP services

If the TFTP service on CentOS 8.1 is running correctly, it should display active (running) in green. If you 
have issues with TFTP, use the enable and start commands shown earlier to start the service on this 
server. If CentOS asks for the sudo user password, enter your password. In 4.5.3, we have configured a 
default folder called /var/tftpdir for the TFTP service to share files from and to this folder.

[pynetauto@localhost ~]$ sudo systemctl enable tftp
[sudo] password for pynetauto: **********
[pynetauto@localhost ~]$ sudo systemctl start tftp
[pynetauto@localhost ~]$ sudo systemctl status tftp
● tftp.service - Tftp Server

Figure 11-10. R1, checking flash memory allocation



Chapter 11 ■ CisCo ios Labs

505

# Tasks

  Loaded: loaded (/usr/lib/systemd/system/tftp.service; indirect; vendor prese>
  Active: active (running) since Fri 2021-01-08 23:43:05 AEDT; 4s ago
    Docs: man:in.tftpd
Main PID: 4237 (in.tftpd)
    Tasks: 1 (limit: 11166)
  Memory: 328.0K
  CGroup: /system.slice/tftp.service
      └─4237 /usr/sbin/in.tftpd -s /var/lib/tftpboot

Jan 08 23:43:05 localhost systemd[1]: Started Tftp Server.
lines 1-11/11 (END)

3 On your Ubuntu server (primary Python server), reuse the Telnet sample code from telnet_script1 
from Chapter 10, and let’s rewrite the Telnet script to make a backup of R1’s running configuration. I 
am going to rename the script as backup_config.py and modify the code. The sections of code that 
are modified are highlighted.

Go to Ubuntu 20 LTS Python server and create the following code using the nano text editor:

pynetauto@ubuntu20s1:~$ pwd
/home/pynetauto
pynetauto@ubuntu20s1:~$ mkdir ch11
pynetauto@ubuntu20s1:~$ cd ch11
pynetauto@ubuntu20s1:~/ch11$ nano backup_config.py
pynetauto@ubuntu20s1:~/ch11$ ls
backup_config.py

backup_config.py

import getpass
import telnetlib

HOST = "192.168.183.133"
user = input("Enter your telnet username: ")
password = getpass.getpass()

tn = telnetlib.Telnet(HOST)

tn.read_until(b"Username: ")
tn.write(user.encode('ascii') + b"\n")
if password:
    tn.read_until(b"Password: ")
    tn.write(password.encode('ascii') + b"\n")

tn.write(b"copy running-config tftp://192.168.183.130/running-config\n")  #<<< Copy 
command
tn.write(b"\n")  #<<< Enter key action
tn.write(b"\n")  #<<< Enter key action
tn.write(b"exit\n") #<<< end session

print(tn.read_all().decode('ascii'))

(continued)



Chapter 11 ■ CisCo ios Labs

506

# Tasks

4 Before running the previous script, go to CentOS8s1 and confirm the files in the /var/tftpdir 
directory. You can see that there are only two transfer test files from 8.3.3.

[pynetauto@centos8s1 ~]$ pwd
/home/pynetauto
[pynetauto@centos8s1 ~]$ cd /var/tftpdir
[pynetauto@centos8s1 tftpdir]$ ls
transfer_file01                           transfer_file77

5 Now from Ubuntu 20 LTS Python server, run the python3 backup_config.py command. Follow the 
prompt and check the returned output.

Enter your network admin ID and password to run the script. As the running configuration gets 
copied to the TFTP server, you should see a similar message to the following:

pynetauto@ubuntu20s1:~/ch11$ python3 backup_config.py
Enter your telnet username: pynetauto
Password: *********

R1#copy running-config tftp://192.168.183.130/running-config
Address or name of remote host [192.168.183.130]?
Destination filename [running-config]?
!!
1155 bytes copied in 2.168 secs (533 bytes/sec)
R1#exit

6 Now go back to the CentOS8s1 server and recheck the directory (/var/tftpdir). You should now see 
that the running-config file was saved on the TFTP server.

[pynetauto@centos8s1 tftpdir]$ ls
running-config             transfer_file01                           transfer_file77

7 Now to upload an IOS image to GNS3’s IOS router’s flash, you first have to format the flash. Open 
R1’s console and follow these instructions:

R1#show flash
No files on device

134211584 bytes available (2198889009152 bytes used)

R1#
*Mar  1 02:53:58.163: %PCMCIAFS-5-DIBERR: PCMCIA disk 0 is formatted from a different 
router or PC. A format in this router is required before an image can be booted from 
this device
R1#show file system



Chapter 11 ■ CisCo ios Labs

507

# Tasks

File Systems:

Size(b)             Free(b)      Type       Flags  Prefixes
-                   -            opaque     rw     archive:
-                   -            opaque     rw     system:
-                   -            opaque     rw     tmpsys:
57336               54057        nvram      rw     nvram:
-                   -            opaque     rw     null:
-                   -            network    rw     tftp:
* 2199023220736     134211584    disk       rw     flash:
-                   -            flash      rw     slot0:
-                   -            opaque     wo     syslog:
-                   -            opaque     rw     xmodem:
-                   -            opaque     rw     ymodem:
-                   -            network    rw     rcp:
-                   -            network    rw     pram:
-                   -            network    rw     ftp:
-                   -            network    rw     http:
-                   -            network    rw     scp:
-                   -            opaque     ro     tar:
-                   -            network    rw     https:
-                   -            opaque     ro     cns:

R1#format flash:
Format operation may take a while. Continue? [confirm] <<< Press the [Enter] key
Format operation will destroy all data in "flash:".  Continue? [confirm] <<< Press 
the [Enter] key
Writing Monlib sectors....
Monlib write complete

Format: All system sectors written. OK...

Format: Total sectors in formatted partition: 131040
Format: Total bytes in formatted partition: 67092480
Format: Operation completed successfully.

Format of flash: complete
R1#show flash:
No files on device

66936832 bytes available (0 bytes used)

(continued)



Chapter 11 ■ CisCo ios Labs

508

# Tasks

8 You can use the FileZilla client for either Windows or WinSCP to upload any IOS file or any file for 
file transfer using the Python telnetlib module. If you do not have WinSCP on your Windows host 
PC, go to the following download site and install one:

URL: https://winscp.net/eng/download.php (WinSCP download)

URL: https://filezilla- project.org/download.php?platform=win64  (FileZilla client for Windows)

After installing WinSCP and launching the application, use the following settings to connect to the 
CentOS8.1 server via port 22 (SSH). See Figure 11-11.

File protocol: SCP
Host name: 192.168.183.130 (Your CentOS 8.1 IP address)
Username: pynetauto (Your CentOS 8.1 username)
Password : ********** (Your CentOS 8.1 password)

9 When you accept the SSH key and log in, drill down to the /var/tftpdir/ directory of your TFTP 
(CentOS8.1) server and drag and drop an IOS file for file sharing. You can also use another file in 
place of the IOS file to save time as you will be testing the file transfer concept only using Python’s 
telnetlib module. In this example, I am using the old IOS file named c3725-adventerprisek9-
mz.124-15.T14.bin, but you can choose to use any file here for this test. See Figure 11-12.

Figure 11-11. WinSCP, connection to TFTP server (CentOS8.1)

https://winscp.net/eng/download.php
https://filezilla-project.org/download.php?platform=win64


Chapter 11 ■ CisCo ios Labs

509

# Tasks

10 On R1, the flash drive has been formatted in previous steps, and there is no need to check if any files 
exist on the flash.

11 Now on the Ubuntu 20 LTS server, copy backup_config.py and save it as upload_ios.py.

pynetauto@ubuntu20s1:~/ch11$ ls
backup_config.py
pynetauto@ubuntu20s1:~/ch11$ cp backup_config.py upload_ios.py
pynetauto@ubuntu20s1:~/ch11$ nano upload_ios.py

Then modify the Python code so it looks like the following code. The updated parts are highlighted. 
You can type in the script from scratch, but it is easier to reuse the previous script and make the 
required modifications. Also, the script is available for download from the official download site.

Figure 11-12. WinSCP, copying an IOS or any file transfer test file

(continued)



Chapter 11 ■ CisCo ios Labs

510

# Tasks

upload_ios.py

import getpass
import telnetlib

HOST = "192.168.183.133"
user = input("Enter your telnet username: ")
password = getpass.getpass()

tn = telnetlib.Telnet(HOST)

tn.read_until(b"Username: ")
tn.write(user.encode('ascii') + b"\n")
if password:
    tn.read_until(b"Password: ")
    tn.write(password.encode('ascii') + b"\n")

tn.write(b" copy tftp://192.168.183.130/c3725-adventerprisek9-mz.124-15.T14.bin 
flash:c3725-adventerprisek9-mz.124-15.T14.bin\n")  #<<< Run copy command
tn.write(b”\n”)  #<<< Enter key action
tn.write(b”exit\n”) #<<< end session

print(tn.read_all().decode('ascii'))

12 Run the Python code. It looks like the application is hanging, but in fact, it is transferring the file from 
the TFTP server to R1’s flash memory. TFTP is a slow protocol, and it takes a long time to transfer this 
45MB file. In your practice, you can create any dummy .txt file that is small to save time.

pynetauto@ubuntu20s1:~/ch11$ python3 upload_ios.py
Enter your telnet username: pynetauto
Password: ********
|

13 After running the previous script, go back to R1’s console and use the show users command for 
the vty session for Telnet and use the dir or show flash: command to check that the file transfer is 
taking place.

R1#show flash:
-#- --length-- -----date/time------ path
1      1470464 Mar 01 2002 01:02:28 c3725-adventerprisek9-mz.124-15.T14.bin

65466368 bytes available (1470464 bytes used)

R1#show flash:
-#- --length-- -----date/time------ path
1      2936832 Mar 01 2002 01:02:58 c3725-adventerprisek9-mz.124-15.T14.bin

64000000 bytes available (2936832 bytes used)



# Tasks

14 If you are uploading an IOS file as shown in this example, it will take a while for the file transfer to 
complete via TFTP. The TFTP protocol uses the UDP port for file transfer but is a slow file transfer 
protocol in both lab and production. You are only uploading a file to learn the concept of TFTP 
file transfer using a Python 3 script. You cannot update the boot system configuration and reboot 
the GNS3 IOS router with the new IOS image; this is one of the downsides of using IOS on GNS3. 
However, using Cisco CSR1000v or Nexus 9000v on VMware Workstation, you can simulate the actual 
IOS XE upgrade process, including booting into the newly upgraded IOS. In the next chapter, we’ll use 
Cisco CSR1000v on VMware Workstation and emulate the full IOS upgrade process.
Once the file size reaches the expected file size, you know that the script and the file transfer have 
completed successfully.

R1#dir
Directory of flash:/

1  -rw-    46380064   Mar 1 2002 01:22:04 +00:00  c3725-adventerprisek9-mz.124-15.
T14.bin

66936832 bytes total (20553728 bytes free)
R1#show flash:
-#- --length-- -----date/time------ path
1     46380064 Mar 01 2002 01:22:04 c3725-adventerprisek9-mz.124-15.T14.bin

20553728 bytes available (46383104 bytes used)

15 Because of the slow uploading time and issues with Python’s telnetlib library, your Ubuntu Python 
server console may still look like it is uploading the IOS. Press Ctrl+Z to exit this state to complete 
this lab.

pynetauto@ubuntu20s1:~/ch11$ python3 upload_ios.py
Enter your telnet username: pynetauto
Password:
^Z
[1]+  Stopped                 python3 upload_ios.py
pynetauto@ubuntu20s1:~/ch11$

You have used the Telnet and TFTP services to upload files to R1’s flash. A large part of the network 
engineer’s work involves IOS patch management involving uploading IOS to many routers and switches. 
Imagine yourself writing a piece of code, which can upload multiple IOS files to hundreds of Cisco routers 
and switches during the night while you are safe and sound asleep. In reality, this was one of the very first 
tools I had to create for regular patching of my clients’ network devices.

 Copying (Cloning) a GNS3 Project
To prepare for the next chapter, let’s copy and clone the current project. There are about three different ways 
you can make a carbon copy of a GNS3 project. The first method is using the “Save project as…” feature of 
the GNS3 menu, the second method is to export it as a portable project and re-import it on another host PC, 
and the last method is to use the “Export config” method to export your devices’ configuration and manually 
clone your GNS3 project. These methods are mentioned in order of increasing difficulty. Also, note that if 
you use the first method, your existing lab’s configuration will be moved to the newly saved Project folder. 

Chapter 11 ■ CisCo ios Labs

511



You will lose the existing configurations of your devices’ running configuration. The best way to clone a 
GNS3 project is by using the third method, which preserves your existing lab status and carries the same 
settings to the new project. Last, but most importantly, if you want to make a full backup of your GNS3 
project at any time, you can copy the whole project folder under C:\Users\[your_name]\GNS3\project.

Since we will not be using the linuxvm2ios project beyond this point of the book, let’s see how to clone 
the GNS3 project using a copy method. In the later chapter, another method will be demonstrated to give 
you another cloning option.

# Task
1 Make sure all devices in the GNS3 project are powered off. To save the existing linuxvm2ios project to 

a new project name, first open GNS3’s main user window, go to File, and select “Save project as.” See 
Figure 11-13.

2 The GNS3 projects are saved under the C:\Users\[your_name]\GNS3\project folder. Now, give 
a new name to your new project for Chapter 12. This lab will be used across subsequent labs. See 
Figure 11-14.

GNS3 project folder location: C:\Users\brendan\GNS3\projects

Chapter 11 ■ CisCo ios Labs

512

Figure 11-13. GNS3, “Project as…” menu



Chapter 11 ■ CisCo ios Labs

513

# Task

3 After you saved the new project, go to the Project folder (C:\Users\[your_name]\GNS3\projects) 
and check the original and new project folders’ file sizes. The original project folder size will be 
around 24KB in size, whereas the new project folder size will be over 2.1MB. Open the folder and 
check the folder and file contents. See Figure 11-15.

Figure 11-14. GNS3, cloning the existing linuxvm2ios project to cmllab-basic

Figure 11-15. Host PC, confirming the new project folder

(continued)



Chapter 11 ■ CisCo ios Labs

514

# Task

4 Now open the new project and run it. If you have saved the project correctly, it should run smoothly 
with no errors. Now you are ready for some CML-PE labs in Chapter 12. See Figure 11-16.

 Summary
In this chapter, you tested Linux virtual machines’ interaction with the IOS router, R1, via Telnet. You learned 
how to create a GNS3 project, ran a quick file transfer testing lab using simple Cisco configurations, and 
then finally learned to make a clone of the GNS3 project. You are now well positioned to tackle other labs in 
Chapters 12 to 18. In Chapter 12, we will use many of the skills acquired from previous chapters to build L3 
routing and L2 switching labs using Cisco CML (VIRL) images integrated into GNS3. We will take some baby 
steps into Python network automation using the telnetlib module in Chapter 13 and then learn to control 
Cisco VIRL devices using the SSH protocol in Chapter 14. Python scripts will run on Linux VMs to control 
Cisco VIRL devices via the Telnet and SSH protocols using the telnetlib, paramiko, and netmiko libraries.

Figure 11-16. GNS3, running the cmllab-basic project



515
© Brendan Choi 2021 
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_12

CHAPTER 12

Building a Python Automation Lab 
Environment

We have been test-driving an old Cisco device running an outdated IOS version (12.x) in our Telnet labs so 
far. To test newer features on newer IOS versions and equip our lab with the switching (L2) functionalities, 
we need to integrate Cisco CML-PE’s L2 and L3 images into the GNS3 lab environment. This chapter will 
guide you through Cisco CML-PE L2 and L3 image integrations on GNS3. You will be guided through each 
step to download and integrate the L2 and L3 images in your GNS3 environment so you can conduct test 
with newer IOS feature sets in your network labs in the next chapter. You will learn about CML-PE as a 
product, download the required images for your lab use, integrate the downloaded images on GNS3, and 
then build a CML-PE basic lab topology to test various Python networking labs in the following chapters.

 

You have come a long way in this book on your first network automation journey. Thus far, I hope 
you have not lost your passion for learning Python network automation. To get the most from the second 
half of this book, this book assumes you have thoroughly read the previous 11 chapters. In your first half 
of Python network automation journey, you picked up various fundamental hands-on skills required to 
install, run, and configure an integrated virtual lab using a number of open source and proprietary software. 
You also started doing basic Python scripting using what you have learned so far. Of course, we could have 
covered many more exciting topics such as DevOps concepts, Ansible, ACI, REST API, HTML, Postman, 
YANG, NETCONF, and much more. However, this book’s purpose is clear: we have been focusing on the 
quintessential tasks of getting you started with Python programming, which is the foundational skill of all 
Python application development engineers. You have probably heard the expression “Give a man a fish, and 
you feed him for a day; teach a man to fish, and you feed him for a lifetime.” Borrowing this great idiom for 
Python network application development, “Teach a network engineer how to use Ansible, and you make 
him a driver; teach him how to write code in Python, and you turn him into a mechanic for a lifetime.” 
Hence, it is your responsibility to expand on the skills you acquire from reading this book; only you can 
decide where you want to go next and how to apply the new skills to your work or study.

So far, you have learned various IT skills to prepare you for the following chapters that predominantly 
focus on Python network automation labs. If you followed along nicely without any technical hiccups up to 
now, you should be able to go through the remaining chapters with ease. If you have not fully set up your 
lab environment or if you only partially completed exercises in each chapter, I encourage you to go back and 
finish, as you will need all of those basics here and throughout the rest of the book.

https://doi.org/10.1007/978-1-4842-6806-3_12#DOI


Chapter 12 ■ Building a python automation laB environment

516

In this chapter, we will start from where we left off at the end of Chapter 11, completing the basic 
cmllab-basic lab topology built to start writing Python code and testing the code for network automation 
application development. Suppose you are an experienced network engineer with many years of experience 
on Cisco, Juniper, Arista, and HP network devices. In that case, you will have no issue following the contents 
of this lab. However, even if you are a new network engineer just starting your career, you will still be able to 
follow along with all the lab steps, as the labs are written with minimal networking concepts and come with 
enough explanations for training purposes. If you concentrate, you will be able to complete all the labs with 
little difficulty.

 Cisco CML-PERSONAL Software License Information 
and Software Downloads
Cisco sells Cisco Modeling Labs – Personal (CML-PERSONAL) with a yearly subscription. If you are a 
network engineer or a networking student who wants to explore everything that Cisco CML-PERSONAL has 
to offer, purchasing the subscription is the way to go. In the first year of subscription, you are required to pay 
US $199, and you will continue to pay the same yearly subscription fee designated by the Cisco Learning 
Team. For a professional engineer who works on Cisco technologies for a living, the subscription fee is cheap 
compared to how much traditional network engineers had to spend on their old 3700 and 2600 series routers 
and 2950 series switches to break into this industry. Anyway, if you can get your hands on CML images, there 
are more cost-effective ways of setting up your lab, like integrating them into GNS3, which is the topic of this 
chapter.

As mentioned in the first chapter, CML-PERSONAL (renamed VIRL-PE, for Virtual Internet Routing 
Lab Personal Edition) is a virtual equipment emulator program for studying Cisco’s technologies, so you 
can say it is vendor-specific. However, the networking concepts you will learn from this Cisco tool will be 
universal and replicable to other vendor technologies. Once you are subscribed to Cisco CML-PERSONAL, 
you can download and install Cisco’s CML-PERSONAL software and use routers, switches, and firewall 
CML-PERSONAL images to emulate the various Cisco labs. With no surprise, this book does not use 
CML-PERSONAL PE but uses a hybrid lab setup using Cisco CML-PERSONAL’s router (L3) and switch (L2) 
images on GNS3. The CML-PERSONAL images installation and integration procedures on GNS3 are almost 
identical to the Cisco router IOS image integration on GNS3. Once again, your Windows host PC needs a 
connection to the Internet. CML-PERSONAL is Cisco’s proprietary software, and free distribution of CML-
PERSONAL software and CML-PERSONAL images are prohibited by law. If you can afford the subscription, 
we recommend you subscribe to CML-PERSONAL at https://learningnetworkstore.cisco.com/cisco- 
modeling- labs- personal/cisco- cml- personal.

This book makes a disclaimer that any Cisco IOS, CML-PERSONAL, or any other proprietary software 
purchase and use are your responsibilities. No software is provided to you as part of this book. There are 
several ways to locate the software mentioned in this book. Please refer to https://developer.cisco.com/
modeling- labs/ for more information.

 Downloading the Cisco CML-PERSONAL IOSvL2 (Switch) 
Image
Before we can integrate the Cisco CML-PERSONAL L2 switch image on GNS3, you will need to locate, 
download, and save it to your host PC’s Downloads folder. You can get information on the CML-PERSONAL 
L2 switch from the official GNS3 website, which will take you to Cisco’s CML-PERSONAL L2 site (https://
learningnetwork.cisco.com/s/article/iosvl2- more- info- updated- 10- 2- 15- x).

https://learningnetworkstore.cisco.com/cisco-modeling-labs-personal/cisco-cml-personal
https://learningnetworkstore.cisco.com/cisco-modeling-labs-personal/cisco-cml-personal
https://developer.cisco.com/modeling-labs/
https://developer.cisco.com/modeling-labs/
https://learningnetwork.cisco.com/s/article/iosvl2-more-info-updated-10-2-15-x
https://learningnetwork.cisco.com/s/article/iosvl2-more-info-updated-10-2-15-x


Chapter 12 ■ Building a python automation laB environment

517

The name of the CML-PERSONAL switch image used in this book is vios_l2-
adventerprisek9-m.03.2017.qcow2. You can use the same one or any newer images you can find and 
download. After downloading the switch image file, save it to the Downloads folder. Saving it to the 
Downloads folder is important to save time as GNS3 will first look for the image in the Downloads folder  
(see Figure 12-1).

 Downloading the Cisco CML-PERSONAL IOSv (Router) 
Image and startup_config Files
To integrate a CML-PERSONAL L3 or router image, you have to download the working IOSv L3 Qemu 
(qcow2) and IOSv_startup_config.img image files. Unlike the L2 switch, the CML-PERSONAL router image 
integration with GNS3 also requires the IOSv_startup_config.img file for device startup, which can be 
downloaded from CML-PERSONAL’s official site or sourceforge.net. Information on the GNS3 CML-
PERSONAL L3 router and IOSv_startup_config.img can be obtained from Cisco’s CML-PERSONAL site.  
Go to the following suggested sites to find out more about the Cisco CML-PERSONAL L3 software:

GNS3 CML-PERSONAL IOSv: https://learningnetwork.cisco.com/s/
article/iosv- more- info- updated- 4- 20- 15- x

CML-PERSONAL IOSv_startup_config file download: https://sourceforge.
net/projects/gns- 3/files/Qemu%20Appliances/

The CML-PERSONAL IOSv or L3 router image name used in this book is IOSv-L3-15.6(2)T.qcow2; 
this is an old image, but it still meets our needs. Since we are not exploring all the networking features, 
Cisco devices only serve our needs to learn the network automation concepts and Python application 
developments. We can use any version of CML L2 and L3 images as long as it can carry the traffic and saves 
us time and resources from running full-blown hardware-based labs. Although we are focusing on network 
automation, the routing and switching concepts are not the core of this book. So, Cisco CML-PERSONAL 
images provide us with the basic L2 and L3 connections to carry traffic and learn Python scripting skills 
using Telnet, SSH, RESTCONF, and other Python libraries. Download the two required files, as shown in 
Figure 12-2, and save them in the Downloads folder.

Figure 12-1. CML-PERSONAL L2 switch image, saved to the Downloads folder

https://learningnetwork.cisco.com/s/article/iosv-more-info-updated-4-20-15-x
https://learningnetwork.cisco.com/s/article/iosv-more-info-updated-4-20-15-x
https://sourceforge.net/projects/gns-3/files/Qemu Appliances/
https://sourceforge.net/projects/gns-3/files/Qemu Appliances/


Chapter 12 ■ Building a python automation laB environment

518

Once you have the vIOS L2 image, vIOS L3 image, and vIOS startup-config files, you are ready to install 
and integrate them to your GNS3.

 Installing the Cisco CML-PERSONAL L2 Switch and  
CML-PERSONAL L3 on GNS3
At the end of Chapter 11, we copied and created a new project called cmllab-basic. Let’s reopen that project 
as this is the starting point of our tasks in this chapter. If you are continuing your work from Chapter 11, 
continue working from GNS3, but if you have just powered on your PC, then first launch GNG3 using the 
GNS3 shortcut icon on your desktop. If the lab environment was set up correctly, GNS3 runs, and the GNS3 
VM installed on VMware Workstation should start automatically after a few seconds.

 Installation tip if the Cml-perSonal installation does not work as described due to a software failure, 
you must delete the installed switch or router templates by right-clicking gnS3 and trying to install the images 
again. Cml-perSonal images are not made for gnS3, so sometimes they will not integrate to gnS3 on the 
first try. if the Cml-perSonal image does not get installed properly after the first attempt, do not give up; keep 
trying until it is installed properly.

 Installing the Cisco CML-PERSONAL L2 Switch on GNS3
You will install the Cisco CML-PERSONAL L2 switch image on GNS3 first. For correct installation, the 
host PC must be connected to the Internet. After this installation, you will run the switching labs using the 
installed image, which was not possible on the older IOS image integration.

Figure 12-2. CML-PERSONAL L3 router image, saved to the Downloads folder



Chapter 12 ■ Building a python automation laB environment

519

# Task
1 In the GNS3 main window, go to File and click + New template. See Figure 12-3.

2 When the “New template” wizard opens, leave the default selection of “Install an appliance from the 
GNS3 server (recommended)” and click Next. See Figure 12-4.

Figure 12-3. CML L2 switch installation, adding a new template

Figure 12-4. CML L2 switch installation, new template selection

(continued)



Chapter 12 ■ Building a python automation laB environment

520

# Task

3 In the “Appliances from server” window, in the search field, type in IOSvL2 to locate Cisco IOSvL2 
Qemu under Switches. Select the searched device and click Install; this is the template for the Cisco 
CML-PERSONAL L2 switch on GNS3. See Figure 12-5.

4 In the Server window, click Next. See Figure 12-6.

Figure 12-5. CML L2 Switch installation, appliances from server



Chapter 12 ■ Building a python automation laB environment

521

# Task

5 In the “Qemu settings” window, click Next. See Figure 12-7.

Figure 12-6. CML L2 switch installation, server

(continued)



Chapter 12 ■ Building a python automation laB environment

522

# Task

6 Under “Required files,” if you have placed the CML-PERSONAL L2 .qcow2 file in the Downloads 
folder, the installation wizard will automatically detect the L2 image automatically and display it in 
green. You can also see the missing files in red. Highlight your image and click Next. See Figure 12-8.

Figure 12-7. CML L2 switch installation, Qemu settings



Chapter 12 ■ Building a python automation laB environment

523

# Task

7 When the Appliance window pops up, click Yes. See Figure 12-9.

8 To complete the installation, click Finish. See Figure 12-10.

Figure 12-8. CML L2 switch installation, required files

Figure 12-9. CML L2 installation, appliance install pop-up

(continued)



Chapter 12 ■ Building a python automation laB environment

524

# Task

9 The “Add template” window pops up; click OK to finish the installation. See Figure 12-11.

10 On GNS3, click the Switch button on the left, which looks like two opposite arrows, to open the 
switches. See Figure 12-12.

Figure 12-10. CM L2 switch installation, usage

Figure 12-11. CML L2 switch installation, “Add template” pop-up

Figure 12-12. CML L2 switch installation, select switch icon on GNS3



Chapter 12 ■ Building a python automation laB environment

525

# Task

11 If Cisco CML-PERSONAL IOSvL2 was installed correctly, you would see your new switch devices 
installed under Switches. See Figure 12-13.

12 Now, drag and drop the IOSvL2 switch to the cmllab-basic lab, as shown in Figure 12-14.

Figure 12-13. CML L2 switch installation, selecting the Cisco IOSvL2 switch

Figure 12-14. CML L2 switch installation, dragging and dropping a CML switch

(continued)



Chapter 12 ■ Building a python automation laB environment

526

# Task

13 Using the Add Link tool, connect Gi0/0 of the new switch to Switch1’s e2 interface, as shown in 
Figure 12-15. Then power on all devices on the topology and also the CentOS8.1 and Ubuntu 20.04 
LTS servers on VMware Workstation 15 Pro. Rename the switch to LAB-SW1 by right-clicking and 
clicking the Change Hostname menu.

14 After powering on LAB-SW1, open its console, and you will see a similar power-on screen as shown 
in Figure 12-16.

Figure 12-15. CML L2 switch installation, connecting the CML switch to the network



Chapter 12 ■ Building a python automation laB environment

527

# Task

15 Your new switch’s console screen should look like the following if it successfully booted up. Now 
you have completed the CML-PERSONAL L2 switch installation on your GNS3. Get ready for some 
switching labs.

Cisco IOS Software, vios_l2 Software (vios_l2-ADVENTERPRISEK9-M), Experimental 
Version 15.2(20170321:233949) [mmen 101]
Copyright (c) 1986-2017 by Cisco Systems, Inc.
Compiled Wed 22-Mar-17 08:38 by mmen
**************************************************************************
* IOSv is strictly limited to use for evaluation, demonstration and IOS  *
* education. IOSv is provided as-is and is not supported by Cisco's      *
* Technical Advisory Center. Any use or disclosure, in whole or in part, *
* of the IOSv Software or Documentation to any third party for any       *
*
*Jan  9 10:36:48.512: %PLATFORM-5-SIGNATURE_VERIFIED: Image 'flash0:/vios_l2-
adventerprisek9-m' passed code signing verification purposes is expressly prohibited 
except as otherwise authorized by     *
* Cisco in writing.                                                      *
**************************************************************************
Switch>

Figure 12-16. CML L2 switch installation, powered-on CML switch screen



Chapter 12 ■ Building a python automation laB environment

528

 Quick Communication Test on CML L2 Switch Integration on GNS3
At the end of the CML-PERSONAL L2 switch installation, quickly perform communication verification from 
the switch to other devices on the network. The recommended ICMP tests are described as follows:

# Task
1 Quickly log in and configure the correct switch name and a VLAN 1 interface on the new switch with a 

valid IP address.

Switch>enable # Enter Privileged EXEC mode
Switch#configure terminal # Enter Global Configuration mode
LAB-SW1(config)#hostname LAB-SW1 # Rename hostname
LAB-SW1(config)#spanning-tree vlan 1 root primary # Designate this switch as the root 
primary
LAB-SW1(config)#interface vlan 1 # Enter interface vlan 1 config mode
LAB-SW1(config-if)#ip add 192.168.183.101 255.255.255.0 # Configure an IP address
LAB-SW1(config-if)#no shut # Bring up this interface
LAB-SW1(config-if)#end # Go back to Privileged EXEC mode

2 On LAB-SW1, as soon as you bring up Gi0/0, you may be prompted with duplex mismatch errors from 
R1’s f0/0 interface. To stop this annoying CDP error message on LAB-SW1, you need to hard-code R1’s 
f0/0 interface speed to 100 and duplex to full. If you do not get this error, you can continue to the next step.

LAB-SW1(config-if)#
*Aug 2 11:16:38.977: %CDP-4-DUPLEX_MISMATCH: duplex mismatch discovered on 
GigabitEthernet0/0 (not half duplex), with R1 FastEthernet0/0 (half duplex).

Open console for R1 and change the interface speed and duplex as follows:

R1#configure terminal # Enter Global Configuration mode
R1(config)#interface f0/0 # Enter interface configuration mode
R1(config-if)#duplex full # Change interface duplex to full (default auto)
R1(config-if)#speed 100 # Change interface speed to 100
R1(config-if)# do write memory # save the configuration

3 Go to PC1 and run the ip dhcp command to get an IP address, or if you are continuing your lab from 
the previous chapter, run the show ip command to check the IP address of PC1.

PC1> ip dhcp # Request an IP address from DHCP server
DDORA IP 192.168.183.129/24 GW 192.168.183.2

PC1> show ip # Display IP Settings of PC1 (VPCS)

NAME        : PC1[1]
IP/MASK     : 192.168.183.129/24
GATEWAY     : 192.168.183.2
DNS         : 192.168.183.2
DHCP SERVER : 192.168.183.254
DHCP LEASE  : 1713, 1800/900/1575
DOMAIN NAME : localdomain
MAC         : 00:50:79:66:68:00
LPORT       : 20012
RHOST:PORT  : 127.0.0.1:20013
MTU:        : 1500



Chapter 12 ■ Building a python automation laB environment

529

# Task

4 From LAB-SW1 (192.168.183.101), send ICMP messages to PC1 (192.168.183.129) and R1’s f0/0 
(192.168.183.133).

LAB-SW1#ping 192.168.183.129
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.183.129, timeout is 2 seconds:
.!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 2/3/5 ms

LAB-SW1#ping 192.168.183.133
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.183.133, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 2/4/6 ms

5 Make sure that both Linux servers are up and running on VMware Workstation. From the previous 
chapter, we know the IP address of the centos8s1 server is 192.168.183.130, and the ubuntu20s1 server 
is 192.168.183.132.

From LAB-SW1, send ICMP packets (ping) to both centos8s1 and ubuntu20s1. Your server IP address 
may be different from the example shown here:

LAB-SW1#ping 192.168.183.130
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.183.130, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 3/6/13 ms

LAB-SW1#ping 192.168.183.132
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.183.132, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 2/3/6 ms

6 After successful communication testing, copy the running configuration to the startup configuration.

LAB-SW1#copy running-config startup-config # Save running configuration to startup 
configuration

Destination filename [startup-config]?
Building configuration...
Compressed configuration from 3559 bytes to 1604 bytes[OK]

You have now completed the integration and verification of the CML L2 switch image on GNS2. With 
this image, we can many switches to test multiple-device Python network automation labs. Next, go ahead 
and integrate the L3 router image.

 Installing the Cisco CML-PERSONAL L3 Router on GNS3
Now you will follow the procedures shown in this section to install the CML-PERSONAL L3 router on GNS3; 
this will enable you to run the CML-PERSONAL router on GNS3. And as usual, you will require a connection 
to the Internet to complete this procedure. It is best to be connected to the home network than work during 
the installation process. Please note that if your host PC is connected to the internet via a company proxy, 
you may encounter some problems. See Figure 12-17.



Chapter 12 ■ Building a python automation laB environment

530

 the integration of Cml images looks normal until you drag and drop the icon onto the gnS3 topology 
canvas. if gnS3 produces a qcow2 or other error and does not work, you may have to use the “delete template” 
option as shown in Figure 12-18 and restart the integration process from scratch.

Now add a new template for the CML L3 router image and complete the integration.

# Task
1 In the GNS3 main window, go to File and click “+ New template.” See Figure 12-19.

Figure 12-17. GNS3, CML-PERSONAL L3 image error

Figure 12-18. GNS3, deleting the CML-PERSONAL L3 template

Figure 12-19. CML L3 router installation, adding a new template



Chapter 12 ■ Building a python automation laB environment

531

# Task

2 When the “New template” wizard opens, leave the default selection of “Install an appliance from 
the GNS3 server (recommended)” and click Next. See Figure 12-20.

3 In the “Appliances from server” window, type IOSv in the search field to locate Cisco IOSv Qemu 
under Switches. Select the searched device and click Install. This is the template for the Cisco CML-
PERSONAL L3 router on GNS3. See Figure 12-21.

Figure 12-20. CML L3 router installation, new template

(continued)



Chapter 12 ■ Building a python automation laB environment

532

# Task

4 In the next window, click Next. See Figure 12-22.

Figure 12-21. CML L3 router installation, appliances from server

Figure 12-22. CML L3 router installation, server selection



Chapter 12 ■ Building a python automation laB environment

533

# Task

5 On the “Qemu settings” screen, click Next again. See Figure 12-23.

6 It is recommended that you click the actual vIOS name under “Required files” and highlight it before 
clicking Next. Notice that the actual image name vios-adventerprisek9-m.vmdk.SPA.156-2.T  
is selected before clicking the Next button. See Figure 12-24.

Figure 12-23. CML L3 router installation, Qemu settings

(continued)



Chapter 12 ■ Building a python automation laB environment

534

# Task

7 When the Appliance window pops up, click Yes. See Figure 12-25.

8 In the Usage window, click Finish. See Figure 12-26.

Figure 12-24. CML L3 router installation, required files

Figure 12-25. CML L3 router installation, Appliance install pop-up



Chapter 12 ■ Building a python automation laB environment

535

# Task

9 When the “Add template” message appears, click OK to complete the CML-PERSONAL L3 router 
image installation. See Figure 12-27.

10 Go back to the main user window, and this time click the Router icon that looks like a circle with 
four arrows. See Figure 12-28.

Figure 12-26. CML L3 router installation, usage

Figure 12-27. CML L3 router installation, “Add template” pop-up

Figure 12-28. CML L3 router installation, clicking the router icon on GNS3

(continued)



Chapter 12 ■ Building a python automation laB environment

536

# Task

11 The Routers list appears as shown in Figure 12-29, and you will immediately notice that a new IOSv 
router has been added.

12 Now drag and drop the new router onto the Topology canvas of the cmllab-basic project. Rename 
the router as LAB-R1. See Figure 12-30.

13 Once the new router has been renamed, use the Add Link (connector) tool, and connect Lab-R1’s 
Gi0/0 interface to LAB-SW1’s Gi0/1 interface. You can make the connection while the other device 
is switched on. Now power on LAB-R1 and open the console window. See Figure 12-31.

The Topology Summary window shows the virtual connection between devices (see Figure 12-32). 

The Servers Summary window shows where each device is hosted (see Figure 12-33).

Figure 12-29. CML L3 router installation, selecting the CML router

Figure 12-30. CML L3 router installation, dragging and dropping the CML router



Chapter 12 ■ Building a python automation laB environment

537

Figure 12-31. CML L3 router installation, connecting and starting the CML router

Figure 12-32. Topology Summary window

# Task

(continued)



Chapter 12 ■ Building a python automation laB environment

538

# Task

14 When the router boots up, it will display the vIOS version during the bootup. See Figure 12-34.

Figure 12-33. Servers Summary window

Figure 12-34. CML L3 router installation, powered-on CML router screen



Chapter 12 ■ Building a python automation laB environment

539

# Task

15 If you see a console screen similar to Figure 12-35, it means you have completed the CML-
PERSONAL L3 router on GNS3. CML-PERSONAL is almost identical to Cisco IOS 15.x. Now you are 
ready for some routing labs using a newer IOS image.

Cisco IOS Software, IOSv Software (VIOS-ADVENTERPRISEK9-M), Version 15.6(2)T, 
RELEASE SOFTWARE (fc2)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2016 by Cisco Systems, Inc.
Compiled Tue 22-Mar-16 16:19 by prod_rel_team
*Jan  9 11:12:35.500: %CRYPTO-6-ISAKMP_ON_OFF: ISAKMP is OFF
*Jan  9 11:12:35.501: %CRYPTO-6-GDOI_ON_OFF: GDOI is OFF
*Jan  9 11:12:37.708: %SYS-3-CPUHOG: Task is running for (1999)msecs, more than 
(2000)msecs (0/0),process = Crypto CA.
**************************************************************************
* IOSv is strictly limited to use for evaluation, demonstration and IOS  *
* education. IOSv is provided as-is and is not supported by Cisco's      *
* Technical Advisory Center. Any use or disclosure, in whole or in part, *
* of the IOSv Software or Documentation to any third party for any       *
* purposes is expressly prohibited except as otherwise authorized by     *
* Cisco in writing.                                                      *
**************************************************************************
Router#

 Quick Communication Test on CML L3 Router Integration on GNS3
Complete the following tasks to allow the newly installed router to communicate to the rest of the devices in 
your topology:

# Task
1 Quickly log in to the new router and configure the correct router name. Also, configure a valid IP 

address from the same subnet as VMnet8 (192.168.183.0/24) to interface with GigbitEthernet 0/0. 
Please note that your subnet is maybe different. Make sure you issue the no shut command to bring 
up the interface.

Router#configure terminal # Enter Global Configuration mode
Router(config)#hostname LAB-R1 # Rename hostname
LAB-R1(config)#interface GigabitEthernet 0/0 # Enter interface Gi0/0 config mode
LAB-R1(config-if)#ip add 192.168.183.10 255.255.255.0 # Configure an IP address
LAB-R1(config-if)#no shut # Bring up this interface
LAB-R1(config-if)#end # Go back to Privileged EXEC mode

2 On the Lab-R1 router, once the Gi0/0 interface comes up, start sending ICMP packets to the following 
IP addresses to ensure that LAB-R1 can communicate to all the other devices in our topology. VMnet8’s 
default gateway IP (192.168.183.2), PC1’s IP address (192.168.183.129), R1’s f0/0 (192.168.183.133), the 
centos8s1 server (192.168.183.130), and the ubuntu20s1 server (192.168.183.132).

(continued)



Chapter 12 ■ Building a python automation laB environment

540

# Task

LAB-R1#ping 192.168.183.2 # To Default Gateway
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.183.2, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 8/10/11 ms
LAB-R1#ping 192.168.183.129 # To PC1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.183.129, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 7/9/12 ms
LAB-R1#ping 192.168.183.133 # To R1's f0/0 interface
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.183.133, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 12/15/18 ms
LAB-R1#ping 192.168.183.130 # To centos8s1 server
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.183.130, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 8/8/11 ms
LAB-R1#ping 192.168.183.132 # To ubuntu20s1 server
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.183.132, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 8/9/10 ms

3 For verification purposes only, we can also quickly test the SSH login to the CentOS8.1 server from 
LAB-R1 using the ssh –l username server_IP command.

LAB-R1#ssh -l pynetauto 192.168.183.130 # SSH login to centos8s1 server
Password:
Activate the web console with: systemctl enable --now cockpit.socket

Last login: Sat Jan  9 00:00:39 2021 from 192.168.183.1
[pynetauto@centos8s1 ~]$ exit
logout

[Connection to 192.168.183.130 closed by foreign host]
LAB-R1#

Please note that the SSH login to the ubuntu20s1 server will not work due to a security algorithm 
mismatch. The SSH login sessions will be initiated from the server side to networking devices, and 
you do not have to worry about this at this stage.

4 Once you have completed the communication test, save the running configuration of LAB-R1 to the 
startup configuration.

LAB-R1#copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
[OK]



Chapter 12 ■ Building a python automation laB environment

541

Figure 12-35. Configuring the CML lab topology, one of three

 Building a CML-PERSONAL Lab Topology
Before moving onto the actual lab task in the next chapter, let’s add a few more devices to the cmllab-basic 
GNS3 project and complete our topology. This step assumes you are continuing the topology build from the 
last steps.

# Task
1 Continuing from the previous section, add one more IOSvL2 switch and one more IOSv router to 

the topology as shown in Figure 12-35. Rename the switch to lab-sw2 in lowercase and the router 
to lab-r2 also in lowercase. The device names are not capitalized and standardized on purpose 
here, although it is a best practice to follow a strict naming convention for your network devices. In 
production, this convention is not followed by every engineer and becomes an annoyance. Hence, to 
emulate the imperfect production environment, we will not follow a strict device naming convention.
Connect Gi0/0 of lab-sw2 to Gi0/2 of LAB-SW1 and Gi0/1 of lab-sw2 to Gi0/1 of lab-r2. Also, connect 
Gi0/0 of lab-r2 to Gi0/1 of LAB-R1.

2 Now power on lab-sw2 and lab-r2 as shown in Figure 12-36.

(continued)



Chapter 12 ■ Building a python automation laB environment

542

# Task

3 At this stage, all devices, including the centos8s1 IP Services server and ubuntu20s1 Python server, 
should be powered on and running smoothly. Perform ping tests between the GNS3 network and 
the Linux servers to ensure that all devices can reach others on the VMnet8 network.

4 Here’s the R1 IOS router configuration:

First, on R1 (IOS router), let’s open the console to assign the IP address manually so its IP address 
does not change every time the DHCP lease time elapses.

R1#show ip interface brief # show interface configuration
Interface                  IP-Address      OK? Method Status                Protocol
FastEthernet0/0            192.168.183.133 YES DHCP   up                    up
FastEthernet0/1            7.7.7.2         YES NVRAM  up                    up
FastEthernet1/0            unassigned      YES NVRAM  administratively down down

R1#configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.

Figure 12-36. Configuring CML lab topology, two of three



Chapter 12 ■ Building a python automation laB environment

543

# Task

R1(config)#interface FastEthernet0/0 # Enter interface configuration mode
R1(config-if)#no ip address dhcp # Disable DHCP IP allocation from DHCP server
R1(config-if)#ip address 192.168.183.133 255.255.255.0 # Manually assign IP Address
R1(config-if)#speed 100 # Fix speed if you have not done so yet above
R1(config-if)#duplex full # Fix duplex if you have not done so yet above
R1(config-if)#exit # Move back to Global configuration mode
R1(config)#ip domain-lookup # Enable DNS lookup
R1(config)#ip name-server 192.168.183.2 # Assign Default Gateway as the name-server
R1(config)#ip route 0.0.0.0 0.0.0.0 192.168.183.2 # Add a default route
R1(config)#router ospf 1 # Configure basic ospf
R1(config-router)#network 0.0.0.0 255.255.255.255 area 0 # add all network to ospf 
area 0
R1(config-router)#end # Move back to Exec Privilege mode
R1#write memory # Save current running configuration to startup configuration

After saving the configuration, perform a quick ping test to the default gateway (192.168.183.2) and 
any other devices on the network. They should all be reachable from R1.

5 Here’s the LAB-SW1 configuration:

Now open the LAB-SW1 console and reconfigure the first CML-PERSONAL switch. This switch 
already has a VLAN 1 interface manually configured, so there’s no need to reconfigure the IP 
address. Since the switches will be used as L2 devices, there is no need to configure DNS or static 
routes.

LAB-SW1#show ip interface brief | be Vlan1
Vlan1                  192.168.183.101 YES NVRAM  up                    up

Use the following configuration to complete the LAB-SW1 configuration.
LAB-SW1#configure terminal  # Enter Global configuration mode
LAB-SW1(config)#enable password cisco123 # Configure enable password
LAB-SW1(config)#username pynetauto privilege 15 password cisco123 #configure L15 
user with pwd
LAB-SW1(config)#line vty 0 15 # Enter Virtual Terminal Line configuration mode
LAB-SW1(config-line)#login local # Allow locally configured account
LAB-SW1(config-line)#transport input all # use both telnet and SSH connection
LAB-SW1(config-line)#logging synchronous # Change line automatically during log 
message
LAB-SW1(config-line)#no exec-timeout # No connection time-out, for Lab use only
LAB-SW1(config-line)#line console 0 # Enter Line Console 0 config mode
LAB-SW1(config-line)#logging synchronous # Change line automatically during console 
message
LAB-SW1(config-line)#no exec-timeout # No connection time-out, for Lab use only
LAB-SW1(config-line)#end # Move back to Exec privilege mode
LAB-SW1#copy running-config startup-config  # Save running-config to startup-config
Destination filename [startup-config]?
Building configuration...
[OK]

(continued)



Chapter 12 ■ Building a python automation laB environment

544

# Task

6 Here’s the lab-sw2 configuration:

Let’s apply a similar configuration to the newly added switch, lab-sw2. This switch will also be 
configured as a layer 2 switch, so there’s no need to enable IP routing or to configure DNS. No 
explanation will be added to this configuration as it is almost identical to the previous LAB-SW2 
configuration.

Switch>en
Switch#conf t
Switch(config)#hostname lab-sw2
lab-sw2(config)#interface vlan 1
lab-sw2(config-if)#ip add 196.168.183.102 255.255.255.0
lab-sw2(config-if)#no shut
lab-sw2(config-if)#enable password cisco123
lab-sw2(config)#username pynetauto pri 15 pass cisco123
lab-sw2(config)#line vty 0 15
lab-sw2(config-line)#login local
lab-sw2(config-line)#transport input all
lab-sw2(config-line)#logging synchronous
lab-sw2(config-line)#no exec-timeout
lab-sw2(config-line)#line console 0
lab-sw2(config-line)#logging synchronous
lab-sw2(config-line)#no exec-timeout
lab-sw2(config-line)#end
lab-sw2#copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
[OK]

7 Here’s the LAB-R1 configuration:

Next, open the console of LAB-R1, assign a DNS server, and then add a static route to allow smooth 
communication on our lab topology. LAB-R1's Gi0/0 has been manually configured with an IP 
address of 192.168.183.10/24, so there’s no need to configure it. Configure the first CML-PERSONAL 
router, as shown here:

To configure LAB-R1, use the following configuration:
LAB-R1#configure terminal # Enter Global configuration mode
LAB-R1(config)#interface GigabitEthernet 0/1 # Enter interface configuration mode
LAB-R1(config-if)#ip address 172.168.1.1 255.255.255.0 # Assign IP address to Gi0/1 
interfacing lab-r2
LAB-R1(config-if)#no shut # Bring up the interface
LAB-R1(config-if)#exit # Exit interface configuration mode
LAB-R1(config)#ip domain-lookup # Enable DNS lookup
LAB-R1(config)#ip name-server 192.168.183.2 # Assign Default Gateway as DNS server
LAB-R1(config)#ip route 0.0.0.0 0.0.0.0 192.168.183.2 # Add a static Gateway of last 
resort
LAB-R1(config)#enable password cisco123 # Configure enable password
LAB-R1(config)#username pynetauto privilege 15 password cisco123 # configure level 
15 user with pwd



Chapter 12 ■ Building a python automation laB environment

545

# Task

LAB-R1(config)#line vty 0 15 # Enter Virtual Terminal Line configuration mode
LAB-R1(config-line)#login local # Allow locally configured account
LAB-R1(config-line)#transport input all # use both telnet and SSH connection
LAB-R1(config-line)#logging synchronous #  Change line automatically during log message
LAB-R1(config-line)#no exec-timeout # No connection time-out, for Lab use only
LAB-R1(config-line)#line console 0 # Enter Line Console 0 config mode
LAB-R1(config-line)#logging synchronous # Change line automatically during console message
LAB-R1(config-line)#no exec-timeout # No connection time-out, for Lab use only
LAB-R1(config-line)#end # Move back to Exec privilege mode
LAB-R1#copy running-config startup-config # Save running-config to startup-config
Destination filename [startup-config]?
Building configuration...
[OK]

8 Here’s the lab-r2 configuration:

Configure the second CML-PERSONAL L3 router using the following configuration suggestions. The 
basic configuration is almost identical to that of LAB-R1, so no line-by-line explanation is given.

Router#conf t
Router(config)#hostname lab-r2
lab-r2(config-if)#interface GigabitEthernet 0/0
lab-r2(config-if)#ip address 172.168.1.2 255.255.255.0
lab-r2(config)#interface GigabitEthernet 0/1
lab-r2(config-if)#ip add 192.168.183.20 255.255.255.0
lab-r2(config-if)#no shut
lab-r2(config-if)#exit
lab-r2(config)#ip domain-lookup
lab-r2(config)#ip name-server 192.168.183.2
lab-r2(config)#ip route 0.0.0.0 0.0.0.0 192.168.183.2
lab-r2(config)#enable password cisco123
lab-r2(config)#username pynetauto pri  15 password cisco123
lab-r2(config)#line vty 0 15
lab-r2(config-line)#login local
lab-r2(config-line)#transport input all
lab-r2(config-line)#logging synchronous
lab-r2(config-line)#no exec-timeout
lab-r2(config-line)#line console 0
lab-r2(config-line)#logging synchronous
lab-r2(config-line)#no exec-timeout
lab-r2(config-line)#end
lab-r2#copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
[OK]

9 One of the background shapes has been changed from an oval to a rectangle to make the lab look 
better, and the topology has been decorated with IP addresses to make the lab steps clear. Take time 
to decorate your topology to help you with the IP addressing for the coming labs. See Figure 12-37, 
Figure 12-38, and Figure 12-39.

(continued)



Chapter 12 ■ Building a python automation laB environment

546

# Task

Figure 12-37. Configuring the CML lab topology, three out of three

Figure 12-38. Topology Summary window



Chapter 12 ■ Building a python automation laB environment

547

# Task

10 Now SSH into the ubutun20s1 or centos8s1 server and send some ICMP packets to each 
network device in our topology. Try to send some ICMP messages using the ping command. 
The IP addresses to ping and check connectivity are listed below. Your network IP addresses 
could be different if you are using a different subnet.

R1's f0/0 : 192.168.183.133

PC1 : 192.168.183.129

LAB-SW1 vlan 1 : 192.168.183.101

lab-sw2 vlan 1 : 192.168.183.102

LAB-R1 Gi0/0 : 192.168.183.10

lab-r2 Gi0/1 : 192.168.183.20

[pynetauto@centos8s1 ~]$ ping 192.168.183.133 -c 2

PING 192.168.183.133 (192.168.183.133) 56(84) bytes of data.
64 bytes from 192.168.183.133: icmp_seq=1 ttl=255 time=7.76 ms
64 bytes from 192.168.183.133: icmp_seq=2 ttl=255 time=4.56 ms

--- 192.168.183.133 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 3ms
rtt min/avg/max/mdev = 4.556/6.158/7.761/1.604 ms
[pynetauto@centos8s1 ~]$ ping 192.168.183.129 -c 2
PING 192.168.183.129 (192.168.183.129) 56(84) bytes of data.
64 bytes from 192.168.183.129: icmp_seq=1 ttl=255 time=31.8 ms
64 bytes from 192.168.183.129: icmp_seq=2 ttl=255 time=19.6 ms

--- 192.168.183.129 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 3ms
rtt min/avg/max/mdev = 19.562/25.669/31.776/6.107 ms
[pynetauto@centos8s1 ~]$ ping 192.168.183.101 -c 2
PING 192.168.183.101 (192.168.183.101) 56(84) bytes of data.
64 bytes from 192.168.183.101: icmp_seq=1 ttl=255 time=25.0 ms
64 bytes from 192.168.183.101: icmp_seq=2 ttl=255 time=24.1 ms

Figure 12-39. Servers Summary window

(continued)



Chapter 12 ■ Building a python automation laB environment

548

# Task

--- 192.168.183.101 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 2ms
rtt min/avg/max/mdev = 24.056/24.547/25.038/0.491 ms
[pynetauto@centos8s1 ~]$ ping 192.168.183.102 -c 2
PING 192.168.183.102 (192.168.183.102) 56(84) bytes of data.
64 bytes from 192.168.183.102: icmp_seq=1 ttl=255 time=35.5 ms
64 bytes from 192.168.183.102: icmp_seq=2 ttl=255 time=33.0 ms
64 bytes from 192.168.183.20: icmp_seq=1 ttl=255 time=184 ms
64 bytes from 192.168.183.20: icmp_seq=2 ttl=255 time=46.10 ms

--- 192.168.183.102 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 3ms
rtt min/avg/max/mdev = 33.049/34.295/35.542/1.260 ms
[pynetauto@centos8s1 ~]$ ping 192.168.183.10 -c 2
PING 192.168.183.10 (192.168.183.10) 56(84) bytes of data.
64 bytes from 192.168.183.10: icmp_seq=1 ttl=255 time=37.8 ms
64 bytes from 192.168.183.10: icmp_seq=2 ttl=255 time=20.1 ms

--- 192.168.183.10 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 3ms
rtt min/avg/max/mdev = 20.081/28.936/37.792/8.857 ms
[pynetauto@centos8s1 ~]$ ping 192.168.183.20 -c 2
PING 192.168.183.20 (192.168.183.20) 56(84) bytes of data.
64 bytes from 192.168.183.20: icmp_seq=1 ttl=255 time=184 ms
64 bytes from 192.168.183.20: icmp_seq=2 ttl=255 time=46.10 ms

--- 192.168.183.20 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 3ms
rtt min/avg/max/mdev = 46.992/115.296/183.601/68.305 ms

Now you have completed the integration of the CML L3 router image and communication test between 
the Python server and other networking devices in your topology.

 Summary
In this chapter, you were introduced to Cisco CML integration with GNS3. You downloaded and integrated 
the CML L2 and L3 images with GNS3; then you built a basic CML lab topology and took it for a quick test-
drive. Then you confirmed the network connectivity between the Python automation server and all the 
routers and switches in a cmllab-basic topology. You have completed the CML lab preparation and now are 
ready to jump right in and start writing some Python code to Telnet or SSH and play with the Cisco virtual 
routers and switches on GNS3.

In Chapter 13, you will learn to control the network devices from the Python Linux server starting with 
the Python Telnet library.



549
© Brendan Choi 2021 
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_13

CHAPTER 13

Python Network Automation Lab: 
Basic Telnet

This chapter is dedicated to Telnet labs using Python’s telnetlib library. You will learn how to use a basic 
Telnet example to reiterate and convert your tasks performed on the keyboard into Python scripts. Although 
Telnet is an insecure protocol and the best practice is to use the SSH protocol for remote connections, it is 
still in use today in many production environments residing in a well-secured network where only a small 
number of engineers can access the environment. At the end of this lab, you will be able to do the following 
using the basic Telnet library: interact with network devices on Python interpreter session, configure a 
single and multiple-switch VLAN using a templated approach using loops, perform basic network engineer 
administration tasks such as adding users via an external file source, and make backup copies of running-
config or startup-configs to the local Python server directory. In the next chapter, we will work with the 
Python SSH library to expand on the ideas learned in this chapter.

 

 Python Network Automation: Telnet Labs
In this book, many hours were invested into making the lab experience close to a real physical equipment 
lab as possible so you can have a realistic lab experience without the hardware or worrying about different 
connector types. Under the current lab setup on your host PC, you can write code on three different 
operating systems: host PC on Windows 10, CentOS 8.1 Linux server, and Ubuntu 20.04 LTS Linux VM server. 
If you want to add more places to write code and test it, you can clone any of the Linux VMs. In Chapter 2,  
you were introduced to Python 3 on Windows OS, and then in Chapters 4, 5, and 6, you did most of the 
exercises on the Linux command-line interface (CLI). Companies almost never install Python on a Windows 
server and use it in a production environment. In other words, the vast majority of Python applications run 
on security-hardened Linux servers. Although Microsoft has introduced the concept of Windows Subsystem 
for Linux (WSL) and it can run Linux systems on Windows and is extremely easy to use, the actual virtual 
machine running on Windows is Linux OS.

The current craze of network automation is for fewer engineers who can do more work using an 
application programming interface (API) without opening a CLI console, Telnet, or SSH terminal windows. 
The introduction of API support across many newer networking platforms has also drastically reduced 
graphical user interface (GUI) use in the networking industry. However, industry insiders say the traditional 

https://doi.org/10.1007/978-1-4842-6806-3_13#DOI


Chapter 13 ■ python network automation Lab: basiC teLnet

550

way of logging into network devices and managing them will remain in place for many more years to come. 
We still use our keyboard to write our Python code and also call the API libraries used in our code, but unless 
we are API developers, we probably do not fully understand the inner workings of each API. At the end of 
the day, network automation is the act of mimicking how an experienced network engineer thinks. A good 
example of such a product is Red Hat’s Ansible, which relies on the agentless SSH connection, instead of 
an API. In this sense, the API is the reinterpretation of this but for machine-to-machine interaction without 
the use of the keyboard and screen. In this chapter, you will start writing Python Telnet scripts to interact 
with the network devices in our basic lab topology. Even though using an API is becoming the new norm 
for administering enterprise networking devices, for now and the foreseeable future, there will still be many 
devices without API interfaces, and you still need to connect to these devices remotely using either a Telnet 
or SSH connection. This means we can still use Python in network automation, relying on Telnet and SSH 
libraries. Anyway, the necessary skills in writing Python code do not change; only the access methods and 
libraries change. See Figure 13-1.

In a highly secured client environment, you can only manage core network and system devices from 
designated servers called jump hosts. Jump hosts can be Windows or Linux OS based. The cmllab-basic 
GNS3 topology emulates this environment, and you have to use PuTTY on your host PC to SSH into the 
ubuntu20s1 (Python and jump host) server to manage devices in the network. The centos8s1 server 
provides IP services we will rely on for various lab scenarios. We will write Python scripts in Windows 
Notepad++ or enter the scripts directly on the ubuntu20s1 server’s text editor via an SSH session for the 
entire chapter. You can enter the Python script directly into the Ubuntu server for those who are fast and 
accurate typists. Still, if you prefer to work with the script from Windows Notepad or Notepad++ and cut and 
paste it to the Ubuntu server later, that is also an acceptable method. Let’s fire up all devices in the cmllab-
basic project, write some Python code, and see how Telnet Python scripts interact with Cisco routers and 
switches.

Figure 13-1. cmllab-basic, logical topology



Chapter 13 ■ python network automation Lab: basiC teLnet

551

 Telnet Lab 1: Interactive Telnet Session to Cisco Devices 
on a Python Interpreter
For this lab, you will need to power on the ubuntu20s1 Linux server (192.168.183.132), LAB-SW1 
(192.168.183.101), and LAB-R1 (192.168.183.10). You will also power on the IOS router, R1 (192.168.183.133), 
to check the OSPF neighborship after running the first script. If you are using another subnet to connect to 
your NAT (VMnetwork8), your IP addresses will be different from this book, and you will have to replace the 
IP addresses. See Figure 13-2.

You will write a Telnet script and run it from the ubuntu20s1 Python server to Telnet into the LAB-R1 
router to make configuration changes. At the end of this lab, LAB-R1 must have the following configurations 
in the running-config file:

• Loopback 0 with IP address of 2.2.2.2/32

• Loopback 1 with IP address of 4.4.4.4/32

• OSPF 1 with network 0.0.0.0 255.255.255.255 in area 0

Figure 13-2. Telnet lab 1, devices in use



Chapter 13 ■ python network automation Lab: basiC teLnet

552

# Task
1 Open PuTTY on your host PC and SSH into the ubuntu20s1 (192.168.183.132) server. If you have 

assigned a different IP address, please use your server IP address. If you forgot about which IP 
address was assigned to the ubuntu20s1 server, open the Linux console from VMware Workstation 
and log in; then run the ip address command.

Now log in with your username and password.

login as: pynetauto
pynetauto@192.168.183.132's password: *********
Welcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-47-generic x86_64)

* Documentation:  https://help.ubuntu.com
* Management:     https://landscape.canonical.com
* Support:        https://ubuntu.com/advantage

System information disabled due to load higher than 1.0

327 updates can be installed immediately.
142 of these updates are security updates.
To see these additional updates run: apt list --upgradable

Last login: Fri Jan  8 23:26:01 2021 from 192.168.183.1
pynetauto@ubuntu20s1:~$

2 Currently, to run Python from ubuntu20s1, we have to issue the python3 command. Since there is 
no Python 2.7 installed and Python 3 is the only version you are going to be using here, you can use 
an alias command to shorten python3 to python. Follow the instruction here to use the alias in 
Linux:

pynetauto@ubuntu20s1:~$ users
pynetauto
pynetauto@ubuntu20s1:~$ pwd
/home/pynetauto
pynetauto@ubuntu20s1:~$ nano /home/pynetauto/.bashrc

Once you open the .bashrc file in the /home/user/ directory, add a new line, alias 
python=python3, to the .bashrc file; this is similar to Figure 13-1. Once you finish adding a line, 
press Ctrl+X to save and exit the file.

GNU nano 4.8                                       /home/pynetauto/.bashrc

# alias ADDED by pynetauto
alias python=python3

^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text     ^J Justify    ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text   ^T To Spell   ^_ Go To Line



Chapter 13 ■ python network automation Lab: basiC teLnet

553

# Task

3 After adding the alias line, run the source ~/.bashrc command to restart the user’s bashrc. You 
can now use the python or python3 command to run Python 3.8.2 on your ubuntu20s1 server.

pynetauto@ubuntu20s1:~$ source ~/.bashrc
pynetauto@ubuntu20s1:~$ python
Python 3.8.2 (default, Jul 16 2020, 14:00:26)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

4 As we have done in the IOS Telnet lab, go to https://docs.python.org/3/library/telnetlib.
html and scroll down to the bottom of the page. Locate a sample Telnet code. You can alternatively 
reuse the old code from the R1 IOS lab from Chapter 10.8. Let’s copy this code to make our first 
Telnet script. This code will be used throughout the Telnet labs, so here are quick explanations of 
what each line does in the given Python script. Since we are using Cisco devices, more explanations 
are provided concerning Cisco Telnet sessions.

Telnet Example

A simple example illustrates the typical use:

import getpass # import getpass module for password

import telnetlib # import telnetlib module for telnet

HOST = "localhost" # IP address or hostname of device to connect

user = input("Enter your remote 
account: ")

# User input for UserID

password = getpass.getpass() # define a variable password as getpass.getpass function class

tn = telnetlib.Telnet(HOST) # define a variable tn as telnetlib.Telnet type class

tn.read_until(b"login: ") # “login: ” appears on the telnet window, Python waits until 
“login: “ binary  information is returned to the login screen. 
On Cisco devices, the expected returned binary information is 
“Username: ”, this needs to be updated in your script.

tn.write(user.encode('ascii') 
+ b"\n")

# Encode userID in ASCII and sent to telnet virtual terminal

if password: # if prompted for password

    tn.read_until(b"Password: ") # Wait for password until entered

   tn.write(password.
encode('ascii') + b"\n")

# Encode password in ASCII and send to telnet virtual terminal

tn.write(b"ls\n") # ‘ls’ is a Linux command list. ls is not used in Cisco devices. 
Can be removed or modified.

tn.write(b"exit\n") # Send ‘exit’ command to telnet virtual terminal

print(tn.read_all().
decode('ascii'))

# Read all commands run in this session, decode in ASCII and 
print out on the user's screen.

(continued)

https://docs.python.org/3/library/telnetlib.html
https://docs.python.org/3/library/telnetlib.html


Chapter 13 ■ python network automation Lab: basiC teLnet

554

# Task

5 Make a directory called telnet_labs, change the working directory, and then create the first CML 
Telnet script using the touch command. The script name is add_lo_ospf1.py.  Follow these steps:

pynetauto@ubuntu20s1:~$ pwd
/home/pynetauto
pynetauto@ubuntu20s1:~$ mkdir telnet_labs
pynetauto@ubuntu20s1:~$ cd telnet_labs
pynetauto@ubuntu20s1:~/telnet_labs$ pwd
/home/pynetauto/telnet_labs
pynetauto@ubuntu20s1:~/telnet_labs$ touch add_lo_ospf1.py
pynetauto@ubuntu20s1:~/telnet_labs$ ls
7.2.1_add_lo_ospf1.py

6 To speed up the lab, use the nano text editor on the Linux server. First, use nano add_lo_ospf1.py 
to open the blank Python script. Then, copy and paste the Telnet example by using the right-click 
menu. Finally, modify the sections highlighted in the following source code:

GNU nano 4.8                                              add_lo_ospf1.py
import getpass
import telnetlib

HOST = "192.168.183.10"
user = input("Enter your username: ")
password = getpass.getpass()

tn = telnetlib.Telnet(HOST)

tn.read_until(b"Username: ")
tn.write(user.encode('ascii') + b"\n")
if password:
    tn.read_until(b"Password: ")
    tn.write(password.encode('ascii') + b"\n")

tn.write(b"enable\n")
tn.write(b"cisco123\n")
tn.write(b"conf t\n")
tn.write(b"int loopback 0\n")
tn.write(b"ip add 2.2.2.2 255.255.255.255\n")
tn.write(b"int loopback 1\n")
tn.write(b"ip add 4.4.4.4 255.255.255.255\n")
tn.write(b"router ospf 1\n")
tn.write(b"network 0.0.0.0 255.255.255.255 area 0\n")

tn.write(b"end\n")
tn.write(b"exit\n")

print(tn.read_all().decode('ascii'))
^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text     ^J Justify    ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text   ^T To Spell   ^_ Go To Line



Chapter 13 ■ python network automation Lab: basiC teLnet

555

# Task

7 Before running the previous script from the ubuntu20s1 server, go to LAB-R1 and enable debug 
telnet to monitor the Telnet activities from LAB-R1.

LAB-R1#debug telnet
Incoming Telnet debugging is on

8 On ubuntu20s1, run the script using the python add_lo_ospf1.py command. When prompted 
for the username and password, enter your router username and password. Once the script runs 
successfully, your screen should look similar to this:

pynetauto@ubuntu20s1:~/telnet_labs$ python add_lo_ospf1.py
Enter your username: pynetauto
Password: **********

**************************************************************************
* IOSv is strictly limited to use for evaluation, demonstration and IOS  *
* education. IOSv is provided as-is and is not supported by Cisco's      *
* Technical Advisory Center. Any use or disclosure, in whole or in part, *
* of the IOSv Software or Documentation to any third party for any       *
* purposes is expressly prohibited except as otherwise authorized by     *
* Cisco in writing.                                                      *
**************************************************************************
LAB-R1#enable
LAB-R1#cisco123
Translating "cisco123"...domain server (192.168.183.2)
(192.168.183.2)
Translating "cisco123"...domain server (192.168.183.2)

% Bad IP address or host name
% Unknown command or computer name, or unable to find computer address
LAB-R1#conf t
Enter configuration commands, one per line.  End with CNTL/Z.
LAB-R1(config)#int loopback 0
LAB-R1(config-if)#ip add 2.2.2.2 255.255.255.255
LAB-R1(config-if)#int loopback 1
LAB-R1(config-if)#ip add 4.4.4.4 255.255.255.255
LAB-R1(config-if)#router ospf 1
LAB-R1(config-router)#network 0.0.0.0 255.255.255.255 area 0
LAB-R1(config-router)#end
LAB-R1#exit

(continued)



Chapter 13 ■ python network automation Lab: basiC teLnet

556

# Task

9 Go to LAB-R1 and now check the console. You can see the Telnet activities that have just taken place.

LAB-R1#
*Jan 11 18:11:08.885: Telnet578: 1 1 251 1
*Jan 11 18:11:08.887: TCP578: Telnet sent WILL ECHO (1)
[...omitted for brevity]
*Jan 11 18:11:09.181: TCP578: Telnet received WONT TTY-TYPE (24)
*Jan 11 18:11:09.183: TCP578: Telnet received WONT WINDOW-SIZE (31)
LAB-R1#
*Jan 11 18:11:11.730: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, 
changed state to up
LAB-R1#
*Jan 11 18:11:12.972: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback1, 
changed state to up
*Jan 11 18:11:13.791: %SYS-5-CONFIG_I: Configured from console by pynetauto on vty0 
(192.168.183.132)
LAB-R1#

10 From the LAB-R1 console, run the show ip interface brief command to check the newly 
configured Loopback0 and Loopback1 configurations.

LAB-R1#show ip interface brief
Interface                  IP-Address      OK? Method Status                Protocol
GigabitEthernet0/0         192.168.183.10  YES manual up                    up
GigabitEthernet0/1         172.168.1.1     YES manual up                    up
GigabitEthernet0/2         unassigned      YES unset  administratively down down
GigabitEthernet0/3         unassigned      YES unset  administratively down down
Loopback0                  2.2.2.2         YES manual up                    up
Loopback1                  4.4.4.4         YES manual up                    up

11 On the IOS router, R1, let’s power on R1 and observe if the OSPF neighborship forms correctly 
between R1 and LAB-R1 routers. Once the OSPF status changes from LOADING to FULL, Loading 
Done, run the show ip ospf neighbor command to check the neighborship. At this stage, you 
should be able to ping LAB-R1’s  Loopback0 (2.2.2.2) and Loopback1 (4.4.4.4) interfaces from R1.

R1#
*Mar  1 00:21:25.807: %OSPF-5-ADJCHG: Process 1, Nbr 4.4.4.4 on FastEthernet0/0 from 
LOADING to FULL, Loading Done
R1#show ip ospf neighbor

Neighbor ID     Pri   State           Dead Time   Address         Interface
4.4.4.4           1   FULL/DR         00:00:39    192.168.183.10  FastEthernet0/0

R1#ping 2.2.2.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2.2.2.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 8/11/20 ms
R1#ping 4.4.4.4



Chapter 13 ■ python network automation Lab: basiC teLnet

557

# Task

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 4.4.4.4, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 8/13/28 ms

12 On LAB-R1, you will observe that the OSPF status changes from LOADING to FULL, Loading Done. 
Run the show ip ospf neighbor command to check the neighborship with R1. At this stage, you 
should be able to ping R1’s f0/1 interface (7.7.7.2). Run the undebug all command to turn off Telnet 
debugging and complete your first CML-PERSONAL Telnet lab.

LAB-R1#
*Jan 11 18:11:21.417: %OSPF-5-ADJCHG: Process 1, Nbr 192.168.183.133 on 
GigabitEthernet0/0 from LOADING to FULL, Loading Done
LAB-R1#show ip ospf neighbor

Neighbor ID     Pri   State           Dead Time   Address         Interface
192.168.183.133   1   FULL/BDR        00:00:39    192.168.183.133 GigabitEthernet0/0

LAB-R1#ping 7.7.7.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 7.7.7.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 7/10/14 ms

LAB-R1#undebug all
All possible debugging has been turned off

All the Python code used can be downloaded from https://github.com/pynetauto/apress_
pynetauto. If you enjoyed your first Telnet lab and want to try the second lab now, let’s continue.

 Telnet Lab 2: Configure a Single Switch with a Python Telnet 
Template
In this lab, you will be configuring some VLANs on LAB-SW1 via Telnet. You will need to power on the 
ubuntu20s1 Linux server (192.168.183.132) and LAB-SW1 (192.168.183.101) for this lab. To save time, we will 
be copying the first script, add_lo_ospf1.py, and renaming it as add_vlans_single.py. At the end of this 
lab, LAB-SW1 should be configured as shown in Figure 13-3.

https://github.com/pynetauto/apress_pynetauto
https://github.com/pynetauto/apress_pynetauto


Chapter 13 ■ python network automation Lab: basiC teLnet

558

• Configure VLANs 2 to 5 with the following VLAN descriptions:

• VLAN 2, Data_vlan_2

• VLAN 3, Data_vlan_3

• VLAN 4, Voice_vlan_4

• VLAN 5, Wireless_vlan_5

• Configure GigabitEthernet 1/0 to GigabitEthernet 1/3 range as access switch ports 
with Wireless_vlan_5.

• Configure GigabitEthernet 2/0 to GigabitEthernet 2/3 range as switch ports with 
Data_vlan_2 (Data VLAN) and voice_vlan_4 (Auxiliary VLAN).

• Bring up all configured interfaces with the no shut command.

# Task
1 SSH into the ubuntu20s1 server (192.168.183.132) and continue working in the same directory as 

the first lab. Follow the instructions here to copy the first Python script and rename it as add_vlans_
single.py.

pynetauto@ubuntu20s1:~$ cd telnet_labs
pynetauto@ubuntu20s1:~/telnet_labs$ ls
7.2.1_add_lo_ospf1.py
pynetauto@ubuntu20s1:~/telnet_labs$ cp add_lo_ospf1.py add_vlans_single.py
pynetauto@ubuntu20s1:~/telnet_labs$ ls
add_lo_ospf1.py  add_vlans_single.py

Figure 13-3. Telnet lab 2, devices in use



Chapter 13 ■ python network automation Lab: basiC teLnet

559

# Task

2 Open the newly created .py file with a nano text editor. Press Ctrl+K to copy/cut lines of codes and 
press Ctrl+U to paste information. Note that the IP address of LAB-SW1 is 192.168.183.101. Make sure 
you update the IP address next to HOST with this IP address.

 use the following information to modify your script. when writing code, every comma and full stop counts.

b = byte literals; produces an instance of the byte type instead of the str type.

\n = newline character to go to the next line. in other words, "[Enter] key"encode('ascii') means to use 
asCii encoding for the switch/router.

GNU nano 4.8                                              add_vlans_single.py
import getpass
import telnetlib

HOST = "192.168.183.101"
user = input("Enter your username: ")
password = getpass.getpass()

tn = telnetlib.Telnet(HOST)

tn.read_until(b"Username: ")
tn.write(user.encode('ascii') + b"\n")
if password:
       tn.read_until(b"Password: ")
       tn.write(password.encode('ascii') + b"\n")

# Get into config mode
tn.write(b"conf t\n")

# configure 4 VLANs with VLAN names
tn.write(b"vlan 2\n")
tn.write(b"name Data_vlan_2\n")
tn.write(b"vlan 3\n")
tn.write(b"name Data_vlan_3\n")
tn.write(b"vlan 4\n")
tn.write(b"name Voice_vlan_4\n")
tn.write(b"vlan 5\n")
tn.write(b"name Wireless_vlan_5\n")
tn.write(b"exit\n")

# configure Gi1/0 - Gi1/3 as access siwtchports and assign vlan 5 for wireless APs
tn.write(b"interface range gi1/0 - 3\n")
tn.write(b"switchport mode access\n")
tn.write(b"switchport access vlan 5\n")
tn.write(b"no shut\n")

(continued)



Chapter 13 ■ python network automation Lab: basiC teLnet

560

# Task

#configure gi2/0 - gi2/3 as access switchports and assign vlan 2 for data and vlan 4 
for voice
tn.write(b"interface range gi2/0 - 3\n")
tn.write(b"switchport mode access \n")
tn.write(b"switchport access vlan 2\n")
tn.write(b"switchport voice vlan 4\n")
tn.write(b"no shut\n")

tn.write(b"end\n")
tn.write(b"exit\n")

print(tn.read_all().decode('ascii'))
^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text     ^J Justify    ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text   ^T To Spell   ^_ Go To Line

3 From the ubuntu20s1 server, run the ping 192.168.183.101 –c 4 command to check the connectivity.

pynetauto@ubuntu20s1:~/telnet_labs$ ping 192.168.183.101 -c 3
PING 192.168.183.101 (192.168.183.101) 56(84) bytes of data.
64 bytes from 192.168.183.101: icmp_seq=1 ttl=255 time=20.3 ms
64 bytes from 192.168.183.101: icmp_seq=2 ttl=255 time=7.77 ms
64 bytes from 192.168.183.101: icmp_seq=3 ttl=255 time=17.5 ms

--- 192.168.183.101 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3005ms
rtt min/avg/max/mdev = 7.773/14.035/20.312/5.067 ms

4 Optionally, on LAB-SW1, enable debug telnet to capture Telnet activities during the script run. After 
debugging has been switched on, leave the console window open.

LAB-SW1#debug telnet

5 Now we checked the connectivity. Let’s run the python add_vlans_single.py command to run the 
script, add new VLANs, and configure the designated switch ports.

pynetauto@ubuntu20s1:~/telnet_labs$ python add_vlans_single.py

Enter your username: pynetauto
Password:********

**************************************************************************
* IOSv is strictly limited to use for evaluation, demonstration and IOS  *
* education. IOSv is provided as-is and is not supported by Cisco's      *
* Technical Advisory Center. Any use or disclosure, in whole or in part, *
* of the IOSv Software or Documentation to any third party for any       *
* purposes is expressly prohibited except as otherwise authorized by     *
* Cisco in writing.                                                      *
**************************************************************************
LAB-SW1#conf t
Enter configuration commands, one per line.  End with CNTL/Z.
LAB-SW1(config)#vlan 2
LAB-SW1(config-vlan)#name Data_vlan_2
LAB-SW1(config-vlan)#vlan 3



Chapter 13 ■ python network automation Lab: basiC teLnet

561

# Task

LAB-SW1(config-vlan)#name Data_vlan_3
LAB-SW1(config-vlan)#vlan 4
LAB-SW1(config-vlan)#name Voice_vlan_4
LAB-SW1(config-vlan)#vlan 5
LAB-SW1(config-vlan)#name Wireless_vlan_5
LAB-SW1(config-vlan)#exit
LAB-SW1(config)#interface range gi1/0 - 3
LAB-SW1(config-if-range)#switchport mode access
LAB-SW1(config-if-range)#switchport access vlan 5
LAB-SW1(config-if-range)#no shut
LAB-SW1(config-if-range)#interface range gi2/0 - 3
LAB-SW1(config-if-range)#switchport mode access
LAB-SW1(config-if-range)#switchport access vlan 2
LAB-SW1(config-if-range)#switchport voice vlan 4
LAB-SW1(config-if-range)#no shut
LAB-SW1(config-if-range)#end
LAB-SW1#exit

6 Check the LAB-SW1 console window for debugging information.

LAB-SW1#
*Jan 11 19:24:31.981: Telnet2: 1 1 251 1
*Jan 11 19:24:31.982: TCP2: Telnet sent WILL ECHO (1)
*Jan 11 19:24:31.982: Telnet2: 2 2 251 3
*Jan 11 19:24:31.984: TCP2: Telnet sent WILL SUPPRESS-GA (3)
*Jan 11 19:24:31.984: Telnet2: 80000 80000 253 24
*Jan 11 19:24:31.985: TCP2: Telnet sent DO TTY-TYPE (24)
*Jan 11 19:24:31.985: Telnet2: 10000000 10000000 253 31
*Jan 11 19:24:31.986: TCP2: Telnet sent DO WINDOW-SIZE (31)
*Jan 11 19:24:32.036: TCP2: Telnet received DONT ECHO (1)
*Jan 11 19:24:32.037: TCP2: Telnet sent WONT ECHO (1)
*Jan 11 19:24:32.042: TCP2: Telnet received DONT SUPPRESS-GA (3)
*Jan 11 19:24:32.043: TCP2: Telnet sent WONT SUPPRESS-GA (3)
LAB-SW1#
*Jan 11 19:24:32.048: TCP2: Telnet received WONT TTY-TYPE (24)
*Jan 11 19:24:32.050: TCP2: Telnet sent DONT TTY-TYPE (24)
*Jan 11 19:24:32.054: TCP2: Telnet received WONT WINDOW-SIZE (31)
*Jan 11 19:24:32.054: TCP2: Telnet sent DONT WINDOW-SIZE (31)
*Jan 11 19:24:32.186: TCP2: Telnet received DONT ECHO (1)
*Jan 11 19:24:32.187: TCP2: Telnet received DONT SUPPRESS-GA (3)
*Jan 11 19:24:32.187: TCP2: Telnet received WONT TTY-TYPE (24)
*Jan 11 19:24:32.189: TCP2: Telnet received WONT WINDOW-SIZE (31)
LAB-SW1#
*Jan 11 19:24:40.915: %SYS-5-CONFIG_I: Configured from console by pynetauto on vty0 
(192.168.183.132)

(continued)



Chapter 13 ■ python network automation Lab: basiC teLnet

562

# Task

7 Now check the VLANs configured and the switch ports on the LAB-SW1 switch. Use show vlan, show 
run, and show ip interface brief to check the switch configuration changes. The show vlan 
example is shown here:

LAB-SW1#show vlan

VLAN Name                             Status    Ports
---- -------------------------------- --------- -------------------------------
1    default                          active    Gi0/0, Gi0/1, Gi0/2, Gi0/3
                                                Gi3/0, Gi3/1, Gi3/2, Gi3/3
2    Data_vlan_2                      active    Gi2/0, Gi2/1, Gi2/2, Gi2/3
3    Data_vlan_3                      active
4    Voice_vlan_4                     active    Gi2/0, Gi2/1, Gi2/2, Gi2/3
5    Wireless_vlan_5                  active    Gi1/0, Gi1/1, Gi1/2, Gi1/3
1002 fddi-default                     act/unsup
[...omitted for brevity]
------- --------- ----------------- ------------------------------------------

You have successfully added four VLANs and configured eight switch ports in their respective VLANs. 
Now let’s check how we can use loops to add multiple random VLANs in labs 3 and 4.

 Telnet Lab 3: Configure Random VLANs Using a for Loop
In the previous lab, we configured VLANs 2 to 5 with multiple lines of code; here, you are going to practice 
how to add VLANs with fewer lines of code using a for loop. For simplicity, we are only adding five random 
VLANs in this lab, but we are using a for loop, and you can save time and the number of code lines you have 
to write.

Follow the steps to configure random VLANs 101, 202, 303, 404, and 505 on LAB-SW1 via Telnet. You can 
continue using the ubuntu20s1 Linux server (192.168.183.132) and LAB-SW1 (192.168.183.101) for this lab. 
Copy the 7.2.2_add_vlans_single.py file and rename it as 7.2.3_add_vlans_for_loop.py for this lab. At 
the end of this lab, LAB-SW1 should be configured as shown in Figure 13-4.



Chapter 13 ■ python network automation Lab: basiC teLnet

563

• Add VLANs 101, 202, 303, 404, and 505 with the following VLAN descriptions to  
LAB-SW1:

• VLAN 101, Data_vlan_101

• VLAN 202, Data_vlan_202

• VLAN 303, Voice_vlan_303

• VLAN 404, Wireless_vlan_404

• VLAN 505, Wireless_vlan_505

 in this lab, try to concentrate on how a for loop works and how it is used in this scenario. Loops are  
designed to carry out the same task repetitively, and now you are tapping into the true power of programming. 
Learning the python concepts so you can apply them to your work is where you want to be. Good luck!

Figure 13-4. Telnet lab 3: devices in use



Chapter 13 ■ python network automation Lab: basiC teLnet

564

# Task
1 First, move to the telnet_labs directory, use the cp command to copy add_vlans_single.py, and 

rename it add_vlans_for_loop.py. The commands are shown here:

pynetauto@ubuntu20s1:~$ cd telnet_labs
pynetauto@ubuntu20s1:~/telnet_labs$ ls
7.2.1_add_lo_ospf1.py  7.2.2_add_vlans_single.py
pynetauto@ubuntu20s1:~/telnet_labs$ cp add_vlans_single.py add_vlans_for_loop.py
pynetauto@ubuntu20s1:~/telnet_labs$ ls
add_lo_ospf1.py  add_vlans_single.py  add_vlans_for_loop.py
pynetauto@ubuntu20s1:~/telnet_labs$ nano add_vlans_for_loop.py

2 Now, modify the script, so it looks like the following. Once again, press Ctrl+K to cut/copy the 
information, and press Ctrl+U to paste the copied information. Check your syntax and the 
whitespacing during this change. Every comma and space counts, especially the indentation or the 
four white spaces for code blocks.

GNU nano 4.8                                              add_vlans_for_loop.py
#!/usr/bin/env python3 # This is called the shebang line; Python ignores this line, 
but the Linux Operating System can read this line and knows which application to run 
the .py file with.

import getpass
import telnetlib

HOST = "192.168.183.101"
user = input("Enter your username: ")
password = getpass.getpass()

tn = telnetlib.Telnet(HOST)

tn.read_until(b"Username: ")
tn.write(user.encode('ascii') + b"\n")
if password:
       tn.read_until(b"Password: ")
       tn.write(password.encode('ascii') + b"\n")

# Get into config mode
tn.write(b"conf t\n")

# Adds 5 vlans to the list with for loop
vlans = [101, 202, 303, 404, 505] # vlans to add in  a list
for i in vlans: # call (index) each item from list vlans
          command_1 = "vlan " + str(i) + "\n" # concatenate first command
          tn.write(command_1.encode('ascii')) # send command_1 with ASCII encoding
          command_2 = "name PYTHON_VLAN_" + str(i) + "\n" # concatenate second command
          tn.write(command_2.encode('ascii'))  # send command_2 with ASCII encoding

tn.write(b"end\n")
tn.write(b"exit\n")
print("exiting")
print(tn.read_all().decode('ascii'))
^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text     ^J Justify    ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text   ^T To Spell   ^_ Go To Line



Chapter 13 ■ python network automation Lab: basiC teLnet

565

(continued)

# Task

As you can see, the encoding and decoding are rather messy with telnetlib; that is because 
telnetlib uses pyNUT to communicate with network devices, and the pyNUT code is using string 
literals to format strings internally. PyNUT was written for Python 2, and telnetlib expects most 
inputs to be in bytes. In Python 2, the str (string) type was a byte string, but in Python 3, it is all 
Unicode. Fortunately, the encoding and decoding are not as complicated in SSH Python applications.

3 Run the script using the following Python command. You can use either command. We have added 
an alias of the user’s /.bashrc to use either Python3 or Python to run the script.

pynetauto@ubuntu20s1:~/telnet_labs$ python add_vlans_for_loop.py
OR
pynetauto@ubuntu20s1:~/telnet_labs$ python3 add_vlans_for_loop.py
pynetauto@ubuntu20s1:~/telnet_labs$ python add_vlans_for_loop.py
Enter your username: pynetauto
Password:********
exiting

**************************************************************************
* IOSv is strictly limited to use for evaluation, demonstration and IOS  *
* education. IOSv is provided as-is and is not supported by Cisco's      *
* Technical Advisory Center. Any use or disclosure, in whole or in part, *
* of the IOSv Software or Documentation to any third party for any       *
* purposes is expressly prohibited except as otherwise authorized by     *
* Cisco in writing.                                                      *
**************************************************************************
LAB-SW1#conf t
Enter configuration commands, one per line.  End with CNTL/Z.
LAB-SW1(config)#vlan 101
LAB-SW1(config-vlan)#name PYTHON_VLAN_101
LAB-SW1(config-vlan)#vlan 202
LAB-SW1(config-vlan)#name PYTHON_VLAN_202
LAB-SW1(config-vlan)#vlan 303
LAB-SW1(config-vlan)#name PYTHON_VLAN_303
LAB-SW1(config-vlan)#vlan 404
LAB-SW1(config-vlan)#name PYTHON_VLAN_404
LAB-SW1(config-vlan)#vlan 505
LAB-SW1(config-vlan)#name PYTHON_VLAN_505
LAB-SW1(config-vlan)#end
LAB-SW1#exit



Chapter 13 ■ python network automation Lab: basiC teLnet

566

# Task

4 Run the show vlan command on LAB-SW1 to confirm newly configured VLANs. If you can see the new 
VLANs in the switch’s vlan table, then your Python script used a for loop to add random VLANs to the switch.

LAB-SW1#show vlan

VLAN Name                             Status    Ports
---- -------------------------------- --------- -------------------------------
1    default                          active    Gi0/0, Gi0/1, Gi0/2, Gi0/3
                                                Gi3/0, Gi3/1, Gi3/2, Gi3/3
2    Data_vlan_2                      active    Gi2/0, Gi2/1, Gi2/2, Gi2/3
3    Data_vlan_3                      active
4    Voice_vlan_4                     active    Gi2/0, Gi2/1, Gi2/2, Gi2/3
5    Wireless_vlan_5                  active    Gi1/0, Gi1/1, Gi1/2, Gi1/3
101  PYTHON_VLAN_101                  active
202  PYTHON_VLAN_202                  active
303  PYTHON_VLAN_303                  active
404  PYTHON_VLAN_404                  active
505  PYTHON_VLAN_505                  active
[...omitted for brevity]

 Telnet Lab 4: Configure Random VLANs Using a while Loop
As in the previous lab, this time we will create the same VLANs 101, 202, 303, 404, 505 on lab-sw2 via Telnet. 
For this lab, you can continue working from the ubuntu20s1 Linux server (192.168.183.132), but you also 
have to power on lab-sw2 (192.168.183.102). Copy the add_vlans_for_loop.py file and create a new script 
called add_vlans_while_loop.py. At the end of this lab, lab-sw2 should be configured with the same set of 
VLANs as LAB-SW1, as shown in Figure 13-5.

Figure 13-5. Telnet lab 4, devices in use



Chapter 13 ■ python network automation Lab: basiC teLnet

567

Add VLANs 101, 202, 303, 404 and 505 with the following VLAN descriptions to lab-sw2.

• VLAN 101, Data_vlan_101

• VLAN 202, Data_vlan_202

• VLAN 303, Voice_vlan_303

• VLAN 404, Wireless_vlan_404

• VLAN 505, Wireless_vlan_505

# Task
1 Assuming that you are already working in the telnet_labs directory, use the cp command to copy 

add_vlans_for_loop.py and make add_vlans_while_loop.py. Follow the commands to create the 
new script, as shown here:

pynetauto@ubuntu20s1:~/telnet_labs$ ls
add_lo_ospf1.py      add_vlans_single.py       add_vlans_for_loop.py
pynetauto@ubuntu20s1:~/telnet_labs$ cp      add_vlans_for_loop.py      add_vlans_while_loop.py
pynetauto@ubuntu20s1:~/telnet_labs$ ls
add_lo_ospf1.py  add       vlans_single.py  add_     vlans_for_loop.py        
add_vlans_while_loop.py
pynetauto@ubuntu20s1:~/telnet_labs$ nano add_vlans_while_loop.py

2 Now modify your new script so it looks like the following. This script uses a while loop example to 
add the same VLAN as the for loop example shown in Figure 13.3. Again, don’t be so concerned 
about the actual login protocol you are using here. Try to understand the working logic of the while 
loop used in this example script. See the embedded explanation for more information.

GNU nano 4.8                                              add_vlans_while_loop.py
#!/usr/bin/env python3

import getpass
import telnetlib

HOST = "192.168.183.102" # Update this to lab-sw2 switch IP
user = input("Enter your username: ")
password = getpass.getpass()

tn = telnetlib.Telnet(HOST)

tn.read_until(b"Username: ")
tn.write(user.encode('ascii') + b"\n")
if password:
    tn.read_until(b"Password: ")
    tn.write(password.encode('ascii') + b"\n")

# Get into to config mode
tn.write(b"conf t\n")

# Add 5 random vlans to vlans list and use  while loop to configure them to the switch
vlans = [101, 202, 303, 404, 505] # vlans to add in list
i = 0 # initial index value
while i < len(vlans): # while i is smaller than the length of vlans
    print(vlans[i]) # print vlans item

(continued)



Chapter 13 ■ python network automation Lab: basiC teLnet

568

# Task

    command_1 = "vlan " + str(vlans[i]) + "\n" # concatenate first command
    tn.write(command_1.encode('ascii')) # send command_1 with ASCII encoding
    command_2 = "name PYTHON_VLAN_" + str(vlans[i]) + "\n" # concatenate second command
    tn.write(command_2.encode('ascii')) # send command_2 with ASCII encoding
    i +=1 # Same as i = i + 1

tn.write(b"end\n")
tn.write(b"exit\n")
print("exiting")
print(tn.read_all().decode('ascii'))
^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text     ^J Justify    ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text   ^T To Spell   ^_ Go To Line

3 After you have finished the while loop script, check the connection to lab-sw2 (192.168.183.102) 
and run the command using either of the commands shown here:

pynetauto@ubuntu20s1:~/telnet_labs$ python add_vlans_while_loop.py
OR
pynetauto@ubuntu20s1:~/telnet_labs$ python3 add_vlans_while_loop.py

pynetauto@ubuntu20s1:~/telnet_labs$ ping 192.168.183.102 -c 3
PING 192.168.183.102 (192.168.183.102) 56(84) bytes of data.
64 bytes from 192.168.183.102: icmp_seq=1 ttl=255 time=41.1 ms
64 bytes from 192.168.183.102: icmp_seq=2 ttl=255 time=27.3 ms
64 bytes from 192.168.183.102: icmp_seq=3 ttl=255 time=22.5 ms

--- 192.168.183.102 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 22.537/30.294/41.086/7.870 ms
pynetauto@ubuntu20s1:~/telnet_labs$ python add_vlans_while_loop.py
Enter your username: pynetauto
Password:********
101
202
303
404
505
exiting

**************************************************************************
* IOSv is strictly limited to use for evaluation, demonstration and IOS  *
* education. IOSv is provided as-is and is not supported by Cisco's      *
* Technical Advisory Center. Any use or disclosure, in whole or in part, *
* of the IOSv Software or Documentation to any third party for any       *
* purposes is expressly prohibited except as otherwise authorized by     *
* Cisco in writing.                                                      *
**************************************************************************
lab-sw2#conf t
Enter configuration commands, one per line.  End with CNTL/Z.
lab-sw2(config)#vlan 101
lab-sw2(config-vlan)#name PYTHON_VLAN_101
lab-sw2(config-vlan)#vlan 202



Chapter 13 ■ python network automation Lab: basiC teLnet

569

# Task

lab-sw2(config-vlan)#name PYTHON_VLAN_202
lab-sw2(config-vlan)#vlan 303
lab-sw2(config-vlan)#name PYTHON_VLAN_303
lab-sw2(config-vlan)#vlan 404
lab-sw2(config-vlan)#name PYTHON_VLAN_404
lab-sw2(config-vlan)#vlan 505
lab-sw2(config-vlan)#name PYTHON_VLAN_505
lab-sw2(config-vlan)#end
lab-sw2#exit

4 Run the show vlan command from lab-sw2 to check the newly configured VLANs. If you see the 
VLANs added here, you have successfully configured random VLANs on a switch using a while loop.

lab-sw2#show vlan

VLAN Name                             Status    Ports
---- -------------------------------- --------- -------------------------------
1    default                          active    Gi0/0, Gi0/1, Gi0/2, Gi0/3
                                                Gi1/0, Gi1/1, Gi1/2, Gi1/3
                                                Gi2/0, Gi2/1, Gi2/2, Gi2/3
                                                Gi3/0, Gi3/1, Gi3/2, Gi3/3
101  PYTHON_VLAN_101                  active
202  PYTHON_VLAN_202                  active
303  PYTHON_VLAN_303                  active
404  PYTHON_VLAN_404                  active
505  PYTHON_VLAN_505                  active
[...omitted for brevity]

 Telnet Lab 5: Configure 100 VLANs Using the for ~ in range 
Loop Method
In this lab, you will create 100 VLANs using the for ~ in range loop method on both the LAB-SW1 
(192.168.183.101) and lab-sw2 (192.168.183.102) switches. You will create the script from the same Python 
server, the ubuntu20s1 Linux server (192.168.183.132). Copy the add_vlans_while_loop.py file and create 
a new script called add_vlans_for_range.py. At the end of this lab, both LAB-SW1 and lab-sw2 should be 
configured with VLANs 700 to 799. See Figure 13-6.



Chapter 13 ■ python network automation Lab: basiC teLnet

570

• Configure VLANs 700–799 with the following VLAN description:

• VLANs 700–799 (i.e., PYTHON_VLAN_700 to PYTHON_VLAN_799)

# Task
1 Use PuTTY to SSH into ubuntu20s1 (192.168.183.132) to copy the previous Telnet script and create the 

7.2.5_add_100_vlans.py file.

pynetauto@ubuntu20s1:~$ cd telnet_labs
pynetauto@ubuntu20s1:~/telnet_labs$ ls
add_lo_ospf1.py      add_vlans_for_loop.py      add_vlans_single.py  add_vlans_while_
loop.py
pynetauto@ubuntu20s1:~/telnet_labs$ cp add_vlans_while_loop.py add_100_vlans.py       
pynetauto@ubuntu20s1:~/telnet_labs$ nano add_100_vlans.py

2 This time you will be configuring 100 VLANs using a for ~ range loop on both switches using a single 
script. You have to be extremely careful with the leading whitespaces and the code blocks for this script. 
Be consistent with the whitespaces and the script’s code blocks.  Refer to the embedded explanation 
as you modify your script. Use # or """ """ to add as many comments as you want. At the end of the 
modification, your Python script should look similar to the following code.
This script is available for download, but you should try to modify the script on Linux’s nano text 
editor to get familiar with text editing on Linux.

GNU nano 4.8                                              add_100_vlans.py
#!/usr/bin/env python3.8

import getpass
import telnetlib

Figure 13-6. Telnet lab 5, devices in use



Chapter 13 ■ python network automation Lab: basiC teLnet

571

(continued)

# Task

# HOSTS is a list with IP addresses of two switches
HOSTS = ["192.168.183.101", "192.168.183.102"] # Create a list called HOSTS with two IPs
user = input("Enter your username: ")
password = getpass.getpass()

# Use for loop to loop through the switch IPs
# The rest of the script have been indented  to run under this block
for HOST in HOSTS: # To loop through list, HOSTS
    print("SWITCH IP : " + HOST) # Marker to print out device IP
    tn = telnetlib.Telnet(HOST)

    tn.read_until(b"Username: ")
    tn.write(user.encode('ascii') + b"\n")
    if password:
       tn.read_until(b"Password: ")
       tn.write(password.encode('ascii') + b"\n")

    # Configure 100 VLANs with names using 'for ~ in range' loop # comment
    tn.write(b"conf t\n")
     # Use for n in range (starting vlan, ending vlan, (optional-stepping not used)) # 

comment
     for n in range (700, 800): # vlan range to add, 700 – 799, the last number is not 

counted
       tn.write(b"vlan " + str(n).encode('UTF-8') + b"\n") # Now part of vlan for loop
        tn.write(b"name PYTHON_VLAN_" + str(n).encode('UTF-8') + b"\n") # Now part of 

vlan for loop

    tn.write(b"end\n")
    tn.write(b"exit\n")
    print(tn.read_all().decode('ascii'))
^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text     ^J Justify    ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text   ^T To Spell   ^_ Go To Line

3 Your Python server needs good network connectivity to both switches from your Ubuntu Python 
server; check the switches’ communication. Run the script only if your server can reach both IP 
addresses. If you have any communication issues, you will have to troubleshoot the issue before 
proceeding to the next step.

pynetauto@ubuntu20s1:~/telnet_labs$ ping 192.168.183.101 -c 3
PING 192.168.183.101 (192.168.183.101) 56(84) bytes of data.
64 bytes from 192.168.183.101: icmp_seq=1 ttl=255 time=5.15 ms
64 bytes from 192.168.183.101: icmp_seq=2 ttl=255 time=5.02 ms
64 bytes from 192.168.183.101: icmp_seq=3 ttl=255 time=5.42 ms

--- 192.168.183.101 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3005ms
rtt min/avg/max/mdev = 5.019/5.208/5.419/0.145 ms

pynetauto@ubuntu20s1:~/telnet_labs$ ping 192.168.183.102 -c 3
PING 192.168.183.102 (192.168.183.102) 56(84) bytes of data.
64 bytes from 192.168.183.102: icmp_seq=1 ttl=255 time=9.91 ms
64 bytes from 192.168.183.102: icmp_seq=2 ttl=255 time=9.60 ms
64 bytes from 192.168.183.102: icmp_seq=3 ttl=255 time=9.55 ms



Chapter 13 ■ python network automation Lab: basiC teLnet

572

# Task

--- 192.168.183.102 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3006ms
rtt min/avg/max/mdev = 9.549/9.726/9.909/0.154 ms

4 The network connection seems to be fine. Now, let’s run the add_100_vlans.py script to add 100 
VLANs on both switches. This script will Telnet into the first switch to add 100 VLANs and then Telnet 
into the second switch to add another 100 VLANs. This script may take a few minutes to complete, so 
be patient. Also, if your lab configuration is on an older computer like mine, consider reducing the 
number of range from 100 to 10 so you speed up the process.

pynetauto@ubuntu20s1:~/telnet_labs$ python add_100_vlans.py
Enter your username: pynetauto
Password:*******
SWITCH IP : 192.168.183.101

**************************************************************************
* IOSv is strictly limited to use for evaluation, demonstration and IOS  *
* education. IOSv is provided as-is and is not supported by Cisco's      *
* Technical Advisory Center. Any use or disclosure, in whole or in part, *
* of the IOSv Software or Documentation to any third party for any       *
* purposes is expressly prohibited except as otherwise authorized by     *
* Cisco in writing.                                                      *
**************************************************************************
LAB-SW1#conf t
Enter configuration commands, one per line.  End with CNTL/Z.
LAB-SW1(config)#vlan 700
LAB-SW1(config-vlan)#name PYTHON_VLAN_700
LAB-SW1(config-vlan)#vlan 701
[...omitted for brevity]
LAB-SW1(config-vlan)#vlan 799
LAB-SW1(config-vlan)#name PYTHON_VLAN_799
LAB-SW1(config-vlan)#end
LAB-SW1#exit

lab-sw2#
Enter configuration commands, one per line.  End with CNTL/Z.
[...omitted for brevity]

5 Give a brief moment for the script to complete its task and check both switches using show vlan 
to check the configuration changes. You should see newly configured VLANs, 700 to 799, on both 
switches.

Config message and check added vlans on LAB-SW1
LAB-SW1#
*Jan 11 21:38:00.558: %SYS-5-CONFIG_I: Configured from console by pynetauto on vty0 
(192.168.183.132)
LAB-SW1#show vlan
[...omitted for brevity]
700  PYTHON_VLAN_700                  active
701  PYTHON_VLAN_701                  active
...



Chapter 13 ■ python network automation Lab: basiC teLnet

573

# Task

798  PYTHON_VLAN_798                  active
799  PYTHON_VLAN_799                  active
[...omitted for brevity]
Config message and check added vlans on lab-sw2
lab-sw2#
*Jan 11 21:47:09.432: %SYS-5-CONFIG_I: Configured from console by pynetauto on vty0 
(192.168.183.132)
lab-sw2#show vlan
[...omitted for brevity]
700  PYTHON_VLAN_700                  active
701  PYTHON_VLAN_701                  active
...
798  PYTHON_VLAN_798                  active
799  PYTHON_VLAN_799                  active
[...omitted for brevity]

6 (Optional task) To remove (reverse) the 100 VLANs from the switches, you only need to modify two 
lines of code in the original script. The following example will copy the original script and rename it 
to reverse_100_vlans.py.  Open this new file and modify two lines of code, as shown here, before 
running the script.

pynetauto@ubuntu20s1:~/telnet_labs$ cp add_100_vlans.py  reverse_100_vlans.py
pynetauto@ubuntu20s1:~/telnet_labs$ nano reverse_100_vlans.py
Original code to update:...
   for n in range (700, 800):
      tn.write(b"vlan " + str(n).encode('UTF-8') + b"\n")
      tn.write(b"name PYTHON_VLAN_" + str(n).encode('UTF-8') + b"\n")

Updated reverse code:

...
   for n in range (700, 800):
      tn.write(b"no vlan " + str(n).encode('UTF-8') + b"\n")
      # tn.write(b"name PYTHON_VLAN_" + str(n).encode('UTF-8') + b"\n")

From your server, run python reverse_100_vlans.py to completely remove the vlans.

pynetauto@ubuntu20s1:~/telnet_labs$ python reverse_100_vlans.py
Enter your username: pynetauto
Password: ********

 Telnet Lab 6: Add a Privilege 3 User on Multiple Devices 
Using IP Addresses from an External File
In this lab, you will configure a new user with limited privileges on all routers and switches in your network, 
so you will have to power on the devices shown in Figure 13-7. You have to create a separate file containing 
IP addresses so your script can read the IP addresses from the file and configure each device sequentially.



Chapter 13 ■ python network automation Lab: basiC teLnet

574

The new user should be given a junior network administrator privilege to run show commands. You 
will be assigning this new user a privilege 3 and allowing this user to view the network devices’ running 
configuration and interface status. Also, change the file mode to the executable to run your script without 
typing python or python3.

At the end of this lab, you will have a local account created on each device, so the new user can run  
show running-config view full, show ip interface brief, and other show commands.

New username: junioradmin

• Password: cisco321

• Privilege level: 3

• Command 1: privilege exec all level 3 show running-config

• Command 2: file privilege 3

# Task
1 On the ubuntu20s1 Python server, create a text file containing all IP addresses of your network devices. 

Separate the IP addresses with a newline, so each line contains a single IP address of each device. To 
create and save this file, follow these instructions:

pynetauto@ubuntu20s1:~/telnet_labs$ touch ip_addresses.txt
pynetauto@ubuntu20s1:~/telnet_labs$ nano ip_addresses.txt

Figure 13-7. Telnet lab 6, devices in use



Chapter 13 ■ python network automation Lab: basiC teLnet

575

# Task
GNU nano 4.8                                              ip_addresses.txt

192.168.183.10
192.168.183.20
192.168.183.101
192.168.183.102
192.168.183.133
^G Get Help  ^O Write Out    ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

* Note: The ip_addresses.txt file must be in the same directory as the add_junioradmin.py file.

2 As with the previous steps, let’s reuse the old script to create a new one. Copy the script from lab 5 
and create a new script called add_junioradmin.py.

pynetauto@ubuntu20s1:~/telnet_labs$ cp add_100_vlans.py add_junioradmin.py

GNU nano 4.8                                              add_junioradmin.py

#!/usr/bin/env python3

import getpass
import telnetlib
import time  # imports time module

user = input("Enter your username: ")
password = getpass.getpass()

# Open ip_addresses.txt to read IP addresses
file = open("ip_addresses.txt") # Open and read an external file

for ip in file: # loop through read information
    print("Now configuring : " + ip) # Task beginning statement
    HOST = (ip.strip()) # Strips any white spaces
    tn = telnetlib.Telnet(HOST) # Use read IP to log into a single device

    tn.read_until(b"Username: ")
    tn.write(user.encode('ascii') + b"\n")
    if password:
       tn.read_until(b"Password: ")
       tn.write(password.encode('ascii') + b"\n")

    time.sleep(1) # Adds 1 second pause for device to respond
    # Configure a new user with privilege 3, allow show running-config # comment
    tn.write(b"conf t\n") # Enter configuration mode
     tn.write(b"username junioradmin privilege 3 password cisco321\n") # Configure new 

pri 3 user
     tn.write(b"privilege exec all level 3 show running-config\n") # Allow show 

running-config command
    print("Added a new privilege 3 user") # Task ending statement

    tn.write(b"end\n")
    tn.write(b"exit\n")
    print(tn.read_all().decode('ascii'))
^G Get Help  ^O Write Out    ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

(continued)



Chapter 13 ■ python network automation Lab: basiC teLnet

576

# Task

3 Before running the script, confirm that both the IP address and script files are in the same directory 
on your Linux server.

pynetauto@ubuntu20s1:~/telnet_labs$ ls
add_lo_ospf1.py        add_vlans_while_loop.py   ip_addresses.txt     add_vlans_
single.py    add_100_vlans.py      add_vlans_for_loop.py       add_junioradmin.py

4 From the ubuntu20s1 server, check the connectivity to all the network devices in your network. We 
can install and ping multiple devices with a single command line using fping on Linux. Install it as 
shown here and ping all five devices in our topology.

pynetauto@ubuntu20s1:~/telnet_labs$ sudo apt install fping
pynetauto@ubuntu20s1:~/telnet_labs$ fping 192.168.183.10 192.168.183.20 
192.168.183.101 192.168.183.102 192.168.183.133
192.168.183.10 is alive
192.168.183.133 is alive
192.168.183.20 is alive
192.168.183.102 is alive
192.168.183.101 is alive

To read about how to use fping, please visit the following URL.

URL: https://www.2daygeek.com/how- to- use- ping- fping- gping- in- linux/

5 We have been adding #!/usr/bin/env python3.8 at the beginning, and as explained, this line is 
used so the Linux system will recognize that this script or application needs to run from Python 3. To 
use this line, we first have to make our script executable. If you list the file we have just created and 
are about to run, you will see that the x (for executable) option is missing from the file.

pynetauto@ubuntu20s1:~/telnet_labs$ ls -l add_junior*
-rw-rw-r-- 1 pynetauto pynetauto 1298 Jan 12 01:16 add_junioradmin.py

For us to be able to run this script without using the python command, we can change the mode of 
this file using the chmod +x command, as shown here:

pynetauto@ubuntu20s1:~/telnet_labs$ chmod +x ./ add_junioradmin.py
pynetauto@ubuntu20s1:~/telnet_labs$ ls -l add_junior*
-rwxrwxr-x 1 pynetauto pynetauto 1298 Jan 12 01:16 add_junioradmin.py

At this point, you can run your Python script using the ./add_junioradmin.py command.
If you want to go one step further and want to run the script only using the script filename, you can 
add the following PATH variable to your Linux server. This command is only temporary or sessional 
while you are logged into your session. There are ways to set this permanently, but this is not covered 
in this book. At this stage, you can run your Python script using the name of the script only.

pynetauto@ubuntu20s1:~/telnet_labs$ PATH="$(pwd):$PATH"
pynetauto@ubuntu20s1:~/telnet_labs$ add_junioradmin.py
Enter your username: ^Z
[2]+  Stopped                 add_junioradmin.py

Press Ctrl+Z to exit if you want to run the script later; if not, continue to run the script as in step 6.

https://www.2daygeek.com/how-to-use-ping-fping-gping-in-linux/


Chapter 13 ■ python network automation Lab: basiC teLnet

577

# Task

6 Let’s run the script using the name of the file. The script will add the junior admin to all five devices, 
as shown here:

pynetauto@ubuntu20s1:~/telnet_labs$ add_junioradmin.py
Enter your username: pynetauto
Password:********
Now configuring : 192.168.183.10

Added a new privilege 3 user

**************************************************************************
* IOSv is strictly limited to use for evaluation, demonstration and IOS  *
* education. IOSv is provided as-is and is not supported by Cisco's      *
* Technical Advisory Center. Any use or disclosure, in whole or in part, *
* of the IOSv Software or Documentation to any third party for any       *
* purposes is expressly prohibited except as otherwise authorized by     *
* Cisco in writing.                                                      *
**************************************************************************
LAB-R1#conf t
Enter configuration commands, one per line.  End with CNTL/Z.
LAB-R1(config)#username junioradmin privilege 3 password cisco321
LAB-R1(config)#privilege exec all level 3 show running-config
LAB-R1(config)#file privilege 3
LAB-R1(config)#end
LAB-R1#exit

Now configuring : 192.168.183.20

Added a new privilege 3 user
[...omitted for brevity]

lab-sw2#conf t
Enter configuration commands, one per line.  End with CNTL/Z.
lab-sw2(config)#username junioradmin privilege 3 password cisco321
lab-sw2(config)#privilege exec all level 3 show running-config
lab-sw2(config)#end
lab-sw2#exit

Now configuring : 192.168.183.133

Added a new privilege 3 user

R1#conf t
Enter configuration commands, one per line.  End with CNTL/Z.
R1(config)#username junioradmin privilege 3 password cisco321
R1(config)#privilege exec all level 3 show running-config
R1(config)#end
R1#exit

(continued)



Chapter 13 ■ python network automation Lab: basiC teLnet

578

# Task

7 Log into each device and check the user configuration as well as the privilege exec level 3 commands.

LAB-SW1#show run | in username junioradmin
username junioradmin privilege 3 password 0 cisco321
LAB-SW1#show run | in level 3
privilege exec all level 3 show running-config
privilege exec level 3 show

8 Now use PuTTY from your Windows host PC to log in with the junioradmin user and password 
cisco321 and run the show ip interface brief or show running-config view full command. If 
you want to log into a device from the Ubuntu server, you can use Telnet 192.168.183.X, where X is the 
last octet of the device you want to log into.

The following example shows the login and commands run from the LAB-SW1 switch and lab-r2 router.

From your host PC, use PuTTY to log into LAB-SW1 (192.168.183.101) via Telnet and log in as the 
junioradmin user with password cisco321.

LAB-SW1#
[...omitted for brevity]
User Access Verification

Username: junioradmin
Password:cisco321

[...omitted for brevity]

LAB-SW1#show ip interface brief
Interface              IP-Address      OK? Method Status                Protocol
GigabitEthernet0/0     unassigned      YES unset  up                    up
GigabitEthernet0/1     unassigned      YES unset  up                    up
GigabitEthernet0/2     unassigned      YES unset  up                    up
GigabitEthernet0/3     unassigned      YES unset  down                  down
[...omitted for brevity]

From your host PC, use PuTTY to log into lab-r2 (192.168.183.20) via Telnet and log in as the 
junioradmin user with password cisco321.

lab-r2#
[...omitted for brevity]
User Access Verification

Username: junioradmin
Password:cisco321

[...omitted for brevity]

lab-r2#show running-config view full
Building configuration...

Current configuration : 3625 bytes
!
! Last configuration change at 23:21:58 UTC Mon Jan 11 2021
!
version 15.6
service timestamps debug datetime msec
[...omitted for brevity]



Chapter 13 ■ python network automation Lab: basiC teLnet

579

You have successfully created a junior admin user account on multiple devices using IP addresses 
read from an external file. Note that the IP addresses do not have to be contiguous; they can be random IP 
addresses if you use a list or external files. What you have been learning from these Telnet labs can also be 
used on SSH labs with some minor modifications.

 Telnet Lab 7: Taking Backups of running-config (or startup-
config) to Local Server Storage
In Telnet lab 7, you will copy and modify the previous Telnet script to capture the current running 
configuration of each device in your network. The backed-up running-config files will be saved on the local 
drive. In this lab, you will be using the datetime module to get the timestamp and add the name of the files 
with this timestamp so you know when the backups were taken. You will require all routers and switches to 
be powered on, as in lab 6. See Figure 13-8.

At the end of this lab, you will have the backups of each device’s running configuration with the 
timestamp on your Python server’s local storage.

# Task
1 Once again, let’s begin the lab by copying the script from the previous lab. The filename given here 

is take_backups.py, but you do not have to follow this naming convention; give a more meaningful 
name to this file so you can remember it easily.

pynetauto@ubuntu20s1:~/telnet_labs$ cp add_junior_user.py take_backups.py
pynetauto@ubuntu20s1:~/telnet_labs$ nano take_backups.py

Figure 13-8. Telnet lab 7, devices in use

(continued)



Chapter 13 ■ python network automation Lab: basiC teLnet

580

# Task

2 Now, open the file in the nano (or vi) text editor and make the modifications highlighted in the 
following source code:

GNU nano 4.8                                              take_backups.py
#!/usr/bin/env python3

import getpass
import telnetlib
from datetime import datetime # Import datetime module from datetime library

saved_time = datetime.now().strftime("%Y%m%d_%H%M%S") # Change the \
# format of current time into a string

user = input("Enter your username: ") # Ask for username and password
password = getpass.getpass()

file = open("ip_addresses.txt") # Open ip_addresses.txt to read IP addresses

# Telnets into Devices & runs show running-config and \
# save it to a file with a timestamp

for ip in file:
     print ("Getting running-config from " + (ip)) # First line print statement for admin
    HOST = ip.strip()
    tn = telnetlib.Telnet(HOST)
    tn.read_until(b"Username: ")
    tn.write(user.encode('ascii') + b"\n")

    if password:
       tn.read_until(b"Password: ")
       tn.write(password.encode('ascii') + b"\n")
    #Makes Term length to 0, run shows commands & reads all output, \
    # then saves files with time stamp # Comment
    tn.write(("terminal length 0\n").encode('ascii')) # Change terminal length to 0
    tn.write(("show clock\n").encode('ascii')) # Disply time
    tn.write(("show running-config\n").encode('ascii')) # Show running-configuration
    tn.write(("exit\n").encode('ascii')) # Exit session
    readoutput = tn.read_all() # Read output
     saveoutput = open(str(saved_time) + "_running_config_" + HOST, "wb") # saved_time 

is the time the file was saved, HOST is the IP address of the device.
    saveoutput.write(readoutput) # Write the output to the file
    saveoutput.close # Save and close the file
^G Get Help  ^O Write Out    ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

3 Use the Linux fping command again to check the network connectivity on your network. If you have 
any nodes (network devices) not reachable, you must troubleshoot the connectivity issue first.

pynetauto@ubuntu20s1:~/telnet_labs$ sudo apt install fping
pynetauto@ubuntu20s1:~/telnet_labs$ fping 192.168.183.10 192.168.183.20 
192.168.183.101 192.168.183.102 192.168.183.133
192.168.183.10 is alive
192.168.183.133 is alive
192.168.183.20 is alive



Chapter 13 ■ python network automation Lab: basiC teLnet

581

# Task

192.168.183.102 is alive
192.168.183.101 is alive

4 Now, run the script using the ./take_backup.py command from your ubuntu20s1 server. If you 
copied the script from the previous lab, the file attributes should be carried over, and your new script 
should be an executable file already. It is time to run the code for one last time in this chapter.

pynetauto@ubuntu20s1:~/telnet_labs$ ls -l take*
-rwxrwxr-x 1 pynetauto pynetauto 1574 Jan 12 10:50 take_backups.py
pynetauto@ubuntu20s1:~/telnet_labs$ ./take_backups.py
Enter your username: pynetauto
Password:********
Getting running-config from 192.168.183.10
Getting running-config from 192.168.183.20
Getting running-config from 192.168.183.101
Getting running-config from 192.168.183.102
Getting running-config from 192.168.183.133

4 After the script runs successfully, you can run the ls –lh Linux command to check your local 
directory’s backed-up running-config files of your devices. The files should begin with the year, 
month, and day, followed by the time the backup was taken.

pynetauto@ubuntu20s1:~/telnet_labs$ ls -lh 2021*
-rw-rw-r-- 1 pynetauto pynetauto 4.3K Jan 12 10:53 20210112_105318_running_
config_192.168.183.10
-rw-rw-r-- 1 pynetauto pynetauto 5.4K Jan 12 10:53 20210112_105318_running_
config_192.168.183.101
-rw-rw-r-- 1 pynetauto pynetauto 4.8K Jan 12 10:54 20210112_105318_running_
config_192.168.183.102
-rw-rw-r-- 1 pynetauto pynetauto 1.7K Jan 12 10:54 20210112_105318_running_
config_192.168.183.133
-rw-rw-r-- 1 pynetauto pynetauto 4.5K Jan 12 10:53 20210112_105318_running_
config_192.168.183.20

5 Use the cat command to check if the correct information has been captured.

pynetauto@ubuntu20s1:~/telnet_labs$ cat 20210112_105318_running_config_192.168.183.10

**************************************************************************
* IOSv is strictly limited to use for evaluation, demonstration and IOS  *
* education. IOSv is provided as-is and is not supported by Cisco's      *
* Technical Advisory Center. Any use or disclosure, in whole or in part, *
* of the IOSv Software or Documentation to any third party for any       *
* purposes is expressly prohibited except as otherwise authorized by     *
* Cisco in writing.                                                      *
**************************************************************************
LAB-R1#terminal length 0
LAB-R1#show clock
*08:01:50.307 UTC Tue Jan 12 2021
LAB-R1#show running-config
Building configuration...

(continued)



Chapter 13 ■ python network automation Lab: basiC teLnet

582

# Task

Current configuration : 3418 bytes
!
version 15.6
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname LAB-R1
!
boot-start-marker
boot-end-marker
!
!
enable password cisco123
!
no aaa new-model
[...omitted for brevity]

You have logged into each device and successfully backed up your routers’ and switches’ current 
running configurations to your local directory. Making the running configuration back up to an S/FTP server 
is even easier, but this lab has been reserved for SSH labs. At this point, try to modify your script and run 
write memory or copy running-config startup-config to save all the configuration changes. Next, you 
will be attempting to do some SSH labs using the paramiko and netmiko libraries.

 Summary
In this chapter, we focused on seven simple Telnet labs to leverage the knowledge we have gained from 
earlier chapters. You learned how to use the fping and datetime modules along the way. You also 
performed simple configuration changes interactively first and then by using Python scripts made changes 
using the power of loops and range commands. Also, you learned to read IP addresses from an external file 
and use the information in your script. In the final labs, you made configuration backups of all five network 
devices using Python telnetlib with the timestamp on each filename. In Chapter 14, you will continue to 
explore Python network automation via SSH connections using the paramiko and netmiko SSH libraries.



583
© Brendan Choi 2021 
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_14

CHAPTER 14

Python Network Automation Labs: 
SSH paramiko and netmiko

In this chapter, you will use Python’s SSH libraries, paramiko and netmiko, to control your networking 
devices. paramiko is what Ansible relies on for SSH connection management to network devices, and 
netmiko is an engineer-friendly version of paramiko as netmiko also relies on paramiko. By studying how 
these network modules work, you can learn the inner workings of other applications relying on these 
network modules. In the first half of this chapter, you will learn to replace basic network engineer manual 
tasks using Python scripts and the paramiko library. In the second half of this chapter, you will learn to write 
Python scripts using the netmiko library. Once you master how to use these SSH modules, you can apply 
them to your work immediately. These SSH labs will serve as the cornerstones in developing the IOS XE 
upgrade application at the end of this book.

 

 Python Network Automation Labs Using the paramiko 
and netmiko Libraries
In the previous chapter, we focused on the basic Python networking concepts using Telnet labs. Whether 
you are using Telnet or SSH, the same Python networking concepts can be applied. Of course, SSH is a more 
secure remote login protocol than Telnet, and it also uses a different library to log into networking devices. 
As you are aware already, Telnet is a plain-text network protocol that is insecure compared to SSH. In most 
secure networks, Telnet use is often prohibited, and only an encrypted SSH connection is allowed. To 
connect to Cisco devices that use SSH using Python, the Python paramiko library must be installed first, 
and the encrypted RSA keys must be configured on Cisco devices. To begin the chapter, let’s first install the 
paramiko library to begin our SSH labs.

https://doi.org/10.1007/978-1-4842-6806-3_14#DOI


Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

584

 Python SSH Labs: paramiko
On your Ubuntu Python automation server, you can install paramiko using the pip command shown here:

pynetauto@ubuntu20s1:~$ pip3 install paramiko

After you have finished the paramiko installation, quickly run the Python interpreter session, and run 
import paramiko to check that the library can be imported correctly. When you are ready, begin the first 
SSH lab.

pynetauto@ubuntu20s1:~$ python
Python 3.8.2 (default, Jul 16 2020, 14:00:26)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import paramiko
>>>

 paramiko Lab 1: Configure the Clock and Time Zone of All 
Devices Interactively in the Python Interpreter
In this lab, you will log into the Python interpreter on the ubunsu20s1 Python automation server and write 
a real-time script to interact with all routers and switches to change their time and time zone settings. You 
have to power on all three routers and two switches. If your PC uses an older low-performance CPU or less 
memory, you are only required to power on one router and one switch; this will let you avoid high CPU 
utilization and memory contention issues in this lab. See Figure 14-1.

Figure 14-1. SSH paramiko lab 1, devices in use



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

585

You will be practicing an interactive SSH session to manage your network devices from the Python 
interpreter shell. Before connecting to the Cisco devices via SSH, we have to generate RSA keys for each 
device first. Since we are not using the AAA RADIUS server for authentication in our lab, we will create local 
certificates for each device. Follow these tasks to prepare for the first SSH lab:

# Task
1 Use the following Cisco IOS commands to create 1,024-bit local RSA keys on each device and only 

enable SSH connections to manage each device. The following example shows the configuration on 
only the LAB-R1 router, but the same configuration must be applied to all other devices so that Telnet 
can be completely disabled on your network.

LAB-R1#configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
LAB-R1(config)#ip domain-name pynetauto.local
LAB-R1(config)#crypto key generate rsa
The name for the keys will be: LAB-R1.pynetauto.local
Choose the size of the key modulus in the range of 360 to 4096 for your
  General Purpose Keys. Choosing a key modulus greater than 512 may take
  a few minutes.

How many bits in the modulus [512]: 1024
% Generating 1024 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 2 seconds)

LAB-R1(config)#
*Aug  9 13:04:41.381: %SSH-5-ENABLED: SSH 1.99 has been enabled
LAB-R1(config)#line vty 0 15
LAB-R1(config-line)#transport input all
LAB-R1(config-line)#end
LAB-R1#write memory

Now apply the previous configuration on lab-r2, LAB-SW1, lab-sw2, and R1. You can copy the 
following commands at once and paste them into each device’s console:

configure terminal
ip domain-name pynetauto.local
crypto key generate rsa
1024
line vty 0 15
transport input all
do write memory

(continued)



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

586

# Task

2 You can use the ssh –l user_name IP_address command to SSH into the other device between any 
two Cisco devices. From R1, use the following commands to SSH into all the other routers and switches:

R1#ssh -l pynetauto 192.168.183.10

**************************************************************************
* IOSv is strictly limited to use for evaluation, demonstration and IOS  *
* education. IOSv is provided as-is and is not supported by Cisco's      *
* Technical Advisory Center. Any use or disclosure, in whole or in part, *
* of the IOSv Software or Documentation to any third party for any       *
* purposes is expressly prohibited except as otherwise authorized by     *
* Cisco in writing.                                                      *
**************************************************************************
Password:*******

[...omitted for brevity]

LAB-R1#exit

[Connection to 192.168.183.10 closed by foreign host]
R1#

Try to ssh into other devices and vise vesa.

R1#ssh -l pynetauto 192.168.183.20
R1#ssh -l pynetauto 192.168.183.101
R1#ssh -l pynetauto 192.168.183.102



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

587

# Task

3 If you want to test the SSH connection from a Linux server, you can use the ssh user_name IP_
address command. However, due to a legacy SSH key exchange issue, you may have to specify the 
encryption key type to SSH into Cisco devices from your Linux Python server.

Ubuntu SSH login to LAB-R1 (192.168.183.10) example:

pynetauto@ubuntu20s1:~$ ssh -oKexAlgorithms=+diffie-hellman-group1-sha1 -c 3des-cbc 
pynetauto@192.168.183.10
The authenticity of host '192.168.183.10 (192.168.183.10)' can't be established.
RSA key fingerprint is SHA256:D9HqPuccjTD+WAGLMOYkyZ3KooHqYqe+5n7Hs2AI67I.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '192.168.183.10' (RSA) to the list of known hosts.

[...omitted for brevity]

Password: *********

[...omitted for brevity]

LAB-R1#exit
Connection to 192.168.183.10 closed.
pynetauto@ubuntu20s1:~$

Ubuntu SSH login to LAB-SW1 (192.168.183.101) example:

pynetauto@ubuntu20s1:~$ ssh -l pynetauto 192.168.183.101 -c aes256-cbc  
 -oKexAlgorithms=+diffie-hellman-group1-sha1
The authenticity of host '192.168.183.101 (192.168.183.101)' can't be established.
RSA key fingerprint is SHA256:0sbazxGQ82A3KAC26l6msWR3BrklVXnW0sHChkij23g.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '192.168.183.101' (RSA) to the list of known hosts.

[...omitted for brevity]

Password: *********

[...omitted for brevity]

LAB-SW1#exit
Connection to 192.168.183.101 closed.
pynetauto@ubuntu20s1:~$

(continued)



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

588

# Task

4 Suppose you want to go one step further and simplify the SSH login from your Linux server. In that 
case, you first have to check the SSH version in use on your Linux server to avoid possible Diffie-
Hellman key exchange issues between Linux server and Cisco devices. Use the diffie-hellman-
group1-sha1 key exchange method on your Linux server permanently by modifying the  
.ssh/config file on ubuntu20s1.

To check the SSH version on Python server, use this:

pynetauto@ubuntu20s1:~$ ssh -V
OpenSSH_8.2p1 Ubuntu-4, OpenSSL 1.1.1f  31 Mar 2020

To hard-code the key exchange method, open the /home/user_name/.ssh/config file and add the 
following information to the file. This will enable the old algorithms on the SSH client (ubuntu20s1), 
allowing it to connect to the older type of SSH servers (Cisco devices in this case).

pynetauto@ubuntu20s1:~$ nano /home/pynetauto/.ssh/config

GNU nano 4.8                                       /home/pynetauto/.ssh/config
Host 192.168.183.10
    KexAlgorithms +diffie-hellman-group1-sha1
Host 192.168.183.20
    KexAlgorithms +diffie-hellman-group1-sha1
Host 192.168.183.101
    KexAlgorithms +diffie-hellman-group1-sha1
Host 192.168.183.102
    KexAlgorithms +diffie-hellman-group1-sha1
Host 192.168.183.133
    KexAlgorithms +diffie-hellman-group1-sha1
^G Get Help  ^O Write Out  ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace   ^U Paste Text  ^T To Spell  ^_ Go To Line

 also, if you run into known-hosts issues due to this problem, you can follow the instructions shown in the 
following forum to remove the records from your Linux server and try to re-establish the ssh connection to 
Cisco networking devices.

https://superuser.com/questions/30087/remove- key- from- known- hosts

also, if you run into rsa key issues on your Cisco routers or switches, you can “zerorize” the rsa to re-create 
the rsa key. you can clear the previous key with the following command:

R1 (config)# crypto key zeroize rsa
Configure SSH Configuration again
R1(config)# hostname <name>
R1(config)# ip domain-name <domain>
R1(config)# crypto key generate rsa
R1(config)# ip ssh version 2

if your devices in Gns3 run into diffie-hellman key exchange issues and you cannot find a solution for them, 
then save the running configuration, remove the node from the topology, and then reconfigure your device; this 
could be related to the Gns3, Vmware, and Cisco image file incompatibility issue.

https://superuser.com/questions/30087/remove-key-from-known-hosts


Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

589

# Task

5 Now, let’s open Python interpreter on the ubuntu20s1 server and type in the following to configure 
the correct time and time zone via an SSH real-time connection. Please update the time zone to 
your own local time. Yes, you are expected to type in the following word by word on the interactive 
session to practice writing code. Python development engineers are expected to write hundreds and 
thousands of lines of codes each day, and it is not a walk in the park.

Once again, if you are using a different IP address range, update the IP addresses. Also, be precise 
with the four leading whitespaces after each colon and look out for any capitalization in special 
methods. Make sure you change the time to your current time and time zone while running the 
Python Interpreter session’s commands.

>>> import paramiko # import paramiko library
>>> import time # import time module
>>>
>>> ip_addresses = ["192.168.183.10", "192.168.183.20", "192.168.183.101", 
"192.168.183.102", "192.168.183.133"] # a list of device ip addresses
>>>
>>> username = "pynetauto" # username variable
>>> password = "cisco123" # password variable
>>>
>>> ssh_client = paramiko.SSHClient() # create paramiko SSH Client object
>>> ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) # Automatically 
accept host key policy
>>> for ip in ip_addresses: # for loop to loop through ip_addresses list
...     ssh_client.connect(hostname=ip, username=username, password=password) # minimum 
SSH connection objects
...     print("Connected to " + ip + "\n") # a print statement
...     remote_connection = ssh_client.invoke_shell() # Create a shell for the session
...     remote_connection.send("terminal length 0\n")
...     remote_connection.send("configure terminal\n") # Enter configuration mode
...     remote_connection.send("clock timezone AEST +10\n") # Set timezone to your 
timezone
...     remote_connection.send("clock summer-time AEST recurring\n") # Set summertime 
occurrence
...     remote_connection.send("exit\n") # Go back to exec privilege mode
...     time.sleep(1) # add 1 second pause
...     remote_connection.send("clock set 15:15:00 12 Jan 2021\n") # set clock to your 
time
...     remote_connection.send("copy running-config startup-config\n") # Save 
configuration
...     remote_connection.send("end\n") # end/exit session
...     output = remote_connection.recv(6000) # save remort_connection to variable 
output
...     print((output).decode('ascii')) # print content of output using ASCII decoding
...     time.sleep(2) # add 1 second pause
...     ssh_client.close() # Clock SSH connection

(continued)



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

590

# Task

6 If your interactive session went smoothly, it will print out the session as it logs into each device and 
configures the clock and time zone on each device. All your devices should be configured at the end 
of this lab with the correct time per your local time zone. To check the configuration, let’s configure 
another quick script that runs the show command and displays it. Follow these tasks on Ubuntu 
Python automation server. You no longer have to log in to each device to run the same commands 
five times. Simply run them from your server.

pynetauto@ubuntu20s1:~$ mkdir ssh_labs
pynetauto@ubuntu20s1:~$ cd ssh_labs
pynetauto@ubuntu20s1:~/ssh_labs$ nano display_show.py

GNU nano 4.8                                       /home/pynetauto/ssh_labs/ display_show.py
import time
import paramiko

ip_addresses = ["192.168.183.10", "192.168.183.20", "192.168.183.101", 
"192.168.183.102", "192.168.183.133"]

username = "pynetauto"
password = "cisco123"

for ip in ip_addresses:
   ssh_client = paramiko.SSHClient()
   ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
   ssh_client.connect(hostname=ip, username=username, password=password)
   print("Connected to " + ip + "\n")
   remote_connection = ssh_client.invoke_shell()
   output1 = remote_connection.recv(3000) # Catches and removes the login prompt output
   # print(output1.decode('ascii')) # remove hash to print the login prompt message
   # Now send the commands you want to run and display on the screen
   remote_connection.send("show clock detail\n")
   time.sleep(2)
   output2 = remote_connection.recv(6000)
   print((output2).decode('ascii'))
   print("-"*80)
^G Get Help  ^O Write Out  ^W Where Is   ^K Cut Text    ^J Justify    ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace    ^U Paste Text  ^T To Spell   ^_ Go To Line

The previous Python script is like a show command tool for multiple network devices. Now run the 
script to check the clock and time zone changes on all devices.

pynetauto@ubuntu20s1:~/ssh_labs$ python3 display_show.py
Connected to 192.168.183.10

show clock detail
15:15:23.609 AEST Tue Jan 12 2021
Time source is user configuration
Summer time starts 02:00:00 AEST Sun Mar 14 2021
Summer time ends 02:00:00 AEST Sun Nov 7 2021



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

591

# Task

LAB-R1#
--------------------------------------------------------------------------------
Connected to 192.168.183.20

show clock detail
15:15:23.615 AEST Tue Jan 12 2021
Time source is user configuration
Summer time starts 02:00:00 AEST Sun Mar 14 2021
Summer time ends 02:00:00 AEST Sun Nov 7 2021
lab-r2#
--------------------------------------------------------------------------------
[...omitted for brevity]

7 While you are in interactive mode, you can use dir(library_name) to display the modules available 
to each library after importing a library. You have used the SSHClient and AutoAddPolicy modules 
from the paramiko library in the previous example.

>>> import paramiko
>>> dir(paramiko)
['AUTH_FAILED', 'AUTH_PARTIALLY_SUCCESSFUL', 'AUTH_SUCCESSFUL', 'Agent', 'AgentKey', 
'AuthHandler', 'AuthenticationException' , 'AutoAddPolicy', 'BadAuthenticationType',
[...omitted for brevity]
'SFTP_NO_CONNECTION', 'SFTP_NO_SUCH_FILE', 'SFTP_OK', 'SFTP_O P_UNSUPPORTED', 'SFTP_
PERMISSION_DENIED', 'SSHClient', 'SSHConfig', 'SSHException', 'SecurityOptions', 
'ServerInterface', 'Su bsystemHandler', 'Transport', 'WarningPolicy', '__all__', 
'__author__', '__builtins__', '__cached__',
[...omitted for brevity]
'sftp_client', 'sftp_file', 'sftp_handle', 'sftp_server', 'sftp_si', 'ssh_exception', 
'ssh_gss', 'sys', 'transport',  'util']

8 To view each module’s packages within paramiko, you can first import each module and again use 
dir(module_name) to view some details of this module.

>>> from paramiko import SSHClient
>>> dir(SSHClient)
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__enter__', '__eq__', 
'__exit__', '__format__', '__ge__', '__ getattribute__', '__gt__', '__hash__', '__
init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__' 
, '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', 
'__subclasshook__', '__weakref__', '_aut h', '_families_and_addresses', '_key_from_
filepath', '_log', 'close', 'connect', 'exec_command', 'get_host_keys', 'get_transp 
ort', 'invoke_shell', 'load_host_keys', 'load_system_host_keys', 'open_sftp', 'save_
host_keys', 'set_log_channel', 'set_missi ng_host_key_policy']

>>> from paramiko import AutoAddPolicy
>>> dir(AutoAddPolicy)
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__
format__', '__ge__', '__getattribute__', '__gt__' , '__hash__', '__init__', 
'__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__
reduce__', '__reduce _ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', 
'__subclasshook__', '__weakref__', 'missing_host_key']



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

592

 paramiko Lab 2: Configuring an NTP Server on Cisco 
Devices Without User Interaction (NTP Lab)
In this lab, you will configure LAB-R1 and lab-r2, reading the information from two external files. The first 
file contains each router’s IP address per line, and the other file contains the username and password. 
When you use external files, the network administrator does not have to be sitting in front of the device’s 
remote console to type in the information interactively. In the next chapter, you will be learning how to use 
Linux cron as a scheduler to run your Python applications without your interaction so that your application 
becomes the bot. Using a Python script as an application and using Linux cron as the default scheduler 
may look rather humble (no cost to your company) and primitive (no prettified GUI) compared to the fancy 
features offered by Cisco ACI and Red Hat Ansible Tower. Still, you must understand how cron works and 
how to customize your environment as every client has a different network environment. No two networks 
are the same in size and complexity. After all, a scheduler is a scheduler. See Figure 14-2.

You will need to power on the IP Services server, centos8s1, to provide NTP services to the routers. For 
this lab, you will need to power on ubuntu20s1, centos8s1, LAN-R1, and lab-r2 and power on LAB-SW1 and 
lab-sw2 to provide the connection to two routers. You have to complete many tasks in this lab, so let’s write 
our script and run it in the lab.

Figure 14-2. SSH paramiko lab 2, devices in use



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

593

# Task
1 If you still have not created the ssh_labs directory, on the ubuntu20s1 server, follow these steps to 

create a new directory for SSH labs and then create two external files in the same directory:

pynetauto@ubuntu20s1:~/telnet_labs$ cd ..
pynetauto@ubuntu20s1:~$ mkdir ssh_labs
pynetauto@ubuntu20s1:~$ cd ssh_labs
pynetauto@ubuntu20s1:~/ssh_labs$ nano routerlist
pynetauto@ubuntu20s1:~/ssh_labs$ cat routerlist
192.168.183.10
192.168.183.20
pynetauto@ubuntu20s1:~/ssh_labs$ nano adminpass
pynetauto@ubuntu20s1:~/ssh_labs$ cat adminpass
pynetauto
cisco123

2 I have done a Google search, copied an example ssh_client.py script, and modified the content to 
suit my needs. You can go to the following site to grab the base template SSH script to begin your SSH 
scripting.

URL: https://gist.github.com/ghawkgu/944017

ssh_client.py

#!/usr/bin/env python

import paramiko

hostname = 'localhost'
port = 22
username = 'foo'
password = 'xxxYYYxxx'

if __name__ == "__main__":
   paramiko.util.log_to_file('paramiko.log')
   s = paramiko.SSHClient()
   s.load_system_host_keys()
   s.connect(hostname, port, username, password)
   stdin, stdout, stderr = s.exec_command('ifconfig')
   print stdout.read()
   s.close()

The script will configure the NTP server on both routers and enable time synchronization on the 
network. NTP plays an important role in an enterprise network to keep all the devices’ time in sync, 
so the timestamps on the syslog and reporting servers are accurate down to the second. As this is 
not a networking book, I will not go into too much detail on the stratum and NTP features, but note 
a couple of things here. First, Cisco and many vendor networking devices do not trust Microsoft 
W32tm services running on Windows machines. Second, certain Cisco networking and server 
devices’ time must be set to a minimum stratum to be trusted as a reliable time source. Usually, this 
value is equal or less than stratum five, and the lower stratum is the more trustworthy time.

(continued)

https://gist.github.com/ghawkgu/944017


Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

594

# Task

Modify the base paramiko login configuration. Once you have finished, it should look similar to the 
following script:

pynetauto@ubuntu20s1:~/ssh_labs$ nano ssh_ntp_lab.py

GNU nano 4.8                                /home/pynetauto/ssh_labs/ ssh_ntp_lab.py
#!/usr/bin/env python3

import paramiko # import paramiko library
import time # import time module
from datetime import datetime # import datetime module from datetime library
t_ref = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # Time reference in desired time format

file1 = open("routerlist") # open routerlist as file1

for line in file1: # for loop for router ip address
  print(t_ref) # print time reference
  print ("Now logging into " + (line)) # print statement
  ip_address = line.strip() # remove any white spaces

  file2= open("adminpass") # open adminpass as file2
  for line1 in file2: # read the first line(admin ID) in file 2
    username = line1.strip() # remove any white spaces
    for line2 in file2: # read the second line (password) in file2
      password = line2.strip() # remove any white spaces

      ssh_client = paramiko.SSHClient() # Create paramiko SSH client object
      ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) # Automatically 
accept host key policy
      ssh_client.connect(hostname=ip_address,username=username,password=password) # SSH 
connection objects
      print ("Successful connection to " + (ip_address) +"\n") # print statement
      print ("Now completing following tasks : " + "\n") # print statement

      remote_connection = ssh_client.invoke_shell() # invoke shell session
      output1 = remote_connection.recv(3000) # Catches and removes the login prompt output
      # print(output1.decode('ascii')) # remove hash to print the login prompt message
      remote_connection.send("configure terminal\n") # Move to configuration mode

      print ("Configuring NTP Server") # print statement
      remote_connection.send("ntp server 192.168.183.130\n") # configure NTP server
      remote_connection.send("end\n") # go back to exec privilege mode
      remote_connection.send("copy running-config start-config\n") # send save command
      print ()# print remote_connections

      time.sleep(2) #
      output2 = remote_connection.recv(6000) # capture session in output variable
      print((output2).decode('ascii')) # print output using ASCII decoding

      print (("Successfully configured your device & Disconnecting from ") +  
(ip_address)) # Print statement

      ssh_client.close # Close SSH connection
      time.sleep(2) # Pause for 2 seconds



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

595

# Task

file1.close() # Close file1
file2.close() # Close file2
^G Get Help  ^O Write Out    ^W Where Is   ^K Cut Text    ^J Justify    ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace    ^U Paste Text  ^T To Spell   ^_ Go To Line

3 Since we have only two devices to check, this time you can check the ports manually. Log into LAB-R1 
and lab-r2 and then run the show control-plane host open-ports command to check that SSH 
port (22) is correctly working and in LISTEN status.

LAB-R1#show control-plane host open-ports
Active internet connections (servers and established)
Prot         Local Address        Foreign Address     Service                State
tcp          *:22                 *:0                 SSH-Server             LISTEN
tcp          *:23                 *:0                 Telnet                 LISTEN
udp          *:56827              *:0                 udp_transport Server   LISTEN

lab-r2#show control-plane host open-ports
Active internet connections (servers and established)
Prot         Local Address        Foreign Address     Service                State
tcp          *:22                 *:0                 SSH-Server             LISTEN
tcp          *:23                 *:0                 Telnet                 LISTEN
udp          *:18999              *:0                 udp_transport Server   LISTEN

Alternatively, you can modify the display_show.py file and get the information from the Python file. 
Download display_show_control_plane.py included in chapter 14_codes.zip and use it to get 
the same result.

Source code download URL: https://github.com/pynetauto/apress_pynetauto

4 Now, before running your script, check that the NTP service is running correctly on centos8s1. If you 
find that the NTP service is not running, you must troubleshoot the issue before running the script. 
On CentOS 8.1, we previously installed chronyd in Chapter 8, as an NTP server. Here are commands 
to troubleshoot common issues with chronyd. In the next step, we have to complete the server 
configuration by modifying the chrony.conf file to make it a functional server.

[pynetauto@centos8s1 ~]$ systemctl status chronyd
[pynetauto@centos8s1 ~]$ systemctl restart chronyd
[pynetauto@centos8s1 ~]$ systemctl enable chronyd
[pynetauto@centos8s1 ~]$ sudo firewall-cmd --add-port=123/udp --permanent
[pynetauto@centos8s1 ~]$ sudo firewall-cmd --reload

If you forgot to install chrony, use the dnf install command to install it.

[pynetauto@centos8s1 ~]$  dnf install chrony

Also, check the current time on your NTP server.

[pynetauto@centos8s1 ~]$ date
Tue Jan 12 17:13:16 AEDT 2021

(continued)

https://github.com/pynetauto/apress_pynetauto


Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

596

# Task

For chronyd, you must obtain a list of NTP servers close to your home region from the URL specified 
here, and you have to update the NTP server pool as shown in Figure 14-1. Make sure you comment 
out the first default line with a hash (#). Ensure that you choose the public NTP server closest to your 
location from the following site:

URL: https://www.pool.ntp.org/en/

Open the file in sudo mode to modify the chrony.conf file under /etc/.

[pynetauto@centos8s1 ~]$ sudo nano /etc/chrony.conf

GNU nano 4.8                                       /etc/chrony.conf
# Use public servers from the pool.ntp.org project.
# Please consider joining the pool (http://www.pool.ntp.org/join.html).
# pool 2.centos.pool.ntp.org iburst
server 0.oceania.pool.ntp.org
server 1.oceania.pool.ntp.org
server 2.oceania.pool.ntp.org
server 3.oceania.pool.ntp.org

# Record the rate at which the system clock gains/losses time.
driftfile /var/lib/chrony/drift
[...omitted for brevity]
^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

While you are on the same config file, go to the end of the line and confirm that your network has been 
allowed to access this NTP server from the local network. If you have configured this in Chapter 8, it 
should be already there.

[... omitted for brevity]
# Allow NTP client access from the local network.
allow 192.168.183.0/24

5 If everything looks to be in good order, go back to the ubuntu8s1 Python server and run the ssh_ntp_
lab.py script.

pynetauto@ubuntu20s1:~/ssh_labs$ python ssh_ntp_lab.py
2021-01-12_17-31-59
Now logging into 192.168.183.10

Successful connection to 192.168.183.10

Now completing following tasks :

Configuring NTP Server

configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
LAB-R1(config)#ntp server 192.168.183.130
LAB-R1(config)#end
LAB-R1#copy running-config start-config
Destination filename [start-config]?
Successfully configured your device & Disconnecting from 192.168.183.10
2021-01-12_17-31-59
Now logging into 192.168.183.20

Successful connection to 192.168.183.20

https://www.pool.ntp.org/en/


Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

597

# Task

Now completing following tasks :

Configuring NTP Server
configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
lab-r2(config)#ntp server 192.168.183.130
lab-r2(config)#end
lab-r2#copy running-config start-config
Destination filename [start-config]?
Successfully configured your device & Disconnecting from 192.168.183.20

6 Once the NTP script successfully runs, modify the display_show.py script with the new show 
commands and run it. In this lab, I have named the new show command script display_show_ntp.py.  
To check the NTP status, include the show ntp status command in your script.

pynetauto@ubuntu20s1:~/ssh_labs$ cp display_show.py display_show_ntp.py

You can always check the status in the CLI for quick verification.

LAB-R1# show ntp status

lab-r2 # show ntp status

If you see a similar NTP status messages as shown here, your router’s time has been synchronized 
with the Linux NTP server’s time (192.168.183.130).

pynetauto@ubuntu20s1:~/ssh_labs$ python3 display_show_ntp.py
Connected to 192.168.183.10

show ntp status
Clock is synchronized, stratum 5, reference is 192.168.183.130
nominal freq is 1000.0003 Hz, actual freq is 1000.0003 Hz, precision is 2**15
ntp uptime is 191100 (1/100 of seconds), resolution is 1000
reference time is E3A7C697.1089E8E5 (06:56:23.064 UTC Tue Jan 12 2021)
clock offset is 9948.5451 msec, root delay is 7.75 msec
root dispersion is 16599.57 msec, peer dispersion is 2.51 msec
loopfilter state is 'SPIK' (Spike), drift is 0.000499999 s/s
system poll interval is 64, last update was 375 sec ago.

--------------------------------------------------------------------------------
Connected to 192.168.183.20

show ntp status
Clock is synchronized, stratum 5, reference is 192.168.183.130
nominal freq is 1000.0003 Hz, actual freq is 1000.0003 Hz, precision is 2**15
ntp uptime is 190000 (1/100 of seconds), resolution is 1000
reference time is E3A7C6A4.121D0A5D (06:56:36.070 UTC Tue Jan 12 2021)
clock offset is 2100.9149 msec, root delay is 12.98 msec
root dispersion is 7958.81 msec, peer dispersion is 4.38 msec
loopfilter state is 'CTRL' (Normal Controlled Loop), drift is 0.000499999 s/s
system poll interval is 64, last update was 736sec ago.
--------------------------------------------------------------------------------



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

598

You have successfully configured the NTP server on the LAB-R1 and lab-r2 routers and synchronized 
the time with the Linux NTP server within your network. Also, there was no need to enter the IP addresses 
and admin credentials one at a time; you preloaded them into two separate files before running your 
script. This will come in handy in the cron lab in Chapter 8. Password security and the password vault are 
important topics; however, they are beyond this book’s scope. Now let’s quickly move on to the next SSH lab 
and make backups of our devices to our TFTP server.

 paramiko Lab 3: Create an Interactive paramiko SSH Script 
to Save Running Configurations to the TFTP Server
In this lab, you will make an interactive tool using Python’s input function and getpass module to get 
the network administrator’s ID and password. To keep this lab simple, the script will use a list with all IP 
addresses, and the backup files will be saved to the TFTP server running on centos8s1 (192.168.183.130). 
With simple modifications, you can customize and make operational tools to save time and resources. In 
this lab, you are making backups of only five devices, but imagine if this work has to be done on 500 devices 
as in some customers’ networks. Also, if you want to run such scripts daily using an automated scheduler, 
engineers no longer need to sit in front of their computers taking backups. Of course, there are enterprise-
level network device backup solutions, but we want to get to the bottom of this subject and understand how 
these tools work by re-creating such tools and running them in our lab. See Figure 14-3.

Out of the box, vendor solutions have exceptional features and fit most of the sizable standardized 
customer environments. Still, you almost always need some customization to make the solution even more 
versatile and useful in a real production environment. Without further discussion, let’s write an interactive 
tool to SSH into our routers and switches and take some backups.

Figure 14-3. SSH paramiko lab 3, devices in use



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

599

# Task
1 As the first step, check if you can ping all network devices from your Python automation server. This 

time you are going to use fping again and check the connectivity from a single command. If you still 
have not installed fping, use the following command to do so now:

pynetauto@ubuntu20s1:~/ssh_labs$ sudo apt-get install fping

After fping has been installed successfully, run the command like this to confirm your server’s 
network connectivity:

pynetauto@ubuntu20s1:~/ssh_labs$ fping 192.168.183.10 192.168.183.20 192.168.183.101 
192.168.183.102 192.168.183.133
192.168.183.10 is alive
192.168.183.20 is alive
192.168.183.133 is alive
192.168.183.102 is alive
192.168.183.101 is alive

2 You have confirmed network connectivity, and this time let’s confirm whether our previously 
installed TFTP service is working correctly on the centos8s1 multi-IP Services server. Use the 
following commands to check the operational status of TFTP services on your Linux server.

The TFTP (xinetd) is active and working correctly with port 69 in listening mode.

[pynetauto@centos8s1 ~]$ systemctl is-active xinetd.service
active

[pynetauto@centos8s1 ~]$ sudo netstat -anp | grep 69
[sudo] password for pynetauto:
udp        0      0 0.0.0.0:69           0.0.0.0:*                        1241/xinetd
udp6       0      0 :::69                   :::*
[... omitted for brevity]

 if your server’s port 69 is not listed, you will have to use the ufw command to allow the ports on your 
server with the following command:

[pynetauto@centos8s1 ~]$ sudo ufw allow 69/udp

3 Now, to make this lab even more interesting, we want to measure how long the end-to-end task takes 
from start to finish, so we can measure the speed of our script and adjust sleep timers as required. As 
you have already observed in both the paramiko and telnet scripts, time.sleep(s) code has been 
added to allow enough response time for the virtual routers and switches, and with netmiko scripts, 
many timers are built into the library. However, it is not always 100 percent accurate, so sometimes, 
you still have to use the sleep timers to customize for different devices.
As you create applications, you have to develop small ideas and small tools to make your Python 
script more valuable. The timer toll script shown next is a suggestion, and this tool measures the 
time it takes to count from 1 to 10 million. You can adjust the numbers and see how fast your 
computer is at counting numbers. You can also put your function or tasks in the middle of the script 
to measure how quickly your script runs.

(continued)



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

600

# Task

In Python, one function processes data much quicker than another, and it is worth spending time 
to test the speed of your scripts. After all, Python is not well known for its speed, but often, it is the 
Python coder making the wrong module or tools selection and adding the lag to a script. Also, in 
the world of network automation, speed is important but not the most critical part of a Python 
application. Often the precision takes higher priority over the speed. If you genuinely need the 
speed, there is always a C programming language closest to the machine language. Anyway, write 
the following code on your server and check how this simple script works. Although this is a simple 
script, many simple scripts form the basis of your application.

pynetauto@ubuntu20s1:~/ssh_labs$ nano timer_tool.py

GNU nano 4.8                                   /home/pynetauto/ssh_labs/timer_tool.py
import time # Import time module

start_timer = time.mktime(time.localtime()) # Start time

########## REPLACE ME! #########
big_number = range(10000000)             # Put some function or task to run here

for i in big_number:
    print(i,end=" ")
# print(" ".join(str(i) for i in big_number)) # This is a join method to print the 
number, can replace above two lines of code
##############################
total_time = time.mktime(time.localtime()) - start_timer # End time minus start time
print("Total time : ", total_time, "seconds") # Total time format
^G Get Help  ^O Write Out    ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

4 Guess how long your computer will take to count 1 to 10 million? From your ubuntu20s1 Python 
server, run the timer tool by typing python timer_tool.py. For the testing computer, it took a full 22 
seconds to count from 1 to 10 million.

pynetauto@ubuntu20s1:~/ssh_labs$ python timer_tool.py
[...omitted for brevity]
9999974 9999975 9999976 9999977 9999978 9999979 9999980 9999981 9999982 9999983 
9999984 9999985 9999986 9999987 9999988 9999989 9999990 9999991 9999992 9999993 
9999994 9999995 9999996 9999997 9999998 9999999
Total time :  22.0 seconds



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

601

# Task

5 To make our script interactive to talk back to the network administrator, let’s make a username and 
password collector tool using the getpass module of the getpass library. Using the getpass module, 
we can hide the passwords typed, and also, by making some modifications, we can make the user 
enter the password for the second time for verification of the first password. Often the passwords are 
mistyped, and we can solve this problem by incorporating if statements into our password script.

pynetauto@ubuntu20s1:~/ssh_labs$ nano password_tool.py

GNU nano 4.8                                       /home/pynetauto/ssh_labs/password_tool.py
from getpass import getpass  # Import getpass module from getpass library

def get_credentials():# Create get_credentials function
   #Prompts for and returns a username and password  # Comment
   username = input("*Enter Network Admin ID : ")  # Prompt user for username
   password = None  # Set original password to None
   while not password: # Keep prompting til password is entered
      password = getpass("*Enter Network Admin PWD : ")  # Prompt for password
       password_verify = getpass("**Confirm Network Admin PWD : ")  # Verify password 

again
       if password != password_verify: # If password fails to verify, run the following 

script
         print("! Network Admin Passwords do not match. Please try again.")  
# Inform the user of mismatch
         password = None  # Reset password to None and ask for the password again
    print(username, password) # For testing purpose only, remove this when applied to 

the script
   return username, password  #returns username and password

get_credentials() # Run get_credentials() function
^G Get Help  ^O Write Out    ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

6 Please create a password tool script and run it from your ubuntu20s1 server. We will print the 
username and password here for testing purposes, but you have to remove the print (username, 
password) command from the function and go silent after you press the Enter key. Go ahead and 
comment out the print statement as required.

pynetauto@ubuntu20s1:~/ssh_labs$ python password_tool.py
*Enter Network Admin ID : pynetauto
*Enter Network Admin PWD :********
**Confirm Network Admin PWD : ********
pynetauto cisco123
pynetauto@ubuntu20s1:~/ssh_labs$

(continued)



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

602

# Task

7 Now that you have two mini tools developed, let’s write out our interactive code to make backups of 
our devices’ lab network. After completing the paramiko script, your script should look similar to the 
following. Detailed explanations are embedded in the code, so study the code before writing the script 
in full. If you run into issues, refer to the source code, but only if you have to. Typically most code is 
typed in on the keyboard by you, not cut and pasted!

pynetauto@ubuntu20s1:~/ssh_labs$ nano interactive_backup.py

GNU nano 4.8                                       /home/pynetauto/ssh_labs/interactive_backup.py
#!/usr/bin/env python3 # for Linux system to run this script as python3 file
import re # import regular expression module
import time # import time module
import paramiko # import paramiko library
from datetime import datetime # import datetime module from datetime library
from getpass import getpass # Import getpass module from getpass library

t_ref = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # Time reference to be used for 
file name

device_list = ["192.168.183.10", "192.168.183.20", "192.168.183.101", 
"192.168.183.102", "192.168.183.133"] # Device list

start_timer = time.mktime(time.localtime()) # Start time

def get_credentials():# Define a function called get_credentials
    #Prompts for, and returns a username and password # comment
    global username # Make username global, so it can be used throughout this script
    global password # Make password global, so it can be used throughout this script
    username = input("*Enter Network Admin ID : ") # Enter username
    password = None # set password default value to None
    while not password: # Until password is entered
        password = getpass("*Enter Network Admin PWD : ") # Enter the password first time
         password_verify = getpass("**Confirm Network Admin PWD : ") # Get password for 

verification, second time
        if password != password_verify: # Password verification
             print("! Network Admin Passwords do not match. Please try again.")  

# Informational
            password = None # Set password to None
    return username, password # Optional, returns username and password

get_credentials()# Run get_credentials function, to save username and password

for ip in device_list: # for loop to grab device IP addresses
    print(t_ref) # Comment for user information
    print("Now logging into " + (ip)) # Informational
    ssh_client = paramiko.SSHClient()# Initiate paramiko SSH client session as ssh_client
     ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) # Accept missing 

host key policy
     ssh_client.connect(hostname=ip,username=username,password=password) # SSH 

connection with credentials

    print("Successful connection to " + (ip) +"\n") # Informational
     print("Now making running-config backup of " + (ip) + "\n") # Comment for user 

information
    remote_connection = ssh_client.invoke_shell() # Invoke shell
    time.sleep(3) # Pause 3 seconds to invoke shell



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

603

# Task

    remote_connection.send("copy running-config tftp\n") # Send copy command
    remote_connection.send("192.168.183.130\n") # Respond to TFTP server IP request, TFTP IP
    remote_connection.send((ip)+ ".bak@" + (t_ref)+ "\n") # Respond to backup file name request
    time.sleep(3) ## Pause for 3 seconds, give device to respond
    print() # Print screen
    time.sleep(3) # Pause for 3 seconds, give time to process data
    output = remote_connection.recv(65535) # Receive output up to 65535 lines
    print((output).decode('ascii')) #Print output using ASCII decoding method

     print(("Successfully backed-up running-config to TFTP & Disconnecting from ") + 
(ip) + "\n") # Print statement to provide an update to the user

    print("-"*80) # Print ~ 80 times
    ssh_client.close # Close SSH session
    time.sleep(1) # Pause for 1 second
    total_time = time.mktime(time.localtime()) - start_timer # Start time minus current time
     print("Total time : ", total_time, "seconds") # Print the total time to run the 

script in seconds
^G Get Help  ^O Write Out    ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

8 In Chapter 8, you created a tftpdir directory for TFTP file sharing and storage on the centos8s1 
server. As a pre-check to running the previous script, check the files in the /var/tftpdir directory. 
Files that change in size usually go under the var (variable) directory in Linux.

[pynetauto@centos8s1 ~]$ cd /var/tftpdir
[pynetauto@centos8s1 tftpdir]$ pwd
/var/tftpdir
[pynetauto@centos8s1 tftpdir]$ ls -lh
total 45M
-rw-r--r--. 1 pynetauto pynetauto  45M Jul 18 04:59 c3725-adventerprisek9-mz.124-15.
T14.bin
-rw-rw-r--. 1 tftpuser  tftpuser  1.2K Jan  9 00:07 running-config
-rw-rw-r--. 1 tftpuser  tftpuser   100 Jun  8  2020 transfer_file01
-rw-r--r--. 1 root      root       100 Jun  8  2020 transfer_file77

9 Go back to the Python automation server (ubuntu20s1). OK, now let’s run the interactive backup 
script to SSH into each device and make backups of each device’s running configuration on the 
TFTP server. Run the python interactive_backup.py command, enter the network administrator 
credentials, and sit back and observe.

pynetauto@ubuntu20s1:~/ssh_labs$ python interactive_backup.py
*Enter Network Admin ID : pynetauto
*Enter Network Admin PWD : ********
**Confirm Network Admin PWD : ********
2021-01-12_18-42-23
Now logging into 192.168.183.10
Successful connection to 192.168.183.10

Now making running-config backup of 192.168.183.10
[...omitted for brevity]
Destination filename [lab-r1-confg]? 192.168.183.10.bak@2021-01-12_18-42-23
!!

(continued)



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

604

# Task

3953 bytes copied in 2.972 secs (1330 bytes/sec)
LAB-R1#
Successfully backed-up running-config to TFTP & Disconnecting from 192.168.183.10
--------------------------------------------------------------------------------
2021-01-12_18-42-23
Now logging into 192.168.183.20
Successful connection to 192.168.183.20
[...omitted for brevity]
lab-r2#
Successfully backed-up running-config to TFTP & Disconnecting from 192.168.183.20
--------------------------------------------------------------------------------
2021-01-12_18-42-23
Now logging into 192.168.183.101
Successful connection to 192.168.183.101
[...omitted for brevity]
LAB-SW1#
Successfully backed-up running-config to TFTP & Disconnecting from 192.168.183.101
--------------------------------------------------------------------------------
2021-01-12_18-42-23
Now logging into 192.168.183.102
Successful connection to 192.168.183.102
[...omitted for brevity]
lab-sw2#
Successfully backed-up running-config to TFTP & Disconnecting from 192.168.183.102
--------------------------------------------------------------------------------
2021-01-12_18-42-23
Now logging into 192.168.183.133
Successful connection to 192.168.183.133
[...omitted for brevity]
R1#
Successfully backed-up running-config to TFTP & Disconnecting from 192.168.183.133
--------------------------------------------------------------------------------
Total time :  78.0 seconds

It took 78 seconds to make backups of five lab devices to the TFTP server. We’ll also look at file 
management to FTP during the following netmiko labs, but the concepts we have learned so far can 
be reused in FTP or SFTP scenarios.

10 Now log back into your centos8s1 server; then change your directory to /var/tftpdir and run the 
ls –lh command. You should find all your device backups with the date and time stamp specified in 
our code. Now you have completed the SSH interactive script to capture the running configuration of 
all devices. We are only using five devices here, but the number of devices will multiply by tens and 
hundreds, and you do not even have to sweat it in production. Sweet!

[pynetauto@centos8s1 tftpdir]$ ls -lh 192.*
-rw-rw-r--. 1 tftpuser tftpuser 4.5K Jan 12 18:43 192.168.183.101.bak@2021-01-12_18-42-23
-rw-rw-r--. 1 tftpuser tftpuser 3.8K Jan 12 18:43 192.168.183.102.bak@2021-01-12_18-42-23
-rw-rw-r--. 1 tftpuser tftpuser 3.5K Jan 12 18:43 192.168.183.10.bak@2021-01-12_18-42-23
-rw-rw-r--. 1 tftpuser tftpuser 1.4K Jan 12 18:43 192.168.183.133.bak@2021-01-12_18-42-23
-rw-rw-r--. 1 tftpuser tftpuser 3.7K Jan 12 18:43 192.168.183.20.bak@2021-01-12_18-42-23



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

605

Now you have completed the paramiko labs by completing the running configuration backups via an 
SSH connection and TFTP file transfer. You can easily tweak the configuration to use either FTP or SFTP file 
transfer for further testing and development. In the second half of this chapter, you will be working with the 
versatile netmiko library in different scenarios.

 Python SSH Labs: netmiko
paramiko is an excellent SSH library to manage network devices via an SSH connection. Still, you have 
to work hard to fine-tune parts of your script to make it run smoothly. For example, the timing of the 
connection and the running of different commands via SSH requires special care with the timing and 
prompts. Luckily, a CCIE emeritus engineer has already worked hard and thought about many of the 
problems we may run into while using paramiko. He has developed an incredible Python library called 
netmiko. netmiko is a multivendor library to simplify paramiko SSH connections to network devices; Kirk 
Byers developed it to support various vendor networking devices. In Python, many hidden technology 
masters in the world are not afraid of sharing their knowledge and wisdom. After using netmiko for about 
two years, I cannot thank Kirk Byers enough for saving me from many pitfalls of paramiko. He already has 
thought of paramiko’s SSH connection problems. We have to enjoy the fruits of one engineer’s artistry and 
sweat, pioneering Python network automation. Here are Kirk’s official netmiko link and GitHub sites for 
further reading. Also, the nornir project is an extension of netmiko; it has the same features of Ansible but is 
written in Python. nornir is beyond the scope of this book, but when you have time, please look it up on the 
Internet.

URL: https://pynet.twb- tech.com/ (Kirk Byers’ Python for Network Engineers)
URL: https://ktbyers.github.io/netmiko/#tutorialsexamplesgetting- started (getting started 

with Netmiko)
URL: https://github.com/ktbyers/netmiko/blob/master/netmiko/ssh_dispatcher.py (supported 

device list)
Now, before writing your first netmiko Python script, make sure that you have netmiko libraries installed 

using sudo pip3 install netmiko, as shown here:

pynetauto@ubuntu20s1:~$ sudo pip3 install netmiko
[sudo] password for pynetauto:
Collecting netmiko
  Downloading netmiko-3.2.0-py2.py3-none-any.whl (157 kB)
     |████████████████████████████| 157 kB 4.8 MB/s
Requirement already satisfied: pyserial in /usr/lib/python3/dist-packages (from netmiko) 
(3.4)
[... omitted for brevity]
Successfully installed netmiko-3.2.0 scp-0.13.2 textfsm-1.1.0

After netmiko installation, start your Python interpreter and import the netmiko module. You can use 
the pip3 freeze command to check the installed libraries, but sometimes even if it is listed, you will not 
be able to use the module in an environment where more than one version of Python is running on your 
system. If no error was returned on the interpreter, it has been installed successfully, and you are ready to 
write the following code:

pynetauto@ubuntu20s1:~/ssh_labs$ pip3 freeze
...
netmiko==3.3.2
...

https://pynet.twb-tech.com/
https://ktbyers.github.io/netmiko/#tutorialsexamplesgetting-started
https://github.com/ktbyers/netmiko/blob/master/netmiko/ssh_dispatcher.py


Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

606

pynetauto@ubuntu20s1:~$ python3
Python 3.8.2 (default, Jul 16 2020, 14:00:26)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import netmiko
>>>

After verification, press Ctrl+Z or type in exit() or quit() to close your Python 3 interpreter.

 netmiko Lab 1: netmiko Uses a Dictionary for Device 
Information, Not a JSON Object
Using netmiko, you have to provide the device information in a dictionary format with basic SSH login 
information such as the device type, IP (hostname), administrator ID, and password as the bare minimum. 
You can also provide other optional information, such as the secret password, port number, and logging 
status. At a glance, this dictionary format looks similar to a data set in JavaScript Object Notation (JSON) 
format. The netmiko device information is a built-in Python dictionary, not a JSON data set used by a 
browser and a server to send data. A typical netmiko dictionary usually looks like this:

cisco_3850 = {
    'device_type': 'cisco_ios',
    'host':   '10.20.30.40',
    'username': 'cisco',
    'password': 'password123',
    'port' : 8022,          # optional, if not used defaults to 22
    'secret': 'secret123',     # optional, if not used defaults to ''
}

If you want to flatten out the previous dictionary as in the earlier paramiko examples, you can write the 
dictionary like this. Still, the previous structured information looks nicer on the eyes.

cisco_csr1k = {"device_type":"cisco_xe", "ip":"192.168.183.1", "username":"pynetauto", 
"password":"cisco123"}

We can also enhance the netmiko dictionary by mixing it with some input statements and getpass 
functions to request user inputs, which looks similar to this:

from netmiko import ConnectHandler
from getpass import getpass

device1 = {
'device_type': 'cisco_ios',
'ip': input('IP Address : '),
'username': input('Enter username : '),
'password': getpass('SSH password : '),
}

Before moving onto netmiko lab 1, we will confirm that the netmiko dictionary is not a JSON object. 
Let’s quickly type this code into the Python interpreter to confirm this fact.



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

607

 open your python interpreter and type the following into the interpreter window. make sure that you use 
the double quotation marks when creating the dictionary, device1. python will automatically convert them to 
single quotation marks, and you will find out why. First, check the attributes of a netmiko dictionary.

>>> device1 = {"device_type":"cisco_ios", "ip":"192.168.183.10", "username":"pynetauto", 
"password":"cisco123"}

>>> print(device1)
{'device_type': 'cisco_ios', 'ip': '192.168.183.10', 'username': 'pynetauto', 'password': 

'cisco123'}

>>> print(type(device1))
<class 'dict'>

>>> dir(device1)

['__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__',

(omitted for brevity)

'update', 'values']

Convert the device1 dictionary into the Json format using the dumps method. when we print the converted 
Json objects, they look like a python dictionary, but the key difference is that all key and value sets are 
enclosed in double quotation marks.

>>> import json
>>> device2 = json.dumps(device1)
>>> print(device2)
{"device_type": "cisco_ios", "ip": "192.168.183.10", "username": "pynetauto", "password": 

"cisco123"}

>>> print(type(device2))
<class 'str'>

at first glance, you would think that the Json object is the same as the netmiko dictionary object, but it is a 
string object, as revealed by the dir() method. the Json object belongs to python's built-in str class, and of 
course, the netmiko dictionary belongs to the built-in dict class.

>>> dir(device2)
['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', 

'__format__', (omitted for brevity)

, 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 

'translate', 'upper', 'zfill']

# Quickly check if device1 is the same as device2



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

608

>>> if device1 == device2:
...     print(True)
... else:
...     print(False)
...

False

In netmiko lab 1, you will learn how to make a directory and create a file using the TCL shell commands 
on a Cisco router so that you can create dummy files to practice deleting files from the router’s flash:. You 
will be using an IOSv router, LAB-R1, to keep it simple because the actual script you will be writing is starting 
to become complicated, especially if you come from a non-Cisco networking background. Try to focus on 
the concepts rather than how old the IOSv image is. As I explained in the first chapter, the latest and greatest 
tools are good, but they are not required to learn the basic concepts of networking or Python network 
automation. See Figure 14-4.

The purpose of this lab is to get you some practice in deleting files from the Cisco device’s flash: using 
your Python script instead of directly consoling into a Cisco device. You will first format the flash memory of 
LAB-R1, make a directory using the mkdir command, and use good old TCL shell commands to create some 
files to be deleted. We should be able to write Python code that allows us to remove old files and also allows 
us to navigate to a folder to locate the file we are looking for so the Python application can remove the files 
as required. Although you may not see any relation to your work, this feature comes in handy in IOS upgrade 
application development.

Figure 14-4. SSH netmiko lab 1, devices in use



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

609

# Task

1 Open the console window of LAB-R1 and format disk 0 so there are no files.

LAB-R1#format flash:
Format operation may take a while. Continue? [confirm]
Format operation will destroy all data in "flash:".  Continue? [confirm]
Format: All system sectors written. OK...

Format: Total sectors in formatted partition: 4193217
Format: Total bytes in formatted partition: 2146927104
Format: Operation completed successfully.

Format of flash0: complete

LAB-R1#show flash:
-#- --length-- -----date/time------ path
2142711808 bytes available (8192 bytes used)

2 Use mkdir flash:/directory_name to create a directory under flash:.

LAB-R1#mkdir flash:/old_files
Create directory filename [old_files]?
Created dir flash0:/old_files
LAB-R1#dir
Directory of flash0:/

4  drw-           0  Jan 12 2021 08:09:26 +00:00  old_files

2142720000 bytes total (2142707712 bytes free)

3 Now use the good old TCL shell to create four files, as shown here. Two files will be created under 
flash:, and the other two files will be created under flash:old_files/.

LAB-R1#tclsh
LAB-R1(tcl)#puts [open "flash:Delete_me_1.bin" w+]
file0

LAB-R1(tcl)#puts [open "flash:Don't_delete_me_1.txt" w+]
file1

LAB-R1(tcl)#puts [open "flash:old_files/Delete_me_2.bin" w+]
file2

LAB-R1(tcl)#puts [open "flash:old_files/Don't_delete_me_2.txt" w+]
file3

LAB-R1(tcl)#dir
Directory of flash0:/

4  drw-           0  Jan 12 2021 08:09:26 +00:00  old_files
5  -rw-           0  Jan 12 2021 08:11:16 +00:00  Delete_me_1.bin
6  -rw-           0  Jan 12 2021 08:11:24 +00:00  Don't_delete_me_1.txt

2142720000 bytes total (2142707712 bytes free)

(continued)



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

610

# Task

LAB-R1#dir flash:/old_files/
Directory of flash0:/old_files/

7  -rw-           0  Jan 12 2021 08:11:32 +00:00  Delete_me_2.bin
8  -rw-           0  Jan 12 2021 08:11:40 +00:00  Don't_delete_me_2.txt

2142720000 bytes total (2142707712 bytes free)

4 We have completed creating a dummy directory and dummy IOS (.bin) files on LAB-R1’s flash:. 
Let’s write a cool SSH script to log into LAB-R1 using the netmiko library and then delete some .bin 
files using a Python script. Yes, you can log into the CLI of the router and delete the file, but you may 
be asking why bother with such trouble to create this in a Python script? First, as a reader who wants 
to write code for network automation, you have to do the hard work to enjoy the fruits of your labor. 
Second, this script can talk back to you and work together as a team. Lastly, imagine if you were dealing 
with 100 routers or switches, not a single device. Also, imagine you have to do this kind of drill regularly 
as part of your job. Python network automation’s real power is in its loops (for loops and while loops), 
and in the next lab, let’s revise this script to a newer version and use it on multiple devices.

Review the script referencing the embedded descriptions. Once you have finished writing the code, 
move to step 5 to run the script.

GNU nano 4.8                                       /home/pynetauto/ssh_labs/netmiko_delete_me.py
#!/usr/bin/env python3
import re
from netmiko import ConnectHandler
from getpass import getpass
import time

device1 = {                             #Netmiko dictionary for device1
'device_type': 'cisco_ios',
'ip': input('IP Address : '),
'username': input('Enter username : '),
'password': getpass('SSH password : '),
}

net_connect = ConnectHandler(**device1) # Netmiko ConnectHandler object
net_connect.send_command("terminal length 0\n") # Make terminal length to 0 to display all
time.sleep(1) # Pause for 1 second
dir_flash = net_connect.send_command("dir flash:\n") # Send "dir flash:" command
print(dir_flash) # Display content of dir flash output

p30 = re.compile(r'D[0-9a-zA-Z]{4}.*.bin') # Regular Expression to capture any file 
starting with "D", ends with "bin"
m30 = p30.search(dir_flash) # Search for first match of p30
time.sleep(1) # Pause for 1 second

# net_connect1.enable() (Optional, not required with privilege 15 access)
print("!!! WARNING - You cannot reverse this step.") # Message to user
# If dir_flash contains a string which satisfies p30 (True),
# then run this script to delete a file.
if bool(m30) == True: # If m30 is true
     print("If you can see 'Delete_me.bin' file, select it and press Enter.") # 

Informational
    del_cmd = "del flash:/" # Partial command 1



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

611

# Task

    old_ios = input("*Old IOS (bin) file to delete : ") # Partial command 2, select a 
file under flash:
     while not p30.match(old_ios) or old_ios not in dir_flash: # User input request 

until correct file name is given
        old_ios = input("**Old IOS (bin) file to delete : ")
    command = del_cmd + old_ios # Complete command (1 + 2)
     output = net_connect.send_command_timing( # Special netmiko send_command_timing 

command with timer
        command_string=command,
        strip_prompt=False,
        strip_command=False
    )
     if "Delete filename" in output: # if the returned output contains "Delete 

filename", send "Enter" (change line)
        output += net_connect.send_command_timing(
            command_string="\n",
            strip_prompt=False,
            strip_command=False
        )
    if "confirm" in output: # if the returned output contains "confirm", send "y"
        output += net_connect.send_command_timing(
            command_string="y",
            strip_prompt=False,
            strip_command=False
        )
    net_connect.disconnect # Disconnect from SSH session
    print(output) # Informational

# If None (False), then run this script to search directory for .bin file to delete
elif bool(m30) == False: # If no .bin file starting with D is found under "flash:", 
run this script
     print("No IOS file under 'flash:/', select the directory to view.") # Informational
    open_dir = input("*Enter Directory name : ") # Partial command 1
    while not open_dir in dir_flash: # Ask until correct response is received
         open_dir = input("** Enter Directory name : ") # If file does not exist, 

request user input again
    open_dir_cmd = (r"dir flash:/" + open_dir) # Completed command
    send_open_dir = net_connect.send_command(open_dir_cmd) # Send the command
    print(send_open_dir) # Informational
     p31 = re.compile(r'D[0-9a-zA-Z]{4}.*.bin') # Regular Expression to capture any 

file starting with "D", ends with "bin"
    m31 = p31.search(send_open_dir) # Send completed command
    if bool(m31) == True: # If there is a file with the string satisfy p31 expression
         print("If you see old IOS (bin) in the directory. Select it and press 

Enter.") # Informational
        del_cmd = "del flash:/" + open_dir + "/" # Completed command
         old_ios = input("*Old IOS (bin) file to delete : ") # Enter the .bin file to delete
         while not p30.match(old_ios) or old_ios not in send_open_dir: # User input 

request until correct file name is given

(continued)



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

612

# Task

            old_ios = input("**Old IOS (bin) file to delete : ")
        command = del_cmd + old_ios # Complete command
         output = net_connect.send_command_timing( # Special netmiko send_command_

timing command with timer
            command_string=command,
            strip_prompt=False,
            strip_command=False
        )
         if "Delete filename" in output: # if the returned output contains "Delete 

filename", send "Enter" (change line)
            output += net_connect.send_command_timing(
                command_string="\n",
                strip_prompt=False,
                strip_command=False
            )
        if "confirm" in output: # if the returned output contains "confirm", send "y"
            output += net_connect.send_command_timing(
                command_string="y",
                strip_prompt=False,
                strip_command=False
            )
        net_connect.disconnect # Disconnect from SSH session
        print(output) # Print content of output
    else: # Both conditions failed to satisfy, exit the script
        ("No IOS found.")
        exit()
    net_connect.disconnect # Disconnect from SSH session
^G Get Help  ^O Write Out    ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

5 Now, navigate back to your ubuntu20s1 (192.168.183.132) Python server and ping LAB-R1 
(192.168.183.10) to confirm the device’s connectivity. You are still working with the SSH protocol, 
and the netmiko lab is still part of SSH labs, so you should be working within the /home/pynetauto/
ssh_labs directory.

pynetauto@ubuntu20s1:~/ssh_labs$ ping 192.168.183.10 -c 3
PING 192.168.183.10 (192.168.183.10) 56(84) bytes of data.
64 bytes from 192.168.183.10: icmp_seq=1 ttl=255 time=7.37 ms
64 bytes from 192.168.183.10: icmp_seq=2 ttl=255 time=6.73 ms
64 bytes from 192.168.183.10: icmp_seq=3 ttl=255 time=12.9 ms

--- 192.168.183.10 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 6.734/9.016/12.948/2.791 ms
pynetauto@ubuntu20s1:~/ssh_labs$ ls netmiko*
netmiko_delete_me.py



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

613

# Task

6 Now run the script using python netmiko_delete_me.py. When the script returns the output, select 
the .bin file, and press the Enter key to remove it from LAB-R1’s flash.

pynetauto@ubuntu20s1:~/ssh_labs$ python netmiko_delete_me.py
IP Address : 192.168.183.10
Enter username : pynetauto
SSH password :

Directory of flash0:/

  4  drw-           0  Jan 12 2021 08:09:26 +00:00  old_files
  5  -rw-           0  Jan 12 2021 08:11:16 +00:00  Delete_me_1.bin
  6  -rw-           0  Jan 12 2021 08:11:24 +00:00  Don't_delete_me_1.txt

2142720000 bytes total (2142707712 bytes free)
!!! WARNING - You cannot reverse this step.
If you can see 'Delete_me.bin' file, select it and press Enter.
*Old IOS (bin) file to delete : Delete_me_1.bin
del flash:/Delete_me_1.bin
Delete filename [Delete_me_1.bin]?
Delete flash0:/Delete_me_1.bin? [confirm]y
LAB-R1#

7 Now open LAB-R1’s console and check whether the file Delete_me_1.bin has been deleted from 
flash:. If you see only one file and one folder here, you have completed the first task. Move to step 9 
to rerun the same script.

LAB-R1#dir
Directory of flash0:/

  4  drw-           0  Jan 12 2021 08:09:26 +00:00  old_files
  6  -rw-           0  Jan 12 2021 08:11:24 +00:00  Don't_delete_me_1.txt

2142720000 bytes total (2142707712 bytes free)

8 Run the same script for the second time; this time, since there is no .bin file under flash:, a different 
message will be prompted, and you will be asked to select a directory to search for the .bin file. When 
you cut and paste the directory name, it will run the script to look for the elusive .bin file and display 
the result. When the script finds the .bin file, go ahead and remove the Delete_me_2.bin file.

pynetauto@ubuntu20s1:~/ssh_labs$ python netmiko_delete_me.py
IP Address : 192.168.183.10
Enter username : pynetauto
SSH password : ********

Directory of flash0:/

  4  drw-           0  Jan 12 2021 08:09:26 +00:00  old_files
  6  -rw-           0  Jan 12 2021 08:11:24 +00:00  Don't_delete_me_1.txt

2142720000 bytes total (2142707712 bytes free)
!!! WARNING - You cannot reverse this step.
No IOS file under 'flash:/', select the directory to view.
*Enter Directory name : old_files # Enter the directory name

(continued)



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

614

# Task

Directory of flash0:/old_files/

  7  -rw-           0  Jan 12 2021 08:11:32 +00:00  Delete_me_2.bin
  8  -rw-           0  Jan 12 2021 08:11:40 +00:00  Don't_delete_me_2.txt

2142720000 bytes total (2142707712 bytes free)
If you see old IOS (bin) in the directory. Select it and press Enter.
*Old IOS (bin) file to delete : Delete_me_2.bin # Cut and paste the .bin file
del flash:/old_files/Delete_me_2.bin
Delete filename [/old_files/Delete_me_2.bin]?
Delete flash0:/old_files/Delete_me_2.bin? [confirm]y
LAB-R1#

9 Go back to LAB-R1 and run the dir flash:old_files/ command to view the directory content. If 
you see only a single file under the directory, you have completed this lab’s second task.

LAB-R1#dir flash:/old_files/
Directory of flash0:/old_files/

  8  -rw-           0  Jan 12 2021 08:11:40 +00:00  Don't_delete_me_2.txt

2142720000 bytes total (2142707712 bytes free)

10 Now delete the working directory and file as we have completed this lab.

LAB-R1#delete /recursive /force flash:old_files
LAB-R1#delete flash:Don't_delete_me_1.txt
Delete filename [Don't_delete_me_1.txt]?
Delete flash0:/Don't_delete_me_1.txt? [confirm]
LAB-R1#dir
Directory of flash0:/

No files in directory

2142720000 bytes total (2142711808 bytes free)

You have now learned how to write Python code to delete and search for a router’s flash file. You can 
turn your task into a Python script, which is the beginning of Python network automation. Next, we will 
develop a port scanning tool to check an open port and apply it to our work.

 netmiko Lab 2: Develop a Simple Port Scanner Using 
a Socket Module and Then Develop a nemiko Disable  
Telnet Script
In this lab, you will learn how to develop a simple port scanner tool using a socket module and then use this 
scanning tool in your netmiko lab 2 scripts (netmiko_disable_telnet.py) to check for opened port 23 and 
disable the ports using the netmiko library. Earlier, we configured transport input all under line vty 
0 15 to allow both Telnet and SSH connections for all device management. To disable Telnet, you have to 
reconfigure the Virtual Teletype (vty) lines with transport input ssh command. You are going to need all 
the routers and switches powered on for this lab.



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

615

At the end of this lab, you will be able to scan network devices for any open ports; you will check 
whether port 23 (or 22 or any other ports of interest) is in use. Secure your devices by disabling Telnet port 23  
on all devices and only allow SSH connections for device management. Once again, try to concentrate on 
the concepts and develop the tools required to achieve your goal in this lab. See Figure 14-5.

Let’s first develop a mini scanning tool and verify the open ports on our routers and switches. Then 
incorporate the scanning tool into our script, netmiko_disable_telnet.py.

# Task
1 First, you have to create a socket object using socket.socket(family, type) with the family set to 

socket.AF_INET and type set to socket.SOCK_STREAM. According to Python socket programming, 
socket.AF_INET specifies the IP address family for IPv4, and socket.SOCK_STREAM specifies the socket 
type for TCP. To check a port status, use socket.connect_ex(dest) with the socket as the socket object 
and dest as a tuple containing the IP address and desired port number. If the port is open, socket.
connect_ex() returns 0, but if the port is closed, it will return different digits based on the port being 
scanned. At the end of the port scan, you have to close the socket using socket.close().
A simple port scanner template we are going to use looks like this, and it allows us to scan only a 
single device of a single port. If you put this onto your Linux server, create a new file called scan_
open_port.py, and run the code, you will be able to check the port status on a single destination.

pynetauto@ubuntu20s1:~/ssh_labs$ nano scan_open_port.py

GNU nano 4.8                                       /home/pynetauto/ssh_labs/scan_open_port.py
import  socket  # Import socket module

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Create a socket object

Figure 14-5. SSH netmiko lab 2, devices in use

(continued)



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

616

# Task
dest = ("192.168.183.10", 22) # IP and Port to scan
port_open = sock.connect_ex(dest) # Create socket connect object
# open returns int 0, closed returns an integer based on port number
if port_open == 0: # If port is opened, it returns 0
    print(port_open) # print result = 0
    print("On ", {dest[0]}, "port is open.") # Informational
else:
    print(port_open) # print result, an integer other than 0
    print("On ", {dest[0]}, "port is closed.") # Informational
sock.close() # close socket object
^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text     ^J Justify     ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text   ^T To Spell    ^_ Go To Line

When you run the script in your lab on the LAB-R1 (192.168.183.10)  router, the result will look like this:

pynetauto@ubuntu20s1:~/ssh_labs$ python3 scan_open_port.py
0
On  {'192.168.183.10'} port is open.

When you change port 22 (SSH) to 80 (HTTP) and scan the port again, it returns 111 and the “port is 
closed” message.

pynetauto@ubuntu20s1:~/ssh_labs$ python3 scan_open_port.py
111
On  {'192.168.183.10'} port is closed.

2 The previous script works well but does not scale well with our use cases, and we have to modify 
the script to make it more scalable and versatile in our environment. Using the previous script as 
our template, let’s rewrite the script to scan ports of multiple devices at once. My script looks like 
the following, but there is no right or wrong way of coding, so you can also add your flair by making 
modifications as you like. Since this script scans multiple ports, I have named it scan_open_ports.
py (with the plural “s” at the end).

pynetauto@ubuntu20s1:~/ssh_labs$ nano scan_open_ports.py

GNU nano 4.8                                       /home/pynetauto/ssh_labs/scan_open_ports.py
import  socket # Import socket module

ip_addresses = ["192.168.183.10", "192.168.183.20", "192.168.183.101", 
"192.168.183.102", "192.168.183.133"] # IP address list

for ip in ip_addresses: # get ip from the list, ip_addresses
    for port in range (22, 24): # port range, ports 22-23, always n-1 for the last digit
         dest = (ip, port) # combine both ip and port number into one object as socket 

method takes 1 attribute
        try: # Use try except method
             with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: # s as a 

socket object
                sock.settimeout(3) #
                connection = sock.connect(dest) # connect to destination on specified port
                print(f"On {ip}, port {port} is open!") # Informational



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

617

# Task

        except:
            print(f"On {ip}, port {port} is closed.") # Informational
^G Get Help  ^O Write Out    ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

Once you have completed the script as shown, run the script, and the result should be similar to the 
following if you have both Telnet (22) and SSH (23) opened on your network devices. You can also 
specify a different range of ports for another port scanning task.

pynetauto@ubuntu20s1:~/ssh_labs$ python3 scan_open_ports.py
On 192.168.183.10, port 22 is open!
On 192.168.183.10, port 23 is open!
On 192.168.183.20, port 22 is open!
On 192.168.183.20, port 23 is open!
On 192.168.183.101, port 22 is open!
On 192.168.183.101, port 23 is open!
On 192.168.183.102, port 22 is open!
On 192.168.183.102, port 23 is open!
On 192.168.183.133, port 22 is open!
On 192.168.183.133, port 23 is open!

3 In two steps, you have developed a Python port scanner you can use for your work.

 Warning! be careful where and how you use this sort of tool; you do not want to breach company 
security policies at work or your clients’ sites. do not run port scanners if your work does not recommend 
performing port scanning tasks without proper change control and approval.

OK, now you have another tool under your belt; based on the previous script, let’s go ahead and write 
some code to check the port, and if Telnet is enabled on our devices, let the Python application SSH 
in and modify the settings; then save the changed configuration.

pynetauto@ubuntu20s1:~/ssh_labs$ nano netmiko_disable_telnet.py

GNU nano 4.8                    /home/pynetauto/ssh_labs/netmiko_disable_telnet.py
#!/usr/bin/env python3
import re
from netmiko import ConnectHandler
from getpass import getpass
import time
import  socket

def get_credentials():# Enhanced User ID and password collection tool
    #Prompts for, and returns a username and password
    global username # Make username as a global variable to be used throughout this script
    global password # Make password as a global variable to be used throughout this script
    username = input("Enter your username : ")
    password = None
    while not password:
        password = getpass()

(continued)



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

618

# Task

         password_verify = getpass("Retype your password : ") # Verify the password is 
correctly typed

        if password != password_verify:
            print("Passwords do not match. Please try again.")
            password = None
    return username, password

get_credentials()    # Run this function first to collect the username and password

device1 = {                               # Netmiko dictionary for device1
'device_type': 'cisco_ios',
'ip': '192.168.183.10',
'username': username,
'password': password,
}
device2 = {                               # Netmiko dictionary for device2
'device_type': 'cisco_ios',
'ip': '192.168.183.20',
'username': username,
'password': password,
}
device3 = {                               # Netmiko dictionary for device3
'device_type': 'cisco_ios',
'ip': '192.168.183.101',
'username': username,
'password': password,
}
device4 = {                               # Netmiko dictionary for device4
'device_type': 'cisco_ios',
'ip': '192.168.183.102',
'username': username,
'password': password,
}
device5 = {                               # Netmiko dictionary for device5
'device_type': 'cisco_ios',
'ip': '192.168.183.133',
'username': username,
'password': password,
}

devices = [device1, device2, device3, device4, device5] # List of netmiko devices

for device in devices: # Loop through   devices
    ip = device.get("ip", "") # get value of the key "ip"
    for port in range (23, 24): # only port 23
        dest = (ip, port) # Combine ip and port number to form dest object
        try:
             with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: # port 

scanner tool
                sock.settimeout(3) # add 3 seconds pause to socket application
                connection = sock.connect(dest) #
                print(f"On {ip}, port {port} is open!") # Informational
                 net_connect = ConnectHandler(**device) # create a netmiko 

ConnectHandler object
                 show_clock = net_connect.send_command("show clock\n") # Send "show 

clock" command



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

619

# Task

                print(show_clock) # Display time
                 config_commands = ['line vty 0 15', 'transport input ssh'] # netmiko 

config_commands
                 net_connect.send_config_set(config_commands) # send netmiko send_

config_set
                 output = net_connect.send_command("show run | b line vty")# send a 

show command to check vty 0 15
                print()# Informational
                print('-' * 80) # Displayed information separator line
                print(output) # Informational
                print('-' * 80) # Displayed information separator line
                print()# Informational
                net_connect.disconnect() # close netmiko connection

        except:
            print(f"On {ip}, port {port} is closed.")

            # #  This is for saving the configuration after a successful configuration change.
            # net_connect = ConnectHandler(**device) # Commented out for third run
             # write_mem = net_connect.send_command("write mem\n") # Commented out for 

third run
            # print()
            # print('-' * 80)
            # print(write_mem) # Commented out for third run
            # print('-' * 80)
            # print()
            # net_connect.disconnect()
^G Get Help  ^O Write Out    ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

4 Run the netmiko_disable_telnet.py script and update the configuration to disable Telnet logins.

 Warning! if you are using a similar script in the production, make sure that your primary remote console 
management protocol is ssh. you have followed the company policy to remove telnet services using an 
automated script.

pynetauto@ubuntu20s1:~/ssh_labs$ python netmiko_disable_telnet.py
Enter your username : pynetauto
Password: ********
Retype your password : ********
On 192.168.183.10, port 23 is open!

*09:48:17.800 UTC Tue Jan 12 2021

--------------------------------------------------------------------------------
line vty 0 4
logging synchronous
login local
transport input ssh
line vty 5 15
logging synchronous
login local
transport input ssh
!

(continued)



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

620

# Task

no scheduler allocate
ntp server 192.168.183.130
!
end
--------------------------------------------------------------------------------
[... omitted for brevity]
--------------------------------------------------------------------------------
On 192.168.183.133, port 23 is open!

*01:40:37.823 UTC Fri Mar 1 2002
--------------------------------------------------------------------------------
line vty 0 4
exec-timeout 0 0
logging synchronous
login local
transport input ssh
line vty 5 15
exec-timeout 0 0
logging synchronous
login local
transport input ssh
!
!
end
--------------------------------------------------------------------------------

5 Run the script for the second time for verification. Now Telnet is disallowed to the devices, and we 
should get a closed message as follows:

pynetauto@ubuntu20s1:~/ssh_labs$ python3 netmiko_disable_telnet.py
Enter your username : pynetauto
Password:********
Retype your password : ********
On 192.168.183.10, port 23 is closed.
On 192.168.183.20, port 23 is closed.
On 192.168.183.101, port 23 is closed.
On 192.168.183.102, port 23 is closed.
On 192.168.183.133, port 23 is closed.

6 Once the previous task is completed successfully, remove the # (uncomment) from the same code 
under the except: line. Then rerun the Python code to save all five devices’ configurations. Here, I 
am making a copy of the original script and uncommenting the lines at the end of the script:

pynetauto@ubuntu20s1:~/ssh_labs$ cp netmiko_disable_telnet.py netmiko_disable_telnet_
uncommented.py
pynetauto@ubuntu20s1:~/ssh_labs$ nano netmiko_disable_telnet_uncommented.py
pynetauto@ubuntu20s1:~/ssh_labs$ python netmiko_disable_telnet_uncommented.py

After uncommenting, the last lines of code should look like this:

except:
print(f"On {ip}, port {port} is closed.")
# This is for saving the configuration after a successful configuration change.
net_connect = ConnectHandler(**device)



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

621

# Task

write_mem = net_connect.send_command(“write mem\n”)
print()
print('-' * 80)
print(write_mem)
print('-' * 80)
print()
net_connect.disconnect()

7 Run the script one more time to save the currently running configuration.

pynetauto@ubuntu20s1:~/ssh_labs$ python netmiko_disable_telnet_uncommented.py
Enter your username : pynetauto
Password:
Retype your password :
On 192.168.183.10, port 23 is closed.
--------------------------------------------------------------------------------
Building configuration...
[OK]
--------------------------------------------------------------------------------
[... omitted for brevity]
--------------------------------------------------------------------------------
On 192.168.183.133, port 23 is closed.
--------------------------------------------------------------------------------
Building configuration...
[OK]
--------------------------------------------------------------------------------

You just developed a mini port scanning tool and then used it as the template for developing your SSH 
(netmiko) tool to shut down the Telnet ports on all your lab devices. Your lab topology is more secure now, 
and you can only access routers and switches using SSH connections for device management.

 netmiko Lab 3: config compare
In this netmiko lab, you will be developing a quick device configuration comparison tool using difflib libraries. 
The script will borrow parts of the script from the previous lab and use the port scanner as the precheck 
communication verification tool by checking the open port status of port 22 for SSH connection. The running 
configurations of two similar devices will be compared side by side in this lab. If you have been a network 
engineer for some time, you should be familiar with the compare module in Notepad++ and similar tools. You 
have to manually log in to each device and run the show command to scrap the configuration as two separate 
logs or two text files and then open them on Notepad++ and run the compare tool. Once they are compared, 
you have to manually fish out the difference to apply the missing configuration to the second device. Here 
we are developing a tool for legacy devices accessible via an SSH connection; however, with the REST API–
capable network devices, the same comparison can be used to collect the running configuration via API calls. 
The same script can be applied to the set of collected data. Also, suppose you want to take this script further. 
In that case, we can utilize the powerful data modules such as pandas and xlsxwriter to read the lines as data 
frames and extract only the differences between two configurations, so many manual tasks can be automated.

For this lab, you will require access to Lab-R1 (192.168.183.10) and lab-r2 (192.168.183.20). Also, both 
switches as well as transit devices for the routers need to be powered on. You will be using WinSCP to access 
data collected on the ubuntu20s1 Python server. So if you can download and install WinSCP or FileZilla in 
advance for the file retrieval, you are well prepared. See Figure 14-6.



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

622

After you have successfully completed the lab, you will have three files created in your script’s running 
directory: two text files with the running configuration and one XML file with the comparison result. Follow 
these steps to complete this lab:

# Task
1 First, copy the port scanner tool from the previous lab and make the necessary modifications so that 

SSH port 22’s open status is probed by this tool. After you have made changes, the script should look 
similar to the following:

for device in devices: # Loop through netmiko devices list
    ip = device.get("ip", "") # Get value of the key "ip" from device dictionary
    for port in range (22, 23): # For only port 22
        dest = (ip, port) # Combine ip and port number to form dest object
        try:
            with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:
                sock.settimeout(3)
                connection = sock.connect(dest) # Send socket request
                 print (f"on {ip}, port {port} is open!") # Informational, pass object 

using format string {}
        except:
             print (f"On {ip}, port {port} is closed. Check the connectivity to {ip} 

again.")
            exit()

Figure 14-6. SSH netmiko lab 3, devices in use



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

623

# Task

2 Now here is the full source code of the netmiko_compare_config.py script. This application uses 
the getpass module to get the password, time module to add a pause, socket module to probe for 
an open port, difflib to compare the configuration files, and, of course, netmiko’s ConnectHandler 
to connect to two devices via the SSH protocol. Try to type the code on the keyboard to get a feel for 
writing Python code. It is inevitable that while you are coding, you have to spend hours in front of 
your screen and keyboard. For further explanation, refer to the explanation embedded in the code.

GNU nano 4.8                                       /home/pynetauto/ssh_labs/netmiko_compare_config.py
#!/usr/bin/env python3
#---------------------------------------------------# Import required modules

import time
import socket
import difflib
from getpass import getpass
from netmiko import ConnectHandler

#---------------------------------------------------# Borrowed from previous labs
# Functions to collect credentials and IP addresses of devices
def get_input(prompt=''):
    try:
        line = input(prompt)
    except NameError:
        line = input(prompt)
    return line

def get_credentials():
    #Prompts for, and returns a username and password
    username= get_input("Enter Network Admin ID     : ")
    password = None
    while not password:
        password = getpass("Enter Network Admin PWD    : ")
        password_verify = getpass("Confirm Network Admin PWD   : ")
        if password != password_verify:
            print("Passwords do not match. Please try again.")
            password = None
    return username, password
# For IP addresses of comparing devices
def get_device_ip():
    #Prompts for, and returns a first_ip and second_ip
    first_ip = get_input("Enter primary device IP      : ")
    while not first_ip:
        first_ip = get_input("* Enter primary device IP     : ")
    second_ip = get_input("Enter secondary device IP    : ")
    while not second_ip:
        second_ip = get_input("* Enter secondary device IP : ")
    return first_ip, second_ip

#--------------------------------------------------------------------------------
# Run the functions to collect credentials and ip addresses
print("-"*40)
username, password = get_credentials()

(continued)



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

624

# Task

first_ip, second_ip = get_device_ip()
print("-"*40)
#--------------------------------------------------------------------------------
# Netmiko device dictionaries
device1 = {                     # Netmiko dictionary for device1
'device_type': 'cisco_ios',
'ip': first_ip,
'username': username,
'password': password,
}
device2 = {                     # Netmiko dictionary for device2
'device_type': 'cisco_ios',
'ip': second_ip,
'username': username,
'password': password,
}
devices = [device1, device2]

#--------------------------------------------------------------------------------
# Re-use port scanner as a pre-check tool for reachability verification tools.
# If an IP is not reachable, the application will exit due to a communication problem.

for device in devices: # Loop through   devices
    ip = device.get("ip", "") # get value of the key "ip"
    for port in range (22, 23): # only port 22
        dest = (ip, port) # Combine ip and port number to form dest object
        try:
            with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:
                sock.settimeout(3)
                connection = sock.connect(dest)
                print(f"on {ip}, port {port} is open!")
        except:
             print(f"On {ip}, port {port} is closed. Check the connectivity to {ip} 

again.")
            exit()

# Prompt the user to make a decision to run the tool
response = input(f"Make a comparison of {first_ip} and {second_ip} now? [Yes/No]")
response = response.lower()
if response == 'yes':
    print(f"* Now making a comparison : {first_ip} vs {second_ip}") # Informational
    for device in devices: # Loop through   devices
        ip = device.get("ip", "") # Get value of the key "ip"
        try:
            net_connect = ConnectHandler(**device) # Create netmiko connection object
            net_connect.send_command("terminal length 0\n")
             output = net_connect.send_command("show running-config\n") # Run show 

running config
            show_run_file = open(f"{ip}_show_run.txt", "w+") # Create a file
            show_run_file.write(output) # Write output to file
            show_run_file.close() # Close-out the file
            time.sleep(1)
            net_connect.disconnect() # Disconnect SSH connection



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

625

# Task

        except KeyboardInterrupt: # Keyboard Interrupt
            print("-"*80)
else:
    print("You have selected No. Exiting the application.") # Informational
    exit()

#--------------------------------------------------------------------------------
# Compare the two show running config files and display it in html file format.  
# Informational
# Prepare for comparison of the text files
device1_run = f"./{first_ip}_show_run.txt" # Create device1_run object, ./ is present 
working folder
device2_run = f"./{second_ip}_show_run.txt" # Create device2_run object
device1_run_lines = open(device1_run).readlines() # Convert into strings first for comparison
time.sleep(1)
device2_run_lines = open(device2_run).readlines() # Convert into strings first for comparison
time.sleep(1)
# Four arguments required in HtmlDiff function
difference = difflib.HtmlDiff(wrapcolumn=60).make_file(device1_run_lines, device2_run_
lines, device1_run, device2_run)
difference_report = open(first_ip + "_vs_" + second_ip + "_compared.html", "w") # 
Create html file to write the difference
difference_report.write(difference) # Writes the differences to the difference_report
difference_report.close()
print("** Device configuration comparison completed. Please Check the html file to 
check the differences.")
print("-"*80)
time.sleep(1)
^G Get Help  ^O Write Out    ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

3 After completing writing the previous script, use the Python command to run it under the  
ssh_labs directory. After running this interactive application, you should have three files 
automatically created in your Linux Python server’s present working directory (pwd).

pynetauto@ubuntu20s1:~/ssh_labs$ python netmiko_compare_config.py
----------------------------------------
Enter Network Admin ID     : pynetauto
Enter Network Admin PWD    :********
Confirm Network Admin PWD   : ********
Enter primary device IP       : 192.168.183.10
Enter secondary device IP    : 192.168.183.20
----------------------------------------
on 192.168.183.10, port 22 is open!
on 192.168.183.20, port 22 is open!
Make a comparison of 192.168.183.10 and 192.168.183.20 now? [Yes/No]yes
* Now making a comparison : 192.168.183.10 vs 192.168.183.20
** Device configuration comparison completed. Please Check the html file to check 
the differences.
--------------------------------------------------------------------------------

(continued)



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

626

# Task

If you are running into errors or issues, download the source code from my GitHub repository and 
carefully re-examine your code and settings.

Source code downloads URL: https://github.com/pynetauto/apress_pynetauto

Run the ls command on the Python network automation server, and you should find the three files 
under the current working directory.

pynetauto@ubuntu20s1:~/ssh_labs$ ls -lh 192.168*
-rw-rw-r-- 1 pynetauto pynetauto 3.6K Jan 12 21:45 192.168.183.10_show_run.txt
-rw-rw-r-- 1 pynetauto pynetauto  56K Jan 12 21:46 192.168.183.10_vs_192.168.183.20_
compared.html
-rw-rw-r-- 1 pynetauto pynetauto 3.7K Jan 12 21:46 192.168.183.20_show_run.txt

4 Now, using WinSCP or FileZilla, log into the Ubuntu Python automation server with your credentials 
and move the files to your Windows host. If you have not installed the software, please install it here 
before logging in. I am using the SCP protocol with port 22.

URL: https://winscp.net/eng/download.php

Figure 14-7 shows a WinSCP example with an SCP connection (port 22) to the server. Locate the 
three files under /home/pynetauto/ssh_labs/ and drag and drop them to your Windows host PC 
folder.

Figure 14-7. Win-SCP, copying compared and running-config backups to Windows host

https://github.com/pynetauto/apress_pynetauto
https://winscp.net/eng/download.php


Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

627

# Task

12 Now, go to the downloaded folder and open the .html file to review the script’s result. Now you 
can compare any similar devices using this interactive tool. This tool can be modified slightly to 
compare the difference between firewall rules and configuration, and one practical example is 
to use such a tool to compare Palo Alto firewalls. Using its simple XML API call feature, you can 
compare the primary to standby configurations. The same script can also be used to compare the 
configuration before and after a change has been performed on a device. How you want to use the 
tool is totally up to your imagination. See Figure 14-8.

Most new networking devices support REST/XML APIs. However, companies invested millions in 
enterprise network devices that only support Telnet, SSH, and SNMP, which are still under active technical 
support for more years. Network engineers usually start their life in front of a black command-line console 
connected via SSH or Telnet. Now expand your knowledge into network programmability. You first have to 
study different network engineers’ behaviors and understand their decision-making processes sitting in front 
of the dark CLI screen, staring into it. Network automation is not about making robots or bots or software 
to work hard. It is about understanding our behavior as network engineers and seeing where automation 
matters and can help others as technicians. Almost all enterprise networking devices support SSH, so being 

Figure 14-8. Web browser, opening an HTML file for a review



Chapter 14 ■ python network automation Labs: ssh paramiko and netmiko

628

able to automate engineers’ mundane tasks using the power of Python, Python modules, and SSH are still a 
potent tool during this transition period. What is more critical in this new software-defined network (SDN) 
and “cloud for anything” era is understanding the real foundation of what adds more resilience and stability 
to our managed network and how software programming such as Python can take us to the next level.

 Summary
This chapter has focused on the Python network automation of routers and switches using two SSH libraries, 
paramiko and netmiko. You have been introduced to developing smaller tools and then incorporating them 
into a more significant tool to create tools that can empower your work and your team and, in the end, your 
company. You learned how to make configuration changes via SSH, make running-config backups to the 
TFTP server, develop a simple socket port scan tool, apply it to your work, and compare two similar devices 
to locate the differences. Next, you will study how to schedule Python applications to run at the specified 
time and dip your toes in Python SNMPv3. You will be introduced to cron and SNMP exploration labs to get 
you more exposure to how Python can be used in network automation at work.



629
© Brendan Choi 2021 
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_15

CHAPTER 15

Python Network Automation Labs: 
cron and SNMPv3

Eventually, you want to learn Python so you can write code to automate mundane tasks at work. After 
writing your code and developing your scripted application, you will want to run the scripts without you 
being in attendance. There is the Windows Task Scheduler on Windows systems, and on Linux, you have 
cron to help you schedule your script to run at 2 a.m. or to run periodically until you tell your Linux system 
to stop. You can write and schedule scripts to run automatically once you get comfortable with Python 
and Linux. You will also want to explore more about how Python works with SNMP so your company can 
consider SNMP monitoring using an in-house script; you may want to find out how Python interacts with 
SNMP in general. By the end of this chapter, you will be able to clone the GNS3 project, use cron to schedule 
tasks on Linux, and interact with routers and switches using SNMPv3. Along the way, we will borrow a 
Python community member’s publicly shared code to explore SNMPv3 with Python and learn what it can do 
for us. This chapter aims to give you more exposure to different scenarios while practically applying Python 
to network automation scenarios.

 

 Cron and SNMPv3 Labs
You have done well following the first 14 chapters of this book. You can write simple and functioning Python 
scripts for specific networking tasks. You will quickly realize that you need to find a way to run your scripted 
applications without actual user interaction or user intervention, possibly using a task scheduler. You 
probably realize that you might be able to tap into the power of Python automation and apply it to more 
traditional network concepts such as SNMP monitoring; the possibilities are endless. First, in preparation for 
the next chapter, you will learn how to make a real clone of the GNS3 project. 

https://doi.org/10.1007/978-1-4842-6806-3_15#DOI


Chapter 15 ■ python network automation Labs: Cron and snmpv3

630

3 Go to the C:\Users\brendan\GNS3\projects folder and make a copy of the cmllab-basic folder so 
it looks like Figure 15-2.

Figure 15-2. GNS3 project, making a copy of an existing project folder

 Cloning a GNS3 Project for the Next Lab
To prepare for our lab, you will make a true clone of the GNS3 project from Chapter 14. The GNS3 project 
export cloning method helped us to make a new project, but it compromised the original lab’s configuration 
files, so in this sense, it is not a true clone of a GNS3 project. Sometimes this may not be the result you want 
for your labs. You might want to keep the original files intact and create a true clone of an old GNS3 project. 
With project export method of cloning, the original lab becomes unusable as the Dynamips files also get 
exported as the new project is created. A better way to create a new project without compromising the 
original project is to make a real duplicate of the original project folder and then reimport it with another 
name. You want to keep the cmllab-basic project as a fully working project, but at the same time, you do not 
want to create a new GNS3 project from the ground up. Let’s learn how we can achieve this.

# Task
1 If you are still using the cmllab-basic project, first save all the Cisco devices’ running configurations 

using the copy running-config startup-config command. Once the configurations of three 
routers and two switches have been saved, power off all devices normally.

2 Once all routers and switches are powered off, exit GNS3 so both GNS3 and GNS3 VM are closed 
completely. See Figure 15-1.

Figure 15-1. cmllab-basic GNS3 project, exiting GNS3 and GNS3 VM



Chapter 15 ■ python network automation Labs: Cron and snmpv3

631

# Task

4 Go to the desktop of your Windows host PC and double-click the GNS3 icon on the desktop. Wait 
until both GNS3 and GNS3 VM become fully operational. See Figure 15-3.

5 When the project window opens, select “Open a project from disk,” open the C:\Users\brendan\
GNS3\projects\cmllab-basic – Copy folder, select the cmllab-basic GNS3 project file, and then 
click the Open button. See Figure 15-4.

6 Once the copy of the cmllab-basic project is fully launched, wait for the lab to open correctly and 
then select GNS3’s File ➤ Save project as. See Figure 15-5.

Figure 15-4. GNS3, selecting “Open a project from disk”

Figure 15-5. GNS3, “Save project as” menu item

(continued)

Figure 15-3. GNS3 start desktop icon



Chapter 15 ■ python network automation Labs: Cron and snmpv3

632

# Task

7 Name your project and save the new project as cmllab-devops. See Figure 15-6.

8 Now, go back to the C:\Users\brendan\GNS3\projects folder, and you will find a new project 
folder called cmllab-devops. The temporary folder has served its purpose and has now become 
redundant; you can go ahead and delete the cmllab-basic – Copy folder permanently. See 
Figure 15-7.

Figure 15-6. GNS3, saving as a new project

Figure 15-7. GNS3, deleting the redundant copy



Chapter 15 ■ python network automation Labs: Cron and snmpv3

633

# Task

9 Open the cmllab-devops folder, and you will find your new GNS3 project file with the correct name. 
Now power up all devices and check their running configurations. You have successfully made a true 
clone of the last GNS3 project. See Figure 15-8.

Figure 15-8. GNS3, fully cloned cmllab-devops project

(continued)



Chapter 15 ■ python network automation Labs: Cron and snmpv3

634

# Task

10 To prepare you for the next part of our exploration, you will now add two more switches, as shown 
in Figure 15-9. First, delete PC1 (VPCS) and replace it with Lab-sw3 with a random IP address of 
192.168.183.153/24 and with Lab-SW4 with a random IP address 192.168.183.244/24. Power on new 
switches and let the CPU and memory settle down. Also shown is a Cisco CSR 1000v router to be 
installed on VMware for a later IOS upgrade lab; this icon is only a placeholder, so you do not have to 
worry about the csr1000v router until the next chapter.

11 While you are configuring the new switches, run an extended ping from LAB-R1 and lab-r2: ping 
ip 192.168.183.153 repeat counter 10000" and "ping ip 192.168.183.244 repeat counter 
10000. Let the ping run continuously in the background.

LAB-R1#ping ip 192.168.183.153 repeat 10000
Type escape sequence to abort.
Sending 10000, 100-byte ICMP Echos to 192.168.183.153, timeout is 2 seconds:
.....................................................................................
lab-r2#ping ip 192.168.183.244 repeat 10000
Type escape sequence to abort.
Sending 10000, 100-byte ICMP Echos to 192.168.183.244, timeout is 2 seconds:
.........................................

Figure 15-9. GNS3, adding two new switches



Chapter 15 ■ python network automation Labs: Cron and snmpv3

635

# Task

12 Once the switches are powered on, configure both switches using the following configurations. 
Make sure you disable IP routing on both switches and configure the gateway of the last resort. For 
LAB-sw3, the outbound traffic will go through LAB-R1, and for Lab-SW4, the unknown traffic will go 
through R1 first.

Lab-sw3 configuration:

Switch>en
Switch#configure terminal
Switch(config)#hostname Lab-sw3
Lab- sw3 (config)#no ip routing
Lab-sw3(config)#ip default-gateway 192.168.183.10 !Route unknown destination to 
LAB-R1
Lab- sw3 (config)#enable password cisco123
Lab-sw3(config)# username pynetauto privilege 15 secret cisco123
Lab-sw3(config)#line vty 0 15
Lab-sw3(config-line)#login local
Lab-sw3(config-line)#transport input all
Lab-sw3(config-line)#exit
Lab-sw3(config)#ip domain name pynetauto. local
Lab-sw3(config)#crypto key generate rsa !use 1024 bits
Lab-sw3(config)#interface vlan 1
Lab-sw3(config-if)#description "Native interface" !For later SNMP lab
Lab-sw3(config-if)#ip address 192.168.183.153 255.255.255.0
Lab-sw3(config-if)#no shut
Lab-sw3(config-if)#interface GigabitEthernet0/0
Lab-sw3(config-line)#description "1GB Main Connection" !For later SNMP lab
Lab-sw3(config-if)#end
Lab-sw3#copy running-config startup-config

Lab-SW4 configuration:

Switch>en
Switch#configure terminal
Switch(config)#hostname Lab-SW4
Lab-SW4(config)#no ip routing
Lab-SW4(config)#ip default-gateway 192.168.183.133 !Route unknown destination to R1
Lab-SW4(config)#enable password cisco123
Lab-SW4(config)#username pynetauto privilege 15 secret cisco123
Lab-SW4(config)#line vty 0 15
Lab-SW4(config-line)#login local
Lab-SW4(config-line)#transport input all
Lab-SW4(config-line)#exit
Lab-SW4(config)#ip domain name pynetauto. local
Lab-SW4(config)#crypto key generate rsa !use 1024 bits
Lab-SW4(config)#interface vlan 1
Lab-SW4(config-if)#ip address 192.168.183.244 255.255.255.0
Lab-SW4(config-if)#no shut
Lab-SW4(config-if)#end
Lab-SW4# copy running-config startup-config

(continued)



Chapter 15 ■ python network automation Labs: Cron and snmpv3

636

# Task

13         After the configuration has been completed, you will get the new switches’ ping responses. To stop and 
escape the continuous (extended) ping (or traceroute) request, use the Ctrl+^ or Ctrl+Shift+6 key.

LAB-R1#ping ip 192.168.183.153 repeat 10000

Type escape sequence to abort.
Sending 10000, 100-byte ICMP Echos to 192.168.183.153, timeout is 2 seconds:
......................................................................
..........................................!!!!!!!!!!!!!!!!!!!!
Success rate is 85 percent (102/115), round-trip min/avg/max = 17/25/55 ms

lab-r1#ping ip 192.168.183.244 repeat 10000

Type escape sequence to abort.
Sending 10000, 100-byte ICMP Echos to 192.168.183.244, timeout is 2 seconds:
......................................................................
.... !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Success rate is 88 percent (102/115), round-trip min/avg/max = 12/21/44 ms

 remember the Ctrl+shift+6 keys. if your router or switch hangs or you want to interrupt an operation, 
you can use this key combination to exit from the operation.

14         To confirm that all unknown outbound destinations from the new switches are routing through 
LAB-R1 and R1 routers, respectively, try to use clear arp and traceroute on Google’s public DNS, 
8.8.8.8 or 8.8.4.4.

 if you have issues pinging the Google dns, there might be an issue with your internet’s dns or you have 
not configured your devices correctly. another possibility is windows’ latest update causing Gns3 to 
malfunction and breaking the loopback interface used by Gns3. even if you cannot ping the dns ip address, 
leave it for now and move onto the next section.

Lab-sw3#clear arp
Lab-sw3#traceroute 8.8.8.8
Type escape sequence to abort.
Tracing the route to 8.8.8.8
VRF info: (vrf in name/id, vrf out name/id)
    1 192.168.183.10 36 msec 22 msec 16 msec
    2 192.168.183.2 43 msec *  *
    3  *  *  *
[omitted for brevity]
30  *  *  *

Lab-SW4#clear arp
Lab-SW4#traceroute 8.8.4.4
Type escape sequence to abort.
Tracing the route to 8.8.4.4



Chapter 15 ■ python network automation Labs: Cron and snmpv3

637

# Task

VRF info: (vrf in name/id, vrf out name/id)
    1 192.168.183.133 1020 msec 41 msec 6 msec
    2 192.168.183.2 38 msec *  *
    3  *  *  *
[omitted for brevity]
30  *  *  *

If you have completed the previous tasks, then you are ready to do more labs. At the end of the previous 
task, you should have two more IOSvL2 switches in your topology. Let’s log into your Linux servers and 
master how to use Linux task scheduler, cron.

 Quick-Start to the Linux Scheduler, cron
Earlier in this book, you were introduced to some Linux basics, and you also got familiar with building a 
Linux server to function as a server for multiple IP services. As you discover Linux, you will quickly realize 
that many of the things you could not or were not allowed to do on Windows operating systems suddenly 
become possible with Linux systems. It allows you to install features and services quickly, and your IP 
services can be up and running in no time. If you are a Windows person, you will remember the good old 
Windows Task Scheduler; as the name suggests, Windows also has a task scheduler tool.

Linux has the equivalent task scheduler, but it is called cron (without a GUI). cron is the equivalent of 
the Windows Task Scheduler, but its operation is much simpler, reliable, and incredibly agile as it carries no 
burden of a GUI. Linux’s cron tool is Linux’s default tool for task scheduling. It can perform Linux’s native 
command executions and set applications such as Python scripts to run at set intervals. Skilled Linux system 
administrators do a lot of work using automated shell-based scripting or other programming languages   
when working with system monitoring and backup tasks. To help with this task, the most commonly used 
tool in Linux is the cron tool, which serves the same purpose as Windows Task Scheduler for Windows 
systems. As you finish writing Python applications (scripts), you have to learn how to schedule your scripts 
to run at specific times and in a specific cycle for repetitive tasks, so it is essential that you master how to 
use cron and correctly run the scheduled tasks. Of course, if the company you work for has a bottomless IT 
budget, there is always an easy way out by purchasing an out-of-the-box task scheduler, but when they have 
hired smart people like you, why should your company pay for these free and open source tools?

In this section, you will be learning how to schedule tasks using cron in both Ubuntu and CentOS 
systems. The basic syntax is almost identical, but there are enough variations to treat them differently.

 Ubuntu 20.04 LTS Task Scheduler: crontab
On a Ubuntu 20.04 server, cron is called crontab. You will write a greeting Python application and use it 
to learn task scheduling with Ubuntu’s crontab. You will be required to follow the tasks on your Ubuntu 
virtual server. What you have learned here to schedule a simple script can also be used to schedule more 
complicated scripts. The script’s difficulty does not matter while scheduling a task; creating a script schedule 
is relatively straightforward.



Chapter 15 ■ python network automation Labs: Cron and snmpv3

638

# Task

1 First, make a new directory to place your script in, write the three-line Python code for crontab 
testing, and save it as print_hello_friend.py. You can change the greeting in your script. Here we 
will import the datatime module from the datetime library and put the print (datetime.now()) 
statement before printing hello. Since I am from Australia, my favorite greeting is “G’day mate.”

pynetauto@ubuntu20s1:~$ mkdir my_cron
pynetauto@ubuntu20s1:~$ cd my_cron
pynetauto@ubuntu20s1:~/my_cron$ nano print_hello_friend.py
pynetauto@ubuntu20s1:~/my_cron$ cat print_hello_friend.py
from datetime import datetime
print(datetime.now())
print("G'day Mate!")

2 Next, run the code once to check that it prints out the time and your “hello” statement.

pynetauto@ubuntu20s1:~/my_cron$ python3 print_hello_friend.py
2021-01-13 14:01:40.770547
G'day Mate!

3 Now you are going to use crontab to schedule this Python code to run. Before you can create a 
schedule, you are going to learn how to use crontab quickly. First, you have to choose whether you 
want to run the script as a standard user or a root user. Second, decide whether you want to run 
your Python code in a nonexecutable file mode or change it to executable and then run it. You have 
already learned how to turn a nonexecutable file into an executable on a Linux server. If you have 
decided to run crontab as a nonroot Linux user, you must execute the crontab -e command with 
the leading sudo command so that you can type in sudo crontab –e. On the other hand, if you have 
decided to run crontab as the root user, you do not need to affix the sudo command.

a. non-root user crontab scheduler execution

pynetauto@ubuntu20s1:~/my_cron$ sudo crontab -e

b. root user crontab scheduler execution

pynetauto@ubuntu20s1:~/my_cron$  crontab -e

4 To make cron to execute your script correctly, you need to check the Python executable file location 
and run the which python3 or which python3.8 command to confirm the directory. Also, run the 
pwd command to check your working directory for your Python script.

pynetauto@ubuntu20s1:~/my_cron$ which python3.8
/usr/bin/python3.8
pynetauto@ubuntu20s1:~/my_cron$ pwd
/home/pynetauto/my_cron



Chapter 15 ■ python network automation Labs: Cron and snmpv3

639

# Task

5 Next, run crontab using the crontab -e command to open the crontab scheduler. The pynetauto 
user is a sudoer to run the command without the sudo command. When you use the crontab -e 
command for the first time, a message will pop up to select the text editor of your choice. Choose the 
easiest or the recommended one, which is a nano text editor, 1.

pynetauto@ubuntu20s1:~/my_cron$ crontab -e
no crontab for pynetauto - using an empty one

Select an editor.  To change later, run 'select-editor'.
    1. /bin/nano        <---- easiest
    2. /usr/bin/vim.basic
    3. /usr/bin/vim.tiny
    4. /bin/ed

Choose 1-4 [1]: 1

6 After selecting nano as your text editor for the crontab scheduler, press the Enter key to open the 
crontab scheduler file, as shown next. Quickly browse the information and move your cursor to the 
bottom line of the file. Type in exactly what is shown here and save the file. You will learn more about 
cron time formats later, so you do not know what each line or each character means. For now, you 
must try it first with your own hands.

[…omitted for brevity]
# For more information see the manual pages of crontab(5) and cron(8)
#
# m h  dom mon dow   command
* * * * * /usr/bin/python3.8 /home/pynetauto/my_cron/print_hello_friend.py >>  
/home/pynetauto/my_cron/cron.log

7 Next, wait for one to two minutes. You should see that a logging file called cron.log is automatically 
created under your /home/pynetauto/my_cron directory.

pynetauto@ubuntu20s1:~/my_cron$ ls -lh
total 8.0K
-rw-rw-r-- 1 pynetauto pynetauto 39 Jan 13 14:09 cron.log
-rw-rw-r-- 1 pynetauto pynetauto 73 Aug 27 22:48 print_hello_friend.py

Check the cron.log file with the cat command to check if the crontab is running normally. You will 
see that the cron job is running every minute, and the greeting is recorded in the cron.log file. So, 
now you have learned that the five stars (* * * * *) in the crontab –e meant every minute.

pynetauto@ubuntu20s1:~/my_cron$ cat cron.log
2021-01-13 14:09:01.393031
G'day Mate!
2021-01-13 14:10:01.423129
G'day Mate!

8 To check your cron job, use the crontab –l command. Specify the user is an option if you are 
already logged in as the user. There is no cron job under the root user, so use it to check another 
user’s cron schedule.

pynetauto@ubuntu20s1:~/my_cron$ crontab -l
* * * * * /usr/bin/python3.8 /home/pynetauto/my_cron/print_hello_friend.py >>  
/home/pynetauto/my_cron/cron.log

(continued)



Chapter 15 ■ python network automation Labs: Cron and snmpv3

640

# Task

pynetauto@ubuntu20s1:~/my_cron$ sudo crontab -u root -l
[sudo] password for pynetauto:**********
no crontab for root

9 To manage another user’s cron job, you can run sudo crontab –u user_name –l. To modify time 
intervals or cancel another user’s cron job, use sudo crontab –u user_name –e and make the 
required time changes. If the user does not have any cron job, it will return the no crontab for 
user_name message.

pynetauto@ubuntu20s1:~$ sudo crontab -u pythonadmin -e
pynetauto@ubuntu20s1:~$ sudo crontab -u pythonadmin -l
no crontab for pythonadmin

10 Finally, to cancel (deactivate) the currently running crontab schedule, open the scheduler file with 
crontab -e, add # in front of a specific cron task line, delete the line in question, and save the file. 
Another way to control crontab’s cron job is to stop/start/restart the crontab service by using the 
service cron stop, service cron start, and service cron restart commands.

# * * * * * /usr/bin/python3.8 /home/pynetauto/my_cron/print_hello_friend.py >>  
/home/pynetauto/my_cron/cron.log

 in step 6, each time cron job runs and executes the script, the activity is logged to the cron.log file. but, 
what do the two right arrows or greater-sign symbols (>>) mean here? what if a single arrow was used? Let’s 
check the difference.

* * * * * /usr/bin/python3.8 /home/pynetauto/my_cron/print_hello_friend.py >>  
/home/pynetauto/my_cron/cron.log

using two right arrows appends the logs in the next line. so, the previous content is not overwritten.

pynetauto@ubuntu20s1:~/my_cron$ cat cron.log

...
2021-01-13 14:39:01.318529
G'day Mate!
2021-01-13 14:40:01.348718
G'day Mate!
...

if only one right arrow was used as shown here, the previous content would be overwritten entirely, and only the 
last executed content would be recorded to the file. try it for yourself and check it out with your own eyes.

* * * * * /usr/bin/python3.8 /home/pynetauto/my_cron/print_hello_friend.py >  
/home/pynetauto/my_cron/cron.log

pynetauto@ubuntu20s1:~/my_cron$ cat cron.log
2021-01-13 14:44:01.467980

G'day Mate!



Chapter 15 ■ python network automation Labs: Cron and snmpv3

641

 CentOS8.1 Task Scheduler: crond
There are some minor differences between the CentOS and Ubuntu cron versions. You have to become 
familiar with both Red Hat and Debian-derived Linux OSs in production as they are most commonly found 
Linux OS in the enterprise IT ecosystems. Similar to Ubuntu’s crontab, CentOS offers a cron called crond. 
Follow the instructions here in your CentOS 8.1 server to learn how to use crond. To complete the following 
tasks, log into centos8s1 via an SSH connection. You will need some or all routers and switches running in 
your lab topology. See Figure 15-10.

# Task
1 In the earlier chapter, you were introduced to probing a specific port (port 22); here, you will learn 

how to ping an IP address from your Linux server using a Python script. Let's create a simple ICMP 
pinging script and make it ping all IP addresses in our network and log it to the cron.log file. This 
time, we will create an external text file called ip_addresses.txt to read each device’s IP addresses 
and then ping three times and record the activity to the cron.log file.
First, create two files, ip_addresses.txt and ping_sweep1.py, following these instructions:

[pynetauto@centos8s1 ~]$ mkdir icmp_sweeper
[pynetauto@centos8s1 ~]$ cd icmp_ sweeper
[pynetauto@centos8s1 icmp_ sweeper]$ touch ip_addresses.txt
[pynetauto@centos8s1 icmp_ sweeper]$ nano ip_addresses.txt

Figure 15-10. centos8s1, crond lab required equipment

(continued)



Chapter 15 ■ python network automation Labs: Cron and snmpv3

642

# Task
ip_addresses.txt

192.168.183.10
192.168.183.20
192.168.183.101
192.168.183.102
192.168.183.133
192.168.183.153
192.168.183.244

Create a ping_ip_add.py file and start writing your code. It is important that you type this code 
yourself to get enough practice.

[pynetauto@centos8s1 icmp_ sweeper]$ nano ping_sweep1.py

ping_sweep1.py

#!/usr/bin/python3 # shebang line to tell Linux to run this file as Python3 
application

import os # import os module
import datetime # import datetime module

with open("/home/pynetauto/icmp_sweeper/ip_addresses.txt", "r") as ip_addresses: 
#with open closes file automatically, read the file from specified directory

print("-"*80) # Divider
print(datetime.datetime.now()) # Print current time
for ip_add in ip_addresses: # Use a simple for loop through each line in a file 
to get ip

ip = ip_add.strip() # Remove any white spaces
rep = os.system('ping -c 3 ' + ip) # Use Linux OS to send 3 ping (ICMP) 
messages
if rep == 0: # response 0 means up

print(f"{ip} is reachable.") # Informational
else: # response is not 0, then there maybe network connectivity issue

print(f"{ip} is either offline or icmp is filtered.") # Informational

print("-"*80) # Divider
print("All tasks completed.")

The previous script will print the current time and then ping each IP address three times. Then if it 
is on the network, it will print “IP is reachable.” Otherwise, it will print “IP is either offline or icmp is 
filtered.”



Chapter 15 ■ python network automation Labs: Cron and snmpv3

643

# Task

2 This time, make the Python script an executable file so the code is simplified when scheduling in 
crond. First, check the user permissions for the script. Use the chmod +x command to make the file 
executable and check the permission again. The file’s color should turn green after running the 
chmod command and x’s added to the file attributes.

[pynetauto@centos8s1 icmp_sweeper]$ ls -l
total 8
-rw-rw-r--. 1 pynetauto pynetauto 110 Jan 13 15:03 ip_addresses.txt
-rw-rw-r--. 1 pynetauto pynetauto 954 Jan 13 15:02 ping_sweep1.py
[pynetauto@centos8s1 icmp_sweeper]$ chmod +x ping_sweep1.py
[pynetauto@centos8s1 icmp_sweeper]$ ls -l
total 8
-rw-rw-r--. 1 pynetauto pynetauto 110 Jan 13 15:03 ip_addresses.txt
-rwxrwxr-x. 1 pynetauto pynetauto 954 Jan 13 15:02 ping_sweep1.py

3. CentOS’s crond has two noticeable differences from Ubuntu’s crontab. The first obvious difference 
is the name, and also, when you have to reinstall cron on CentOS, you have to use the name sudo 
yum install cronie to install crond. You can use the rpm -q cronie command to check the crond 
version on CentOS.

[pynetauto@centos8s1 icmp_pinger]$ rpm -q cronie
cronie-1.5.2-4.el8.x86_64

The second difference is where the cron job is scheduled. Unlike Ubuntu, CentOS’s crond schedules 
tasks directly in the /etc/crontab file, as shown here:

[pynetauto@centos8s1 icmp_sweeper]$ cat /etc/crontab
HELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root

# For details see man 4 crontabs

# Example of job definition:
# .---------------- minute (0 - 59)
# |  .------------- hour (0 - 23)
# |  |  .---------- day of month (1 - 31)
# |  |  |  .------- month (1 - 12) OR jan,feb,mar,apr ...
# |  |  |  |  .---- day of week (0 - 6) (Sunday=0 or 7) OR 
sun,mon,tue,wed,thu,fri,sat
# |  |  |  |  |
# *  *  *  *  * user-name  command to be executed

(continued)



Chapter 15 ■ python network automation Labs: Cron and snmpv3

644

# Task

4 Next, use the systemctl status crond command to check whether the crond service is 
operational.

[pynetauto@centos8s1 icmp_sweeper]$ systemctl status crond
● crond.service - Command Scheduler
  Loaded: loaded (/usr/lib/systemd/system/crond.service; enabled; vendor prese>
  Active: active (running) since Wed 2021-01-13 14:55:14 AEDT; 19min ago
Main PID: 1405 (crond)
  Tasks: 6 (limit: 11166)
  Memory: 4.4M
  CGroup: /system.slice/crond.service
     ├─1405 /usr/sbin/crond –n
[...omitted for brevity]

5 When scheduling a shell command or Python script to run on CentOS crond, you can configure and 
schedule cron commands in different formats. For example, just as in the Ubuntu example earlier, 
you could use a full path method to schedule a cron job. In CentOS 8.1, the same method will work, 
as shown here:

[pynetauto@centos8s1 icmp_sweeper]$ which python3.6
/usr/bin/python3.6
[pynetauto@centos8s1 icmp_ sweeper]$ pwd
/home/pynetauto/icmp_pinger
[pynetauto@centos8s1 icmp_ sweeper]$ sudo nano /etc/crontab
[... omitted for brevity]
*/5 * * * * root /usr/bin/python3.6 /home/pynetauto/icmp_sweeper/ping_sweep1.py >>  
/home/pynetauto/icmp_sweeper/cron.log 2>&1

Here we are making the Python script an executable file and running it without specifying the 
application location. Your Python script must have the first shebang line (#!/usr/bin/python3) 
included in the script. Also, note that you have to specify a user to run the script; since /etc/
crontab is a root user file, it is easiest to run the script as the root user, so when you schedule the 
task, make sure that the root user is specified for the cron job to run successfully. Now, open etc/
crontab and schedule your ICMP script to send pings to all routers and switches in your lab every 
five minutes. */5 * * * * denotes every fifth minute. The script will run at 0, 5, 10, 15, 20, 25, 30, 
35, 40, 45, 50, 55, and again 0 or 60th minutes until you pause or remove the cron job.

[pynetauto@centos8s1 icmp_pinger]$ sudo nano /etc/crontab

[... omitted for brevity]

*/5 * * * * root /home/pynetauto/icmp_sweeper/ping_sweep1.py >> /home/pynetauto/
icmp_sweeper/cron.log 2>&1



Chapter 15 ■ python network automation Labs: Cron and snmpv3

645

# Task

6 Finally, open the cron.log file under the current working directory and check that the 
communication check task is taking place every five minutes. You may have to wait for five minutes 
for the cron.log file to appear in your working directory, and when you view the file, it would look 
similar to this:

[pynetauto@centos8s1 icmp_sweeper]$ ls -lh
total 12K
-rw-r--r--. 1 root      root      3.2K Jan 13 15:35 cron.log
-rw-rw-r--. 1 pynetauto pynetauto  110 Jan 13 15:03 ip_addresses.txt
-rwxrwxr-x. 1 pynetauto pynetauto  886 Jan 13 15:35 ping_sweep1.py
[pynetauto@centos8s1 icmp_pinger]$ cat cron.log
PING 192.168.183.10 (192.168.183.10) 56(84) bytes of data.
64 bytes from 192.168.183.10: icmp_seq=1 ttl=255 time=15.8 ms
64 bytes from 192.168.183.10: icmp_seq=2 ttl=255 time=15.8 ms
64 bytes from 192.168.183.10: icmp_seq=3 ttl=255 time=21.9 ms

--- 192.168.183.10 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 6ms
rtt min/avg/max/mdev = 15.768/17.798/21.850/2.865 ms

[... omitted for brevity]

PING 192.168.183.244 (192.168.183.244) 56(84) bytes of data.
64 bytes from 192.168.183.244: icmp_seq=2 ttl=255 time=8.33 ms
64 bytes from 192.168.183.244: icmp_seq=3 ttl=255 time=7.81 ms

--- 192.168.183.244 ping statistics ---
3 packets transmitted, 2 received, 33.3333% packet loss, time 7ms
rtt min/avg/max/mdev = 7.808/8.070/8.333/0.277 ms
--------------------------------------------------------------------------------
2021-01-13 15:35:01.973235
192.168.183.10 is reachable.
192.168.183.20 is reachable.
192.168.183.101 is reachable.
192.168.183.102 is reachable.
192.168.183.133 is reachable.
192.168.183.153 is reachable.
192.168.183.244 is reachable.
--------------------------------------------------------------------------------

All tasks are completed.

7 At the end of this lab, make sure you go back to the /etc/crontab file and add # to the beginning of 
each line to deactivate it. You can optionally delete the line and then save the changes.



Chapter 15 ■ python network automation Labs: Cron and snmpv3

646

 out of the box, crontab is much easier to use than crond. also, it has the flexibility of scheduling cron jobs 
under different user accounts, so many users will find crontab more intuitive to use. if you are like me, you can 
choose to install crontab on the Centos8.1 server using the following Linux commands. but note that, in the 
production environment, some old Linux servers are not connected to the internet, and you may have to use 
crond to schedule the tasks, so it is always good to know the difference between different cron tools on 
different Linux operating systems. anyway, to install crontab on your Centos8 vm, follow these commands:

[pynetauto@centos8s1 ~]$ sudo dnf update
[pynetauto@centos8s1 ~]$ sudo dnf install crontabs
[pynetauto@centos8s1 ~]$ sudo systemctl enable crond.service
[pynetauto@centos8s1 ~]$ sudo systemctl start crond.service

 ■ Note dnf (aka the next-generation package management utility for rpm-based distributions) will be 
replacing old yum package management utilities in the Fedora, Centos, and red hat distributions.

Next, let’s review the cron job definitions or the five asterisks.

 Learn cron Job Definitions with Examples
To use Linux cron effectively, you must understand the meaning of the five stars (asterisks) at the beginning 
of each cron job line. If you are an existing cron user and understand what five asterisks denote and how 
they are used, that is great; then you can move to the next section. If you are new to cron, please read the 
rest of this section to grasp the meaning of the five asterisks. The following snippet is straight from the /
etc/crontab file from CentOS; this is all you need to know to understand how a command, script, or task is 
scheduled on cron:

# Example of job definition:
# .---------------- minute (0 - 59)
# |  .------------- hour (0 - 23)
# |  |  .---------- day of month (1 - 31)
# |  |  |  .------- month (1 - 12) OR jan,feb,mar,apr ...
# |  |  |  |  .---- day of week (0 - 6) (Sunday=0 or 7) OR sun,mon,tue,wed,thu,fri,sat
# |  |  |  |  |
# *  *  *  *  * user-name  command to be executed

For ease of explanation, all exercises will be based on crontab rather than crond, so open your crond in 
Ubuntu 20 LTS.

Generally, a default cron job begins with five stars (asterisks). These five stars relate to the frequency of 
task run, or, in other words, the time and date interval of a certain task. After the five values is the command 
(CMD) required to run a specific task. Here’s an example:



Chapter 15 ■ python network automation Labs: Cron and snmpv3

647

Minute Hour Day of month Month Day of week CMD

0 1 31 12 * /home/pynetauto/ny_eve.py >> ~/cron_time.log

Table 15-1 is the tabulated version of the example of a job definition shown earlier.

Depending on your Linux OS type, each command also has slightly different variations, but they are 
almost identical for the most part. If these values use another format, you should refer to the OS distributor’s 
documentation for different time unit variations. Let’s study some more examples to get an understanding of 
the cron schedule’s job definitions. The following examples cover the most common job definitions. If you 
have a different requirement, you can make variations to the following examples and use them in your cron 
job scheduling.

# Examples

(Alternatives in Brackets)

Explanation

1 * * * * * The five asterisks are the default value, which tells the Linux 
system to execute a task every minute. You have used the 
five asterisks to run a Python script already.

2 15 03 25 03 * At 3:15 on the 25th day of March.

3 15 1,13 * * * At 1:15 a.m. and 1:15 p.m.

4 00 07-11 * * * On the hour between 7 a.m. to 11 a.m. (every day)

5 00 07-11 * * 1-5 Same as example 4, but only run on the weekdays (1 = Mon, 
to 5 = Fri)

6 0 2 * * 6,0 At 2 a.m. on Saturdays and Sundays only

7 00 23 * * 1
(00 23 * * Mon)

At 11 p.m. on Mondays

8 0/5 * * * * At every 5th minute, every 5 minutes

9 0/15 * * * * At every 15th minute, every quarter of an hour

10 0/30 * * * * At every 30th minute, every half an hour

11 0 0 * 1/1 * At midnight on the first day of each month

12 0/10 * * * 0  (0,10,20,30,40,50 
* * * 0)

At every 10th minute; supported on newer cron versions
At every 10th minute; supported on older cron versions

Table 15-1. Linux crontab: Time Unit

Unit Available Values Conversion
Min of an hour 0–59 minutes 1 hour = 60 minutes

Hour of a day 0–23 hours 1 day = 24 hours

Day of month 1–31 days 1 month = 28–31 days

Month 1–12 or Jan, Feb, Mar, Apr…Dec Jan, Feb, Mar, Apr…

Day of week 0–6 1 week = 7 days

CMD Command to run N/A

(continued)



Chapter 15 ■ python network automation Labs: Cron and snmpv3

648

13 @reboot After rebooting

14 @hourly
(0 * * * *)

At minute 0

15 @daily
(@midnight)
(0 0 * * *)

At 00:00 (midnight)

16 @weekly
(0 0 * * 0)

At midnight every Sunday

17 @monthly
(0 0 1 * *)

At midnight, first day of the month

18 @yearly
(@annually)
(0 0 1 1 *)

At midnight on January 1st every year

 a more detailed description of cron can also be found on wikipedia. you can learn more about cron and 
how to use cron by visiting the following wikipedia site.

urL: https://en.wikipedia.org/wiki/Cron

and, you can learn more about how to use cron practically by using one of the cron maker sites listed here:

urL: http://www.cronmaker.com/

urL: https://crontab.guru/

urL: http://corntab.com/

In this section, you configured and completed scheduling for simple Python scripts using Linux cron, 
and then you learned the meanings behind the five stars using examples. For now, you do not have to 
comprehend the cron definitions by heart; you can always come back to this page as a reference. Next, you 
will be revisiting SNMP basics to get you ready for Python interaction with SNMPv3 on network devices and 
discuss how Python can be used for system monitoring using SNMPv3.

 Using Python to Run an SNMPv3 Query
Although SNMP is used everywhere for enterprise network monitoring, it is an under-appreciated 
technology that keeps checking our network all the time. Not many network engineers pay much attention 
to how SNMP works in depth or what it does because it works seamlessly. We really cannot blame engineers 
for being ignorant about SNMP as network monitoring is considered an entry-level engineer job. When 
you move up the ladder, you focus more on the client services as the number-one priority and then the 
design, implementation, and consulting parts of network administration. But, should you know how Python 
interacts with SNMP? The answer is yes!

In this section, you will quickly review SNMP concepts to get you up to speed and then borrow some 
Python SNMPv2c code to rewrite the code to interact with the network devices using SNMPv3. A full Python 
tools development using SNMP may take weeks or months, so here you will simply dip in your toes to learn 
how Python interacts with network devices using SNMP.

https://en.wikipedia.org/wiki/Cron
http://www.cronmaker.com/
https://crontab.guru/
http://corntab.com/


Chapter 15 ■ python network automation Labs: Cron and snmpv3

649

 Quick-Start Guide to SNMP
To help you refresh your SNMP knowledge, we will be going through some basic SNMP facts. If you have 
been working with SNMP technology every day, you can skip this part and jump to the SNMP lab. If you are 
not familiar with SNMP, this will be a quick-start guide to SNMP to learn how Python interacts with SNMP.

 Quick SNMP History
To get a bigger picture of a particular technology, it is always good to know a technology’s history. SNMP 
began its life as ICMP and evolved until it became the monitoring tool of choice.

• 1981: The Internet Engineering Task Force (IETF) defined the Internet Control 
Management Protocol (ICMP), which is a protocol used to probe the network 
communication status of devices on the network.

• 1987: ICMP was redefined as the Simple Gateway Monitoring Protocol (SGMP) as 
part of RFC 1028.

• 1989 to 1990: SGMP was redefined as the Simple Network Monitoring Protocol 
(SNMP), which was introduced as part of RFC 1155, 1156, and 1157.

• 1990 to present: Most IT and networking vendors accepted SNMP as the standard 
protocol to monitor IP devices.

Source: https://tools.ietf.org/html/ (RFC: 777, 1028, 1155, 1156, 1157)

 SNMP Standard Operation
As in many server and client model, SNMP also uses server and client model. The SNMP server is known 
as the manager, and it works with clients (nodes), known as agents. Even if you have completed your CCNA 
studies, you may not be familiar with the ins and outs of standard SNMP operations. If this is your first time 
using SNMP, don’t skip this section.

• SNMP works as the server (manager) and client (agent).

• Generally, the SNMP agent is installed on monitored devices as agents.

• SNMP follows the preset rules to monitor network devices and collect and store 
information to monitor devices.

• An agent can send its status to the manager using either polling or event reporting 
methods.

• Management Information Base (MIB) is the information standard used by the agent 
to collect data.

• Object identification (OID) is the primary key of MIB’s management object.

 SNMP Polling vs. Trap (Event Reporting) Method
To collect data, the SNMP manager sends the Get request message to the agent, and then the agent sends 
back a response message with its status. The SNMP server requests specific information, and then the SNMP 
client responds. In an environment where the SNMP server can change the SNMP client’s status, the server 
can use the SNMP Set request to change the SNMP client’s status. In other words, you can use SNMP to 
control the client, but usually, SNMP’s function is limited to monitoring the network. The polling method is 

https://tools.ietf.org/html/


Chapter 15 ■ python network automation Labs: Cron and snmpv3

650

talkative on the network, so it generates more traffic than the Trap method. In the Trap method, the SNMP 
client sends information to the SNMP server’s Trap receiver, only if there was any monitored information in 
its system. This is the most common network monitoring in the industry today. Also, it generates a relatively 
small amount of network traffic in a stable network.

 SNMP Versions
Table 15-2 shows all the SNMP versions in action. Many legacy systems do not support the more secure 
SNMPv3, so in most networks, SNMPv2c commonly known as SNMPv2 is used the most, but due to security 
issues, more and more enterprises are moving toward SNMPv3. As the old devices get refreshed, more 
devices can support SNMPv3, and it is slowly getting deployed as the legacy devices are decommissioned. 
Another significant catalyst to move away from SNMPv2 is the introduction of virtualized and cloud-based 
infrastructures that are now the norm of enterprise network and server networking. In a virtualized cloud 
world, besides the actual server farm and physical connections, almost everything exists as files or software, 
meaning that technologies are not anchored down to their hardware limitations. Review Table 15-2 to check 
the features of each version.

 Understanding the SNMP Protocol in the TCP/IP Stack
SNMP is an application protocol in the TCP/IP protocol stack and is sitting on the transport layer in the OSI 
model; it uses UDP to communicate between the server and the client. Here is a quick summary of SNMP 
communication port information and how the manager and agents communicate:

• The SNMP Get message communicates via UDP port 161.

• The SNMP Set message also communicates via UDP port 161.

• When SNMP Trap is used, SNMP Trap communicates via UDP port 162, and the 
agent that sends the message does not have to check if the trap was sent correctly.

• When SNMP Inform is used, it behaves the same way except it confirms that the 
Inform message has been received correctly via UDP port 162.

 About SNMP Message Types
There are six types of messages sent and received between the SNMP manager and SNMP agent; these 
message types are summarized in Table 15-3.

Table 15-2. SNMP Versions

Version Features
SNMPv1 Uses a community string (key); no built-in security; only supports 32-bit systems

SNMPv2c Most commonly used; supports 32/64-bit systems; improved performance for 64-bit 
systems; almost identical features to v1; low security; cross-platform support

SNMPv3 Manager and agent system changed to objects; increased 64-bit system security; 
guarantees authentication and privacy; detects each SNMP entities as unique EngineID 
names



Chapter 15 ■ python network automation Labs: Cron and snmpv3

651

 Understanding SNMP’s SMI, MIB, and OID
Next, after briefly explaining the definition of SMI, MIB, and OID of SNMP, you will take a look at security 
methods, access policies, synchronization, and asynchronization of traps. Let’s quickly cover SNMP 
terminologies and what purpose they serve in SNMP monitored networks.

• Structured Management Information (SMI): SMI is a tool for defining and 
configuring MIBs and creating and managing MIB standards.

• Management Information Base (MIB): The MIB is a set of objects managed from 
the SNMP server’s perspective. The MIB is a database of objects that can be viewed 
or set by an administrator. Each object has a tree-like structure, and you can check 
the status or change the value of an agent with specific MIB values. ASN.1 (Abstract 
Notation One), all organized in a tree structure, is a scripting language for describing 
objects, including SNMP objects.

• Object-Identifier (OID): OID must be assigned to generate the MIB. OIDs are 
represented as a sequence of unique, specific numbers, using a notation similar to IP 
addresses. OID is an identifier (primary key) that designates the administered object 
of the MIB. You can run OID lookup tools to gain an understanding of OID in detail.

 SNMP Access Policy
To ensure SNMP security, SNMP community strings are used between manager and agent communication. 
The manager requires the appropriate community string to access key device information across your 
network. Most network vendors configure the default public community string as public when the network 
equipment leaves the factory; many network administrators change the community string to keep intruders 
from getting information about the network setup. SNMP can offer different access levels to information 
based on different community strings. There are Read-Only, Read-Write, and Trap community strings.

• SNMP Read-only community string: The agent’s information can be read from other 
SNMP managers. InterMapper maps devices using read-only information.

Table 15-3. SNMP Message Types

Message Type PDU Type Explanation
get-request 0 Gets the value of the object specified in the agent management MIB.

get-next-request 1 Gets the next object value of the object specified in the agent 
management MIB. It is used when the MIB item has a table.

get-bulk-request 1 It works like get-next-request and gets the object’s value specified in 
the agent management MIB as many times as specified.

set-request 2 Sets (changes) the value of the object specified in the agent management 
MIB.

get-response 3 Returns the result of the manager’s request.

traps 4 This message is sent to the manager to inform the manager when a 
particular event occurs in the agent management MIB.

*PDU type values range between 0 and 4 only.



Chapter 15 ■ python network automation Labs: Cron and snmpv3

652

• SNMP Read-Write community string: This is used for communication using requests 
and can read and change other devices’ status or settings. Note that the InterMapper 
is read-only, so it does not use the read-write string mode.

• SNMP Trap community string: This is the community string used by the agent to 
send SNMP traps to the InterMapper, which receives and stores information no 
matter which SNMP Trap community string is used.

 Synchronous vs. Asynchronous Communication While Using SNMP Traps
The following is a brief description of two SNMP Trap methods used by SNMP. In general, if the trap 
message is communicated between the SNMP manager (server) and the agent (client) using SNMP, the 
SNMP must use either synchronous or asynchronous mode. The differences between these two modes are 
explained here:

• Synchronous mode: While using synchronous mode, the sending and receiving sides 
use one reference clock separately from the data. The manager and the agent must 
operate together according to the synchronization signal. To perform continuous 
data transmission, it is a mode in which one data transmission/reception must be 
completed between the sending side and the receiving side to transmit the next data.

• Asynchronous mode: In the case of using the asynchronous mode, the time difference 
is identified with the received signal clock and transmitted one character at a time 
regardless of the sender’s clock. The start bit and stop bit are added to the front of 
the packet to be sent. In other words, in the case of the SNMP agent operating in 
the asynchronous mode, various data is exchanged when communicating with Get 
requests, and irregular transmission may be possible regardless of time and order.

When using SNMP Trap, the message is generated as a general trap or inform trap message. The trap 
uses an asynchronous communication method. The SNMP agent unilaterally sends information that does 
not require confirmation of the receiver, the SNMP manager. On the contrary, the SNMP agent works in the 
synchronous mode because the information sent must be acknowledged by the receiver, which is the SNMP 
manager.

 SNMP-Related Python Libraries
For Python to use SNMP to communicate with other network devices, you must first install the correct 
SNMP library to help you achieve your goal. In this book, the pysnmp module will be installed to interact with 
routers and switches using Python. But there are several SNMP Python modules you can utilize based on 
what you want to achieve with Python and SNMP. Table 15-4 describes the Python SNMP-related modules 
for your future reference.



Chapter 15 ■ python network automation Labs: Cron and snmpv3

653

 Understanding MIBs and OIDs and Browsing OIDs Directly
The SNMP agent shares a lot of information with the SNMP manager. Let’s get familiar with MIBs and OIDs. 
As discussed earlier, OID is an identifier that designates an administered object in the MIB. This means that 
OID is part of MIB, and it uses a unique ID to represent each MIB. An example of OID is 1.3.6.1.2.1.1.3.0; this 
OID is an identifier that contains information about the uptime after a system has booted up. These unique 
numbers for each SNMP can be found through the MIB library, and equipment manufacturers share this 
information through their official websites. If the device is connected to the network, both the systems and 
network devices can communicate their system status via SNMP using MIBs and unique OIDs. Here, you 
will use an interactive Linux session to perform snmpwalk on Cisco CML routers and switches in our GNS3 
lab. Later, you will find working SNMPv2c Python code from the Internet and change it to support SNMPv3 
and probe device information within our lab topology.

 Learn to Use SNMPwalk on a Linux Server
First, you need to install SNMP software to make your Linux server an SNMP manager. Then, set a 
password to authenticate with the manager depending on which agents use the SNMP version. In general, 
the SNMP manager is installed as an independent server on a Linux or Windows server, and a program 
that supports the SNMP API is installed and used. The most commonly used SNMP server programs are 
SolarWinds Network Performance Monitor, Paessler PRTG Network Monitor, and SysAid Monitoring. Most 
of this software provides a free distribution version for testing use. For more detailed information on these 
programs, please refer to each vendor’s website and resources.

Table 15-4. Python SNMP Libraries

SNMP Package Name Features and Download Link
pysnmp Python-based SNMP module

Program execution speed is slow

https://pypi.org/project/pysnmp/

python-netsnmp Use default Python bindings for net-snmp
Supports non-Pythonic interface

http://net- snmp.sourceforge.net/wiki/index.php/Python_Bindings

snimpy Python tool developed for SNMP query
Developed based on PySNMP
Program execution speed is slow

https://snimpy.readthedocs.io/en/latest/

easy-snmp Library developed based on net-snmp
Python-style interface support and operation
Program execution speed is fast

https://easysnmp.readthedocs.io/en/latest/

fastsnmpy Using an asynchronous wrapper based on net-snmp
Developed for SNMPwalk

https://github.com/ajaysdesk/fastsnmpy

https://pypi.org/project/pysnmp/
http://net-snmp.sourceforge.net/wiki/index.php/Python_Bindings
https://snimpy.readthedocs.io/en/latest/
https://easysnmp.readthedocs.io/en/latest/
https://github.com/ajaysdesk/fastsnmpy


Chapter 15 ■ python network automation Labs: Cron and snmpv3

654

Here, we will install the SNMP server software on a Linux server, configure SNMPv3 on all network 
devices, and then execute the OID of the virtual network devices’ MIB at the command line. First, install the 
SNMP manager software on the Linux server as described in the following section. If you want to monitor 
from another SNMP server, you can choose to install the SNMP agent (client) software. The Linux server 
used is a CentOS 8.1 server, so you will have to be log into the centos8s1 server to follow the tasks step by 
step. The lab topology is the same as before; you will need a CentOS server and all routers and switches 
powered on.

 Installing and Configuring SNMP Server on CentOS8
Follow these steps to install SNMP services on your CentOS 8 server and configure the user and user’s 
authentication and authorization settings. You have to type in the commands in your centos8s1 server that 
are marked in bold.

# Task
1 First, install the net-snmp-utils and net-snmp-devel packages on the CentOS server using the 

commands shown here. net-snmp-utils is a tool used for snmpwalk.

[pynetauto@centos8s1 ~]$ sudo yum install -y net-snmp net-snmp-utils net-snmp-devel

2 Configure an SNMPv3 user and an authentication password. The information configured here will 
be used to configure SNMP agents, network devices in this case. First, enable and start snmpd on 
the CentOS server; then check the running status. After that, stop the service before configuring the 
new SNMP user and password.

[pynetauto@centos8s1 ~]$ sudo systemctl enable snmpd
[pynetauto@centos8s1 ~]$ sudo systemctl start snmpd
[pynetauto@centos8s1 ~]$ sudo  systemctl status snmpd
[pynetauto@centos8s1 ~]$ sudo systemctl stop snmpd

There are three methods to configure an SNMPv3 user with a password on a Linux system, and all 
three methods will be discussed here. If authentication and encryption methods are not specified 
during the user configuration step, MD5 and AES will be used automatically, and the access level 
will be set to read-only (-ro).

Use the one of the methods to add an SNMP user and passphrase.

A. Command-line method: If you set up a user via a command, you can simultaneously set the 
username, authentication password, and encryption-only key in one command line. Typical 
command options look like this:

net-snmp-config --create-snmpv3-user [-ro] [-A authpass] [-X privpass] [-a MD5|SHA] 
[-x DES|AES] [username]

Example 1: SNMP user creation without specifying a private password using default MD5 and DES:

[pynetauto@centos8s1 ~]$ sudo net-snmp-config --create-snmpv3-user -A AUTHPass1 
SNMPUser2
adding the following line to /var/lib/net-snmp/snmpd.conf:
  createUser SNMPUser1 MD5 "AUTHPass1" DES ""
adding the following line to /etc/snmp/snmpd.conf:
  rwuser SNMPUser1



Chapter 15 ■ python network automation Labs: Cron and snmpv3

655

# Task

Example 2: SNMP user creation specifying authentication and encryption and a private password 
method. The following example configures MD5 authentication with DES encryption:

[pynetauto@centos8s1 ~]$ sudo net-snmp-config --create-snmpv3-user -ro -A AUTHPass1  
 -X PRIVPass1 -a MD5 -x DES SNMPUser3
adding the following line to /var/lib/net-snmp/snmpd.conf:
  createUser SNMPUser2 MD5 "AUTHPass1" DES "PRIVPass1"
adding the following line to /etc/snmp/snmpd.conf:
  rouser SNMPUser2

Example 3: This is SNMP user creation using SHA authentication and AES encryption:

[pynetauto@centos8s1 ~]$ sudo net-snmp-config --create-snmpv3-user -ro -A AUTHPass1  
 -X PRIVPass1 -a SHA -x AES SNMPUser1
adding the following line to /var/lib/net-snmp/snmpd.conf:
  createUser SNMPUser3 SHA "AUTHPass1" AES "PRIVPass1"
adding the following line to /etc/snmp/snmpd.conf:
  rouser SNMPUser3

B. Manual configuration: You can also set up SNMP users by opening the SNMP configuration file 
yourself and appending the new user information at the end of the file. Just open the two files and 
add the user information.

Example 4: This is a user account called SNMPUser1 using MD5, and DES is created. Add the last line 
and username, as shown here:

[pynetauto@centos8s1 ~]$ sudo nano /var/lib/net-snmp/snmpd.conf
[...omitted for brevity]
##############################################################
#
# snmpNotifyFilterTable persistent data
#

##############################################################

engineBoots 18
oldEngineID 0x80001f8880acfa8434b71f4a5f00000000
createUser SNMPUser4 MD5 "AUTHPass1" DES "PRIVPass1" <<< Add this to the last line

[pynetauto@centos8s1 ~]$ sudo nano /etc/snmp/snmpd.conf
[...omitted for brevity]
###############################################################################
# Further Information
#
#  See the snmpd.conf manual page, and the output of "snmpd -H".
rwuser SNMPUser2
rouser SNMPUser3
rouser SNMPUser1
rwuser SNMPUser4 <<< Add this to the last line

(continued)



Chapter 15 ■ python network automation Labs: Cron and snmpv3

656

# Task

Interactive mode: This interactive command is useful when creating SNMP users using MD5 and 
DES.

[pynetauto@centos8s1 ~]$ sudo net-snmp-create-v3-user
[sudo] password for pynetauto:
Enter a SNMPv3 user name to create:
SNMPUser5
Enter authentication pass-phrase:
AUTHPass1
Enter encryption pass-phrase:
[press return to reuse the authentication pass-phrase]
PRIVPass1
adding the following line to /var/lib/net-snmp/snmpd.conf:
  createUser SNMPUser MD5 "AUTHPass1" DES "PRIVPass1"
adding the following line to /etc/snmp/snmpd.conf:
  rwuser SNMPUser5

3 Enter the following command to start the SNMP service again and check the status of the snmpd 
service. The status must be “Active: active (running).”

[pynetauto@centos8s1 ~]$ sudo systemctl start snmpd
[pynetauto@centos8s1 ~]$ sudo systemctl status snmpd
● snmpd.service - Simple Network Management Protocol (SNMP) Daemon.
Loaded: loaded (/usr/lib/systemd/system/snmpd.service; enabled; vendor preset: 
disabled)
Active: active (running) since Wed 2021-01-13 16:23:03 AEDT; 5s ago
Main PID: 43244 (snmpd)
  Tasks: 1 (limit: 11166)
  Memory: 4.9M
  CGroup: /system.slice/snmpd.service
  └─43244 /usr/sbin/snmpd -LS0-6d -f

4 Use the SNMPwalk command to check if SNMP is working correctly on the local server. Run 
snmpwalk of the CentOS server using SNMPUser created in method C.

[pynetauto@centos8s1 icmp_sweeper]$ snmpwalk -v3 -u SNMPUser5 -l authPriv -a MD5 -A 
AUTHPass1 -X PRIVPass1 localhost
SNMPv2-MIB::sysDescr.0 = STRING: Linux centos8s1 4.18.0-193.14.2.el8_2.x86_64 #1 SMP 
Sun Jul 26 03:54:29 UTC 2020 x86_64
SNMPv2-MIB::sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (15885) 0:02:38.85
SNMPv2-MIB::sysContact.0 = STRING: Root <root@localhost> (configure /etc/snmp/snmp.
local.conf)
SNMPv2-MIB::sysName.0 = STRING: centos8s1
SNMPv2-MIB::sysLocation.0 = STRING: Unknown (edit /etc/snmp/snmpd.conf)
SNMPv2-MIB::sysORLastChange.0 = Timeticks: (0) 0:00:00.00
SNMPv2-MIB::sysORID.1 = OID: SNMP-FRAMEWORK-MIB::snmpFrameworkMIBCompliance
SNMPv2-MIB::sysORID.2 = OID: SNMP-MPD-MIB::snmpMPDCompliance
SNMPv2-MIB::sysORID.3 = OID: SNMP-USER-BASED-SM-MIB::usmMIBCompliance
SNMPv2-MIB::sysORID.4 = OID: SNMPv2-MIB::snmpMIB



Chapter 15 ■ python network automation Labs: Cron and snmpv3

657

# Task

SNMPv2-MIB::sysORID.5 = OID: SNMP-VIEW-BASED-ACM-MIB::vacmBasicGroup
SNMPv2-MIB::sysORID.6 = OID: TCP-MIB::tcpMIB
SNMPv2-MIB::sysORID.7 = OID: IP-MIB::ip
SNMPv2-MIB::sysORID.8 = OID: UDP-MIB::udpMIB
[... omitted for brevity]

  the following is a brief description of the option handles used in the Linux snmpwalk command:

snmpwalk -v3 -u SNMPUser2 -l authPriv -a MD5 -A AUTHPass1 -X PRIVPass1 127.0.0.1

-v3 (version)
-u (snmp username)
-l (security level)
-a (authentication method)
-a (pass-phrase)

 Configuring Cisco Routers and Switches to Support SNMPv3 Using a 
Python Script
The following are the SNMP-related settings for Cisco devices. To implement SNMPv3 instead of SNMPv2c, 
you have to understand more about SNMP authentication than SNMPv2c. SNMP v2c still is the most popular 
SNMP version in use today due to the legacy compatibility issues of SNMPv3. Older devices do not have the 
software code to support the SNMP version3, so unless your network consists of old devices, SNMPv2c will 
be the way to go. In the future, almost all devices will support more secure SNMPv3. In this book, you are 
going to use SNMPv3 instead. You are going to write a quick Python script to add SNMP configurations on all 
Cisco devices.

# Task
1 All SNMP agents manage their own (system) information separately, which can be used in SNMPv3 

messages. For SNMP agent devices such as Cisco routers and switches, Cisco recommends setting 
unique SNMP engine IDs before configuring and using SNMPv3. If the SNMP engine ID is not 
specified during configuration, then a combination of the enterprise number and the default MAC 
address will generate a unique engine ID. To correctly add an SNMPv3 configuration to Cisco 
devices, you have to use three snmp-server commands as suggested here.

A. The engine ID configuration command example looks like this:

LAB-R1(config)# snmp-server engineID local 19216818310

B. The SNMP group name configuration command is shown next. GROUP1 is the SNMP group name 
in this case. This command will create an SNMPv3 group called GROUP1 with a private password.

LAB-R1(config)# snmp-server group GROUP1 v3 priv

(continued)



Chapter 15 ■ python network automation Labs: Cron and snmpv3

658

# Task
C. Use the same information as the manager-side SNMP user credentials, and you can configure the 
SNMP user on a Cisco device using the following command:

LAB-R1(config)# snmp-server user SNMPUser1 GROUP1 v3 auth sha AUTHPass1 priv aes 128 
PRIVPass1

You can use show snmp user to check the SNMP user information on Cisco devices. In the next 
step, based on the previous commands, let’s write a Python script to add this configuration to all 
devices at once.

LAB-R1#show snmp user
*Jan 13 05:22:55.217: %SYS-5-CONFIG_I: Configured from console by console

User name: SNMPUser1
Engine ID: 192168183100
storage-type: nonvolatile        active
Authentication Protocol: SHA
Privacy Protocol: AES128
Group-name: GROUP1

2 To make this lab more enjoyable, we will copy the ICMP sweeper tool we created earlier and use 
it as the precommunication check tool in our script before SSHing into devices and configuring 
SNMP. So, use these commands to copy the files and then rename the ping_sweep1.py  script as 
precheck_tool.py:

[pynetauto@centos8s1 ~]$ pwd
/home/pynetauto
[pynetauto@centos8s1 ~]$ mkdir snmp_test
[pynetauto@centos8s1 ~]$ ls icmp_sweeper
cron.log  ip_addresses.txt  ping_sweep1.py
[pynetauto@centos8s1 ~]$ mkdir snmp_test
[pynetauto@centos8s1 ~]$ cp ./icmp_sweeper/ping_sweep1.py ./snmp_test/precheck_tool.py
[pynetauto@centos8s1 ~]$ cp ./icmp_sweeper/ip_addresses.txt ./snmp_test/ip_
addresses.txt
[pynetauto@centos8s1 ~]$ cd snmp_test
[pynetauto@centos8s1 snmp_test]$ ls
ip_addresses.txt  precheck_tool.py

You should have two files under the /home/pynetauto/snmp_test directory at the end of this task. 
The ip_addresses.txt file should already contain the IP addresses of all routers and switches in 
our topology.



Chapter 15 ■ python network automation Labs: Cron and snmpv3

659

# Task

3 You will open and modify precheck_tool.py in the nano text editor so that the main part of the 
script becomes a function. This way, we can call upon this function from another Python script as a 
module. Modify the file as follows:

[pynetauto@centos8s1 snmp_test]$ nano precheck_tool.py

GNU nano 4.8                                       /home/pynetauto/snmp_test/precheck_tool.py
#!/usr/bin/python3

import os

def icmp_pinger(ip):
rep = os.system('ping -c 3 ' + ip)
if rep == 0:

print(f"{ip} is reachable.") # Print ip is reachable if the device is on the network
else:

print(f"{ip} is either offline or icmp is filtered. Exiting.")
exit() # Exit application if any ip address is unreachable.

print("-"*80)
^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text    ^J Justify    ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

When the else condition is met, for example, 192.168.183.10 is unreachable, it will exit the program 
as shown here:

[pynetauto@centos8s1 snmp_test]$ python3 snmp_config.py
PING 192.168.183.10 (192.168.183.10) 56(84) bytes of data.

--- 192.168.183.10 ping statistics ---
3 packets transmitted, 0 received, 100% packet loss, time 62ms

192.168.183.10 is either offline or icmp is filtered. Exiting.

4 Now, it is time for you to create the configuration script snmp_config.py. As a best practice, we 
will specify the SNMP engine ID using each device’s IP address. The dots in IP addresses will be 
removed, and the whole number will be reused as the device’s SNMP engine ID.

[pynetauto@centos8s1 snmp_test]$ nano snmp_config.py

GNU nano 4.8                                       /home/pynetauto/snmp_test/snmp_config.py
#!/usr/bin/python3

import time
import paramiko
from getpass import getpass
# Custom tools
from precheck_tool import icmp_pinger

with open("/home/pynetauto/snmp_test/ip_addresses.txt", "r") as ip_addresses:
for ip in ip_addresses:

ip = ip.strip()
icmp_pinger(ip)

username = input("Enter username : ") # Ask for username
password = getpass("Enter password : " ) # Ask for password

(continued)



Chapter 15 ■ python network automation Labs: Cron and snmpv3

660

# Task

with open("/home/pynetauto/snmp_test/ip_addresses.txt", "r") as ip_addresses:
for ip in ip_addresses:

ip = ip.strip()
eng_id = ip.replace(".", "") # Remove dot in ip address and use it as SNMP 
Engine ID
print ("Now logging into " + (ip))
ssh_client = paramiko.SSHClient()
ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh_client.connect(hostname=ip,username=username,password=password)
print (f"Successful connection to {ip}\n")
print ("Now completing following tasks : " + "\n")
remote_connection = ssh_client.invoke_shell()
print (f"Adding SNMP configuration to {ip}")
remote_connection.send("show clock\n")
remote_connection.send("configure terminal\n") # Add SNMP configurations
remote_connection.send(f"snmp-server engineID local {eng_id}\n")
remote_connection.send("snmp-server group GROUP1 v3 priv\n")
remote_connection.send("snmp-server user SNMPUser1 GROUP1 v3 auth sha 
AUTHPass1 priv aes 128 PRIVPass1\n")
remote_connection.send("do wri\n")
remote_connection.send("exit\n")
time.sleep(2)
print ()
time.sleep(2)
output = remote_connection.recv(65535)
print((output).decode('ascii'))
print(f"Successfully configured {ip} & Disconnecting.")
print("-"*80)
ssh_client.close
time.sleep(2)

print("All tasks were completed successfully. Bye!")
^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

5 Before running the script, you will need to install the paramiko library by running the following 
pip3 command. Install paramiko on the centos8s1 server.

[pynetauto@centos8s1 snmp_test]$ sudo pip3 install paramiko

6 You should see the last line of code as a successful configuration script, which is outside of the for 
loop in the main script. Run snmp_config.py and configure SNMP group settings on all devices. 
The script will check the network connection using ICMP initially. If any device is unreachable, the 
application will exit. If all devices are on the network, the script will run and complete the SNMP 
configuration on all devices.

[pynetauto@centos8s1 snmp_test]$ python3 snmp_config.py
PING 192.168.183.10 (192.168.183.10) 56(84) bytes of data.
64 bytes from 192.168.183.10: icmp_seq=1 ttl=255 time=14.7 ms
64 bytes from 192.168.183.10: icmp_seq=2 ttl=255 time=11.5 ms
64 bytes from 192.168.183.10: icmp_seq=3 ttl=255 time=6.22 ms



Chapter 15 ■ python network automation Labs: Cron and snmpv3

661

# Task

--- 192.168.183.10 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 6ms
rtt min/avg/max/mdev = 6.215/10.819/14.749/3.516 ms
192.168.183.10 is reachable.
--------------------------------------------------------------------------------
PING 192.168.183.20 (192.168.183.20) 56(84) bytes of data.
64 bytes from 192.168.183.20: icmp_seq=1 ttl=255 time=22.4 ms
64 bytes from 192.168.183.20: icmp_seq=2 ttl=255 time=25.0 ms
64 bytes from 192.168.183.20: icmp_seq=3 ttl=255 time=22.5 ms

[...omitted for brevity]

Successfully configured 192.168.183.153 & Disconnecting.
--------------------------------------------------------------------------------
Now logging into 192.168.183.244
Successful connection to 192.168.183.244

Now completing following tasks :

Adding SNMP configuration to 192.168.183.244

**************************************************************************
* IOSv is strictly limited to use for evaluation, demonstration and IOS  *
* education. IOSv is provided as-is and is not supported by Cisco's      *
* Technical Advisory Center. Any use or disclosure, in whole or in part, *
* of the IOSv Software or Documentation to any third party for any       *
* purposes is expressly prohibited except as otherwise authorized by     *
* Cisco in writing.                                                      *
**************************************************************************
Lab-SW4#show clock
*12:33:19.576 UTC Wed Jan 13 2021
Lab-SW4#configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
Lab-SW4(config)#snmp-server engineID local 192168183244
Lab-SW4(config)#snmp-server group GROUP1 v3 priv
Lab-SW4(config)#$User1 GROUP1 v3 auth sha AUTHPass1 priv aes 128 PRIVPass1
Lab-SW4(config)#do wri
Building configuration...

Successfully configured 192.168.183.244 & Disconnecting.
--------------------------------------------------------------------------------
All tasks were completed successfully. Bye!

7 At the end of the successful SNMP configuration run, log in to each device to confirm SNMP-
related configurations on each device. An example of the Lab-SW4 configuration is shown, but all 
other devices should have the SNMP user and group configurations.

(continued)



Chapter 15 ■ python network automation Labs: Cron and snmpv3

662

# Task

Lab-SW4#show snmp user

User name: SNMPUser1
Engine ID: 192168183244
storage-type: nonvolatile        active
Authentication Protocol: SHA
Privacy Protocol: AES128
Group-name: GROUP1

Lab-SW4#show run | in snmp
snmp-server engineID local 192168183244
snmp-server group GROUP1 v3 priv

Your Cisco devices are now ready for SNMP communication with your SNMP server.

 SNMPwalk from Linux Server
From your centos8s1 server, let’s continue to perform snmpwalk using SNMPv3 commands; there is a lot to 
be learned here.

# Task
1 The CentOS 8.1 server uses the following snmpwalk command to retrieve the OID information used 

by LAB-R1’s vIOS MIB via SNMP. If you use this command, all OID information is loaded, as shown 
here:

[pynetauto@centos8s1 snmp_test]$ snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.10
SNMPv2-MIB::sysDescr.0 = STRING: Cisco IOS Software, IOSv Software (VIOS-
ADVENTERPRISEK9-M), Version 15.6(2)T, RELEASE SOFTWARE (fc2)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2016 by Cisco Systems, Inc.
Compiled Tue 22-Mar-16 16:19 by prod_rel_team
SNMPv2-MIB::sysObjectID.0 = OID: SNMPv2-SMI::enterprises.9.1.1041
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (157667) 0:26:16.67
SNMPv2-MIB::sysContact.0 = STRING:
SNMPv2-MIB::sysName.0 = STRING: LAB-R1.pynetauto.local
SNMPv2-MIB::sysLocation.0 = STRING:
SNMPv2-MIB::sysServices.0 = INTEGER: 78
SNMPv2-MIB::sysORLastChange.0 = Timeticks: (0) 0:00:00.00
SNMPv2-MIB::sysORID.1 = OID: SNMPv2-SMI::enterprises.9.7.129
SNMPv2-MIB::sysORID.2 = OID: SNMPv2-SMI::enterprises.9.7.115
SNMPv2-MIB::sysORID.3 = OID: SNMPv2-SMI::enterprises.9.7.265
SNMPv2-MIB::sysORID.4 = OID: SNMPv2-SMI::enterprises.9.7.112
SNMPv2-MIB::sysORID.5 = OID: SNMPv2-SMI::enterprises.9.7.106
SNMPv2-MIB::sysORID.6 = OID: SNMPv2-SMI::enterprises.9.7.47
SNMPv2-MIB::sysORID.7 = OID: SNMPv2-SMI::enterprises.9.7.122
[... omitted for brevity]



Chapter 15 ■ python network automation Labs: Cron and snmpv3

663

# Task

2 If you run the same command on other devices, you should also see all MIB information for each 
device.

[pynetauto@centos8s1 snmp_test]$ snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.20
[pynetauto@centos8s1 snmp_test]$ snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.101
[pynetauto@centos8s1 snmp_test]$ snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.102
[pynetauto@centos8s1 snmp_test]$ snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.133
[pynetauto@centos8s1 snmp_test]$ snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.153
[pynetauto@centos8s1 snmp_test]$ snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.244

3 Practice retrieving LAB-SW1’s system information using the snmpwalk or snmpget command.
1.3.6.1.2.1.1.3.0 (sysUpTime.0) is an OID indicating the time the system was started. You can use the 
snmpget command to retrieve and check information from the SNMP manager to the SNMP agent.

[pynetauto@centos8s1 snmp_test]$ snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.10 sysUpTime.0
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (1606783) 4:27:47.83

The SNMP agent LAB-SW1 tells us the uptime since system restart is 4 hours 27 minutes and 47 seconds.

4 Check a router or switch's name using 1.3.6.1.2.1.1.5.0 (sysName.0 or sysName).

[pynetauto@centos8s1 snmp_test]$ snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.10 sysName.0
SNMPv2-MIB::sysName.0 = STRING: LAB-R1.pynetauto.local

[pynetauto@centos8s1 snmp_test]$ snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.10 sysName
SNMPv2-MIB::sysName.0 = STRING: LAB-R1.pynetauto.local

[pynetauto@centos8s1 snmp_test]$ snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.10 1.3.6.1.2.1.1.5.0
SNMPv2-MIB::sysName.0 = STRING: LAB-R1.pynetauto.local

5 If you use 1.3.6.1.2.1.2.2.1.7(ifAdminStatus.1), you can check the interface’s setting status. This 
information confirms that the administrator has activated the interface.

[pynetauto@centos8s1 snmp_test]$ snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.10 ifAdminStatus
IF-MIB::ifAdminStatus.1 = INTEGER: up(1)
IF-MIB::ifAdminStatus.2 = INTEGER: up(1)
IF-MIB::ifAdminStatus.3 = INTEGER: down(2)
IF-MIB::ifAdminStatus.4 = INTEGER: down(2)
IF-MIB::ifAdminStatus.5 = INTEGER: up(1)
IF-MIB::ifAdminStatus.6 = INTEGER: up(1)
IF-MIB::ifAdminStatus.7 = INTEGER: up(1)

(continued)



Chapter 15 ■ python network automation Labs: Cron and snmpv3

664

# Task

[pynetauto@centos8s1 snmp_test]$ snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.10 1.3.6.1.2.1.2.2.1.7
IF-MIB::ifAdminStatus.1 = INTEGER: up(1)
IF-MIB::ifAdminStatus.2 = INTEGER: up(1)
IF-MIB::ifAdminStatus.3 = INTEGER: down(2)
IF-MIB::ifAdminStatus.4 = INTEGER: down(2)
IF-MIB::ifAdminStatus.5 = INTEGER: up(1)
IF-MIB::ifAdminStatus.6 = INTEGER: up(1)
IF-MIB::ifAdminStatus.7 = INTEGER: up(1)

6 As you may have noticed previously, the OID of the first interface is the ID with .1 appended after 
1.3.6.1.2.1.2.2.1.7. If .1 is added and executed, as shown next, the status of the GigabitEthernet0/0 
port is displayed as up(1).

[pynetauto@centos8s1 snmp_test]$ snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.10 1.3.6.1.2.1.2.2.1.7.1
IF-MIB::ifAdminStatus.1 = INTEGER: up(1)

7 Likewise, adding .3 at the end means GigabitEthernet0/1. This port is currently disabled, so it is 
displayed as down(2).

[pynetauto@centos8s1 snmp_test]$ snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.10 1.3.6.1.2.1.2.2.1.7.3
IF-MIB::ifAdminStatus.3 = INTEGER: down(2)

8 If you use OID 1.3.6.1.2.1.2.2.1.8 (ifOperStatus), you can query all the interfaces’ operational 
status. Quickly run a snmpwalk command from your server for confirmation.

[pynetauto@centos8s1 snmp_test]$ snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.10 ifOperStatus
IF-MIB::ifOperStatus.1 = INTEGER: up(1)
IF-MIB::ifOperStatus.2 = INTEGER: up(1)
IF-MIB::ifOperStatus.3 = INTEGER: down(2)
IF-MIB::ifOperStatus.4 = INTEGER: down(2)
IF-MIB::ifOperStatus.5 = INTEGER: up(1)
IF-MIB::ifOperStatus.6 = INTEGER: up(1)
IF-MIB::ifOperStatus.7 = INTEGER: up(1)

9 Use the snmpget command to query information about an interface, in this case, 
GigabitEthernet0/0. IfDescr.1 queries the interface’s description, and ifOperStatus.1 
queries the interface’s operational status. You can replace the number 1 with 2 to query the next 
GigabitEthernet2 interface.

[pynetauto@centos8s1 snmp_test]$ snmpget -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.10 ifDescr.1  ifOperStatus.1
IF-MIB::ifDescr.1 = STRING: GigabitEthernet0/0
IF-MIB::ifOperStatus.1 = INTEGER: up(1)

10 The following snmpget command queries for the interface status of GigabitEthernet0/3; since it is 
not in use, it is marked as down(2).

[pynetauto@centos8s1 snmp_test]$ snmpget -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.10 ifDescr.4  ifOperStatus.4
IF-MIB::ifDescr.4 = STRING: GigabitEthernet0/3
IF-MIB::ifOperStatus.4 = INTEGER: down(2)



Chapter 15 ■ python network automation Labs: Cron and snmpv3

665

# Task

11 Many OIDs can reveal each component and configuration’s current status. Another fact worth 
noting is the RMON OID; it can reveal the software version number and the booting information. 
The example shows the router RMON OID.

[pynetauto@centos8s1 snmp_test]$ snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A 
"AUTHPass1"  -x AES -X "PRIVPass1" 192.168.183.10 rmon
RMON-MIB::rmon.19.1.0 = Hex-STRING: FF C0 00 40
RMON-MIB::rmon.19.2.0 = STRING: "15.6(2)T"
RMON-MIB::rmon.19.3.0 = ""
RMON-MIB::rmon.19.4.0 = Hex-STRING: 07 E4 08 1E 02 15 16 07
RMON-MIB::rmon.19.5.0 = INTEGER: 1
RMON-MIB::rmon.19.6.0 = STRING: "flash0:/vios-adventerprisek9-m"
RMON-MIB::rmon.19.7.0 = IpAddress: 0.0.0.0
RMON-MIB::rmon.19.8.0 = INTEGER: 1
RMON-MIB::rmon.19.9.0 = INTEGER: 1
RMON-MIB::rmon.19.12.0 = IpAddress: 0.0.0.0
RMON-MIB::rmon.19.15.0 = Hex-STRING: 00
RMON-MIB::rmon.19.16.0 = Hex-STRING: 7E 00

The OID information used in vIOS is almost identical to real IOS equipment. There is a lot you can 
study from this lab and gain useful information from the previous examples. Once again, you must type the 
commands yourself on the keyboard and learn the previous concept. See Figure 15-11.

 For Cisco networking devices, you can find the required oid information using the Cisco Feature navigator.

urL: https://cfnng.cisco.com/mibs

For some Q&a on Cisco mibs, refer to the following:

urL: https://www.cisco.com/c/en/us/support/docs/ip/simple- network- management- protocol- 
snmp/9226- mibs- 9226.html

For your information, the following mibs are among the most useful for Cisco devices:

• iF-mib: interface counter

urL: https://www.cisco.com/c/en/us/td/docs/ios- xml/ios/interface/configuration/15- s/ 
ir- 15- s- book/ir- if- mibs.html

• ip-mib: Contains ip address

• ip-Forward-mib: Contains a routing table

• entity-mib: Contains inventory information

• LLdp-mib: Contains neighbor information

https://cfnng.cisco.com/mibs
https://www.cisco.com/c/en/us/support/docs/ip/simple-network-management-protocol-snmp/9226-mibs-9226.html
https://www.cisco.com/c/en/us/support/docs/ip/simple-network-management-protocol-snmp/9226-mibs-9226.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/configuration/15-s/ir-15-s-book/ir-if-mibs.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/interface/configuration/15-s/ir-15-s-book/ir-if-mibs.html


Chapter 15 ■ python network automation Labs: Cron and snmpv3

666

 Borrowing Some Example Python SNMP Code
As discussed throughout this book, learning a single programming language such as Python, JavaScript, or 
Perl does not turn you into a network engineer who is immediately ready to develop applications. Based 
on your strong foundational network knowledge, you have to try your best to broaden your supported 
technologies. Your journey might become a long haul, perhaps painfully too slow for some people. Luckily, 
you can often find the right code on the Internet for your use and borrow it. Why bother reinventing the 
wheel? If you are not the first person to come across a specific problem, then somebody else has solved the 
problem ahead of you. You just have to know how and where to look for the specific information you are 
looking for. (Of course, I believe that some knowledge is more dependable and better transferred in other 
forms.)

On the web, I was looking for some Python use cases with SNMP and came across a good article and 
bookmarked the site for my future reference. When the time came to write this book, I was asked to include 
SNMP and Python as part of this book. But I did not want to spend weeks trying to write new code; I wanted 
to find an existing SNMP Python script to show an example of how Python is used in SNMP. The SNMP 
Python code that will be introduced in this section is sourced from Alessandro Maggio’s home page. Thanks 
to Alessandro, I have included the script as part of this book with his consent. To get the full explanation of 
the code, please visit Alex’s blog.

Figure 15-11. Cisco Feature Navigator, MIBs



Chapter 15 ■ python network automation Labs: Cron and snmpv3

667

 Find alessandro maggio’s blog and code tutorial here:

urL: https://www.ictshore.com/

urL: https://www.ictshore.com/sdn/python- snmp- tutorial/

 SNMP Lab Source Code
The following code is the Python code for SNMPv2c. SNMPv2c uses read-only community strings, 
simplifying SNMP configuration on both the server and agent sides. Still, as we all know, SNMPv2c is less 
secure than SNMPv3, so you will quickly review the code and make minor modifications to convert it 
into SNMPv3 code. Later, based on a scenario, we will write a simple Python integration script to work in 
harmony with this script. First, let’s take a closer look at the original SNMP Python code. The explanations 
always begin with # or """ """.

[pynetauto@centos8s1 snmp_test]$ nano quicksnmp.py

GNU nano 4.8                                       /home/pynetauto/snmp_test/quicksnmp.py
# This code uses the High-Level API module included in the pysnmp library.
from pysnmp import hlapi

"""
The first function or get () function defines pre-requisite information to initiate and 
make device information requests. Generally, for such a function to work, you specifically 
have to provide the target IP (or DNS name), Object ID(OID), Credentials, SNMP port number 
(161), EngineID, or SNMP context.  There is no strict requirement to parse the EngineID 
and SNMP context in simpler Python code, so in this example, the EngineID or SNMP context 
is not parsed to communicate with the Agent. All this information forms a handler, which 
this script enables the Server to communicate with the Agent so that the Agent can send the 
requested information about itself.
"""

def get(target, oids, credentials, port=161, engine=hlapi.SnmpEngine(), context=hlapi.
ContextData()):
    handler = hlapi.getCmd(
        engine,
        credentials,
        hlapi.UdpTransportTarget((target, port)),
        context,
        *construct_object_types(oids)
    )
    return fetch(handler, 1)[0]

https://www.ictshore.com/
https://www.ictshore.com/sdn/python-snmp-tutorial/


Chapter 15 ■ python network automation Labs: Cron and snmpv3

668

# Second function needs a single argument list_of_oids, a blank list is used to collect and 
return object types
# information.
def construct_object_types(list_of_oids):
    object_types = []
    for oid in list_of_oids:
        object_types.append(hlapi.ObjectType(hlapi.ObjectIdentity(oid)))
    return object_types

# Third function requires two arguments and uses the result list to handle any errors in the 
script.
def fetch(handler, count):
    result = []
    for i in range(count):
        try:
            error_indication, error_status, error_index, var_binds = next(handler)
            if not error_indication and not error_status:
                items = {}
                for var_bind in var_binds:
                    items[str(var_bind[0])] = cast(var_bind[1])
                result.append(items)
            else:
                raise RuntimeError('Got SNMP error: {0}'.format(error_indication))
        except StopIteration:
            break
    return result

# The fourth function, cast() uses the information received from PySNMP to pass the values, 
this function
# plays the role of changing the value into int or float or string type.
def cast(value):
    try:
        return int(value)
    except (ValueError, TypeError):
        try:
            return float(value)
        except (ValueError, TypeError):
            try:
                return str(value)
            except (ValueError, TypeError):
                pass
    return value

# This code is written for SNMPv2c and uses a community string named 'ICTSHORE'.
hlapi.CommunityData('ICTSHORE')

# If SNMPv3 is used, a user ID and two authentication keys should be used. The script (or 
the Server) uses
# this information to communicate with the desired SNMP Agent to get device information.
hlapi.UsmUserData('testuser', authKey='authenticationkey', privKey='encryptionkey',
authProtocol=hlapi.usmHMACSHAAuthProtocol, privProtocol=hlapi.usmAesCfb128Protocol)



Chapter 15 ■ python network automation Labs: Cron and snmpv3

669

# Specifies the specific OID to obtain specified information from the SNMP Agent. 
'1.3.6.1.2.1.1.5.0' denotes the dot IOD for a hostname.
print(get('192.168.47.10', ['1.3.6.1.2.1.1.5.0'], hlapi.CommunityData('ICTSHORE')))

^G Get Help  ^O Write Out    ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

Source code: https://www.ictshore.com/sdn/python- snmp- tutorial/

 SNMPv3 Python Code to Query Cisco Device Information
Now you are going to reiterate the previous SNMPv2c Python code to support SNMPv3. By studying 
someone else’s code and testing the script in a lab environment, you can gain more insight into how Python 
interacts with different applications and behaves. This is also a perfect opportunity to watch and learn the 
real difference between SNMPv2c and SNMPv3 in action.

# Task
1 For the server (centos8s1) to communicate with network devices over SNMP, you will first install 

the server’s pysnmp library. Complete the installation using the sudo pip3 install pysnmp 
command.

[pynetauto@centos8s1 ~]$ sudo pip3 install pysnmp

2 After creating an SNMP Python code called quicksnmp_v3.py, open the file with the nano editor 
and copy and paste all lines of code from quicksnmp.py into quicksnmp_v3.py.

[pynetauto@centos8s1 ~]$cd snmp_test
[pynetauto@centos8s1 snmp_test]$ nano quicksnmp_v3.py

3 The following modifications are required to turn quicksnmp.py into the SNMP version 3 script.

First, when you read the documentation on pysnmplabs.com, you will see that you need to 
import and use from pysnmp.hlapi import UsmUserData.

http://snmplabs.com/pysnmp/docs/api- reference.html#pysnmp.hlapi.UsmUserData

A. Add from pysnmp.hlapi import UsmUserData at the top of your code, as shown here:

GNU nano 4.8                                       /home/pynetauto/snmp_test/quicksnmp_v3.py
from pysnmp import hlapi
from pysnmp.hlapi import UsmUserData

def get(target, oids, credentials, port=161, engine=hlapi.SnmpEngine(), 
context=hlapi.ContextData()):

handler = hlapi.getCmd(
engine,
credentials,
hlapi.UdpTransportTarget((target, port)),
context,
*construct_object_types(oids)

)
return fetch(handler, 1)[0]

(continued)

https://www.ictshore.com/sdn/python-snmp-tutorial/
http://pysnmplabs.com
http://snmplabs.com/pysnmp/docs/api-reference.html#pysnmp.hlapi.UsmUserData


Chapter 15 ■ python network automation Labs: Cron and snmpv3

670

# Task

def construct_object_types(list_of_oids):
object_types = []
for oid in list_of_oids:

object_types.append(hlapi.ObjectType(hlapi.ObjectIdentity(oid)))
return object_types

def fetch(handler, count):
result = []
for i in range(count):

try:
error_indication, error_status, error_index, var_binds = next(handler)
if not error_indication and not error_status:

items = {}
for var_bind in var_binds:

items[str(var_bind[0])] = cast(var_bind[1])
result.append(items)

else:
raise RuntimeError('Got SNMP error: {0}'.format(error_indication))

except StopIteration:
break

return result

def cast(value):
try:

return int(value)
except (ValueError, TypeError):

try:
return float(value)

except (ValueError, TypeError):
try:

return str(value)
except (ValueError, TypeError):

pass
return value

^G Get Help  ^O Write Out   ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace   ^U Paste Text  ^T To Spell  ^_ Go To Line

B. Next, you need to enter your user information, authentication key, and privacy key. As shown 
in the earlier SNMP user configuration, the SNMPv3 user, SNMPUser1, was configured with SHA 
authentication keys and the AES128 privacy key. So, add the following line exactly as shown here:

hlapi.UsmUserData('SNMPUser1', authKey='AUTHPass1', privKey='PRIVPass1', 
authProtocol=hlapi.usmHMACSHAAuthProtocol, privProtocol=hlapi.
usmAesCfb128Protocol)

C. Enter the print statement so that the get() function can pass the correct agent IP information 
and other credential variables to print the information on the screen.

print(get('192.168.183.10', ['1.3.6.1.2.1.1.5.0'], hlapi.UsmUserData('SNMPUser1', 
authKey='AUTHPass1', privKey='PRIVPass1', authProtocol=hlapi.
usmHMACSHAAuthProtocol, privProtocol=hlapi.usmAesCfb128Protocol)))



Chapter 15 ■ python network automation Labs: Cron and snmpv3

671

# Task

4 Use dot OID '1.3.6.1.2.1.1.5.0' in the last line of code and execute the previous Python code 
to retrieve and print the device name of 192.168.183.10.

[pynetauto@centos8s1 snmp_test]$ python3 quicksnmp_v3.py
{'1.3.6.1.2.1.1.5.0': 'LAB-R1.pynetauto.local'}

5 If you want to retrieve the operational status of GigabitEthernet0/0, you can add another dot OID 
line with an OID value of  '1.3.6.1.2.1.2.2.1.7.1' in the last line. When you run the changed 
script, the interface state will be returned as a number: 1 for On and 2 for Off.

D. Add the following line to the end of quicksnmp_v3.py:

print(get('192.168.183.10', ['1.3.6.1.2.1.2.2.1.7.1'], hlapi.
UsmUserData('SNMPUser1', authKey='AUTHPass1', privKey='PRIVP$
52
[pynetauto@centos8s1 snmp_test]$ python3 quicksnmp_v3.py
{'1.3.6.1.2.1.1.5.0': 'LAB-R1.pynetauto.local'}
{'1.3.6.1.2.1.2.2.1.7.1': 1}

6 When you increase the last digit and run the script for the GigabitEthernet 0/3 interface status, it 
returns 2. It is not connected to anything. 4 is the interface reference number, and 2 denotes the 
Off status.

[pynetauto@centos8s1 snmp_test]$ python3 quicksnmp_v3.py
{'1.3.6.1.2.1.1.5.0': 'LAB-R1.pynetauto.local'}
{'1.3.6.1.2.1.2.2.1.7.4': 2}

 Using Python SNMP Code to Run a Query for an Interface Description
This lab is a continuation of the previous one, and you first have to make a copy of the quicksnmp_v3.py 
script and create another script to complete it. The following script will let you run SNMP queries on 
interfaces and their descriptions using the SNMPv3 Python code. Since this book is an introductory book 
that tries to introduce as much Python and network automation as possible, we will not go too deep into 
SNMP in-depth knowledge, leaving that task for the Cisco documentation. What is important here is to learn 
how Python is used to interact with Cisco devices using basic SNMP MIB and OID information.

# Task
1 Now, using the Linux cp command, copy quicksnmp_v3.py and create another file named 

quicksnmp_v3_get_bulk_auto.py.

[pynetauto@centos8s1 snmp_test]$ cp quicksnmp_v3.py quicksnmp_v3_get_bulk_auto.py
[pynetauto@centos8s1 snmp_test]$ nano quicksnmp_v3_get_bulk_auto.py

(continued)



Chapter 15 ■ python network automation Labs: Cron and snmpv3

672

# Task

2 At the end of the line, add the following code, and run it. You are appending the next line of code 
at the bottom. Also, make sure you use the SW3 IP address of 192.168.183.153. What this code will 
do is run the SNMP query on the interface’s name and descriptions.

GNU nano 4.8           /home/pynetauto/snmp_test/quicksnmp_v3_get_bulk_auto.py
[... omitted for brevity]
def cast(value):

try:
return int(value)

except (ValueError, TypeError):
try:

return float(value)
except (ValueError, TypeError):

try:
return str(value)

except (ValueError, TypeError):
pass

return value # existing quicksnmp_v3.py

#Append the following to the end of the code
def get_bulk(target, oids, credentials, count, start_from=0, port=161,

engine=hlapi.SnmpEngine(), context=hlapi.ContextData()):
handler = hlapi.bulkCmd(

engine,
credentials,
hlapi.UdpTransportTarget((target, port)),
context,
start_from, count,
*construct_object_types(oids)

)
return fetch(handler, count)

def get_bulk_auto(target, oids, credentials, count_oid, start_from=0, port=161,
engine=hlapi.SnmpEngine(), context=hlapi.ContextData()):

count = get(target, [count_oid], credentials, port, engine, context)[count_oid]
return get_bulk(target, oids, credentials, count, start_from, port, engine, 
context)

its = get_bulk_auto('192.168.183.153', ['1.3.6.1.2.1.2.2.1.2 ', 
'1.3.6.1.2.1.31.1.1.1.18'], hlapi.UsmUserData('SNMPUser1', authKey='AUTHPass1', 
privKey='PRIVPass1', authProtocol=hlapi.usmHMACSHAAuthProtocol, privProtocol=hlapi.
usmAesCfb128Protocol), '1.3.6.1.2.1.2.1.0')
for it in its:

for k, v in it.items():
print("{0}={1}".format(k, v))

print('')
^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line



Chapter 15 ■ python network automation Labs: Cron and snmpv3

673

# Task

3 Finally, run the quicksnmp_v3_get_bulk_auto.py code, and you should get the interface names 
and their descriptions; since we only configured the description for Gi0/0 and vlan1, you will see 
the names of these interfaces.

[pynetauto@centos8s1 snmp_test]$ python3 quicksnmp_v3_get_bulk_auto.py
{'1.3.6.1.2.1.1.5.0': 'Lab-sw3.pynetauto.com'}
1.3.6.1.2.1.2.2.1.2.1=GigabitEthernet0/0
1.3.6.1.2.1.31.1.1.1.18.1="1GB Main Connection"

1.3.6.1.2.1.2.2.1.2.2=GigabitEthernet0/1
1.3.6.1.2.1.31.1.1.1.18.2=

[... omitted for brevity]

1.3.6.1.2.1.2.2.1.2.16=GigabitEthernet3/3
1.3.6.1.2.1.31.1.1.1.18.16=

1.3.6.1.2.1.2.2.1.2.17=Null0
1.3.6.1.2.1.31.1.1.1.18.17=

1.3.6.1.2.1.2.2.1.2.18=Vlan1
1.3.6.1.2.1.31.1.1.1.18.18="Native interface"

There are hundreds of SNMP OID objects you can query and learn about. If you have a little bit of spare 
time, you can explore more about Cisco Device MIBs, especially the CPU and processes related to MIB 
information. Here is a Cisco link that shows you how to query CPUs using SNMP:

URL: https://www.cisco.com/c/en/us/support/docs/ip/simple- network- management- protocol- 
snmp/15215- collect- cpu- util- snmp.html

 Summary
In this chapter, you learned how to use the Linux scheduler cron on Ubuntu and CentOS. You can now 
schedule your Python applications to run at a specified time or at specified intervals. Once you finish 
developing an application, you can use cron to run the tasks even at odd hours of the day, and you will 
not lose any beauty sleep. The tool cron is a powerful, free, and open source task scheduler, and whenever 
we can, we should rely on open source tools. You also learned the SNMP foundations and looked at the 
SNMPwalk examples using the pysnmp module; in the process, we borrowed another developer’s work so that 
we did not have to reinvent the wheel. This can save you a lot of time.

With SNMP and Python, there is a lot we can do, but that would be another entire book. In Chapter 16, 
you will be exploring even more network automation scenarios. Also, you will learn to use virtualenv, the 
virtual environment used for Python testing as well as Ansible, pyATS and Docker, sendmail, and Twilio SMS 
Python network automation application development.

https://www.cisco.com/c/en/us/support/docs/ip/simple-network-management-protocol-snmp/15215-collect-cpu-util-snmp.html
https://www.cisco.com/c/en/us/support/docs/ip/simple-network-management-protocol-snmp/15215-collect-cpu-util-snmp.html


675
© Brendan Choi 2021 
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_16

CHAPTER 16

Python Network Automation 
Labs: Ansible, pyATS, Docker, 
and the Twilio API

This chapter is designed to introduce you to Python virtualenv and to Docker concepts and expose you 
to other ways of exploring Python external modules and features. Thus far in this book, we have focused 
on using Python’s basic Telnet and SSH remote access methods to probe, configure, and manage network 
devices in the lab topology. In a production environment, often we do not always get a dedicated Linux 
server for testing and implementation; often you will be given a limited resource on a Linux server with 
shared access with other engineers. We have to learn how to get around these obstacles and still implement 
our solutions (or applications) in such a production environment. At the end of this chapter, you will be able 
to work in a Python virtual environment for testing without affecting the existing Python setup. You will have 
made a quick start on Ansible and pyATS (Genie) and learned how sending an email works on Linux and 
Python using Sendmail. Finally, you will learn to monitor your network device’s CPU utilization with your 
Python application and then use a free Twilio SMS account to send an SMS to your smartphone using the 
Twilio API. You will explore how to adapt to other open source tools and write Python programs accordingly.

 

 Python Network Automation Development Labs
We are nearing the end of this book, and in this chapter you will explore some Python network automation 
labs. This chapter will introduce you to different network automation tools that will help you on your 
network automation journey. There are dedicated websites and documentation about Ansible, pyATS, 
and Docker. Hence, it is technically impossible to gain an in-depth understanding of these tools merely 
by reading a single chapter from this book. Still, it is worth installing and learning about these tools so 
you can decide for yourself if these tools can help your network automation dreams come true. Not every 
network engineer wants to write lines of Python code for a living but still wants to experiment with network 
automation’s real power. In this case, these out-of-the-box tools will serve the most common network 
automation scenarios, and you do not have to write real Python code.

https://doi.org/10.1007/978-1-4842-6806-3_16#DOI


Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

676

However, note that no two client network environments are the same, and no two organizations’ 
IP traffic have the same priorities or characteristics. If you have read thus far and still think that network 
automation only involves automating a network engineer’s general tasks and their thinking process, you 
are incorrect. Half of the job is all about handling data, namely, how you extract and use that data to your 
organization’s advantage to replace repeatable tasks with lines of code. Therefore, it is inevitable that some 
customization and writing code are involved in every scenario. In short, this chapter will serve as a quick-
start guide for Ansible, pyATS, and Docker.

Red Hat’s Ansible is gaining popularity for network configuration management; it is an open source 
tool initially developed as a configuration management tool for operating systems. Lately, the same tools 
are used to manage network devices. The big plus of Ansible is that the Ansible users do not have to write 
real code such as Python or JavaScript; they write code in pseudocode called YAML. Yes, writing YAML 
code is between writing real code and using the GUI-based Jelly Bean code. Ansible is nothing more than a 
simplified YAML application based on Python’s paramiko, netmiko, and nornir libraries, but it is a lot more 
user friendly than just coding in Python. It uses YAML files for endpoint automation using an agentless 
push method over pull method like other competitors. Ansible could be the first network automation tool 
many network engineers will interface with even before getting into Python. Or, you could be a seasoned 
Python programmer and fall in love with Ansible and Ansible Tower for its friendly user interface and easy-
to-follow and understand YAML workflow design. Ansible uses YAML, which has a closer resemblance to 
an application than a scripted programming language; with Ansible, the users are not expected to know 
any programming language. Not all network engineers want to become proficient at Python programming; 
they want a premade tool, so Ansible might be the answer. I firmly believe that Ansible’s biggest attraction 
for many organizations is its low entry barrier (even lower than Python). But at the same time, this is 
a disappointment from an engineer’s perspective, which may lead many engineers to abandon their 
programming language journey too prematurely.

In this chapter, you will see some quick installation and startup labs. pyATS, along with Nornir, are 
Cisco-endorsed and developed tools; here you will be introduced to pyATS as a quick startup guide. pyATS 
is not a programming language; instead, it is a network probing and information gathering tool rather than a 
configuration tool. For configuration, Nornir can be used, but it is simply a rewritten version of netmiko with 
more user-friendly features, where netmiko is an improved version of paramiko, which focuses explicitly on 
multivendor network automation. These are great tools and are worth spending time exploring them. This 
chapter will also touch on Docker as a resource-saving tool in production. Docker is a containerized solution 
to run on your Linux or Windows systems. Docker has many use cases in enterprise network automation. 
Still, Docker is mainly used as an instance on a Linux server to run and execute tasks or applications. 
Their small footprint can run where a full virtual-machine cannot be justified to run for a single task such 
as running a nightly system check on a dedicated VM. We will discuss each of these tools further in their 
respective sections. In the second half of this chapter, you will be guided through setting up two labs on 
Docker images and learn how Docker can be used. Also, as part of the lab, you will look at how the REST API 
can be used in Python.

First, you will install Python’s virtualenv and learn how to work in a Python virtual environment; then 
you will get introduced to Ansible and pyATS using virtualenv. In the third lab, you will install Docker and 
download my purpose-built Python network automation server from Docker Hub and learn to use a Docker 
container in place of an actual virtual machine. In some scenarios, Docker might be the best alternative 
environment to run your stand-alone Python applications without wasting a lot of computing power.

 Quick-Start Guide to Ansible: virtualenv Lab 1
While you are developing your Python applications, there are many instances where you want to try to test 
a new Python module without impacting a production Python server. As discussed in the earlier chapters, 
Python servers, in general, are implemented on Linux operating systems. As you learn more about Linux 
operating systems, Linux systems are a joy to operate when everything is working as designed. Still, while 



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

677

introducing new software or, in this case, different Python libraries into a working Python environment, 
things can and will go horribly wrong. You may have to spend hours troubleshooting incorrectly installed 
programs and try to remove the software and restore your operating system to good system health. 
virutalenv is a Python tool for creating isolated environments containing their copy of Python, pip, and 
dedicated storage space to keep testing libraries installed from PyPl. It allows the users to work on multiple 
projects with varying dependencies on the same machine simultaneously. You can think of virtualenv as a 
quick sandbox for Python library testing.

In this lab, you will quickly learn how to set up Python virtualenv on your Ubuntu server, create 
virtualenv for Ansible and test-drive Ansible to probe information, and make quick configuration 
changes on Cisco devices in your lab. Note that Ansible is not a programming language like Python, Perl, or 
JavaScript; it is a framework that uses YAML to orchestrate IP devices. Underneath Ansible, it is written in 
Python, and also, for the SSH connection, it relies on paramiko as we have learned in Chapter 7.

Many people ask me if they should learn Ansible first or Python first. I think the answer depends on 
how much each individual wants to know about network automation using Python. Since you have reached 
this far in this book, you probably know your answer already: learn Python first and then dip your toes 
into Ansible. Because Ansible from Red Hat (and pyATS [Genie] from Cisco to some extent) is so powerful 
without the need for engineers to write the real code, it can misguide Python learners to think that there is 
no need for you to learn Python; this is the biggest drawback of learning Ansible first and Python second.

The following content is a quick startup guide for installing the virtenv module on Ubuntu 20.04 LTS 
server environment. Follow these simple steps to set up your environment to complete the following Ansible 
startup lab. If you are using CentOS (or any Red Hat) OS, this process changes slightly, but the fundamental 
features are the same. Figure 16-1 displays the logical connection and the devices used in this lab.

Figure 16-1. Ansible virtualenv lab used devices



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

678

 Installing virtualenv and Getting Started with Ansible
Let’s install the virtualenv module on your Ubuntu 20 LTS server and set you up for the first lab in this 
chapter. Follow each step to complete the virtualenv installation.

# Task
1 SSH into your Ubuntu server and perform the following steps to get you up and running for the next 

lab.

Update and upgrade Ubuntu 20.04 LTS to the latest version using Ubuntu’s Advanced Packaging Tool.

pynetauto@ubuntu20s1:~$ sudo apt update
pynetauto@ubuntu20s1:~$ sudo apt -y upgrade

2 To make your Python environment more robust, install some extra packages and development tools 
to ensure that the Linux server is set up for a programming environment. It is best to install these 
packages as a root user.

pynetauto@ubuntu20s1:~$ su -
Password: ********
root@ubuntu20s1:~# apt update
root@ubuntu20s1:~# apt-get install -y
root@ubuntu20s1:~# apt install -y build-essential python3-dev libssl-dev libffi-dev
root@ubuntu20s1:~# apt install -y python3-pip
root@ubuntu20s1:~# apt install -y python3-pip

3 You will be using the venv Python module to configure the python3 virtual environment, which is 
part of the standard Python 3 library.

root@ubuntu20s1:~# apt install -y python3-venv
root@ubuntu20s1:~# apt install sshpass # For ansible ssh login
root@ubuntu20s1:~# su - pynetauto

4 Use mkdir to create a directory (environment) where your virtual environments will live. Use the cd 
command to change into the new directory.

pynetauto@ubuntu20s1:~$ mkdir venv1
pynetauto@ubuntu20s1:~$ cd venv1
pynetauto@ubuntu20s1:~/venv1$

5 Once you are in the directory, create your testing environment. Use the ls Linux command to view 
items in your environment directory, in this case, ansible_venv.

pynetauto@ubuntu20s1:~/venv1$ python3 -m venv ansible_venv
pynetauto@ubuntu20s1:~/venv1$ ls ansible_venv
bin  include  lib  lib64  pyvenv.cfg  share

6 Activate and start your new virtual environment. ./ means the currently working directory or the 
directory you are working within. Once you have activated your virtual environment, you will see 
(ansible_venv) at the beginning of the CLI.

pynetauto@ubuntu20s1:~/venv1$ source ./ansible_venv/bin/activate
(ansible_venv) pynetauto@ubuntu20s1:~/venv1$



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

679

# Task

7 If you have (ansible_venv) in front of your Linux command line, it means you are in the virtual 
environment. Run Python –V or python3 –V to confirm the Python version. If you only have Python 
version 3, you can use either Python or Python3 to run your script in this environment.

(ansible_venv) pynetauto@ubuntu20s1:~/venv1$ Python -V
Python 3.8.2
(ansible_venv) pynetauto@ubuntu20s1:~/venv1$ python3 -V
Python 3.8.2

8 To exit or deactivate the environment, use the deactivate command to exit your virtualenv.
(ansible_venv) pynetauto@ubuntu20s1:~/venv1$ deactivate

pynetauto@ubuntu20s1:~/venv1$

9 To reactivate the same environment, if you are already in the netautovenv directory, use the same 
./ansible_venv/bin/activate command.

pynetauto@ubuntu20s1:~/venv1$ source ./ansible_venv/bin/activate
(ansible_venv) pynetauto@ubuntu20s1:~/venv1$

10 To start our Ansible lab, install paramiko first and then Ansible using the pip3 install commands. 
Ansible uses paramiko for its SSH connection into network devices, so it is a prerequisite.

pynetauto@ubuntu20s1:~/venv1$ source ./ansible_venv/bin/activate
(ansible_venv) pynetauto@ubuntu20s1:~/venv1$ pip3 install paramiko
(ansible_venv) pynetauto@ubuntu20s1:~/venv1$ pip3 install ansible # install ansible 
on your virtualenv
(ansible_venv) pynetauto@ubuntu20s1:~/venv1$ ansible --version
ansible 2.9.12

11 Generate the SSH key on the ubuntu20s1 server again after the Ansible installation.

(ansible_venv) pynetauto@ubuntu20s1:~/venv1$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/pynetauto/.ssh/id_rsa):
Created directory '/home/pynetauto/.ssh'.
Enter passphrase (empty for no passphrase): **********
Enter same passphrase again: **********
Your identification has been saved in /home/pynetauto/.ssh/id_rsa
[... omitted for brevity]
+----[SHA256]-----+
(ansible_venv) pynetauto@ubuntu20s1:~/venv1$

12 Use ls ansible_venv/bin/ansible* to check the available commands from Ansible.

(ansible_venv) pynetauto@ubuntu20s1:~/netautovenv$ ls ansible_venv/bin/ansible*
ansible_venv/bin/ansible ansible_venv/bin/ansible-console  ansible_venv/bin/ansible-
inventory  ansible_venv/bin/ansible-test ansible_venv/bin/ansible-config      ansible_
venv/bin/ansible-doc      ansible_venv/bin/ansible-playbook   ansible_venv/bin/ansible-
vault ansible_venv/bin/ansible-connection  ansible_venv/bin/ansible-galaxy   
ansible_venv/bin/ansible-pull

(continued)



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

680

# Task

13 Next, use the sudo /home/pynetauto/.ssh/config command to open the SSH configuration file and add 
the security key exchange supported by Cisco devices. After the update, your file should look like this:

(ansible_venv) pynetauto@ubuntu20s1:~/venv1$ nano /home/pynetauto/.ssh/config

Update the ~/.ssh/config file for the correct security key exchange.

GNU nano 4.8                                       /home/pynetauto/.ssh/config
Host 192.168.183.10
  KexAlgorithms +diffie-hellman-group1-sha1
Host 192.168.183.20
  KexAlgorithms +diffie-hellman-group1-sha1
Host 192.168.183.101
  KexAlgorithms +diffie-hellman-group1-sha1
Host 192.168.183.102
  KexAlgorithms +diffie-hellman-group1-sha1
Host 192.168.183.153
  KexAlgorithms +diffie-hellman-group1-sha1
Host 192.168.183.244
  KexAlgorithms +diffie-hellman-group1-sha1
^G Get Help  ^O Write Out    ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

Now, try to SSH into each device using the following commands. Make sure you can successfully log 
into each device. Also, R1 uses an old AES type key exchange and has an issue with Ubuntu servers, 
so it was excluded from this lab. For CML or newer Cisco devices, you can also force the server to use 
diffie-hellman-group1-sha1 for the key exchange.

(ansible_venv) pynetauto@ubuntu20s1:~/netautovenv$ ssh pynetauto@192.168.183.10
(ansible_venv) pynetauto@ubuntu20s1:~/netautovenv$ ssh pynetauto@192.168.183.20
(ansible_venv) pynetauto@ubuntu20s1:~/netautovenv$ ssh pynetauto@192.168.183.101
(ansible_venv) pynetauto@ubuntu20s1:~/netautovenv$ ssh pynetauto@192.168.183.102
(ansible_venv) pynetauto@ubuntu20s1:~/netautovenv$ ssh -oKexAlgorithms=+diffie-
hellman-group1-sha1 pynetauto@192.168.183.153 <<< Force your server to use diffie-
hellman-group1-sha1 (Newer IOS)
(ansible_venv) pynetauto@ubuntu20s1:~/netautovenv$ ssh -oKexAlgorithms=+diffie-
hellman-group1-sha1 pynetauto@192.168.183.244

 it is important that you ssh into each router and switch. on the first prompt, accept the new rsa 
key fingerprints to allow the ssh connection into each device from your python server.

(ansible_venv) pynetauto@ubuntu20s1:~/venv1/ansible$ ssh pynetauto@192.168.183.244

the authenticity of host '192.168.183.244 (192.168.183.244)' can't be established.
rsa key fingerprint is sha256:1ype2xGthhana9ee+nVbqemnnw6eha5i/Xygj8Zu1p4.
are you sure you want to continue connecting (yes/no/[fingerprint])? yes
warning: permanently added '192.168.183.244' (rsa) to the list of known hosts.

if you have issues logging in via ssh, open the known_hosts file and clear the entries and attempt the 
ssh login again.

(ansible_venv) pynetauto@ubuntu20s1:~/venv1$ sudo nano /home/pynetauto/.ssh/known_hosts



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

681

# Task

14 Now use the Ansible command to log into one of your network devices interactively for the first 
time. Run the following command for each device in your network. The following example is an SSH 
login to LAB-R1 (192.168.183.10) using the Ansible ad hoc command.

(ansible_venv) pynetauto@ubuntu20s1:~/netautovenv$ ansible all -i 192.168.183.10,  
-c network_cli -u pynetauto -k -m ios_facts -e ansible_network_os=ios
SSH password:********
[WARNING]: default value for `gather_subset` will be changed to `min` from `!config` 
v2.11 onwards
192.168.183.10 | SUCCESS => {
    "ansible_facts": {
        "ansible_net_all_ipv4_addresses": [
            "192.168.183.10",
            "172.168.1.1"
        ],
        "ansible_net_all_ipv6_addresses": [],
        "ansible_net_api": "cliconf",
        "ansible_net_filesystems": [
            "flash0:"
[...omitted for brevity]
        "ansible_net_iostype": "IOS",
        "ansible_net_memfree_mb": 246866.65625,
        "ansible_net_memtotal_mb": 314934.875,
        "ansible_net_model": "IOSv",
        "ansible_net_neighbors": {},
        "ansible_net_python_version": "3.8.2",
        "ansible_net_serialnum": "9M39W7I3ODBU6XCMNZ5GB",
        "ansible_net_system": "ios",
        "ansible_net_version": "15.6(2)T",
        "ansible_network_resources": {},
        "discovered_interpreter_python": "/usr/bin/python3"
    },
    "changed": false
}
(ansible_venv) pynetauto@ubuntu20s1:~/venv1$

(continued)



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

682

# Task

15 We can go to Ansible’s official site for helpful information and technical documentation. Red Hat 
offers extensive documentation on how to get started with Ansible and how to use Ansible for 
network automation.

URL: https://docs.ansible.com/ansible/latest/network/getting_started/first_playbook.html

URL: https://docs.ansible.com/ansible/latest/modules/ios_facts_module.html

Let’s go to the first playbook HTML URL and quickly test what Ansible can do for you. Once you are 
on the website, go to first_playbook.yml, and in your virtualenv, create a new YAML file with the 
same name. Modify it to replace Vyatta with Cisco, and the first playbook will look similar to this. 
This playbook will fetch the hostname and OS of your device.

(ansible_venv) pynetauto@ubuntu20s1:~/venv1$ pwd
/home/pynetauto/venv1
(ansible_venv) pynetauto@ubuntu20s1:~/venv1$ nano first_playbook.yml

GNU nano 4.8                                       first_playbook.yml
--- # indicates that this is a YAML file

- name: Network Getting Started First Playbook
  connection: network_cli
  gather_facts: false
  hosts: all
  tasks:

    - name: Get config for Cisco devices
      ios_facts:
        gather_subset: all

    - name: Display the config
      debug:
         msg: "The hostname is {{ ansible_net_hostname }} and the OS is {{ ansible_

net_version }}"

^G Get Help  ^O Write Out    ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

source: https://docs.ansible.com/ansible/latest/network/getting_started/first_
playbook.html

16 Follow the documentation to run first_playbook.yml. The following example uses LAB-R1, but 
you can use another device’s IP address to run the ansible-playbook command. You have now run 
your first ansible-playbook

(ansible_venv) pynetauto@ubuntu20s1:~/netautovenv$ ansible-playbook -i 
192.168.183.10, -u pynetauto -k -e ansible_network_os=ios first_playbook.yml
SSH password: ********

PLAY [Network Getting Started First Playbook] **************************************

TASK [Get config for Cisco IOS devices] ********************************************
[WARNING]: default value for `gather_subset` will be changed to `min` from `!config` 
v2.11 onwards
ok: [192.168.183.10]

https://docs.ansible.com/ansible/latest/network/getting_started/first_playbook.html
https://docs.ansible.com/ansible/latest/modules/ios_facts_module.html
https://docs.ansible.com/ansible/latest/network/getting_started/first_playbook.html
https://docs.ansible.com/ansible/latest/network/getting_started/first_playbook.html


Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

683

# Task

TASK [Display the config] **********************************************************
ok: [192.168.183.10] => {
    "msg": "The hostname is LAB-R1 and the OS is 15.6(2)T"
}

PLAY RECAP *************************************************************************
192.168.183.10             : ok=2    changed=0    unreachable=0    failed=0    
skipped=0    rescued=0    ignored=0

17 Now create a simple show_clock.yml to get the time on a device. Since we do not want to reinvent 
the wheel, we will be borrowing an old Ansible playbook to perform the show clock on your device. 
The source code location is referenced after the code.

(ansible_venv) pynetauto@ubuntu20s1:~/venv1$ nano show_clock.yml

GNU nano 4.8                                       show_clock.yml
---
- hosts: all
  gather_facts: no
  connection: local

  vars_prompt:
  - name: "mgmt_username"
    prompt: "Username"
    private: no
  - name: "mgmt_password"
    prompt: "Password"

  tasks:

  - name: SYS | Define provider
    set_fact:
      provider:
        host: "{{ inventory_hostname }}"
        username: "{{ mgmt_username }}"
        password: "{{ mgmt_password }}"

  - name: IOS | Show clock
    ios_command:
      provider: "{{ provider }}"
      commands:
        - show clock
    register: clock

  - debug: msg="{{ clock.stdout }}"

^G Get Help  ^O Write Out    ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

source: https://github.com/brona/ansible- cisco- ios- example/blob/master/show_clock.yml

(continued)

https://github.com/brona/ansible-cisco-ios-example/blob/master/show_clock.yml


Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

684

# Task

18 Now to check the time on your devices, run the following ansible-playbook command.
Note that this virtual environment does not affect the actual host Linux OS or other software 
installed on your virtual machine. Ansible will work only within this virtual environment, and 
once ansible_venv gets deactivated, you no longer will have access to Ansible until you reactivate 
ansible_venv.

The following is an example of playbook run on lab-sw2 (192.168.183.102).

(ansible_venv) pynetauto@ubuntu20s1:~/netautovenv$ ansible-playbook -i 
192.168.183.102, -u pynetauto -k -e ansible_network_os=ios show_clock.yml
SSH password:********
Username: pynetauto
Password: ********

PLAY [show clock] ******************************************************************

TASK [SYS | Define provider] *******************************************************
ok: [192.168.183.102]

TASK [IOS | Show clock] ************************************************************
[WARNING]: provider is unnecessary when using network_cli and will be ignored
ok: [192.168.183.102]

TASK [debug] ***********************************************************************
ok: [192.168.183.102] => {
    "msg": [
        "*19:17:03.351 UTC Wed Jan 13 2021"
    ]
}
PLAY RECAP *************************************************************************
192.168.183.102            : ok=3    changed=0    unreachable=0    failed=0    
skipped=0    rescued=0    ignored=0

19 Now, deactivate the testing Python virtual environment and check if you have Ansible installed on 
your local server.

(ansible_venv) pynetauto@ubuntu20s1:~/venv1/ansible$ deactivate
pynetauto@ubuntu20s1:~/venv1/ansible$ python3
Python 3.8.2 (default, Jul 16 2020, 14:00:26)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import ansible
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'ansible'

You have just learned how to use virtualenv. You installed Ansible on your Python virtual environment 
and got a brief introduction to Ansible as a network tool. Ansible is a great configuration management tool 
and a must-have a toolset. But, this is not a book about Ansible or network automation using Ansible. This 
is where the Ansible discussion ends in this book. If you want to learn more about Ansible, you should visit 
Red Hat’s official Ansible site or purchase a separate Ansible book to extend your knowledge.

Next, let’s install pyATS within Python virtualenv and find out how pyATS differs from other tools.



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

685

 Quick-Start Guide to pyATS (Genie): VirtualEnv Lab 2
pyATS is the core framework supported within Cisco Systems, and it was initially developed for the internal 
Cisco engineering team’s use. It uses the Genie library as the pyATS standard library and XPRESSO for the 
pyATS web dashboard. At the moment, pyATS is at the core of Cisco’s test automation solution. This tool is 
relatively new to the networking community as a networking automation tool. It is more of an information 
gathering and network system monitoring tool than a real configuration management tool like Red Hat’s 
Ansible.

pyATS is more of a supplementary tool than the primary automation tool. Some of the supported 
features include the following:

• Cisco’s default test framework for internal Cisco engineers across different platform/
functions, running millions of CI/CD, sanity, regression, scale, HA, solution

• Used by millions of engineers and developers

• A standard open source, platform/vendor-agnostic library system (Genie)

• A web dashboard to manage your test suites, testbeds, test results, and their insights 
(XPRESSO)

• Integration support for other integration tools in the form of libraries, extensions, 
plugins, and APIs

• Support for building customers’ business logic and solutions on top of the 
infrastructure stack

• Primarily focuses on Cisco devices

The following are links to Cisco’s official pyATS documentation and getting-started guide. If you plan to 
remain within the Cisco networking space, it is worth reading about pyATS and Nonir. But if you have bigger 
plans for your network automation use cases, stick to network automation tools, which are more vendor-
neutral. See Figure 16-2.

URL: https://developer.cisco.com/docs/pyats/ (pyATS introduction)
URL: https://developer.cisco.com/docs/pyats- getting- started/ (pyATS getting started)

https://developer.cisco.com/docs/pyats/
https://developer.cisco.com/docs/pyats-getting-started/


Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

686

As in the previous virtualenv lab, you will be creating a new directory and running virtualenv in the 
new directory. Follow these steps to start your new virtualenv for pyATS.

# Task
1 Create a new directory called mygenie and cd into the new directory. Once you are inside the 

directory, create a new virtual environment to test pyATS. To create and activate the pyATS test 
environment, type in the following commands:

pynetauto@ubuntu20s1:~/venv1$ mkdir mygenie
pynetauto@ubuntu20s1:~/venv1$ cd mygenie
pynetauto@ubuntu20s1:~/venv1/mygenie$ python3 -m venv genie_venv
pynetauto@ubuntu20s1:~/venv1/mygenie$ ls genie_venv
bin  include  lib  lib64  pyvenv.cfg  share
pynetauto@ubuntu20s1:~/venv1/mygenie$ source ./genie_venv/bin/activate
(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie$

2 Install pyATS with the library. You may get some bdist_wheel-related messages, but you can 
ignore the messages and continue.

(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie$ pip3 install pyATS[library]

Figure 16-2. pyATS virtualenv lab used devices



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

687

# Task

3 Run the git clone command to download the examples from GitHub.com.

(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie$ git clone https://github.com/
CiscoTestAutomation/examples
Cloning into 'examples'...
remote: Enumerating objects: 142, done.
remote: Counting objects: 100% (142/142), done.
remote: Compressing objects: 100% (103/103), done.
remote: Total 765 (delta 58), reused 94 (delta 32), pack-reused 623
Receiving objects: 100% (765/765), 1.03 MiB | 1.05 MiB/s, done.
Resolving deltas: 100% (385/385), done.

4 Then run the pyats run job command to check the operational status of pyATS. If basic_
example_job.py runs successfully, then your installation is good, and you are ready to go.

(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie$ cd examples
(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie/examples$ pyats run job basic/
basic_example_job.py

5 Before moving further, you must install extra libraries for Excel, a prerequisite for pyATS to work 
correctly later.

(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie/examples$ cd ..
(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie$ pip3 install xlrd xlwt xlsxwriter

6 Genie uses a YAML testbed JSON file for device connection and authentication. Install pyats.
contrib, which is a requirement.

(genie) pynetauto@ubuntu20s:~/genie$ pip3 install pyats.contrib

7 Next, create a testbed.yml file to be used for authentication. Use the same pyats create 
command to help you create a testbed.yml file. The following example is creating a testbed.yml 
file for switch 3 and switch 4:

(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie$ genie create testbed interactive  
 --output testbed.yml --encode-password
Start creating Testbed yaml file ...
Do all of the devices have the same username? [y/n] y
Common Username: pynetauto

Do all of the devices have the same default password? [y/n] y
Common Default Password (leave blank if you want to enter on demand):

Do all of the devices have the same enable password? [y/n] y
Common Enable Password (leave blank if you want to enter on demand):

Device hostname: Lab-sw3
   IP (ip, or ip:port): 192.168.183.153
   Protocol (ssh, Telnet, ...): ssh
   OS (iosxr, iosxe, ios, nxos, linux, ...): iosxe
More devices to add ? [y/n] y

(continued)

http://github.com


Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

688

# Task

Device hostname: Lab-SW4
   IP (ip, or ip:port): 192.168.183.244
   Protocol (ssh, telnet, ...): ssh
   OS (iosxr, iosxe, ios, nxos, linux, ...): iosxe
More devices to add ? [y/n] n
Testbed file generated:
testbed.yml

 ■ Note Depending on the version of pyats installed, the previous command genie create testbed 
interactive --output testbed.yml --encode-password needs to be replaced with the pyats create 
testbed interactive --output testbed.yml --encode-password command.

8 Quickly review the newly created testbed.yml file.

(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie$ cat testbed.yml
devices:
  Lab-SW4:
    connections:
      cli:
        ip: 192.168.183.244
        protocol: ssh
    credentials:
      default:
        password: '%ENC{w5PDosOUw5fDosKQwpbCmA==}'
        username: pynetauto
      enable:
        password: '%ENC{w5PDosOUw5fDosKQwpbCmA==}'
    os: iosxe
    type: iosxe
  Lab-sw3:
    connections:
    cli:
      ip: 192.168.183.153
      protocol: ssh
    credentials:
      default:
        password: '%ENC{w5PDosOUw5fDosKQwpbCmA==}'
        username: pynetauto
      enable:
        password: '%ENC{w5PDosOUw5fDosKQwpbCmA==}'
    os: iosxe
    type: iosxe



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

689

# Task

9 First, use the genie parse command, followed by the show version commands on both switches. 
You can use the device name to run the command as follows. The following example displays the 
result from switch 4.

For Lab-sw3:

(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie$ genie parse "show version" 
--testbed-file testbed.yml --devices Lab-sw3
  0%|                                                        | 0/1 [00:00<?, ?it/s]{
  "version": {
    "chassis_sn": "93RJPGR4I08",
    "compiled_by": "mmen",
    "compiled_date": "Wed 22-Mar-17 08:38",
    "curr_config_register": "0x101",
    "hostname": "Lab-sw3",
    "image_id": "vios_l2-ADVENTERPRISEK9-M",
    "image_type": "developer image",
    "last_reload_reason": "Unknown reason",
    "mem_size": {
      "non-volatile configuration": "256"
    },
    "number_of_intfs": {
    "Gigabit Ethernet": "16",
    "Virtual Ethernet": "1"
    },
    "os": "IOS",
    "platform": "vios_l2",
    "processor_board_flash": "0K",
    "returned_to_rom_by": "reload",
    "rom": "Bootstrap program is IOSv",
    "system_image": "flash0:/vios_l2-adventerprisek9-m",
    "uptime": "1 hour, 47 minutes",
    "version": "15.2(20170321:233949)",
    "version_short": "15.2"
  }
}
100%|████████████████████████████████
██████████████████████████████████
██████████████████████████████████
██████████████████████| 1/1 [00:01<00:00,  1.17s/it]

For Lab-SW4:

(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie$ genie parse "show version" 
--testbed-file testbed.yml --devices Lab-SW4
  0%|                                                       | 0/1 [00:00<?, ?it/s]{
  "version": {
    "chassis_sn": "9B66XQMVHID",
    "compiled_by": "mmen",
    "compiled_date": "Wed 22-Mar-17 08:38",
    "curr_config_register": "0x101",
    "hostname": "Lab-SW4",
    "image_id": "vios_l2-ADVENTERPRISEK9-M",

(continued)



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

690

# Task
    "image_type": "developer image",
    "last_reload_reason": "Unknown reason",
    "mem_size": {
      "non-volatile configuration": "256"
    },
    "number_of_intfs": {
      "Gigabit Ethernet": "16",
      "Virtual Ethernet": "1"
    },
    "os": "IOS",
    "platform": "vios_l2",
    "processor_board_flash": "0K",
    "returned_to_rom_by": "reload",
    "rom": "Bootstrap program is IOSv",
    "system_image": "flash0:/vios_l2-adventerprisek9-m",
    "uptime": "1 hour, 51 minutes",
    "version": "15.2(20170321:233949)",
    "version_short": "15.2"
  }
}
100%|████████████████████████████████
██████████████████████████████████
██████████████████████████████████
██████████████████████| 1/1 [00:00<00:00,  1.38it/s]

10 Use the following genie parse command to retrieve your device information:

(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie$ genie parse "show ip int brief" 
--testbed-file testbed.yml --devices Lab-sw3
  0%|                                                       | 0/1 [00:00<?, ?it/s]{
  "interface": {
    "GigabitEthernet0/0": {
      "interface_is_ok": "YES",
      "ip_address": "unassigned",
      "method": "unset",
      "protocol": "up",
      "status": "up"
    },
[...omitted for brevity]
    "Vlan1": {
      "interface_is_ok": "YES",
      "ip_address": "192.168.183.153",
      "method": "NVRAM",
      "protocol": "up",
      "status": "up"
    }
  }
}
100%|████████████████████████████████
██████████████████████████████████
██████████████████████████████████
██████████████████████| 1/1 [00:00<00:00,  1.08it/s]



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

691

# Task

11 Modify testbed.yml in the nano text editor to include all CML routers and switches. Leave SW3 and 
SW4 to use Telnet and configure others to use SSH for testing purposes. Optionally, you can rerun 
the pyats create testbed interactive --output testbed.yml --encode-password command 
to re-create this file. You can find the testbed.yml file from the download page for this chapter. 
Because of the page restrictions, parts of the content have been omitted.

(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie$ pyats create testbed interactive  
 --output testbed.yml --encode-password
(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie$ cat testbed.yml
devices:
  LAB-R1:
    connections:
      cli:
        ip: 192.168.183.10
        protocol: ssh
    credentials:
      default:
        password: '%ENC{w5PDosOUw5fDosKQwpbCmA==}'
        username: pynetauto
      enable:
        password: '%ENC{w5PDosOUw5fDosKQwpbCmA==}'
    os: iosxe
    type: iosxe
[... omitted for brevity]
  lab-sw2:
    connections:
      cli:
        ip: 192.168.183.102
        protocol: ssh
    credentials:
      default:
        password: '%ENC{w5PDosOUw5fDosKQwpbCmA==}'
        username: pynetauto
      enable:
        password: '%ENC{w5PDosOUw5fDosKQwpbCmA==}'
    os: iosxe
    type: iosxe

(continued)



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

692

# Task

12 Use the following commands to test-drive Genie:

(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie$ genie parse "show clock" 
--testbed-file testbed.yml --devices[hostname]
  0%|                                                  | 0/1 [00:00<?, ?it/s]{
  "day": "13",
  "day_of_week": "Wed",
  "month": "Jan",
  "time": "20:02:59.396",
  "timezone": "UTC",
  "year": "2021"
}
100%|████████████████████████████████
██████████████████████████████████
██████████████████████████████████
██████████████████████| 1/1 [00:00<00:00,  1.50it/s]
[...omitted for brevity]
  0%|                                                   | 0/1 [00:00<?, ?it/s]{
  "day": "13",
  "day_of_week": "Wed",
  "month": "Jan",
  "time": "19:59:35.229",
  "timezone": "UTC",
  "year": "2021"
}

Now change the show command and run the show cdp neigh command on multiple devices.

(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie$ genie parse "show cdp neigh" 
--testbed-file testbed.yml --devices[hostname]
  0%|                                                |  0/1 [00:00<?, ?it/s] 
Parsed command 'show cdp neigh' but it returned empty
100%|████████████████████████████████
██████████████████████████████████
██████████████████████████████████
██████████████████████| 1/1 [00:00<00:00,  1.28it/s]
  0%|                                                 | 0/1 [00:00<?, ?it/s]{
  "cdp": {
    "index": {
      "1": {
        "capability": "S I",
        "device_id": "Lab-sw3.pynetauto.local",
        "hold_time": 141,
        "local_interface": "GigabitEthernet0/0",
        "platform": "Gig",
        "port_id": "0/0"
      },



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

693

# Task

      "2": {
        "capability": "S I",
        "device_id": "Lab-SW4.pynetauto.local",
        "hold_time": 146,
        "local_interface": "GigabitEthernet0/0",
        "platform": "Gig",
        "port_id": "0/0"
      },
[...omitted for brevity]

If the connected interface has CDP disabled, the result will come back as an error: Parsed command 
'show cdp neigh' but it returned empty. You may have to enable the cdp enable command 
on the affected interface.

13 Let’s quickly install the pandas library to be used in this lab. If you already have pandas installed, 
you can skip this step. Let’s install the pandas module for data analytics and store the data to Excel.
(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie$ pip3 install pandas

14 pyATS is an excellent tool endorsed by Cisco and its internal engineering team, but where is its 
real power? If the data collection power of pyATS is combined with the power of Python’s data 
handling, this will allow us to collect and store data with minor effort.
Here is an example of pyATS combined with Python re (the regular expression module) in an 
interactive session. You can combine pyATS with a Python regular expression and use any of the 
values as variables or store them into Excel files. This is an interactive example that you can follow 
along with, but what you have typed can also be saved as a script file with a .py extension.

(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie$ python3
Python 3.8.2 (default, Jul 16 2020, 14:00:26)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> show_ver = os.popen('genie parse "show version" --testbed-file testbed.yml  
 --devices[hostname]')
100%|████████████████████   1/1 [00:00<00:00,  1.54it/s]
100%|████████████████████| 1/1 [00:00<00:00,  2.84it/s]
100%|████████████████████| 1/1 [00:00<00:00,  2.80it/s]
100%|████████████████████| 1/1 [00:00<00:00,  2.07it/s]
100%|████████████████████| 1/1 [00:00<00:00,  3.48it/s]
100%|████████████████████| 1/1 [00:00<00:00,  2.41it/s]

(continued)



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

694

# Task

# Press [Enter] key once.

>>> output = show_ver.read()
>>> print(output)
{
  "version": {
    "chassis": "IOSv",
    "chassis_sn": "9M39W7I3ODBU6XCMNZ5GB",
    "compiled_by": "prod_rel_team",
    "compiled_date": "Tue 22-Mar-16 16:19",
    "curr_config_register": "0x0",
    "hostname": "LAB-R1",
    "image_id": "VIOS-ADVENTERPRISEK9-M",
    "image_type": "production image",
    "last_reload_reason": "Unknown reason",
    "main_mem": "460017",
    "mem_size": {
      "non-volatile configuration": "256"
    },
[...omitted for brevity]
{
  "version": {
    "chassis_sn": "93GM5T0AAL2",
    "compiled_by": "mmen",
    "compiled_date": "Wed 22-Mar-17 08:38",
    "curr_config_register": "0x101",
    "hostname": "lab-sw2",
    "image_id": "vios_l2-ADVENTERPRISEK9-M",
    "image_type": "developer image",
    "last_reload_reason": "Unknown reason",
    "mem_size": {
      "non-volatile configuration": "256"
    },
    "number_of_intfs": {
      "Gigabit Ethernet": "16",
      "Virtual Ethernet": "1"
    },
    "os": "IOS",
    "platform": "vios_l2",
    "processor_board_flash": "0K",
    "returned_to_rom_by": "reload",
    "rom": "Bootstrap program is IOSv",
    "system_image": "flash0:/vios_l2-adventerprisek9-m",
    "uptime": "2 hours, 25 minutes",
    "version": "15.2(20170321:233949)",
    "version_short": "15.2"
  }
}



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

695

# Task

15 As confirmed in the interactive session, the output data type is a string type that is saved to the 
variable output.

>>> type(output)
<class 'str'>

Import the re module and use one of the cool regular expressions you learned in Chapter 5 
to capture the specific information you are after. Here, the example uses lookahead (?=) and 
lookbehind (?<=) regular expression examples.

In the following code, a positive lookbehind and positive lookahead are used to get the hostnames 
of each device from the output in the previous step:

>>> import re
>>> p1 = re.compile(r'(?<=\"hostname\": \").+(?=\")')
>>> m1 = p1.findall(output)
>>> m1
['LAB-R1', 'LAB-SW1', 'Lab-SW4', 'Lab-sw3', 'lab-r2', 'lab-sw2']

In the following lines, once again, lookbehind and lookahead are used to get each device’s uptime 
from the output:

>>> p2 = re.compile(r'(?<=\"uptime\": \").+(?=\")')
>>> m2 = p2.findall(output)
>>> m2
['6 hours, 52 minutes', '6 hours, 52 minutes', '12 hours, 14 minutes', '10 hours, 13 
minutes', '12 hours, 12 minutes', '10 hours, 39 minutes']

We want to convert the uptime information into a bar graph using Python, so you must first convert 
the hours and minutes into the correct decimal format. Take a look at the following conversion to 
convert the time into two decimal places. The following Python code will work only if all of your 
devices have been up and running for more than an hour, so the output of the uptime is “x hours y 
minutes.”

>>> uptime = [] # create empty list called uptime
>>> for x in m2: # for loop to call out each item in list m2
...     y = [int(s) for s in x.split() if s.isdigit()] # If string is a digit, then 
save it as y
...     z = (y[1]/60) # y[1] or the second number from y is minute value, divide it by 
60 minutes and convert it into a decimal points
...     a = round(y[0] + z, 2) # y[0] or the first number from y is hour value, combine 
it with z, then roud it to 2 decimal places
...     uptime.append(a) # append the value a to uptime list
...
>>> print(uptime) # print the result of uptime list
[6.87, 6.87, 12.23, 10.22, 12.2, 10.65]

(continued)



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

696

# Task

 if your devices’ uptime is less than 60 minutes, use the following python code instead:

>>> uptime = []
>>> for x in m2:
...     y = [int(s) for s in x.split() if s.isdigit()]
...     z = (y[0]/60)
...     a = round(z, 2)
...     uptime.append(a)
...
>>> print(uptime)
[0.25, 0.22, 0.24, 0.19, 0.18, 0.21]

Now, use the dictionary zip feature to turn the two lists into a Python dictionary. We need to 
combine the device name list and uptime list in decimal using the dict(zip(m1, uptime)) 
function. The outcome should look as follows:

>>> device_uptime = dict(zip(m1,uptime)) # Combine m1 and uptime lists and make them 
into a dictionary
>>> print(device_uptime) # display device_uptime dictionary
{'LAB-R1': 6.87, 'LAB-SW1': 6.87, 'Lab-SW4': 12.23, 'Lab-sw3': 10.22, 'lab-r2': 
12.2, 'lab-sw2': 10.65}

Let’s use the pandas module to turn the dictionary into a pandas dataframe and save it as an Excel 
spreadsheet for reporting purposes. While converting the dictionary into a pandas dataframe, you 
will add the headers: host for device names and uptime for running time. The key success factor 
in Python network automation is how you can process and handle this crucial data to suit you and 
your company’s needs.

>>> type(device_uptime) # Check type
<class 'dict'>
>>> import pandas as pd # import pandas
>>> df = pd.DataFrame(list(device_uptime.items()),columns = ['host','uptime'])  
# convert to dataframe
>>> df  # Check dataframe
host  uptime
0   LAB-R1    6.87
1  LAB-SW1    6.87
2  Lab-SW4   12.23
3  Lab-sw3   10.22
4   lab-r2   12.20
5  lab-sw2   10.65
>>> df.to_excel('device_uptime.xlsx') # Write data frame to excel using panda's to_
excel feature.

16 Check if the file exists in the mygenie directory. Use WinSCP to log into the ubuntu20s1 server via 
SCP, download a copy of the device_uptime.xlsx file to your Windows host PC, and open it in 
Excel to confirm the data has been correctly saved in Excel format. See Figure 16-3 and Figure 16-4.

pynetauto@ubuntu20s1:~$ cd venv1
pynetauto@ubuntu20s1:~/venv1$ cd mygenie
pynetauto@ubuntu20s1:~/venv1/mygenie$ ls
device_uptime.xlsx  examples  genie_venv  testbed.yml



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

697

Figure 16-3. WinSCP, retrieving device_uptime.xlsx from ubuntu20s1 server

Figure 16-4. Host PC, opening device_uptime.xlsx in Excel

# Task



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

698

# Task

17 Now, on your Windows host PC (or desktop of your Ubuntu server), you can write some simple 
Python code to convert the dictionary from step 15 and convert it into a graph. You also can read 
the Excel file using pandas and convert it into a dataframe to achieve the same result. (This will not 
work well with the Linux command line as it does not have direct graphical support.)
Before writing the script from your Windows host PC’s command prompt, install pandas and 
matplotlib using the pip3 commands shown here:

C:\Users\brendan>cd Desktop
C:\Users\brendan\Desktop>pip3 install pandas
C:\Users\brendan\Desktop>pip3 install matplotlib

Write the following code and save the script on your Windows desktop. Create a Python file on your 
Windows desktop and save it as device_uptime_graph.py.

import matplotlib.pyplot as plt # import matplotlib library
import pandas as pd  # import pandas library

device_uptime = {'LAB-R1': 6.87, 'LAB-SW1': 6.87, 'Lab-SW4': 12.23, 'Lab-sw3': 
10.22, 'lab-r2': 12.2, 'lab-sw2': 10.65}

# Resulting dictionary from step 15
df = pd.DataFrame(list(device_uptime.items()),columns = ['host','uptime']) # Convert 
dictionary into pandas dataframe with column titles 'host' & 'uptime'

#print(df)
df.plot(kind='bar',x='host',y='uptime') # Plot a bar graph with host as x-axis and 
uptime(float) as y-axis
plt.show() # Display graph

Now, run the script from PowerShell or Windows command prompt or double-click the script. If 
everything works correctly, your data will come out as a bar graph, as shown here. Alternatively, 
you can turn them into different types of graphs and apply the same method to convert data into 
dataframes and create graphs as you want. You can create the same graph from Excel, but you now 
know another method to create a graph using Python for the reporting. See Figure 16-5.

C:\Users\brendan\Desktop>python device_uptime_graph.py



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

699

# Task

18 At the end of this lab, make sure you use the deactivate command and stop the virtual 
environment.

(genie_venv) pynetauto@ubuntu20s1:~/venv1/mygenie$ deactivate
pynetauto@ubuntu20s1:~/venv1/mygenie$

You have been introduced to Cisco’s own pyATS to help you with your network automation journey. 
You have used Python’s re module to collect devices’ system uptime data, then used pandas module to 
convert the data into a pandas data frame. As the last step, you have converted the data into a simple 
bar graph using the matplotlib libraries. The task of converting data to a graph is referred to as data 
visualization. 

 if you want to run the previous lab from ubuntu server’s desktop, try to install the Vmware workstation tool 

first to make copying and pasting easier between your windows host pC and your Linux Vm. Follow the 
instructions at the following urL and use “method 2: install from Vmware host.”

urL: https://websiteforstudents.com/how- to- install- vmware- guest- tools- on- ubuntu- 20- 04- 18- 04/

Figure 16-5. matplotlib graph of device uptime example

https://websiteforstudents.com/how-to-install-vmware-guest-tools-on-ubuntu-20-04-18-04/


Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

700

 Sendmail Lab Using an Imported Docker Image
Docker is an open platform for distributed applications for developers and system administrators, and its 
motto is “Build, ship, run.” It is a scalable container management service. It is another virtual technology 
that can help you succeed with the deployment of a Linux network automation server into production 
and only utilize a minor portion of the server resources. Docker was first introduced in March 2013, 
and it is a container based on the platform as a service software application. Docker uses virtualization 
technology to provide isolated containers for software and tools. These containers use well-defined 
channels to communicate between the host and Docker containers. It also provides a framework to isolate 
an application and its dependencies on a self-contained unit called containers. The Docker containers are 
similar to virtual machines, but Docker is a virtual machine without its kernels and operating system, and 
the containers have to rely on the hosting server’s kernel for operation. Containerization has become the 
buzzword in the IT world because companies can do more with fewer server resources, especially in Agile 
and DevOps-based projects. In other words, Docker solutions orchestrated through Kubernetes can save 
hundreds and thousands of dollars for companies by improving the utilization of IT resources and reducing 
the cost of operation per node.

The famous slogan of Docker is “develop, ship, and run anywhere.” Docker is a developer’s tool 
that helps them develop applications quickly and ship them into containers that can then be deployed 
anywhere in the network. Docker has a tiny footprint as it relies on the host server’s local resources, and 
it is not a virtual machine in a true sense as it does not have its own operating system. Docker container 
images are simply runnable instances or processes of a snapshot image. You can create, start, stop, move, 
or delete a container. Although a container does not have its operating system, it runs with its file system, 
own networking, and own isolated process tree separate from the host. It becomes easier for teams across 
different units, such as development, QA, and operations, to work seamlessly across applications with 
containers. You can deploy Docker containers anywhere, on any physical or virtual machine, and even on 
the cloud.

If we have to cover Docker in less than 20 pages, it would be best to get your hands dirty with a real 
image. You can learn about Docker at your own pace, outside of this book. Here, to fast-forward your 
progress, you will be downloading a prestaged Python network automation Docker image from Docker Hub 
and using the downloaded image to test-drive a Python lab as you have been doing with the ubuntu20s1 and 
centos8s1 servers. See Figure 16-6.



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

701

 Docker Components and Account Registration
Docker is like a purpose-built virtual machine without the burden of carrying a full operating system as it 
relies on the host’s Linux kernels to run on a tiny footprint. You can spin up many Docker containers on a 
single platform without the system resource contention issues. Let’s quickly go over what components make 
up a Docker solution; we will not go into too much detail as we want to focus on the practical side of Docker.

Docker has the following components:

• Docker has cross-platform support; it can be installed on Linux, macOS, and 
Windows as a service.

• Docker Engine is used for building Docker images and creating Docker containers.

• Docker Hub is the registry that is used to host various Docker images.

• Docker Compose is used to define applications using multiple Docker containers.

Docker account registration is required to use the full Docker features online. After the registration, we 
can tap into hundreds of purpose-built Docker images without a sweat and have our applications up and 
running in no time. To log in and download a Docker image from Docker Hub, you will need a Docker Hub 
account. To get you ready for this lab, please go to the following URL and register your Docker Hub account. 
This is an important step as you will need your account to follow this section.

URL: https://hub.docker.com/
Once you have completed your registration and have some spare time to read, go to the Docker Hub 

page and get familiar with how Docker works.
URL: https://www.docker.com/get- started

Figure 16-6. Sendmail Docker lab, used devices

https://hub.docker.com/
https://www.docker.com/get-started


Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

702

 Docker Installation
For this lab, all tasks will be performed from Ubuntu Server. Follow these steps to install Docker on your 
ubuntu20s1 server. Luckily, Docker’s installation on Ubuntu is pretty painless, and you will be up and 
running in less than 15 minutes.

# Task
1 As always, let’s begin with an apt update command and upgrade your Ubuntu 20 LTS server. 

This will take a few minutes if you have not updated your server package for some time.

pynetauto@ubuntu20s1:~$ sudo apt update
[sudo] password for pynetauto: ***********
pynetauto@ubuntu20s1:~$ sudo apt upgrade -y

2 Enter the following command to download and install the Docker package:

pynetauto@ubuntus20s1:~$  sudo apt install docker.io -y

3 To enable Docker, enter the enable command and also use the docker –version command to 
check the version installed.

pynetauto@ubuntus20s1:~$ sudo systemctl enable --now Docker
pynetauto@ubuntu20s1:~$ sudo systemctl status docker
pynetauto@ubuntu20s1:~$ sudo docker --version
Docker version 19.03.8, build afacb8b7f0

4 Add yourself to the Docker group to run sudo commands. Replace pynetauto with your user 
ID. Run the last command for the change to take effect.

pynetauto@ubuntus20s1:~$ sudo usermod -aG docker pynetauto
pynetauto@ubuntu20s1:~$ sudo gpasswd -a $USER docker
pynetauto@ubuntu20s1:~$ newgrp docker

5 Test Docker by running the hello-world command, which will open a container to run the 
hello-world command.

pynetauto@ubuntu20s1:~$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
0e03bdcc26d7: Pull complete
Digest: sha256:4cf9c47f86df71d48364001ede3a4fcd85ae80ce02ebad74156906caff5378bc
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.
[... omitted for brevity]
For more examples and ideas, visit:
https://docs.docker.com/get-started/



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

703

# Task

6 Run docker ps –a to check if the hello-world command ran successfully. Also, run the docker 
images command to check downloaded Docker images.

pynetauto@ubuntu20s1:~$ docker ps -a
CONTAINER ID        IMAGE               COMMAND             CREATED             
STATUS                     PORTS               NAMES
ef48902f0801        hello-world         "/hello"            2 minutes ago       
Exited (0) 2 minutes ago                       modest_goldberg
pynetauto@ubuntu20s1:~$ docker images
REPOSITORY          TAG                 IMAGE ID            CREATED        SIZE
hello-world         latest              bf756fb1ae65        8 months ago   13.3kB

 Test-Driving Docker
A Python network automation Docker image has already been created for this book’s readers using the 
Dockerfile method to save time. The image you are about to download to your Ubuntu20s1 server is also 
a Ubuntu 20.04 LTS server with many IP services and network automation libraries pre-installed on the 
Docker image. There are several steps involved with creating a template Docker image from a Dockerfile, 
but we will not go into the details in this book as it is another topic that could require its own chapter. Please 
go to YouTube to locate and watch the basic Docker training. In this lab, you will download the pre-installed 
Python network automation Docker image and run it from your Ubuntu server.

# Task
1 After you have created a Docker Hub ID, go to the following Docker Hub site to review the image 

you will download.

URL: https://hub.docker.com/u/pynetauto

2 From your Linux command line, use docker login to log into Docker Hub. Replace the username 
with yours and enter your password to log in. You need to get a “Login Succeeded” message at the 
bottom. When you create an account and log into Docker Hub, you can push the Docker image to 
Docker Hub, save the image as a template, and share it with others in the community.

pynetauto@ubuntu20s1:~$ docker login

Log in with your Docker ID to push and pull images from Docker Hub. If you don’t have a Docker 
ID, head over to https://hub.docker.com to create one.

Username: pynetauto
Password: ***********
WARNING! Your password will be stored unencrypted in /home/pynetauto/.docker/
config.json.
Configure a csredential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
Login Succeeded

(continued)

https://hub.docker.com/u/pynetauto
https://hub.docker.com


Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

704

# Task

3 Use the following docker pull command to download this image onto your virtual machine’s 
Docker image repository. It is recommended that you connect to the Internet through your home 
network, not on a 4G or 5G network, as it will use up your mobile data.

pynetauto@ubuntu20s1:~$ docker pull pynetauto/pynetauto_ubuntu20:latest

latest: Pulling from pynetauto/pynetauto_ubuntu20
d51af753c3d3: Pull complete
[... omitted for brevity]
f92a9a96eae3: Pull complete
Digest: sha256:86f2178825cf09a1b7f7c370a460b34b109f62ce4471d944ef108d0a29162ed4
Status: Downloaded newer image for pynetauto/pynetauto_ubuntu20:latest
docker.io/pynetauto/pynetauto_ubuntu20:latest

4 Using the docker images command, check the new image with the correct details, as shown here:

pynetauto@ubuntu20s1:~$ docker images
REPOSITORY                     TAG     IMAGE ID         CREATED             SIZE
pynetauto/pynetauto_ubuntu20   latest  39ea52cc1e39     12 days ago         1.69GB
hello-world                    latest  bf756fb1ae65     8 months ago        13.3kB

5 To initiate a Docker container instance in a bash shell with a local server directory mounting 
point with the container, use the exact command shown here. Refer to Table 16-1 for the 
command explanation.

pynetauto@ubuntu20s1:~$ docker run -it --entrypoint=/bin/bash -v  /home/pynetauto/
mnt/:/home --name pynetauto_ubuntu20 pynetauto/pynetauto_ubuntu20

root@2f81da41426b:/#

For full Docker run references, visit the following site.
URL: https://docs.docker.com/engine/reference/run/

Table 16-1. Breakdown and Explanation of the Previous Commands

Command Breakdown Explanation

docker run -it --entrypoint=/bin/bash Run Docker with the –i and –t options where the entry 
point is the bash shell. -i denotes interactive mode, 
whereas –t denotes allocation of a pseudo-tty.

-v  /home/pynetauto/mnt/:/home -v is related to a volume (shared filesystem); in this 
case, unbuntu20s1’s /home/pynetauto/mnt directory 
is linked to the /home directory of the new Docker 
container.

--name pynetauto_ubuntu20 The --name option allows you to give a more 
meaningful name to this instance of the container. 
If –name is not used, then Docker will assign a random 
name automatically.

pynetauto/pynetauto_ubuntu20 This is the actual Docker image name in the local 
image pool.

https://docs.docker.com/engine/reference/run/


Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

705

# Task

6 Check the Docker image and the Python version installed on the pynetauto_ubuntu20 Docker 
container. Most of the commands are the same as the Linux standard commands and should 
behave like another Linux machine. However, the basic services or systemctl or any Linux 
standard software are not available from the Docker container instance; in other words, you must 
precisely specify which Linux software you want to install during the Docker image build process. 
If you want to install more software on an existing Docker image, you can make the modifications. 
However, the Docker base image modification topic is outside of this book’s scope. 

root@2f81da41426b:/# cat /etc/*release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=20.04
DISTRIB_CODENAME=focal
DISTRIB_DESCRIPTION="Ubuntu 20.04 LTS"
NAME="Ubuntu"
VERSION="20.04 LTS (Focal Fossa)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 20.04 LTS"
VERSION_ID="20.04"
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
VERSION_CODENAME=focal
UBUNTU_CODENAME=focal
root@2f81da41426b:/# python3 --version
Python 3.8.2

7 Create a testfile999.txt file on the Docker bash shell.

root@2f81da41426b:/# touch home/testfile999.txt

8 Detach and check the newly created file on the host PC. Use Ctrl+P followed by Ctrl+Q to detach 
from the Docker container. This will move you back into your Linux host OS. Check the /home/
pynetauto/mnt folder. You should find the testfile999.txt file in the Linux server’s directory.

pynetauto@ubuntu20s1:~$ pwd
/home/pynetauto
pynetauto@ubuntu20s1:~$ ls /home/pynetauto/mnt
testfil999.txt

(continued)



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

706

# Task

9 Now from your Linux host, create a new file under the shared directory. Then, reattach to the 
Docker instance to check the file from the Docker container instance.  When you reattach to the 
running Docker instance, you can use either the container ID or names.

pynetauto@ubuntu20s1:~$ touch /home/pynetauto/mnt/testfile123.txt
pynetauto@ubuntu20s1:~$ docker ps
CONTAINER ID   IMAGE                         COMMAND     CREATED       STATUS              
PORTS                                NAMES
2f81da41426b   pynetauto/pynetauto_ubuntu20  "/bin/bash"  6 minutes ago  Up 6 minutes 
20-22/tcp, 25/tcp, 12020-12025/tcp   pynetauto_ubuntu20

pynetauto@ubuntu20s1:~$ docker attach pynetauto_ubuntu20
root@2f81da41426b:/# ls
bin  boot  dev  etc  ftp  home  lib  lib32  lib64  libx32  media  mnt  opt  proc  
pynetauto  root  run  sbin  srv  sys  tmp  usr  var
root@2f81da41426b:/# ls /home/
testfile999.txt  testfile123.txt

10 To stop and exit Docker, press Ctrl+D or type in exit. This will stop and exit the currently logged in 
Docker container.

root@2f81da41426b:/# exit
pynetauto@ubuntu20s1:~$ docker ps -a
CONTAINER ID  IMAGE                         COMMAND   CREATED       STATUS                        
PORTS               NAMES
2f81da41426b  pynetauto/pynetauto_ubuntu20 "/bin/bash"  9 minutes ago  Exited (130) 11  
seconds ago                       pynetauto_ubuntu20
ef48902f0801   hello-world   "/hello"     42 minutes ago Exited (0)  42 minutes ago                         
modest_goldberg

11 To restart a stopped Docker instance, use the docker start instance_name command.

pynetauto@ubuntu20s1:~$ docker start pynetauto_ubuntu20
pynetauto_ubuntu20
pynetauto@ubuntu20s1:~$ docker ps -a
CONTAINER ID  IMAGE                    COMMAND          CREATED       STATUS                      
PORTS                                NAMES
2f81da41426b  pynetauto/pynetauto_ubuntu20  "/bin/bash"  11 minutes ago Up 4 seconds  
20-22/tcp, 25/tcp, 12020-12025/tcp   pynetauto_ubuntu20
ef48902f0801  hello-world   "/hello"  44 minutes ago   Exited (0) 44 minutes ago 
modest_goldberg



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

707

# Task

12 To prune nonrunning Docker instances and keep your environment clean, run the docker system 
prune command.

pynetauto@ubuntu20s1:~$ docker system prune
WARNING! This will remove:
- all stopped containers
- all networks not used by at least one container
- all dangling images
- all dangling build cache

Are you sure you want to continue? [y/N] Y
Deleted Containers:
ef48902f0801b692e963c317873075d0152a3c09fd992f8b2f5e3f8d55b71f01

Total reclaimed space: 0B

pynetauto@ubuntu20s1:~$ docker ps -a
CONTAINER ID        IMAGE       COMMAND                 CREATED        STATUS              
PORTS                                NAMES
2f81da41426b  pynetauto/pynetauto_ubuntu20   "/bin/bash"  13 minutes ago  Up 2 minutes  
20-22/tcp, 25/tcp, 12020-12025/tcp   pynetauto_ubuntu20

13 To delete Docker images, use docker rmi image_name:version.

pynetauto@ubuntu20s1:~$ docker images
REPOSITORY                     TAG         IMAGE ID          CREATED         SIZE
pynetauto/pynetauto_ubuntu20   latest      39ea52cc1e39      12 days ago     1.69GB
hello-world                    latest      bf756fb1ae65      8 months ago    13.3kB
pynetauto@ubuntu20s1:~$ docker rmi hello-world:latest
Untagged: hello-world:latest
Untagged: hello-world@sha256:4cf9c47f86df71d48364001ede3a4fcd85ae80ce02ebad74156906
caff5378bc
Deleted: sha256:bf756fb1ae65adf866bd8c456593cd24beb6a0a061dedf42b26a993176745f6b
Deleted: sha256:9c27e219663c25e0f28493790cc0b88bc973ba3b1686355f221c38a36978ac63
pynetauto@ubuntu20s1:~$ docker images
REPOSITORY                     TAG        IMAGE ID            CREATED        SIZE
pynetauto/pynetauto_ubuntu20   latest     39ea52cc1e39        12 days ago    1.69GB

 Docker Sendmail Python Lab
Now we are getting familiar with Docker, let’s quickly learn how to benefit from Docker and run our Python 
scripts. In this lab, you will use the pre-installed Sendmail on your pynetauto/pynetauto_ubuntu20:latest 
Docker container and send a test email from your Python script. Then you will be guided through writing a 
Python script to monitor the CPU utilization of one of the devices in the topology. When the utilization goes 
above the yellow watermark, then your Python script will trigger an email alert to your email inbox. First, 
let’s get you set up for Sendmail on your Docker image. For Sendmail to work on your Docker container, 
Sendmail needs to be pre-installed and configured, and port 25 must be opened up for SMTP. Also, to 
receive the test email, your email account security has to be lowered. In this example, a Gmail account is 
used for demonstration purposes, and you can do the same with your testing Gmail account.



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

708

# Task
1 If you have followed the Docker installation processes in the previous steps, you should have the 

Docker image named pynetauto_ubuntu20.

pynetauto@ubuntu20s1:~$ docker images
REPOSITORY                     TAG      IMAGE ID         CREATED             SIZE
pynetauto/pynetauto_ubuntu20   latest   39ea52cc1e39     2 weeks ago         1.69GB

2 Now, let’s start a new Docker instance by rerunning the following command. If you already 
have an existing instance, you can start the instance and attach it to the Docker instance. In this 
example, we will start a new instance. If your Docker instance starts, you will be logged into the 
bash shell of your new Docker instance and should be ready to go.

pynetauto@ubuntu20s1:~$ docker run -it --entrypoint=/bin/bash -v  /home/pynetauto/
mnt/:/home --name pynetauto_ubuntu20sendmail pynetauto/pynetauto_ubuntu20
root@062fc2a30243:/#

3 First, let’s check if port 25 is in listening mode. Check for open ports using the netstat –tuna 
command. No result was returned, so it looks like you will have to configure Sendmail and allow 
port 25 on this Docker instance or machine. Also, check the Sendmail installation status by 
quickly running apt install Sendmail; it should be installed already.

root@062fc2a30243:/# netstat -tuna
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State
root@062fc2a30243:/# apt install sendmail
Reading package lists... Done
Building dependency tree
Reading state information... Done
sendmail is already the newest version (8.15.2-18).
0 upgraded, 0 newly installed, 0 to remove and 2 not upgraded.

4 Let’s quickly configure Sendmail on our Docker container instance now. Run the sendmailconfig 
command. When prompted for Y, press Y and then the Enter keys three times. After the second 
Y, it may take a little while for the files to be updated, so be patient and complete and reload the 
Sendmail service.

root@062fc2a30243:/# sendmailconfig
Configure sendmail with the existing /etc/mail/sendmail.conf? [Y] Y
Reading configuration from /etc/mail/sendmail.conf.
Validating configuration.
Writing configuration to /etc/mail/sendmail.conf.
Writing /etc/cron.d/sendmail.
Configure sendmail with the existing /etc/mail/sendmail.mc? [Y] Y <<< may take a 
few minutes
Updating sendmail environment ...
Reading configuration from /etc/mail/sendmail.conf.



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

709

[... omitted for brevity]
Updating /etc/mail/aliases...
WARNING: local host name (062fc2a30243) is not qualified; see cf/README: WHO AM I?
/etc/mail/aliases: 0 aliases, longest 0 bytes, 0 bytes total
Reload the running sendmail now with the new configuration? [Y] Y
Reloading sendmail ...

5 Use the following command to check that Sendmail-related directories have been created 
successfully on Docker:

root@062fc2a30243:/# ls /usr/sbin/send*
/usr/sbin/sendmail  /usr/sbin/sendmail-msp  /usr/sbin/sendmail-mta  /usr/sbin/
sendmailconfig

6 Run the netstat –tuna command again to confirm port 25 is in LISTENing mode.

root@062fc2a30243:/# netstat -tuna
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State
tcp        0      0 127.0.0.1:587           0.0.0.0:*               LISTEN
tcp        0      0 127.0.0.1:25            0.0.0.0:*               LISTEN

7 Connect to the Internet from your Windows host PC. Next, go to your test Gmail account and turn 
on the “Less secure apps” settings as a mailbox user. It should be off by default, and you have to 
switch this to On to allow emails through. Try to create a test account for such testing; do not use 
your private Gmail account for this testing. See Figure 16-7.

1. Go to the Google Account Security section.
2. In the left navigation panel, click Security.
3. At the bottom of the page, in the “Less secure app access” panel, click “Turn on” access.

Figure 16-7. Gmail, switching less secure app access to On

# Task

(continued)



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

710

After you have turned on this feature, your security setting should look like Figure 16-8.

8 Go back to your Docker instance; you will send two test emails to yourself using two different 
email sending methods, using simple Python scripts. First, create a Python file and copy the 
content of the following script, which uses email.mime.text and the Linux subprocess.

root@062fc2a30243:/#nano sendmail_test01.py

GNU nano 4.8                                       sendmail_test01.py
from email.mime.text import MIMEText
from subprocess import Popen, PIPE
msg = MIMEText("Python & sendmail email test 01.")
msg["From"] = "brendanchoi@italchemy.com" # Update to your test email address
msg["To"] = "pynetauto@gmail.com" # Update to your test email address
msg["Subject"] = "Python & sendmail email test 01"
p = Popen(["/usr/sbin/sendmail", "-t", "-oi"], stdin=PIPE, universal_newlines=True)
p.communicate(msg.as_string())
print("Email sent!")
^G Get Help  ^O Write Out    ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace   ^U Paste Text  ^T To Spell  ^_ Go To Line

Update the testing email addresses to your email addresses.

9 After you completed the script, run it from your Docker instance. There will be a little delay in 
sending the email. Give it about two to five minutes for the email to be sent.

root@062fc2a30243:/# cat sendmail_test01.py

Figure 16-8. Gmail, allowing less secure app access On - Security

# Task



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

711

10 Another method to send email is to use Python’s standard smtplib. Let’s create the second script 
and send another test email, this time using smtplib.

root@062fc2a30243:/# nano sendmail_test02.py

GNU nano 4.8                                       sendmail_test02.py
import smtplib

sender = 'no_reply@italchemy.com'
receivers = ['pynetauto@gmail.com']

message = """
From: No Reply <no_reply@italchemy.com>
To: Python Network Automation <pynetauto@gmail.com>
Subject: Sendmail SMTP Email test 01
This is a Sendmail SMTP Email test 01
"""
try:
   smtpObj = smtplib.SMTP('localhost')
   smtpObj.sendmail(sender, receivers, message)
   print("Successfully sent email")
except SMTPException:
   print("Error: unable to send email")
^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

11 Use the following command to send the second test email:

root@062fc2a30243:/# python3 sendmail_test02.py
Successfully sent email

12 Wait for a couple of minutes and check your email’s Spam folder. If both scripts worked correctly, 
you should receive your first and second test emails in your Gmail Spam folder. See Figure 16-9.

# Task

Figure 16-9. Python Sendmail test email, checking the Spam folder



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

712

 Lab: Sendmail Email Notification script Development
In this lab, let’s create a simple Python monitoring script that monitors a socket of LAN-SW1 (on port 22 for 
convenience) and triggers an email notification if the switch becomes unreachable on the network. In the 
real world, such email notifications will be directed to the 24/7 service desk team or SNMP server, and these 
actions will trigger automatic case logging on an IT enterprise ticketing system such as ITSM, ServiceNow, 
and Remedy. The beauty of building a lab is that you have the freedom to test anything and everything you 
want to study and validate various concepts. What is demonstrated in this book is only the tip of the iceberg 
of what you can automate in your network using Python and other Python-based automated tools. As 
individuals, everyone comes from different backgrounds. We have different backgrounds and upbringing, so 
we think and act differently, which is where your creativity is required while writing your code. You will be 
more creative in some areas than the person next to you, and she will be more creative in other areas. While 
you are coding, there are no right or wrong answers, only recommendations. Open your mind and keep 
your imagination open; think about what you want to achieve with Python at work or in study. We know 
that better tools are available, and they are made explicitly for SNMP monitoring, email notification tools, 
and case logging tools. Still, by writing code to simulate such tools, we will gain a deeper understanding of 
how such tools work within IT ecosystems at work.All the tasks in this lab will be completed in the Docker 
environment, so you can also get some exposure to Docker’s power at work. Borrowing from the previous 
labs, let’s create a socket monitoring tool that checks the socket’s availability every three seconds. If the 
socket is unavailable for ten times straight, it is offline for 30 seconds, and the script will trigger an email 
notification to your test email inbox using Sendmail. The script will monitor the socket continuously until 
you stop the application. Imagine you have a device with link flap that you have to monitor, and you have 
been asked to monitor the link every number of minutes. You do not want to be sitting in front of your 
computer all day or night and keep staring at the console messages. You will create a simple script, save the 
logs to a file, and make your script notify the right staff to be notified, in this case by email. Let’s see how this 
can be achieved with ease.

# Task
1 You will continue working within the Docker instance from the previous section. If you have 

stopped or detached from the Docker instance, please reattach it to the Docker instance. The 
following example shows an example of starting and reattaching to the Docker instance:

pynetauto@ubuntu20s1:~$ docker ps –a # Check all docker instances
CONTAINER ID        IMAGE                          COMMAND             CREATED             
STATUS                      PORTS               NAMES
062fc2a30243        pynetauto/pynetauto_ubuntu20   "/bin/bash"         45 hours ago        
Exited (130) 43 hours ago                       pynetauto_ubuntu20sendmail
pynetauto@ubuntu20s1:~$ docker start pynetauto_ubuntu20sendmail # Start with instance 
NAME
pynetauto_ubuntu20sendmail
pynetauto@ubuntu20s1:~$ docker ps # Check running docker instances
CONTAINER ID        IMAGE                          COMMAND             CREATED             
STATUS              PORTS                                NAMES
062fc2a30243        pynetauto/pynetauto_ubuntu20   "/bin/bash"         45 hours ago        
Up 5 seconds        20-22/tcp, 25/tcp, 12020-12025/tcp   pynetauto_ubuntu20sendmail
pynetauto@ubuntu20s1:~$ docker attach pynetauto_ubuntu20sendmail # Reattach to docker 
instance
root@062fc2a30243:/#



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

713

# Task

2 Go to the /home directory mapped to the host and create a new directory; for simplicity purposes, 
the directory was named monitoring. Change the working directory to the new directory.

root@062fc2a30243:/# ls /home
testfil999.txt  testfile123.txt
root@062fc2a30243:/# cd /home
root@062fc2a30243:/home# mkdir monitoring
root@062fc2a30243:/home# cd monitoring
root@062fc2a30243:/home/monitoring#

3 Now, create two empty Python files, one for the script and another for the email message.

root@062fc2a30243:/home/monitoring# touch monitor_sw1.py send_email.py
root@062fc2a30243:/home/monitoring# ls
monitor_sw1.py send_email.py

4 The following script is a socket-checking script that I often use to check the SSH port, port 22. If 
you have another port opened on your devices, such as port 23 (Telnet), 69 (TFTP), or 80 (HTTP), 
they can also be replaced in this example, but you already know that port 22 is an open port on all 
of your Cisco devices in your topology; hence, this script will check port 22. Using this basic port 
checking script and what we have learned from the previous exercises, you will be rewriting the 
code and apply it to solving our problem.

GNU nano 4.8                                                       check_port_22.py
import socket

ip = '192.168.183.101'

def check_port_22(): # Define a function
   for port in range (22, 23): # port 22
      dest = (ip, port) # new tuple variable
      try: # using try & except, we can avoid check process being stuck in a loop
         with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
            s.settimeout(3)
            connection = s.connect(dest) # Connect to socket
            print(f"On {ip}, port {port} is open!") # Informational
            print("OK - This device is on the network.") # Informational
      except:
         print(f"On {ip}, port {port} is closed. Exiting!") # Informational
          print("! FAILED - to reach the device. Check the connectivity to this 

device") # Informational
         exit() # Exit application
check_port_22() # Run the function

^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

(continued)



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

714

# Task

5 Now open monitor_sw1.py in the nano text editor and start typing in the following script. Yes, the 
script is available for your download, and it would be time-saving to cut and paste the code. But, in 
the real world, it is never as simple as cutting and pasting. Most of the time, you have to type in all 
the code, unless your company has paid someone to write a complete and working application. So, 
try to follow the script and write each line of code.

root@062fc2a30243:/home/monitoring# nano monitor_sw1.py
GNU nano 4.8                                       monitor_sw1.py
import socket
import time
from datetime import datetime

# Custom module
from send_email import send_email # import send_email module from email_send.py

starttime = time.time()

# Variables
ip = "192.168.183.101"
port = 22
dest = (ip, port)

def check_sw1(): # Define check_sw1 function
   counter = 0 # Set counter's original value to 0
   while (counter < 10): # Run the script until counter 10 is reached
      f =  open('./monitoring_logs.txt', 'a') # Open monitoring logs file for record 

in appending mode
      try: # This is basically the same code as check_port_22.py
        with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
           s.settimeout(3)
           connection = s.connect(dest)
           counter = 0 # Reset the counter to 0 on successful check
           counter1 = str(counter) # convert counter to string
           f.write(datetime.now().strftime('%Y-%m-%d %H:%M:%S')) # Write time to file
           print(f" {counter1} port {port} is open") # Informations for console user
            f.write(f" {counter1} port {port} is open\n") # Write to log file for 

task completion
           f.close() # close file
           time.sleep(3) # Wait for 3 seconds before another check

        except: # If port 22 is closed
           counter += 1 # Adds 1 to counter every loop
           counter2 = str(counter) # convert counter to string
           f.write(datetime.now().strftime('%Y-%m-%d %H:%M:%S')) # Write time to file
           print(f" {counter2} port {port} is closed") # Informations for console user
            f.write(f" {counter2} port {port} is closed\n") # Write to log file for 

task completion
           time.sleep(3) # Wait for 3 seconds before another check
           if counter == 10: # Check if counter is 10
              counter=0 # Only resets the counter to 0 on 10th time
              print(“send failed email here”) # Informations for console user
               send_email() # Send an email notification, calling send_email() from 

send_email.py script
           f.close()# close file



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

715

# Task

check_sw1() # Run check_sw1 function

^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

6 Now let’s write a smtplib Python file so the previous main script can import it and send an email. 
This is the email part of the script. By breaking up scripts into multiple functional parts, you can 
keep you code clean.

root@062fc2a30243:/home/monitoring# nano send_email.py
GNU nano 4.8                                       send_email.py
import smtplib

sender = 'no_reply@italchemy.com'  # A variable, sender
receivers = ['pynetauto@gmail.com'] # A variable, receivers. Add more emails using 
comma separator

# This is the main message which will be sent to the email recipient(s). Anything 
between the triple quotes
message = """
From: No Reply <no_reply@italchemy.com>
To: Python Network Automation <pynetauto@gmail.com>
Subject: SW1 not reachable for more than 30 seconds

SW1 is not reachable. Please investigate.

"""

def send_email(): # Define send_email function
   try:
      smtpObj = smtplib.SMTP('localhost') # Define smtpObj
       smtpObj.sendmail(sender, receivers, message) # Send an email using smtpObj and 

variables
      print("Successfully sent email")  # Informational
   except SMTPException: # SMTP Exception
      print("Error: unable to send email")  # Informational

^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

7 Once both the main and supplementary scripts have been created, run the code in your Docker 
environment using the following command. Once you see the message on the screen, you can let 
the script run continuously.

root@062fc2a30243:/home/monitoring# python3 monitor_sw1.py

Log in to LAN-SW1 (192.168.183.101) and shut down port Gi0/0, wait for approximately 30 seconds, 
and send no shut command. Then wait for another 30 seconds; this will emulate the link flap 
scenario and will trigger the script to change its state.

LAB-SW1(config)# interface Gi0/0
LAB-SW1(config-if)#shut # wait for 30 seconds
LAB-SW1(config-if)#no shut # wait for 30 seconds

(continued)



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

716

# Task

If you let the port shut down (unreachable) for more than 30 seconds, then the script will trigger 
an email, and you will receive an email in your inbox. Until you bring up the interface, the script 
should send notification emails every 30 seconds and continue.

root@062fc2a30243:/home/monitoring# python3 monitor_sw1.py
...
0 port 22 is open
0 port 22 is open
0 port 22 is open
1 port 22 is closed
2 port 22 is closed
3 port 22 is closed
4 port 22 is closed
5 port 22 is closed
6 port 22 is closed
7 port 22 is closed
8 port 22 is closed
9 port 22 is closed
10 port 22 is closed
send failed email here
Successfully sent email
...

8 Check the Spam folder of your email account. If you keep the interface shut down for three 
minutes, you should receive six email notifications, as shown in Figure 16-10.

Figure 16-10. Checking the test email received in SPAM folder



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

717

# Task

The following content of the testing email will look similar to this:

From: No Reply <no_reply@italchemy.com>

To: Python Network Automation <pynetauto@gmail.com>

Subject: SW1 not reachable for more than 30 seconds

SW1 is not reachable. Please investigate.

9 Press Ctrl+P and then the Ctrl+Q keys to detach from the Docker instance. This will keep the script 
running continuously. To stop the script and the Docker instance as well, press Ctrl+Z. You can 
also use docker stop <container> to shut down the container instance gracefully.

Say it is 5 p.m. on Friday, and your boss asks you to monitor a device (router, switch, or firewall) with 
an unreliable connection. If the device loses the connection, immediately notify all stakeholders. The script 
running on a Docker instance can check the communication to the network for you, and when an incident 
occurs, it will send you email notifications. You can check the email from your smartphone at any time you 
want, even on the way home or after dinner. At 5 p.m., when you leave your office, use cron to schedule to 
run the script and let your Python application go to work for you.

 CPU Utilization Monitoring Lab: Send an SMS Message 
Using Twilio
In this lab, you will develop a REST API SMS message tool quickly; then, you will write the Python code to 
monitor your router’s CPU utilization. When a certain threshold is reached, the script will trigger an SMS 
message to your smartphone using REST API calls. As the newer network device platforms and most of the 
virtual and cloud networking platforms start to support REST API, understanding the REST API and applying 
the theory to practical use cases will be one of the must-have skill sets in network automation. This book will 
not discuss how to start on your REST API studies or attempt to cover the topic extensively; this is one simple 
example to give you a taste. However, you can start learning about the REST API from YouTube or LinkedIn 
video tutorials; most of the tutorials will have you install one of the REST clients such as POSTMAN or REST 
for Visual Studio. If you have some time, you are recommended to go to the following sites and do some 
preliminary reading before completing this lab. See Figure 16-11.

URL: https://www.postman.com/ (POSTMAN REST client)
URL: https://marketplace.visualstudio.com/items?itemName=humao.rest- client (REST client for 

Microsoft Visual Studio)

https://www.postman.com/
https://marketplace.visualstudio.com/items?itemName=humao.rest-client


Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

718

 TWILIO Account Creation, Install Twilio Python Module and SMS 
Message Setup
In this section, you will set up a Twilio testing account to send SMS messages for free. According to 
Wikipedia, Twilio is a cloud communications platform as a service company, allowing software developers 
to programmatically make and receive phone calls, send and receive text messages, and perform other 
communication functions using Twilio’s web service APIs. For our use, we need to send SMS notification 
messages when a particular condition is met during our system monitoring of the network devices in the 
topology. First, create an account to receive a U.S. testing number, account SID, and authorization code; then 
install the Twilio module on Python and write a simple SMS message to send to your smartphone number. 
After this, you will be writing a CPU utilization monitoring script, emulating a high CPU utilization scenario 
under security attack, and triggering an SMS notification. First, let’s quickly set up the account and get the 
first testing message out to your smartphone number.

Figure 16-11. CPU utilization monitoring lab, used devices



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

719

# Task
1 Go to Twilio and create a trial account. See Figure 16-12.

URL: https://www.twilio.com/try- twilio

2 After registration, you have to log into your email account and confirm your email.
Enter your smartphone number, and once the verification code is sent to your smartphone, 
enter the code into the Twilio code verification site. Follow the prompts to complete the account 
registration. See Figure 16-13.

Figure 16-12. Twilio account registration

(continued)

https://www.twilio.com/try-twilio


Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

720

3 A trial number will be offered from an available number range. Choose the first number. See 
Figure 16-14.

Figure 16-13. Twilio project dashboard

Figure 16-14. Twilio trial U.S. phone number

# Task



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

721

4 You will get the free trial balance and account SID and authorization token along with your new 
phone number. An account SID and authorization token will be used in the code to send an SMS 
message. See Figure 16-15.

5 To read more about how to get started with Twilio, go to the following website and read the official 
documentation.

URL: https://www.twilio.com/docs/sms/quickstart/python

6 In this lab, we will be working within the Docker instance to isolate the instance so it does not 
directly impact your lab setup. With Docker, you can delete the instance and re-create as many 
instances as required on demand. Let’s go ahead and create another Docker instance to run the 
Twilio lab.

pynetauto@ubuntu20s1:~$

Figure 16-15. Project dashboard with a trial number

# Task

(continued)

https://www.twilio.com/docs/sms/quickstart/python


Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

722

7 To get ready for Twilio SMS messaging, use the pip3 command to install Twilio on your Docker 
instance. Since you are testing this in a Docker environment, you do not have to worry about 
breaking the software compatibility issues with the real Linux host.

pynetauto@ubuntu20s1:~/monitor_cpu$ pip3 install Twilio
[...omitted for brevity]

Successfully installed twilio-6.45.3
If you are getting a bash: snmpwalk: command not found error message, install snmp on your 
Linux server.

pynetauto@ubuntu20s1:~$ apt-get install snmp –y

8 You are going to create two files to send the testing SMS message from the Python script. Create 
a credential feeder script called credentials.py and then the SMS script to send an SMS called 
twilio_sms.py. Please update and replace the credentials and numbers with yours.

pynetauto@ubuntu20s1:~$ mkdir monitor_cpu
pynetauto@ubuntu20s1:~$ cd monitor_cpu
pynetauto@ubuntu20s1:~/monitor_cpu$ nano credentials.py
GNU nano 4.8                              /home/pynetauto/monitor_cpu/credentials.py
account_sid = " AC42d8ee3a2ee22e8684e6f3d4eca2b8c7"
auth_token = "5233e8502a3dd3a2d006913c937a6f26"
my_smartphone = "+61498765432"
twilio_trial = "+16076003338"
^G Get Help  ^O Write Out  ^W Where Is   ^K Cut Text    ^J Justify  ^C Cur Pos
^X Exit      ^R Read File  ^\ Replace    ^U Paste Text  ^T To Spell ^_ Go To Line

This is the SMS script that will send out my_message to your smartphone.

pynetauto@ubuntu20s1:~/monitor_cpu$ nano twilio_sms.py

GNU nano 4.8                              /home/pynetauto/monitor_cpu/twilio_sms.py
from twilio.rest import Client
from credentials import account_sid, auth_token, my_smartphone, twilio_trial

client = Client(account_sid, auth_token)
my_message = f"High CPU utilization notice, LAB-R1 has reached 99% CPU 
utilization."
message = client.messages.create(body=my_message, from_=twilio_trial, to=my_
smartphone)
print(message.sid)
^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text    ^J Justify  ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

9 From the Docker container command line, run the python3 command to run the SMS script to send 
your first Twilio SMS. If everything has been set up correctly, it will send an SMS to your smartphone.

pynetauto@ubuntu20s1:~/monitor_cpu$ python3 twilio_sms.py
SMf1c0d46e60b245b08e56a58563a434aa

10 On your smartphone, check the SMS message, and you should receive an SMS message similar to 
Figure 16-16.

# Task



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

723

If you have received an SMS message successfully on your smartphone, you are ready for the next lab.

 CPU Utilization Monitoring Lab with an SMS Message
Now that you know how to send an SMS message to your smartphone, it is time to write some code and 
integrate the previous code snippet for use in a real-world simulation. Let’s write a simple CPU monitoring 
application for network devices using SNMP v3, and this application can monitor the 5-minute interval CPU 
utilization levels of LAB-R1. We could use a third-party traffic generator to make our router very busy and 
push the CPU utilization up above 90 percent, but that means you have to learn another tool to complete this 
lab. To keep it simple, we will use the debug all command and multiple ping packets to push up the CPU 
utilization of LAB-R1. Yes, you will enable the debug all commands on LAB-R1, which will increase the CPU 
utilization to around 50 percent. You will be sending large ping packets to push the CPU utilization above 90 
percent from other routers and switches. Be careful with using the debug all command in the production 
environment and leaving it running on your Cisco devices in the production environment; you may bring 
down your network and cause an outage.

First, let’s write a simple CPU monitoring script and integrate the SMS script into it, so when the CPU 
utilization is more than 90 percent for more than 5 minutes, our script will send out an SMS alert message to 
your smartphone stating that the CPU utilization has exceeded 90 percent for more than five minutes.

Figure 16-16. Test SMS message received example



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

724

For this, we need to find out exact OID reference number, as shown in Table 16-2. Go to  
https://oidref.com/1.3.6.1.4.1.9.9.109.1.1.1.1 and check out the various Cisco IOS device  
CPU-related OID values.

You are going to be using an OID ID of 1.3.6.1.4.1.9.9.109.1.1.1.1.5 for CPU utilization and check every 
five minutes. You will use crontab on the Ubuntu server to run the script every five minutes. When the CPU 
utilization for the last five minutes is more than 90 percent, the script will send an SMS alert using the Twilio 
API account from the previous lab+.

# Task
1 Let’s first write a simple snmpwalk script that sends a snmpwalk command to LAB-R1 and retrieves the 

CPU utilization information. The following command should return the CPU utilization of the router 
in the last five minutes. Under regular operation, the CPU utilization of a router should be less than 
80 percent, but while some change or update is done, it is normal to see high CPU utilization during 
the change window.

pynetauto@ubuntu20s1:~/monitor_cpu$ python3 cpu_util_5min.py
iso.3.6.1.4.1.9.9.109.1.1.1.1.5.1 = Gauge32: 3

This is the original script. Create the following file and check if it still works. If you have not yet read 
the SNMP section, go back to the previous chapter for further reading.

cpu_util_5min.py

import os

stream = os.popen('snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A "AUTHPass1"  -x 
AES -X "PRIVPass1" 192.168.183.10 1.3.6.1.4.1.9.9.109.1.1.1.1.5')
output = stream.read()
print(output)

Table 16-2. Cisco Device CPU Utilization OID IDs

OID ID Description
1.3.6.1.4.1.9.9.109.1.1.1.1.3 The overall CPU busy percentage in the last five-second period

1.3.6.1.4.1.9.9.109.1.1.1.1.4 The overall CPU busy percentage in the last one-minute period

1.3.6.1.4.1.9.9.109.1.1.1.1.5 The overall CPU busy percentage in the last five-minute period

Source: https://oidref.com/

https://oidref.com/1.3.6.1.4.1.9.9.109.1.1.1.1
https://oidref.com/


Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

725

2 Now let’s use the Twilio SMS scripts from the previous exercises and update the information.

pynetauto@ubuntu20s1:~/monitor_cpu$ nano credentials.py

credentials.py

account_sid = "2d8ee3a2ee22e8684e6f3d4eca2b8" # Twilio Account SID
auth_token = "3e8502a3dd3a2d006913c937a6" # Twilio Authorization Token
my_smartphone = "+61498765432" # Your country code and smartphone number
twilio_trial = "+16076003338" # Your Twilio trial number

Create another python file called, 'twilio_sms.py'.

pynetauto@ubuntu20s1:~/monitor_cpu$ nano twilio_sms.py

twilio_sms1.py

from twilio.rest import Client # Import required twilio module
from credentials import account_sid, auth_token, my_smartphone, twilio_trial # import 
information from credentials.py file

client = Client(account_sid, auth_token) # Create a variable
my_message = f" High CPU utilization notice, LAB-R1 has reached 90% CPU utilization. 
# Write a SMS message to send

message = client.messages.create \
(body=my_message, from=twilio_trial, to=my_smartphone) # Send SMS message
print(message.sid) # Print sent message SID

3 Now let’s see how we can get the exact value we want from the output and extract the CPU 
utilization value using the power of good old regular expressions again. Create the new code and 
run it against LAB-R1.

cpu_util_5min1.py

import os  # Import os and re modules
import re

stream = os.popen('snmpwalk -v3  -l authPriv -u SNMPUser1 -a SHA -A "AUTHPass1"  -x 
AES -X "PRIVPass1" 192.168.183.10 1.3.6.1.4.1.9.9.109.1.1.1.1.5') # SNMPwalk from 
previous chapter modified
output = stream.read() # Read output
print(output)

p1 = re.compile(r"(?:Gauge32: )(\d+)") # Use re positive lookbehind and match the digit
m1 = p1.findall(output) # Match the CPU utilization value (digit) in output

cpu_util_value = int(m1[0]) # Index item 0 in the list and convert to an integer
print(pu_util_value) # print the integer

4 When you run the code from your server, you should get the CPU utilization value between 1 and 
100. In the following example, 5 or 5 percent utilization has been returned.

pynetauto@ubuntu20s1:~/monitor_cpu$ python3 cpu_util_5min.py
iso.3.6.1.4.1.9.9.109.1.1.1.1.5.1 = Gauge32: 5
5

(continued)

# Task



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

726

5 Combining the scripts shown earlier, it is time to complete our script. For the simplicity of the lab, 
all three scripts, credentials.py, twilio_sms1.py, and cpu_util_5min1.py, will be rewritten into 
cpu_util_5min_monitor.py. Reiterations and integration are the keys to developing a working 
application like this, and this approach will be extended into the final IOS upgrade lab.

pynetauto@ubuntu20s1:~/monitor_cpu$ nano cpu_util_5min_monitor.py

At the end of combining all three scripts, your working script should look similar to this:

GNU nano 4.8                              /home/pynetauto/monitor_cpu/cpu_util_5min_monitor.py
from twilio.rest import Client # import required libraries and modules
import os
import re
import time
from time import strftime

current_time = strftime("%a, %d %b %Y %H:%M:%S") # Create your own time string format

account_sid = "AC42d8ee3a2ee22e8684e6f3d4eca2b8c7" # Replace this with your own 
Twilio SID
auth_token = "5233e8502a3dd3a2d006913c937a6f26" # Replace this with your own Twilio 
token
my_smartphone = "+61490417510" # Replace this your own country code and Smartphone 
number
twilio_trial = "+16076003338" # Twilio trial number

def send_sms(): # Define send_sms function
   client = Client(account_sid, auth_token)
    my_message = f"High CPU utilization notice, LAB-R1 has reached 90% CPU 

utilization."
    message = client.messages.create (body=my_message, from_=twilio_trial, to=my_

smartphone)
   print(message.sid)

stream = os.popen('snmpwalk -v3 -l authPriv -u SNMPUser1 -a SHA -A "AUTHPass1"  -x 
AES -X "PRIVPass1" 192.168.183.10 1.3.6.1.4.1.9.9.109.1.1.1.1.5') # SNMPwalk command
output = stream.read() # Read and capture output
time.sleep(3) # Pause script for 3 seconds
print("-"*80)
print(current_time, output) # Informational

with open('./cpu_oid_log.txt', 'a+') as f: # When manually run, writes to this file
   if "Gauge32:" in output: # Check if 'Gauge32' is in the output
       p1 = re.compile(r"(?:Gauge32: )(\d+)") # Positive look behind to locate CPU 

digit value
      m1 = p1.findall(output) # Find and match the digit
       cpu_util_value = m1[0] # Re findall returns value as a list, so index it to get 

it as an item

# Task



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

727

      if int(cpu_util_value) < 90: # If CPU utilization value is less than 90 ( 90%)
         f.write(f”{current_time} {cpu_util_value}%, OK\n’”) # Write to file
         print(“OK”) # Write to cron.log
       elif int(cpu_util_value)>= 90: # If CPU utilization value is more than 90 ( 90%)
         f.write(f”{current_time} {cpu_util_value}%, High CPU\n’”)
         print(“High CPU”) # Write to cron.log
         send_sms()

   elif "Timeout:" in output: # if 'Timeout' is in output, send an SMS
      f.write(f"{current_time} High CPU, Timeout: No Response\n'")
      print("Timeout: No Response") # Write to cron.log
      send_sms()
   elif "snmpwalk:" in output: # if 'snmpwalk' is in output, send an SMS
      f.write(f"{current_time} High CPU, snmpwalk: Timeout\n'")
      print("No Response") # Write to cron.log
      send_sms()
   else: # Everything else
      f.write(f"{current_time} High CPU utilization, IndexError\n")
      print("IndexError occured due to High CPU Utilization") # Write to cron.log
      send_sms()

print("Finished") # This should print when the script runs successfully.
^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

6 To induce high CPU utilization on LAB-R1, do the following. Here we want to increase the CPU 
utilization on this router so our script can go to work and send an SMS when a certain condition is met.

Here is how to turn on all debugging on LAB-R1:

LAB-R1#debug all # Enable all debugging on LAB-R1. Do not do this on a production device!

This may severely impact network performance. Continue? (yes/[no]): yes # Lab environment,  a big yes

Persistent variable debugs All enabled

From other switches and routers, send a large-size datagram continuously. What we want is the CPU 
utilization of 90 percent or more on LAB-R1.

LAB-SW1#ping # initialize ping configuration
Protocol [ip]:
Target IP address: 192.168.183.10 # LAB-R1 IP address
Repeat count [5]: 100000 # number of continuous pings
Datagram size [100]: 1500 # datagram, also try 3000 to overload the router's CPU more
Timeout in seconds [2]:
Extended commands [n]:
Sweep range of sizes [n]:

Repeat and enable the same ping commands from lab-sw2 and lab-r2. Wait about two to five 
minutes for LAB-R1 to reach 90 percent or above CPU utilization.

(continued)

# Task



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

728

7 Under normal load, the CPU utilization will remain relatively low and steady. When debugging 
significant changes or odd problems, the CPU utilization can spike above 90 percent. Suppose the 
CPU utilization continues to operate at or above 90 percent for a prolonged period, this can have a 
sinificant impact on the performance of the services running on this device, and the issue becomes 
critical if the device is a core or edge router.

Here is an example of logs under normal load condition:

pynetauto@ubuntu20s1:~/monitor_cpu$ cat cpu_oid_log.txt
'Thu, 24 Sep 2020 12:22:44 16% OK
'Thu, 24 Sep 2020 12:22:47 16% OK
'Thu, 24 Sep 2020 12:23:56 24% OK
'Thu, 24 Sep 2020 12:24:13 26% OK
'Thu, 24 Sep 2020 12:24:39 31% OK

Here is an example of logs under high CPU utilization:

pynetauto@ubuntu20s1:~/monitor_cpu$ cat cpu_oid_log.txt
'Thu, 24 Sep 2020 13:06:25 96%, High CPU
'Thu, 24 Sep 2020 13:10:53 97%, High CPU
'Thu, 24 Sep 2020 13:29:56 High CPU utilization, IndexError
Thu, 24 Sep 2020 13:31:12 98%, High CPU
Thu, 24 Sep 2020 13:50:24 High CPU utilization, IndexError

8 The script will send an SMS message to your phone if the CPU utilization in the last five minutes has been 
above 90 percent. Run the completed application using the Python command shown here. This lab could 
be a little bit tricky to emulate and time correctly, but if you followed the steps exactly, your application 
will trigger the Twilio server (somewhere in the cloud) to send the SMS message to your smartphone.

pynetauto@ubuntu20s1:~/monitor_cpu$ python3 cpu_util_5min_monitor2.py
iso.3.6.1.4.1.9.9.109.1.1.1.1.5.1 = Gauge32: 97
97

SM9bc812d18dd74a6d95cb8c4cc4c8d758
Finished

9 The script will also send an SMS if the snmpwalk timeout or Timeout: No Response message is 
received from the router.

Example of "snmpwalk: Timeout"

pynetauto@ubuntu20s1:~/monitor_cpu$ python3 cpu_util_5min_monitor2.py
snmpwalk: Timeout

SMfe169235c757467cb16fd621ee58e457
Finished

Example of "Timeout: No Response"
pynetauto@ubuntu20s1:~/monitor_cpu$ python3 cpu_util_5min_monitor2.py
Timeout: No Response from 192.168.183.10
SMbd36cc1b70ec4e61a988b8a51b524ee6
Finished

10 If you followed the steps correctly, then when the router meets the high CPU utilization conditions 
we have set, it should send an SMS message similar to Figure 16-17. Now that everything is working 
as tested, let’s use cron to run the script every five minutes to check the CPU utilization of LAB-R1. 
Remember, if this was in a real production environment, the ultimate goal would be to make you 
spend less time in front of your computer physically monitoring the high CPU utilization in use.

# Task



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

729

11 From your ubuntu20s1 server, open cron using the crontab –e command and schedule the script to 
run every five minutes to check the router’s CPU utilization.

pynetauto@ubuntu20s1:~/monitor_cpu$ pwd
/home/pynetauto/monitor_cpu
pynetauto@ubuntu20s1:~/monitor_cpu$ ls
cpu_util_5min_monitor.py  cpu_oid_log.txt  credentials.py  nano.save  __pycache__  
twilio_sms.py

The last line added to the crontab is shown next. As soon as the following task is scheduled in 
crontab, it will start to run every five minutes.

pynetauto@ubuntu20s1:~/monitor_cpu$ crontab -e

GNU nano 4.8                                       /tmp/crontab.DbnMHK/crontab
[...omitted for brevity]
# For more information see the manual pages of crontab(5) and cron(8)
#
# m h  dom mon dow   command
*/5 * * * * /usr/bin/python3.8 /home/pynetauto/monitor_cpu/cpu_util_5min_monitor.py  
>> /home/pynetauto/monitor_cpu/cron.log
^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

Figure 16-17. SMS message received from Python script

(continued)

# Task



Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

730

# Task

12 Let the script run and use the ls command to check whether cron.log has been created.

pynetauto@ubuntu20s1:~/monitor_cpu$ ls
cpu_util_5min_monitor.py  credentials.py  nano.save    twilio_sms.py
cpu_oid_log.txt                 cron.log        __pycache__

13 Check the logs logged to the cron.log file under the working directory. You should find the 
timestamped CPU utilization logs as the script runs and writes records to the log file.

pynetauto@ubuntu20s1:~/monitor_cpu$ cat cron.log
--------------------------------------------------------------------------------
Thu, 24 Sep 2020 14:25:01 iso.3.6.1.4.1.9.9.109.1.1.1.1.5.1 = Gauge32: 97

97
High CPU
SM5d062edec4e844bda63ab372a568c883
Finished
--------------------------------------------------------------------------------
Thu, 24 Sep 2020 14:30:02 iso.3.6.1.4.1.9.9.109.1.1.1.1.5.1 = Gauge32: 98

High CPU
SMde58b1ebfc554ea1b94637ab26db256e
Finished
--------------------------------------------------------------------------------
Thu, 24 Sep 2020 14:35:02 iso.3.6.1.4.1.9.9.109.1.1.1.1.5.1 = Gauge32: 97

High CPU
SMb5365d20960848459d87e0b14570596d
Finished

14 Check SMS alerts on your smartphone. If the cron job properly runs every five minutes, it should 
check for high CPU utilization, and if high CPU utilization has been detected, then send an SMS 
message. If the CPU for the last five minutes is less than 90 percent, it just writes the cron logs and 
should not send the SMS utilization. See Figure 16-18.



15 At the end of your lab, use the Ctrl+^ keys on all pinging devices to stop ICMP pings to LAB-R1.

16 Finally, stop the debugging on LAB-R1 by issuing the u all, un all, or undebug all command.

LAB-R1#un all
All possible debugging has been turned off

You have completed CPU monitoring lab and sent SMS alerts to your smartphone for notification of 
the events. This has been a simple integration on a personal laptop/PC; however, the ideas extend to the 
production infrastructure at a much larger scale.

Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

731

Figure 16-18. SMS messages received at 90 percent or above CPU utilization

# Task



 Summary
Well done for completing all the tasks in this chapter! This chapter was designed to make you think outside 
of the box and explore various Python use cases in managing network infrastructure. At this stage, you 
should start thinking about what automation challenges you have at work and start researching how you are 
going to solve your company’s problems. In this chapter, you have installed virtualenv on your Python and 
briefly tested Ansible and pyATS. Then, you started on the Docker concept and completed the email-sending 
application running on a Docker environment. Lastly, you registered a free account on Twilio. You wrote a 
Python application to check a router’s CPU utilization, and when a specific condition was met, you sent an 
SMS warning message to your smartphone. I hope you can start thinking about other Python application 
use cases at work and try to solve the problem by putting together various open source and proprietary 
source tools available to you. In Chapter 17, we will discuss Cisco IOS XE upgrades in detail as the first phase 
of developing our application. Only if tasks are documented can they be automated using a programming 
language in the correct order.

Chapter 16 ■ python network automation Labs: ansibLe, pyats, DoCker, anD the twiLio api

732



733
© Brendan Choi 2021 
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_17

CHAPTER 17

Upgrading Multiple Cisco IOS 
XE Routers

This chapter explains object-oriented programming (OOP) by using a real production example. Then the 
chapter will discuss Python application flow controls using a username and password application example. 
Finally, we will discuss the logical thinking processes involved in planning an IOS upgrade.

IOS upgrades on Cisco devices are a critical part of network operations to add reliability and security 
to all Cisco devices. Regular IOS patch management is also part of the network team’s key performance 
indicators, so it is a critical part of the business. You will be guided through installing two Cisco CRS1000v 
IOS XE routers to prepare you for the next two chapters. Finally, we will discuss the manual Cisco IOS 
upgrade processes and tasks performed by a network engineer and translate the manual tasks and engineer’s 
thinking into Python scripts. All tasks and processes must be documented in a process flowchart before 
writing the Python code. If you want to automate something, you must write it, documenting each step.

 

 Practical Python Network Automation Lab: IOS XE 
Upgrade Lab
I hope your initial enthusiasm for your Python network automation journey has not worn off too much 
along the way. If you enjoyed every chapter leading up to this one, that is fantastic. However, you probably 
encountered a few obstacles and need to work on those areas more. Every chapter was designed to teach you 
some new IT skills to empower you. Get ready for the most exciting three chapters in this book!

Throughout this book, you have learned various IT system management skills, and finally you are here. 
Like many other popular programming languages, Python is classified as an object-oriented programming 
language. I have left the OOP discussion until now because a discussion of OOP could easily scare away 
novice Python learners. In this chapter, I will give a working example of how OOP can be applied to a real 
work scenario so you can relate OOP immediately to your work. Next, you will review how we can use the 
basic flow controls using the user ID and password inputs in our scripts. In many environments, you may not 
have a secure password vault; often you will write interactive code, requiring the users to provide the user 

https://doi.org/10.1007/978-1-4842-6806-3_17#DOI


Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

734

ID and password to the application you have developed. In the last labs, you will build two Cisco CSR 1000v 
virtual routers on VMware Workstation 15 Pro to set you up for mini tools development in Chapter 18. We 
will discuss the Cisco IOS upgrade process in detail at the end of this chapter.

 Applying OOP Concepts to Your Network
Until this point, we have not discussed object-oriented programming in Python. Even without knowing a 
lot about OOP, our Python scripts were working fine. But when intermediate to advanced Python users start 
talking about optimizing Python scripts, they always emphasize that Python is an OOP language. So, we have 
to take full advantage of the OOP concepts. Just like with another popular OOP language, Java, we need to 
know four fundamental concepts: encapsulation, abstraction, inheritance, and polymorphism. The ultimate 
aim of OOP is to bind the data better so a lot of duplication is removed and the same code can be reused 
throughout the same program or application.

Let’s quickly cover the basics, and then we will look at OOP in action by writing an OOP example using 
routers and switches. We’ll keep the theory to the minimum and get into the practical example to help you 
better understand the OOP concepts.

• Object-oriented programming: From an OOP perspective, everything is considered 
an object. The C language is called a procedure-oriented programming language 
because it runs based on the processes running in a functional order. On the 
other hand, in OOP, the objects are related to each other and connected to run the 
program. OOP treats anything and everything as an object, and it is viewed that they 
are linked to each other by some relationship.

• Object: As the word suggests, an object in OOP is a thing or an object. For example, 
a human or a robot can be considered an object, and also, a book or a router is an 
object. Since the same router (or switches) models look the same, every router can 
be called an object because if you make a dent on one of the routers, it does not 
necessarily make dents on other routers. Objects with similar characteristics or 
features are in the same group of objects, meaning that they can be grouped. Certain 
characteristics are the same or similar between the same objects in a common group. 
Even we humans can be considered as objects based on the Python OOP concept.

• Class: People generally have almost identical attributes such as two eyes, a nose, 
a mouth, hands, feet, and other physical body parts. Books also have the same 
attributes, such as book title, author, publisher, and publication dates. Switches from 
different vendors will still have the same switch model, serial number, rack unit size, 
and Ethernet ports. Classes are defined by a collection of common properties of 
objects such as people, books, and switches have in common.

• Abstraction: This refers to showing only essential attributes and hide unnecessary 
objects from the user. For example, a complex function in a class hides (abstracts) 
detailed information from the user, so s/he can implement logic on top of 
abstraction without understanding the actual function or even thinking about all the 
hidden complexities of the class.

• Encapsulation: This refers to the idea of binding the data and methods which 
manipulate the data into a unit. Again, a class is an excellent example of 
encapsulation as the objects inside a class keep their state private and not directly 
accessible; instead, the state of the objects are accessed through methods by calling a 
list of public functions.



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

735

• Polymorphism: This is the process of making one operator and using it in many ways; 
it has one form but with many use cases. A good analogy is that different kinds of 
pens are all classified as pens, but their uses are vastly different. For example, there 
are pens for taking notes, and there are pens for drawing and creating artwork.

• Inheritance: This is the process of making a class from an existing class. Consider 
parents to children and children to parents; if you are born in a family and your 
parents are your birth parents, you and your siblings as children take or inherit both 
parents’ characteristics. If you create a new class that derives from and is associated 
with an existing class, then the new class inherits the old class’s characteristics.

Now that we have the basic OOP theory out of the way, let’s use our routers and switches example to 
write classes to understand the OOP style of coding better. As your applications become more complex, the 
power of OOP truly shines as it binds the data. Let’s take a look at a real example. Read and follow along in 
your Python interpreter.

# Task
1 Let’s write a class for routers and switches. For the most part, the routers and switches will have 

identical attributes; the difference is in the functions or the features. In this example, using inheritance, 
we can collapse or move the def __init__ to the parent class. Let’s quickly write our first classes.
As you can see, both the router and switch classes have serialnumber, hostname, ipaddress 
(management), modelnumber, and devicetype attributes. The __init__ is a reserved method in classes 
known as a constructor in OOP. The programmers read __init__ as “dunder init dunder” and it allows 
the class to initialize a class’s attributes. The word self in the class is used to represent the class’s 
instance; with the self keyword, you can access the class’s attributes and methods. self is used to bind 
the attributes with the given arguments to the @ syntax used in Java. It adds a special attribute to the 
class, method, and variable.

class Router:
   def __init__(self, serialnumber, hostname, ipaddress, modelnumber, devicetype):
      self.serialnumber = serialnumber # 12 Hexadecimal numbers
      self.hostname = hostname
      self.ipaddress = ipaddress # format 1.0.0.X - 254.254.254.XXX
      self.modelnumber = modelnumber
      self.devicetype = devicetype
   def process(self):
      print("Packet routing")

class Switch:
   def __init__(self, serialnumber, hostname, ipaddress, modelnumber, devicetype):
      self.serialnumber = serialnumber # 12 Hexadecimal numbers
      self.hostname = hostname
      self.ipaddress = ipaddress # format 1.0.0.X - 254.254.254.XXX
      self.modelnumber = modelnumber
      self.devicetype = devicetype
   def process(self):
      print("Packet switching")

The router and switch both process packets; one does packet routing and the other packet switching, so 
a process was created to describe their functions. You have successfully created your first set of classes 
for your network devices.

(continued)



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

736

# Task

2 Create a parent class called Devices, as shown next. The Devices class also takes the same attributes as the 
Router and Switch classes you created in task 1. So, create the Devices class in the same manner. You also 
want to add another function called show to let the function display the information when it is invoked.

>>> class Devices:
...     def __init__(self, serialnumber, hostname, ipaddress, modelnumber, devicetype):
...         self.serialnumber = serialnumber # 12 Hexadecimal numbers
...         self.hostname = hostname
...         self.ipaddress = ipaddress # format 1.0.0.X - 254.254.254.XXX
...         self.modelnumber = modelnumber
...         self.devicetype = devicetype
...     def show(self): # show all the attributes
...         print(f"{self.serialnumber},{self.hostname},{self.ipaddress}, 
{self.modelnumber},{self.devicetype}")
...
>>>

Now, create three classes called Router, Switch, and Firewall, respectively, and pass the class 
Devices to each device type class. Now all three classes will inherit the characteristics of the parent 
class, Devices. You can already see how classes and OOP simplify your code, because you did not have 
to create the same attributes three separate times. We have just created one for the parent class and 
applied it to all three child classes.

>>> class Router(Devices):

...     def process(self):

...         print("Packet routing")

...
>>> class Switch(Devices):
...     def process(self):
...         print("Packet switching")
...
>>> class Firewall(Devices):
...     def process(self):
...         print("Packet filtering")
...

Now create three variables, one for each child class as shown here:

>>> rt1 = Switch("001122AABBCC", "RT01", "1.1.1.1", "C4431-K9", "RT")
>>> sw1 = Router("001122DDEEFF", "SW02", "2.2.2.2", "WS-3850-48T", "SW")
>>> fw1 = Firewall("003344ABCDEF", "FW02", "3.3.3.3", "PA-5280", "FW")

From your Python interpreter, run the following commands to retrieve your device information. The 
show() method was automatically inherited from the parent class, Devices. This example was shown 
on the interpreter, but you can also write it into the code or download oop1.py and run it as a script. 
You have just finished studying the inheritance of OOP classes.

>>> rt1.show()
001122AABBCC,RT01,1.1.1.1,C4431-K9,RT
>>> sw1.show()
001122DDEEFF,SW02,2.2.2.2,WS-3850-48T,SW
>>> fw1.show()
003344ABCDEF,FW02,3.3.3.3,PA-5280,FW



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

737

# Task

3 Next, let’s build hierarchical classes so our comprehension of OOP solidifies, and we can use this 
in our real-life scenarios. The following example has the top-tier class called Pynetauto_co, which 
represents your company. The following is the child class called Cisco, representing the vendor of 
your company’s networking devices. This is followed by the child class, Devices, and then under 
Devices, there are two child classes called Router and Switch. The inheritance is like a waterfall, so it 
is top-down. You can write this in Notepad or directly in the nano text editor.

oop_task1.py

class Pynetauto_co: # parent class of Cisco class
   "Parent class of Cisco, HP, Juniper, Arista"
   def __init__(self, companyname):
      self.companyname = companyname
   def PrintInfo_P1(self):
      print("Pynetauto Company")
      #print("www.xyzptyltd.com")

class Cisco(Pynetauto_co): # parent class of Devices class
   "Parent class of Switch, Router and Firewall"
   def __init__(self, vendor):
      self.Vendor = vendor
   def PrintInfo_P2(self):
      print("Cisco")
      #print("www.cisco.com")

class Devices (Cisco): # parent class of Router and Switch classes
   "Parent class of Switch, Router and Firewall"
   def __init__(self, serialnumber, hostname, ipaddress, modelnumber, devicetype):
      self.serialnumber = serialnumber # 12 Hexadecimal numbers
      self.hostname = hostname
      self.ipaddress = ipaddress # format 1.0.0.X - 254.254.254.XXX
      self.modelnumber = modelnumber
      self.devicetype = devicetype
   def show(self): # show all the attributes
      print(f"{self.serialnumber},{self.hostname},{self.ipaddress},\
            {self.modelnumber},{self.devicetype}")
class Router(Devices):
   def process(self):
      print("Packet switching")
class Switch(Devices):
   def process(self):
      print("Packet routing")

rt3 = Router("000111222222", "RT03", "2.2.2.2", "C4351/K9", "RT")
sw3 = Switch("000111222111", "SW03", "1.1.1.1", "WS-3850-48T", "SW")

rt3.PrintInfo_P1()
rt3.PrintInfo_P2()
rt3.show()

sw3.PrintInfo_P1()
sw3.PrintInfo_P2()
sw3.show()

(continued)



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

738

# Task

When you save the previous OOP task script and run it from Python, it will return the following output:

Pynetauto Company

Cisco
000111222222,RT03,2.2.2.2,C4351/K9,RT
Pynetauto Company
Cisco
000111222111,SW03,1.1.1.1,WS-3850-48T,SW

OOP will bind the data together and empower you to write clean code. When you have to deal with 
many objects with similar attributes and cannot create each object's attributes, OOP will come to your 
rescue. Also, when we have to manage data in a dataframe or any SQL type, the OOP structure can help us 
better manage and handle data within our Python scripts. Now let’s quickly move onto the next topic.

 Flow Control and Controlling User Input: UID, PWD, 
and Information Collector
In this section, you will learn something fun and practical. While developing an interactive or noninteractive 
Python application, you often want to control an interactive user’s data input. You want to make sure that 
the user input is precisely what is defined in your script. This, in turn, can be used to change the flow of 
your Python script. A straightforward example would be asking the user to enter yes or no. There could 
be four possible user input scenarios. In this case, first, type in yes or y; second, type in no or n; third, type 
something other than yes or no; and fourth, stare at the screen and type nothing in. Also, by introducing 
regular expressions into user input, you can home in to accept the information you want and reject any other 
variable values. You will see this in action in the next example, but first, let’s have some fun with the yes/no 
user input scenario; then we’ll reiterate the script to make it more useful, and study how it can change the 
flow of your Python script and how the reiteration can enhance your simple script.The first script you will 
develop is a username and password input application using a yes/no script.

# Task
1 The following is a simple yes/no user input example using the if ~ else statement. Create a new 

Python script called yes_or_no1.py, and run the script. There are a few flaws with this script, but we 
will enhance this first input script to make it useful in our real Python applications.

Create a separate directory on your server and create your first script as shown here:

pynetauto@ubuntu20s1:~$ mkdir user_input
pynetauto@ubuntu20s1:~$ cd user_input
pynetauto@ubuntu20s1:~/user_input$ nano yes_or_no1.py

GNU nano 4.8                             /home/pynetauto/user_input/yes_or_no1.py
def yes_or_no(): # Create function called yes_or_no
   yes_or_no = input("Enter yes or no : ") # Ask for user input
   yes_or_no = yes_or_no.lower()# change all input casing to lower casing
   if yes_or_no == "yes":  # if answer is 'yes' take the following action
      print("Oh Yes!")
   else: # if answer is 'no' or other input, take the following action
      print("Oh No!")
yes_or_no()  # Run the function



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

739

# Task
^G Get Help  ^O Write Out    ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

When you run the previous script and give input, the output should look like this for each response.

This Python code is pretty basic. Think about where we can improve on this script.

pynetauto@ubuntu20s1:~/user_input$ python3 yes_or_no1.py
Enter yes or no : Yes
Oh Yes!
pynetauto@ubuntu20s1:~/user_input$ python3 yes_or_no1.py
Enter yes or no : no
Oh No!
pynetauto@ubuntu20s1:~/user_input$ python3 yes_or_no1.py
Enter yes or no : maybe
Oh No!

2 The first example had the following flaws:

a. Not considering the abbreviated response from the user, y for yes and n for no.

b. No response and the incorrect response were treated as the same response.

Let’s quickly correct the previous and see if we can reiterate this simple code and make it better.

Name your code file yes_or_no2.py.

pynetauto@ubuntu20s1:~/user_input$ nano yes_or_no2.py

GNU nano 4.8                            /home/pynetauto/user_input/yes_or_no2.py
def yes_or_no():
   yes_or_no = input("Enter yes or no : ")
   yes_or_no = yes_or_no.lower()
   if yes_or_no == "yes" or yes_or_no == "y": # Takes abbreviated response
      print("Oh Yes!")
   elif yes_or_no == "no" or yes_or_no == "n": # Takes abbreviated response
      print("Oh No!")
   else: # Any other responses, print the following statement
      print("You have not entered the correct response.")
yes_or_no()
^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

The expected output examples are as shown here, but we can still improve this further:

pynetauto@ubuntu20s1:~/user_input$ python3 yes_or_no2.py
Enter yes or no : y
Oh Yes!
pynetauto@ubuntu20s1:~/user_input$ python3 yes_or_no2.py
Enter yes or no : no
Oh No!
pynetauto@ubuntu20s1:~/user_input$ python3 yes_or_no2.py
Enter yes or no : maybe
You have not entered the correct response.

(continued)



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

740

# Task

3 You only want to allow yes or no as a response and want to prompt the user until a yes, y, no, or n 
response is provided. By restricting the users response, you are now dictating and controlling the flow 
of your script. How would you achieve this goal? What part of the script do you have to change to get 
a yes or a no from the respondent? There are a few possible ways to achieve this, and as always, there 
are no right or wrong answers with Python coding, only the best recommendations. Let’s look at the 
next example to achieve our goal.

In the following example, you will use a simple list with the expected answers, and you will only allow 
your script to run when those values are received as a response. Until you get the correct response, 
you will prompt the user that you expect a yes or no response.

pynetauto@ubuntu20s1:~/user_input$ nano yes_or_no3.py

GNU nano 4.8                            /home/pynetauto/user_input/yes_or_no3.py
def yes_or_no():
   yes_or_no = input("Enter yes or no : ")
   yes_or_no = yes_or_no.lower()
   expected_response = ['yes', 'y', 'no', 'n'] # Expected responses
    while yes_or_no not in expected_response: # Prompt until 'yes' or 'no' response is 

given
      yes_or_no = input("Expecting yes or no : ")
   if yes_or_no == "yes" or yes_or_no == "y":  # 'yes' or 'y' action
      print("Oh Yes!")
   else: # 'no' or 'n' action
      print("Oh No!")

yes_or_no()
^G Get Help  ^O Write Out   ^W Where Is   ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File   ^\ Replace    ^U Paste Text  ^T To Spell  ^_ Go To Line

The expected output should look as follows, and the response must meet the criteria to pass the 
while loop. Otherwise, the user is asked over and over again for the correct response. Now, this looks 
quite promising, but where can you use this piece of code? In the next example, let’s look at the real 
example and how it is used.

pynetauto@ubuntu20s1:~/user_input$ python3 yes_or_no3.py
Enter yes or no : Y
Oh Yes!
pynetauto@ubuntu20s1:~/user_input$ python3 yes_or_no3.py
Enter yes or no : NO
Oh No!
pynetauto@ubuntu20s1:~/user_input$ python3 yes_or_no3.py
Enter yes or no : maybe
Expecting yes or no : maybe
Expecting yes or no : yes
Oh Yes!



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

741

# Task

4 The following script collects two sets of network administrator ID and password. To start, get the first 
administrator’s credentials, and then ask if the second administrator’s credentials are the same. If the 
response is yes or y, the user ID and passwords are the same. If the response is no or n, then collect the 
second set of user ID and password.

pynetauto@ubuntu20s1:~/user_input$ nano yes_or_no4.py

GNU nano 4.8                            /home/pynetauto/user_input/ yes_or_no4.py
from getpass import getpass

def get_credentials():
   #Prompts for, and returns a username1 and password1
   username1 = input("Enter Network Admin1 ID: ") # Request for username 1
   password1 = getpass("Enter Network Admin1 PWD: ") #  Request for password 1
   print("Username1 :", username1, "Password1 :", password1) # Print username and password

   #Prompts for  username2 and password2
    yes_or_no = input("Network Admin2 credentials same as Network Admin1 credentials? 

(Yes/No): ").lower() # Ask if Network Admin 2 has the same credentials as Admin 1
   expected_response = ['yes', 'y', 'no', 'n'] # Expect any of these four responses
   while yes_or_no not in expected_response: # Prompt until 'yes' or 'no' response is given
      yes_or_no = input("Expecting yes or no : ")
    if  yes_or_no == "yes" or yes_or_no == "y": # If 'yes' or 'y', credentials ate the 

same as Admin1
      username2 = username1
      password2 = password1
      print("Username2 :", username2, "Password2: ", password2) # Print username and password
   else: # If 'no' or 'n', request for Admin2 username and password
      username2 = input("Enter Network Admin2 ID : ")
      password2 = getpass("Enter Network Admin2 Password : ")
      print("Username2 :", username2, "Password2 :", password2) # Print username and password
get_credentials()
^G Get Help  ^O Write Out    ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace   ^U Paste Text  ^T To Spell  ^_ Go To Line

Run the script to test the user ID and password collector script. The expected output should be similar 
to the following output. Do you think you can reiterate this script and improve this script? Let’s see the 
final example.

pynetauto@ubuntu20s1:~/user_input$ python3 yes_or_no4.py
Enter Network Admin1 ID: hugh
Enter Network Admin1 PWD:*********
Username1 : john Password1 : password1
Network Admin2 credentials same as Network Admin1 credentials? (Yes/No): yes
Username2 : john Password2:  password1
pynetauto@ubuntu20s1:~/user_input$ python3 yes_or_no4.py
Enter Network Admin1 ID: hugh
Enter Network Admin1 PWD: *********
Username1 : hugh Password1 : password1
Network Admin2 credentials same as Network Admin1 credentials? (Yes/No): no

(continued)



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

742

# Task

Enter Network Admin2 ID : john
Enter Network Admin2 Password : ***********
Username2 : john Password2 : password777

5 In this final reiteration of the yes or no example, you will add a password verification feature to 
make sure that the user’s first password is verified with the second password. Both passwords must 
match; the getpass module from the getpass library hides the password while the user is typing 
the password. By adding the password verification feature, you are minimizing the likelihood of an 
incorrect password.

pynetauto@ubuntu20s1:~/user_input$ nano yes_or_no5.py

GNU nano 4.8                            /home/pynetauto/user_input/yes_or_no5.py
from getpass import getpass

def get_credentials():
   #Prompts for, and returns a username1 and password1
   username1 = input("Enter Network Admin1 ID: ") # Request for username 1
   password1 = None  # Set password1 to None (initial value to None)
   while not password1: # Until password1 is given
      password1 = getpass("Enter Network Admin1 PWD : ")  # Get password1
       password1_verify = getpass("Confirm Network Admin1 PWD : ")  # Request for 

validation
       if password1 != password1_verify: # If the password1 and verification password 

does not match
         print("Passwords do not match. Please try again.") # Print this information
         password1 = None  # Set the password to None and ask for password1 again
    print("Username1 :", username1, "Password1 :", password1) # Print username and 

password

   #Prompts for  username2 and password2
    yes_or_no = input("Network Admin2 credentials same as Network Admin1 credentials? 

(Yes/No): ").lower() # Ask if Network Admin 2 has the same credentials as Admin 1
   expected_response = ['yes', 'y', 'no', 'n'] # Expect any of these four responses
   while yes_or_no not in expected_response: # Prompt until 'yes' or 'no' response is given
      yes_or_no = input("Expecting yes or no : ")
    if yes_or_no == "yes" or yes_or_no == "y": # If 'yes' or 'y', credentials ate the 

same as Admin1
      username2 = username1
      password2 = password1
       print("Username2 :", username2, "Password2 :", password2) # Print username and 

password
   else: # If 'no' or 'n', request for Admin2 username and password
      username2 = input(“Enter Network Admin2 ID: “) # Request for username 2
      password2 = None  # Explanation same as above
      while not password2: # Explanation same as above
         password2 = getpass(“Enter Network Admin2 PWD : “) # Explanation same as above
         password2_verify = getpass(“Confirm Network Admin2 PWD : “)
         if password2 != password2_verify: # Explanation same as above
            print(“Passwords do not match. Please try again.”)
            password2 = None # Explanation same as above



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

743

# Task

       print(“Username2 :”, username2, “Password2 :”, password2) # Print username and 
password

get_credentials()
^G Get Help  ^O Write Out    ^W Where Is  ^K Cut Text    ^J Justify   ^C Cur Pos
^X Exit      ^R Read File    ^\ Replace   ^U Paste Text  ^T To Spell  ^_ Go To Line

You can learn the process of reiterating code to improve the original code. Once you are happy with 
your code’s quality, you can save it to your code repository and document it, or you can also choose to 
share it with others on your team or on the online community. In reality, Python coding is not always 
fun as you have to get anal about everything you code. You frequently have to adjust the reiteration 
of your code and other code. Learn to start with an elementary script and then make improvements 
through reiterations.

Here is the expected output:

pynetauto@ubuntu20s1:~/user_input$ python3 yes_or_no5.py
Enter Network Admin1 ID: hugh
Enter Network Admin1 PWD :***********
Confirm Network Admin1 PWD : *********  # incorrect password typed
Passwords do not match. Please try again.
Enter Network Admin1 PWD : ***********
Confirm Network Admin1 PWD : *********** # correct password typed
Username1 : hugh Password1 : password123
Network Admin2 credentials same as Network Admin1 credentials? (Yes/No): yes
Username2 : hugh Password2 : password123
pynetauto@ubuntu20s1:~/user_input$ python3 yes_or_no5.py
Enter Network Admin1 ID: john
Enter Network Admin1 PWD : ***********
Confirm Network Admin1 PWD : ***********
Username1 : john Password1 : password777
Network Admin2 credentials same as Network Admin1 credentials? (Yes/No): no
Enter Network Admin2 ID: bill
Enter Network Admin2 PWD : ***********
Confirm Network Admin2 PWD : ***********
Username2 : bill Password2 : password888

You have completed an exercise to write a basic Python application and then improve the code by 
adding new features and ideas through reiterations. Your first code is never perfect; it takes time and 
imagination to make even the most straightforward Python programs for your work. Next, let’s prepare for 
the final lab and plan for IOS upgrade application development by discussing the actual IOS upgrade tasks 
and processes.

 Lab Preparation
One problem with IOS upgrade tests on GNS3 is that it does not fully support the reloading feature within 
GNS3. This is one of the downfalls of emulation software compared to real IOS software. There are two 
possible ways we can start developing and testing IOS upgrade scenarios. The first way is to purchase the 
real hardware and test, and the second way is to find an alternative or virtual IOS image that supports 



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

744

upgrading IOS in a virtual environment. From the first chapter of this book, I have promised you that 
everything we do in this book can be emulated and practiced without expensive Cisco devices. Also, all 
learning will be completed from a single PC or laptop. However, in developing an application to upgrade a 
Cisco IOS, I have to admit there is no replacement for the actual hardware equipment. A virtualized Cisco 
router or a switch is not the same as a physical router or a switch. The virtual routers and switches have 
logical parts as in files but without the real motherboard, pluggable ports, power-consuming power supply, 
and noisy cooling fans. Also, some parts of switching can be emulated, as you have seen in the use of IOSvL2 
switches. These switches are not 100 percent like production equipment as they miss the real ASCII support 
for LAN switching. We can use the closest Cisco IOS device on a single laptop to emulate the IOS upgrade 
using the virtual cloud router, Cisco CSR 1000v. As long as you can get your hands on a copy of Cisco CSR 
1000v, you can still practice the IOS upgrading scenario using Python scripts. Unfortunately, I cannot share 
this software with every reader, if you can get your own copy, you will be able to follow the whole lab from 
beginning to end. If you cannot get ahold of the CSR 1000v IOS XE images or similar images used here, you 
may have to purchase a couple of very outdated Cisco 2621XM/2651XM routers for $10 each on eBay and 
emulate the reloading section of the code.

 CSR 1000v IOS XE Software and Download
To prepare for this lab, we have to download a set of Cisco CSR 1000v IOS XE images. Pay close attention 
and take notes on the different file extensions of the set of files we are about to download for our final lab. 
For virtual machine (router) creation, we first need to download the file ending with the .ova file extension. 
The VMware ESXi6.5 virtual machine template file and the IOS upgrading practice need the latest IOS XE file 
with the file extension .bin. You can find more details on each of these files in Table 17-1.

As you have noticed, the minimum memory and flash size requirements are quite demanding to run 
on GNS3, and the GNS3 will struggle to run Cisco CRS 1000v routers in GNS3 environment. Since network 
automation’s power is realized only when the same application can run on more than a single device, you 
will be creating two virtual CSR 1000v routers on your computer. That means the memory consumption from 
these two virtual routers alone will be 8 GB combined. Also, as mentioned, on the basic GNS3 configuration, 
the rebooting emulation does not have the expected behaviors as you would expect from a real production 
environment, so rather than building the IOS XE routers on GNS3, you will be importing the .ova file and 
creating two Cisco IOS XE routers on VMware Workstation 15 Pro. Then, you can follow the IOS upgrade 
by uploading the latest .bin file of the same IOS XE train. Since you will not be testing any serious routing 
concepts but only required to emulate IOS upgrade, this lab setup is sufficient and helpful to develop a real 
working Python application for end-to-end IOS upgrade scenarios.

Table 17-1. CSR 1000v IOS XE Files Used in This Chapter

Item From IOS XE Detail To IOS XE Detail

Release Date 30-Nov-2018 04-Sep-2020

Release Fuji-16.7.3 Fuji-16.9.6

FileName csr1000v-universalk9.16.07.03.ova csr1000v-universalk9.16.09.06.SPA.bin

Release Date 30-Nov-2018 04-Sep-2020

Min Memory DRAM 4096 Flash 8192 DRAM 4096 Flash 8192

Size 397.99 MB 416.35 MB

MD5 aa6cba7ff85afb3e7ca29831a28aefb4 77878ae6db8e34de90e2e3e83741bf39



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

745

If you have an active Cisco service contract and have access to CCO, please log in and download the 
following or similar sets of files for your lab practice. It does not have to be Fuji. If you prefer another IOS XE 
flavor for CSR 1000v, you should download a set of files for this lab. See Figure 17-1.

 Cisco CSR 1000v Installation on VMware Workstation
Installing CSR 1000v on VMware Workstation 15 is no different from installing the GNS3 VM .ova file you 
previously installed. But this time, you are going to create two virtual machines instead of one. Also, for this 
lab, you can keep the GNS3 completely powered off, but you will still need the Python server, ubuntu20s1, 
powered on. As soon as we build the virtual routers, we will configure both routers with the minimal 
configuration and get on with the IOS upgrade application development. See Figure 17-2.

Figure 17-1. CSR 1000v IOS XE downloads from Cisco software download site



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

746

Now follow these tasks to install both csr1000v-1 and csr1000v-2 virtual routers. The installation of 
csr100-v is straightforward.

# Task
1 To create the virtual machine, first open the VMware Workstation main window and go to File ➤ 

Open. Then go to the Downloads folder and select the csr1000v-universalk9.16.07.03.ova file. 
See Figure 17-3.

Figure 17-2. Chapter 10 lab equipment

Figure 17-3. VMware Workstation, selecting the csr1000v .ova file



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

747

# Task

2 For the first virtual router, give csr1000v-1 as the name of this device. When you create the 
second virtual router, you just need to change the last digit of the router name to 2, so it would be 
csr1000v-2. See Figure 17-4.

Figure 17-4. csr1000v-1, giving the new router name

(continued)



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

748

# Task

3 Leave the Deployment Options setting as Small and click the Next button. See Figure 17-5.

Figure 17-5. csr1000v-1, deployment options



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

749

# Task

4 Now to import the virtual router, you are going to fill out the following properties. Configuring the 
properties on the GUI is the same as configuring these settings through the CLI.

For 1. Bootstrap Properties, fill in the Router Name, Login Username, and Login Password fields. See 
Figure 17-6.

Figure 17-6. csr1000v-1, 1. Bootstrap Properties

(continued)



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

750

# Task

For 2. Features, change False to True for both Enable SCP Server and Enable SSH and Disable Telnet 
Login. See Figure 17-7.

For 3. Additional Configuration Properties, fill in Enable Password and a testing domain name. See 
Figure 17-8.

No configuration is required for 4. Intercloud Configuration Properties; leave the settings at the 
defaults.

Figure 17-7. csr1000v-1, 2. Features



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

751

# Task

5 Double-click the screen (pr press Ctrl+G) and hit any key to continue the router import. Press 
Ctrl+Alt to move back to the host Windows machine. Press any key to continue when you see the 
following message on the screen:

LoLoading stage2 ……
Press any key to continue
ading stage2 ……

6 You may have to wait for three to five minutes for the virtual machine to be imported to the 
workstation. Given enough time, the router import will be completed as shown next. As soon as the 
importing completes, log in and check the interface status.

Ecsr1000v-1>enable
Password :
csr1000v-1#show ip interface brief
Interface          IP-Address  OK?  Method  Status                 Protocol
GigabitEthernet1   unassigned  YES  unset   administratively       down down
GigabitEthernet2   unassigned  YES  unset   administratively       down down
GigabitEthernet3   unassigned  YES  unset   administratively       down down
                                 S  unset   administratively       down down

Figure 17-8. csr1000v-1, 3. Additional Configuration Properties

(continued)



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

752

# Task

7 Right-click the new virtual router, csr1000v-1, and select Settings. The network adapter type needs 
to be changed. See Figure 17-9.

8 Under Hardware, change the Network Adapter configuration from Bridged (Automatic) to “NAT: 
Used to share the host’s IP address.” See Figure 17-10.

Figure 17-9. csr1000v-1, opening Settings…



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

753

# Task

9 When the virtual router build completes, the interfaces will be in an administrative down/down 
state like all other Cisco routers. Before bringing up the interface, let’s quickly assign the correct 
IP address for the GigabitEthernet1 interface with 192.168.183.111/24. Since we need only one 
interface for our IOS upgrade tool development, you do not have to configure the other interfaces.

csr1000v-1#config terminal
csr1000v-1(config)#interface GigabitEthernet1
csr1000v-1(config-if)#ip address 192.168.183.111 255.255.255.0
csr1000v-1(config-if)#no shut
csr1000v-1(config-if)#end

Figure 17-10. csr1000v-1, changing Network Adapter (GigabitEthernet1) to NAT

(continued)



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

754

# Task

Note that once you create the second virtual router, you should configure the GigabitEthernet1 
interface with 192.168.183.222/24.

csr1000v-2#config terminal
csr1000v-2(config)#interface GigabitEthernet1
csr1000v-2(config-if)#ip address 192.168.183.222 255.255.255.0
csr1000v-2(config-if)#no shut
csr1000v-2(config-if)#end

10 On your Windows host, open the PuTTY SSH client and log into csr1000v-1 (192.168.183.111). 
When you are prompted with PuTTY security alert, make sure you click the Yes button to accept the 
device’s host key. Also, don’t forget to send some ICMP commands to the ubuntu20s1 server to test 
the connectivity. See Figure 17-11.

Figure 17-11. csr1000v-1, PuTTY login for the first time



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

755

# Task

11 To complete the basic configuration, let’s check the domain and create the RSA key for secure key 
exchange. Also, disable the timeout for VTY lines to stop the SSH session timeouts; only use this 
feature for the lab environment. Save the configuration by running write memory.

csr1000v-1#show run | in ip domain
ip domain name pynetauto.local
csr1000v-1#conf terminal
Enter configuration commands, one per line.  End with CNTL/Z.
csr1000v-1(config)#crypto key generate rsa
The name for the keys will be: csr1000v-1.pynetauto.local
Choose the size of the key modulus in the range of 360 to 4096 for your
    General Purpose Keys. Choosing a key modulus greater than 512 may take
   a few minutes.

How many bits in the modulus [512]: 1024
% Generating 1024 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 0 seconds)

csr1000v-1(config)#line vty 0 15
csr1000v-1(config-line)#exec-timeout 0
csr1000v-1(config-line)#end
csr1000v-1#write memory
Building configuration...
[OK]

12 Once you are happy with the basic configuration, take a snapshot of the virtual router, as shown in 
Figure 17-12.

Figure 17-12. csr1000v-1, taking a snapshot

(continued)



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

756

# Task

13 Now, repeat steps 1 through 12 to create the second virtual router (csr1000v-2) with the following details:

Second router name: csr1000v-2
Second router IP: 192.168.183.222 255.255.255.0

14 Once you have two csr1000v routers (csr1000v-1 and csr1000v-2) installed, then you are ready to 
move on to the Cisco IOS upgrade processes. See Figure 17-13.

You have now completed installing two Cisco CSR 1000v routers for IOS upgrade application 
development. Let’s quickly go over the process of upgrading the Cisco IOS devices.

 Discussion of How an IOS (IOS-XE/XR) Is Upgraded on Cisco 
Devices
Upgrading Cisco IOS (IOS/IOS-XE/IOS-XR) on Cisco routers and switches is not for faint-hearted engineers 
when hundreds and thousands of business-critical applications are operating during business hours as well 
as out of business hours. Even when the system and DevOps engineers go home, the enterprise routers and 
switches must provide IP connectivity to end users and IP services to other systems, allowing the backup 
services to run in the middle of the night. Enterprise networking devices are operational almost 24/7/365, 
and this is why you have to buy reputable vendor products (such as Cisco) for enterprise networking. If any 
services fail, then the first finger pointing goes to IP gateway (routers) devices, even for company email, 
cloud, or system backup issues. In an ITIL-driven organization, you always have to go through change control 
with a lot of red tape to perform an IOS upgrade. The reasons for upgrading IOS devices are many. The most 
common are outdated IOS, bugs, Cisco TAC’s recommendation, or third-party agreements. The IOS upgrade 
commitment is written into the support contract, and IOS is upgraded as part of network patch management.

 Tasks Involved in a Cisco IOS Upgrade
Let’s quickly look at how a seasoned network engineer would upgrade an outdated IOS to the latest IOS 
version. The IOS upgrade process involves a predefined set of tasks, but there will be varying differences in 
the pre- and post-checks from one engineer to another. However, most of the time, the IOS upgrade process 
is relatively standardized but requires a lot of attention and takes place outside of business hours to avoid 

Figure 17-13. csr1000v-1 and csr1000v-2 up and running



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

757

major outages. You are only allowed to perform IOS upgrades after midnight with a small change window 
in extreme cases. This type of change usually occurs at odd hours, which contributes to insomnia among 
long-time network engineers and puts a lot of pressure on marriages in the long term. Anyway, network 
automation is good news for both network engineers and their families.

Let’s study a general IOS upgrade workflow that an engineer needs to follow to complete an IOS 
upgrade on Cisco routers or switches. Figure 17-14 illustrates a general Cisco IOS upgrade workflow for 
many of its common platforms.

As depicted in Figure 17-14, the Cisco IOS upgrade process is quite involved; in other words, it’s 
labor-intensive. If there is more than one device to upgrade, then the whole process immediately becomes 
repetitive. So, why not automate an engineer’s tasks? In the final lab in the final two chapters, you will be 
guided to develop small Python modules to replace most of the tasks depicted in Figure 17-14.

Let’s break down Figure 17-14 into three significant stages and many linear steps to better understand 
what tasks must be translated and written into the Python code. Here you really must wear an application 
developer/programmer’s hat while keeping your network engineer’s hat on. Table 17-2 provides the manual 
task-driven Cisco IOS upgrade breakdown; this process may be slightly different from one generation to 
another and from one platform to another. In general, the principles are almost identical.

Figure 17-14. General Cisco IOS upgrade workflow



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

758

We have reviewed the manual IOS upgrade processes shown previously, but how can we translate 
each item into Python code? Where do we begin, and is it even possible to create such sophisticated IOS 
upgrading applications in production? Compared to what other tools offer us in the current market, there 
are many tasks (and an engineer’s logical thinking) that must be translated into code lines (a program). Next, 
let’s study Figure 17-15, which is my translation of Table 17-2 and Figure 17-14 into automatable tasks.

Table 17-2. IOS Upgrade Task Breakdown

Phase 1: Pre-check
1 Check the network connectivity between the server and network devices.

2 Collect the user’s login credentials and also user input as variables.

3 Check the MD5 value of new IOS as a variable.

•  Compare the user’s MD5 value versus the server’s checked MD5 value.

4 Check the flash size on the Cisco device as a variable.

•  Give the user an option to delete an old IOS file on flash:/.
•  Give an option to look inside a directory on a Cisco switch and delete an old IOS file.

5 Make backups of running-config.

Phase 2: IOS Uploading and Pre-uploading Check

6 Upload the new IOS file from a file server to the router’s flash.

7 Check the new IOS MD5 value on the Cisco device’s flash.

•  Compare the server’s MD5 value versus the switch MD5 value.

8 Give the user a review of the result.

•  Give the user an option to reload the device at a deferred time if required.

9 Before device reload:

•  Change the boot system and save the current running-config to start-up config.
•  Take backups of the running configuration on local/TFTP/FTP storage (as required).
•  Optionally capture any other important information.
•  For switches, run show ip interface brief.
•  For routers, run show ip routing, which is the routing table.

Phase 3: Reloading and Post-upgrade Check

10 During device reload (reloading state):

•  Check if the device is on the network.

11 After the reload (the device is back on the network):

•  Log back into the device and perform a post-upgrade verification using before and after 
configurations.

•  Optionally, send an email notification to the engineer at the end of the upgrade completion.



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

759

Figure 17-15 is almost a direct translation of the tasks discussed in Table 17-2, and the numbers 
correspond to that of Table 17-2. You should carefully study it before moving on to the next chapter. In 
Chapter 18, we will turn each step in the upgrade process into smaller snippets of Python code. In Chapter 18,  
tools developed for each process will become individual tools themselves. Then, in Chapter 19, you will 
combine them into a single tool (application) to replace the Cisco IOS upgrade tasks from end to end, that is, 
the pre-check, IOS upgrade, and post-check processes.

 Summary
The processes discussed in this chapter are still somewhat generalized, but if you want to be more detailed, 
you can break down each task into even smaller tasks. A programmer without essential networking 
background will have little or no idea of the processes typically performed by experienced network 
engineers. Only network engineers who can write code will string together each task into sequenced tasks 

Figure 17-15. Cisco IOS/IOS XE automated upgrade, suggested workflow example



Chapter 17 ■ Upgrading MUltiple CisCo ios Xe roUters

760

and cover all the essential tasks required to turn their actions into actionable code lines. So, in this vein, the 
foreseeable future for network (including security) engineers is bright as they cannot be replaced by pure 
application developers or untrained artificial intelligence (AI). Still, organizations will prefer engineers with 
coding skills over traditional engineers with no coding skills. Perhaps most network engineers will agree 
that, soon, AI will be replacing much of the work we perform today. At least this is true for the initial design 
and development of these AI platforms, because they must be initiated by experienced and intelligent 
network engineers, not the application developers.



761
© Brendan Choi 2021 
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_18

CHAPTER 18

Python Network Automation Lab: 
Cisco IOS Upgrade Mini Tools 
Development

This chapter is the second-to-last chapter of this book, and you will be completing ten applications. You will 
turn them into a single, functional IOS upgrade application in the next chapter. The tools developed in this 
chapter include the following: connectivity validation tool, username and password interactive collection 
tool, file information read tool, MD5 check tool for file integrity on a Linux server, configuration backup tool 
for network devices, IOS file uploading tool, router flash IOS MD5 check tool, user input tool to change the 
application flow, and router reload tool with a post-check tool. In this chapter, you will also test the tools and 
validate their functionalities.

 

 Cisco IOS Upgrade Application Development
Now it is time to develop a series of small Python tools (applications) to use like small Lego blocks to, in the 
next chapter, create a more sophisticated and complete network automation application.

To begin developing the first application (tool), let’s talk about how you can feed information into a 
script to be converted into Python variables and arguments. There are three ways we can feed the user 
and device information into our Cisco IOS XE upgrade application. First, we can create an interactive 
information collector tool and collect both user and device information interactively from the user. Second, 
we can interactively collect user login information but read the device information from a file such as a text 
file, Excel file, CSV file, or a database. Third, we can get all information from files (text, Excel, or CSV) or a 
database. The biggest issue with a reading a username and password from insecure text files is that it could 
be a significant security threat in the production environment. You have to consider using an encrypted 
password vault, which will protect your credentials on the network. This topic is beyond this book’s topics 
and will be left for you to research; we will replace this with a more straightforward user interaction tool.

https://doi.org/10.1007/978-1-4842-6806-3_18#DOI


Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

762

To draw on everything we have learned through Chapters 1 to 17, let’s use the second method of feeding 
information to the application. In this example, we will be getting the user credentials from an interactive 
user session and getting the device information from a CSV file using the pandas module.

 Part A: Pre-check Tools Development Connectivity Validation 
Tool
Network Engineers continuously strive to keep various IP devices, applications, and users connected to their 
network, with no or minor network interruptions possible. Even before the word network programmability, 
infrastructure as code or network automation was on everyone’s lips; every organization wants their 
managed networks secure and stable. When we write a scripted network automation application, we have 
to put network stability and security as the first priority. We always have to reference the best practices in 
networking and security. You can write sound network automation applications when you are across the 
best practices in networking and programming.

The very first mini tool we are going to develop here is the network connectivity tool. A similar tool 
was introduced to you in an earlier chapter, but we will refactor the codes and make it better. After writing 
a stand-alone network connectivity checking tool, you will be able to test the communication between 
the server (ubuntu20s1) and two routers (csr1000v-1 and csr1000v-2). Every Network Engineer uses 
ICMP (ping) and socket (port) scanning at work, and your application will replace the manual tasks on the 
terminal console with the lines of Python code. Here, we will develop the ICMP application by reiterating 
(code refactoring) the same codes over and over. All applications developed in this chapter will be 
incorporated directly into the final Cisco IOS upgrade application in the final chapter.

 please note that no one will write this code for you in the real world, so you must get used to writing each 
line of code yourself accurately and swiftly. as in other code in this book, the explanations for important code 
lines appear next to each line following the # mark.

# Task
1 SSH into your Python automation server (ubuntu20s1) server using PuTTY and write the following 

code. You will write one ICMP script and then one socket script to test the network connectivity 
between the server and the routers. Then run and validate the scripts and modify them to change 
the flow of the scripts. Here we will only use the native os and socket modules; although the scapy 
module is an excellent external tool, the native tools can achieve what we want, so you will use what 
comes out of the box.

pynetauto@ubuntu20s1:~$ mkdir my_tools
pynetauto@ubuntu20s1:~$ cd my_tools
pynetauto@ubuntu20s1:~/my_tools$ mkdir tool1_ping
pynetauto@ubuntu20s1:~/my_tools$ cd tool1_ping
pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ nano ping_tool1.py



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

763

# Task
ping_tool1.py
import os

device_list = ['192.168.183.111', '192.168.183.222']

for ip in device_list: # for loop for IP address
if len(ip) != 0: # Only run this part of script if the list is not empty

print(f'Sending icmp packets to {ip}') # Informational
resp = os.system(f'ping -c 3 {ip}') # send ICMP packets 4 times
if resp == 0: # If on the network (pingable), run this script

print(f'{ip} is on the network.') # Informational
print('-'*80) # Line divider

else:
print(f'{ip} is unreachable.') # Informational
print('-'*80) # Line divider

else:
exit() # If not on the network, exit application

2 If your server can communicate to both routers and run the previous script, you should see a 
similar result on your SSH console. Run python3 ping_tool1.py, and the result will look like this:

pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ python3 ping_tool1.py
Sending icmp packets to 192.168.183.111
PING 192.168.183.111 (192.168.183.111) 56(84) bytes of data.
64 bytes from 192.168.183.111: icmp_seq=2 ttl=255 time=1.63 ms
64 bytes from 192.168.183.111: icmp_seq=3 ttl=255 time=1.60 ms
64 bytes from 192.168.183.111: icmp_seq=4 ttl=255 time=1.58 ms

--- 192.168.183.111 ping statistics ---
4 packets transmitted, 3 received, 25% packet loss, time 3032ms
rtt min/avg/max/mdev = 1.581/1.603/1.628/0.019 ms
192.168.183.111 is on the network.
--------------------------------------------------------------------------------
[...omitted for brevity]

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

764

# Task

3 Now, let’s modify device_list = ['192.168.183.111', '192.168.183.222'] to device_list 
= ['10.10.10.1',  '192.168.183.111', '192.172.1.33',  '192.168.183.222']. The two 
dummy IP addresses added to the list do not exist, and you are going to use this new list to iterate 
and develop your script. We will add a feature, so if the devices are reachable (pingable), the 
script will append the IP address to a new reachable_ips list. If the IP addresses are unreachable, 
then append the IP addresses to a new list called unreachable_ips. Many things are going on in 
the production network, and we have to counter these situations. Suppose you are working on a 
single device at a time. In that case, you are concerned with only one device, so if the device is not 
reachable remotely, you cannot upgrade that device to a newer IOS version until you troubleshoot 
the connectivity issue. However, when you are working with many devices at once, if one or two 
devices are offline, you want to know which devices are not reachable, but at the same time, you 
would want to continue the IOS upgrade with the rest of the devices. We will use the ICMP tool to 
separate the IP addresses between the reachable IP addresses and the unreachable IP addresses 
and save them to two separate lists.

pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ cp ping_tool1.py ping_tool2.py
pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ nano ping_tool2.py

Modified code:

ping_tool2.py
import os

device_list = ['10.10.10.1',  '192.168.183.111', '192.172.1.33',  '192.168.183.222']

reachable_ips = [] # Define a blank list for on the network ips
unreachable_ips = []# Define a blank list for off the network ips

for ip in device_list:
if len(ip) != 0:

print(f'Sending icmp packets to {ip}')
resp = os.system(f'ping -c 3 {ip}')
if resp == 0:

reachable_ips.append(ip) # Append ip to reachable_ips list
print('-'*80)

else:
unreachable_ips.append(ip) # Append ip to unreachable_ips list
print('-'*80)

else:
exit()

print("Reachable IPs: ", reachable_ips) # Print result 1
print("Unreachable IPs: ", unreachable_ips) # Print result 2



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

765

# Task

4 Now run the python3 ping_tool2.py command, and you should get a similar result to this:

pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ python3 ping_tool2.py
Sending icmp packets to 10.10.10.1
PING 10.10.10.1 (10.10.10.1) 56(84) bytes of data.

--- 10.10.10.1 ping statistics ---
3 packets transmitted, 0 received, 100% packet loss, time 2035ms

--------------------------------------------------------------------------------
Sending icmp packets to 192.168.183.111
PING 192.168.183.111 (192.168.183.111) 56(84) bytes of data.
64 bytes from 192.168.183.111: icmp_seq=1 ttl=255 time=1.85 ms
64 bytes from 192.168.183.111: icmp_seq=2 ttl=255 time=1.58 ms
64 bytes from 192.168.183.111: icmp_seq=3 ttl=255 time=1.66 ms

--- 192.168.183.111 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 1.583/1.694/1.845/0.110 ms
--------------------------------------------------------------------------------
[...omitted for brevity]
--------------------------------------------------------------------------------
Reachable IPs:  ['192.168.183.111', '192.168.183.222']
Unreachable IPs:  ['10.10.10.1', '192.172.1.33']

So, as expected, the reachable IP addresses are 192.168.183.111 and 192.168.183.222. This list can 
be used to continue to run the rest of the script. Also, the unreachable IP addresses are 10.10.10.1 
and 192.172.1.33. This is an expected result. Still, in production, if these devices are meant to be on 
the network, then you will need to troubleshoot the connectivity issue and perform the changes 
after the connectivity issue has been resolved.

5 The lists as variables are useful, but this information is only displayed while the script is running and 
you are sitting in front of the console to watch this information. Note that the server’s random access 
memory is only temporary, and Python’s print statement is only used for the user’s convenience. 
The actual Python script does not use what’s printed on the screen. If we want to access this 
information when the script runs successfully by a job scheduler such as cron, you have to write and 
save the information to a file. Let’s write two lists into two separate files for later use.

pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ cp ping_tool2.py ping_tool3.py
pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ nano ping_tool3.py

ping_tool3.py
import os

device_list = ['10.10.10.1',  '192.168.183.111', '192.172.1.33',  '192.168.183.222']

# reachable_ips = [] # Add '#' to make this line inactive
f1 = open('reachable_ips.txt',  'w+') # Create and open reachable_ips.txt file to 
write on

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

766

# Task

# unreachable_ips = []# Add '#' to make this line inactive
f2 = open('unreachable_ips.txt', 'w+') # Create and open unreachable_ips.txt file to 
write on

for ip in device_list:
if len(ip) != 0:

print(f'Sending icmp packets to {ip}')
resp = os.system('ping -c 3 ' + ip)
if resp == 0:

#reachable_ips.append(ip) # Add '#' to make this line inactive
f1.write(f'{ip}\n') # write ip address to each line of reachable_ips.txt 
file
print('-'*80)

else:
#unreachable_ips.append(ip) # Add '#' to make this line inactive
f2.write(f'{ip}\n') # write ip address to each line of unreachable_ips.
txt file
print('-'*80)

else:
exit()

f1.close() # Close f1 file
f2.close() # Close f2 file

6 Run the third iteration of your original code, and it should produce two text files, one containing 
the reachable IP addresses and one containing the unreachable IP addresses. Note, the output has 
been omitted to save space.

pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ ls
ping_tool1.py  ping_tool2.py  ping_tool3.py
pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ python3 _ping_tool3.py
[... output omitted for brevity]
pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ ls
ping_tool1.py  ping_tool2.py  ping_tool3.py  reachable_ips.txt  unreachable_ips.txt
pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ more reachable_ips.txt
192.168.183.111
192.168.183.222
pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ more unreachable_ips.txt
10.10.10.1
192.172.1.33

So, your tool can test network connectivity and sort the IP addresses between online and offline 
devices at this stage. Also, the IP addresses can be saved (documented) in their respective files.

7 We will now convert the IP address list used in the previous scripts into a file, ip_addresses.txt. 
This will allow you to add and manage a large number of IP addresses more efficiently, rather than 
reading and entering each IP address in a list. We are reading the IP addresses from a text file, but 
we also can read the IP addresses directly from an Excel or CSV file. When we read the information 
from either Excel or CSV, we can turn the data into two-dimensional data. The information 
becomes more meaningful and powerful at the same time.

Note the last IP address of 192.168.183.133 that is the IP address of GNS3 R1’s router IP address, so 
you will need to start R1 from GNS3’s cmllab-devops project.



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

767

# Task

8 Power on GNS3 and start the IOS router, R1. Create an access list to stop any inbound SSH traffic to 
this device. Create an access list and apply it to FastEthernet 0/0 of R1. Also, you can enable both 
Telnet and SSH on line vty 0 15.

R1#ping 192.168.183.132
R1#configure terminal
R1(config)#access-list 100 deny tcp any any eq 22
R1(config)#access-list 100 permit ip any any
R1(config)#interface f0/0
R1(config-if)#ip access-group 100 in
R1(config)#line vty 0 15
R1(config-line)#transport input telnet ssh
R1(config-line)#do write memory

9 Now create and write a socket tool, as shown here, and run the script. The result should be similar 
to what’s shown here.

pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ nano socket_tool.py

socket_tool.py
import socket

device_list = ['10.10.10.1', '192.168.183.111', '192.172.1.33', '192.168.183.222', 
'192.168.183.133']

for ip in device_list:
print("-"*80)
for port in range (22, 24):

destination = (ip, port)
try:

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.settimeout(3)
connection = s.connect(destination)
print(f"On {ip}, SSH port {port} is open!")

except:
print(f"On {ip}, SSH port {port} is closed.")

When you run the previous script, you should expect to get similar responses to what’s shown here. 
If you did, then it is time to integrate this script into the ping_tool3.py script.

pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ python3 socket_tool.py
--------------------------------------------------------------------------------
On 10.10.10.1, SSH port 22 is closed.
On 10.10.10.1, SSH port 23 is closed.
--------------------------------------------------------------------------------
On 192.168.183.111, SSH port 22 is open!
On 192.168.183.111, SSH port 23 is closed.
--------------------------------------------------------------------------------
On 192.172.1.33, SSH port 22 is closed.
On 192.172.1.33, SSH port 23 is closed.

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

768

# Task

--------------------------------------------------------------------------------
On 192.168.183.222, SSH port 22 is open!
On 192.168.183.222, SSH port 23 is closed.
--------------------------------------------------------------------------------
On 192.168.183.133, SSH port 22 is closed.
On 192.168.183.133, SSH port 23 is open!

10 Now let’s combine the two tools and enhance the ping tool to send ICMP messages and then check 
the open ports for Telnet or SSH connections. After you complete this tool, you can use it as a 
stand-alone tool to check the connectivity and port status.

Our preferred connection method is an SSH connection. When the script runs, it will create three 
files, first containing the IP addresses with an SSH connection, second containing the IP addresses 
with a Telnet connection, and third containing the unreachable IP addresses and logs of closed ports.

We will replace device_list with the information read from the ip_addresses.txt file, so go 
ahead and create the file with the IP addresses.

pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ nano ip_addresses.txt

ip_addresses.txt
10.10.10.1
192.168.183.111
192.172.1.33
192.168.183.222
192.168.183.133

Copy ping_tool3.py, save it as ping_tool4.py, and then merge socket_tool.py from the previous 
step into ping_tool4.py. Once you have combined the two scripts into one file, it should look 
like ping_tool4.py. Here, we are breaking the rules of writing more Pythonic code because our 
code uses multiple for loops and the indentation consists of eight spaces. For code readability, 
the recommended indentation is four; we’ll look at this soon. Note that if port 22 is opened in this 
script, it will not check port 23 because our interest is only whether port 22 is opened. Also note 
that we have added the time module to check the time to run the application; the time module was 
covered in Chapters 2 and 14.

pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ cp ping_tool3.py ping_tool4.py
pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ nano ping_tool4.py

ping_tool4.py
import os
import socket
import time

t = time.mktime(time.localtime()) # Timer start to measure script running time

# device_list = ['10.10.10.1',  '192.168.183.111', '192.172.1.33',  
'192.168.183.222'] # Hashed out line
ip_add_file = './ip_addresses.txt' # IP address location variable, "./" denotes pwd
# reachable_ips = []
f1 = open('reachable_ips_ssh.txt',  'w+') # Open f1 file
f2 = open('reachable_ips_telnet.txt', 'w+') # Open f2 file



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

769

# Task

# unreachable_ips = []
f3 = open('unreachable_ips.txt', 'w+') # Open f3 file

with open(ip_add_file, 'r') as ip_addresses: # Use with file open method
for ip in ip_addresses: # Loop through and read IP address from each line

ip = ip.strip() # Remove any white spaces
resp = os.system('ping -c 3 ' + ip) # Send four ICMP packets
if resp == 0: # If 0, in other words, the device is on the network

for port in range (22, 23): # Check port 22 (SSH)
destination = (ip, port) # Create arrayed tuple variable with ip and 
port as items
try: # First try

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: # 
socket command

s.settimeout(3) # Set socket timeout to 3 seconds
connection = s.connect(destination) # Send socket connection 
using destination variable
print(f"{ip} {port} opened") #Informational, all print 
statements are informational
f1.write(f"{ip}\n") # write the IP to reachable_ips_ssh.txt

except:
print(f"{ip} {port} closed")
f3.write(f"{ip} {port} closed\n") # write the IP to unreachable_
ips.txt
for port in range (23, 24): # Check port 23 (telnet)

destination = (ip, port)
try:

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.settimeout(3)
connection = s.connect(destination)
print(f"{ip} {port} opened")
f2.write(f"{ip}\n") # write the IP to reachable_ips_
telnet.txt

except:
print(f"{ip} {port} closed")
f3.write(f"{ip} {port} closed\n") # write the IP to 
unreachable_ips.txt

else:
print(f"{ip} unreachable")
f3.write(f"{ip} unreachable\n") # write the IP to unreachable_ips.txt

f1.close() # Close f1 file
f2.close() # Close f2 file
f3.close() # Close f3 file
tt = time.mktime(time.localtime()) - t # Timer finish to measure script running time
print("Total wait time : {0} seconds".format(tt)) #Informational

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

770

# Task

11 Run the combined script, and it should create three files with sorted IP addresses based on the 
ICMP and port verification. Imagine running such connectivity checks on hundreds or thousands 
of devices for troubleshooting or making changes; this type of tool can save you a lot of time, and 
the files created here can be read from another application to carry out further programming tasks.

pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ python3 ping_tool4.py
[... output omitted for brevity]
--- 192.168.183.133 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 4.046/7.700/12.147/3.354 ms
192.168.183.133 22 closed
192.168.183.133 23 opened
Total wait time : 31.0 seconds
pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ ls
ip_addresses.txt  ping_tool4.py             socket_tool.py
ping_tool1.py     reachable_ips_ssh.txt     unreachable_ips.txt
ping_tool2.py     reachable_ips_telnet.txt
ping_tool3.py     reachable_ips.txt
pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ more reachable_ips_ssh.txt
192.168.183.111
192.168.183.222
pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ more reachable_ips_telnet.txt
192.168.183.133
pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ more unreachable_ips.txt
10.10.10.1 unreachable
192.172.1.33 unreachable
192.168.183.133 22 closed

12 Now create a check_port() function and make this job function a separate function. When you 
run the following code, it will produce the same result in a more Pythonic way. Best practice is to 
separate the function, save it under another filename as a module, and then import it as a tool so 
the main script is less crowded and easier to digest. But for now, this should be acceptable. Rewrite 
the code in ping_tool4.py so that it will look like ping_tool5.py.

pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ cp ping_tool4.py ping_tool5.py
pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ nano ping_tool5.py

ping_tool5.py
import os
import socket
import time

t = time.mktime(time.localtime())

def check_port(ip):
for port in range (22, 23):

destination = (ip, port)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

771

# Task

try:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

s.settimeout(3)
connection = s.connect(destination)
print(f"{ip} {port} opened")
f1.write(f"{ip}\n")

except:
print(f"{ip} {port} closed")
f3.write(f"{ip} {port} closed\n")
for port in range (23, 24):

destination = (ip, port)
try:

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.settimeout(3)
connection = s.connect(destination)
print(f"{ip} {port} opened")
f2.write(f"{ip}\n")

except:
print(f"{ip} {port} closed")
f3.write(f"{ip} {port} closed\n")

ip_add_file = './ip_addresses.txt'
f1 = open('reachable_ips_ssh.txt',  'w+')
f2 = open('reachable_ips_telnet.txt', 'w+')
f3 = open('unreachable_ips.txt', 'w+')

with open(ip_add_file, 'r') as ip_addresses:
for ip in ip_addresses:

ip = ip.strip()
resp = os.system('ping -c 3 ' + ip) # there is a whitespace after the digit 
3, be careful.
if resp == 0:

check_port(ip)
else:

print(f"{ip} unreachable")
f3.write(f"{ip} unreachable\n")

f1.close()
f2.close()
f3.close()
tt = time.mktime(time.localtime()) - t
print("Total wait time : {0} seconds".format(tt))

Now run the application and check the result. We expect to see the same result as in ping_tool4.py.

pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ python3 ping_tool5.py
[... output omitted for brevity]
64 bytes from 192.168.183.133: icmp_seq=2 ttl=255 time=2.43 ms
64 bytes from 192.168.183.133: icmp_seq=3 ttl=255 time=12.7 ms

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

772

# Task

--- 192.168.183.133 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 2.429/6.314/12.670/4.531 ms
192.168.183.133 22 closed
192.168.183.133 23 opened
Total wait time : 30.0 seconds

13 Let’s simplify the main script by separating the port checking tool into a separate module (a 
separate file). When you run ping_tool6.py, you will get the same result, but we can say our code 
is a little more Pythonic.

Separate the check_port function as a separate tool, so create and save it as ping_tool6_tools.py.

pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ nano ping_tool6_tools.py

ping_tool6_tools.py
# ping_tool6_tools.py for ping_tool6.py
import socket

def check_port(ip, f1, f2, f3):
for port in range (22, 23):

destination = (ip, port)
try:

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.settimeout(3)
connection = s.connect(destination)
print(f"{ip} {port} open")
f1.write(f"{ip}\n")

except:
print(f"{ip} {port} closed")
f3.write(f"{ip} {port} closed\n")
for port in range (23, 24):

destination = (ip, port)
try:

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.settimeout(3)
connection = s.connect(destination)
print(f"{ip} {port} open")
f2.write(f"{ip}\n")

except:
print(f"{ip} {port} closed")
f3.write(f"{ip} {port} closed\n")

Copy ping_tool5.py and create ping_tool6.py; then create the main script as shown here:

pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ cp ping_tool5.py ping_tool6.py
pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ nano ping_tool6.py



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

773

# Task

Make sure you remove the check_port() function and modify the file as shown here:

ping_tool6.py
import os
import time
from ping_tool6_tools import check_port # importing check_port tool from ping_tool6_
tools.py

t = time.mktime(time.localtime())

ip_add_file = './ip_addresses.txt'
f1 = open('reachable_ips_ssh.txt',  'w+')
f2 = open('reachable_ips_telnet.txt', 'w+')
f3 = open('unreachable_ips.txt', 'w+')

with open(ip_add_file, 'r') as ip_addresses:
for ip in ip_addresses:

ip = ip.strip()
resp = os.system('ping -c 3 ' + ip)
if resp == 0:

check_port(ip, f1, f2, f3) # parsing arguments ip, f1, f2, f3
else:

print(f"{ip} unreachable")
f3.write(f"{ip} unreachable\n")

f1.close()
f2.close()
f3.close()
tt = time.mktime(time.localtime()) - t
print("Total wait time : {0} seconds".format(tt))

Now, run the final tool, ping_tool6.py, and you should expect to see the same result as the ping_
tool5.py and ping_tool4.py reiterations.

pynetauto@ubuntu20s1:~/my_tools/tool1_ping$ python3 ping_tool6.py
[... output omitted for brevity]
64 bytes from 192.168.183.133: icmp_seq=3 ttl=255 time=13.8 ms

--- 192.168.183.133 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 5.775/9.237/13.752/3.340 ms
192.168.183.133 22 closed
192.168.183.133 23 open
Total wait time : 30.0 seconds

Our ping tool’s last iteration is ready for immediate use in production and is good enough to integrate 
into our Cisco IOS upgrade application. This is the end of the first tool development; let’s look at the second 
tool now.



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

774

 Collect User’s Login Credentials and User Input
When a network engineer performs an IOS upgrade on Cisco routers and switches, the engineer has to type 
in their network administrator credentials with the correct user privileges: the level 15 administrator user 
ID and password. The device access level and security could be using locally configured user credentials 
or they could be on the TACACS server. In this book, we are using the local logins to keep things simple. 
After successful authentication and login, the network administrator must manually run some commands 
to check the device’s upgradability. That is, the device needs to have enough flash memory (storage) to 
hold the new IOS image. Then, the network administrator has to run a command with the new IOS image 
filename along with the FTP/TFTP server information. In the case of TFTP, no administrator username or 
password is required. Still, in most cases, you have to provide another username and password combination 
for further authentication for the FTP server. Some information is fed through one piece at a time, line by 
line. But with scripting, we can simplify and collect the administrator’s data right at the beginning of the 
script run using one of the data collection methods. The easiest way is to use a single file to collect all the 
required information at once. The most cumbersome way would be to make the user manually enter the 
information one piece at a time. For demonstration purposes, we can write some code that uses both to get 
the user ID, password, and secret password. We’ll use an interactive data collection tool for the IOS name 
and MD5 value. The information will be read from a CSV file.

# Task
1 To develop a get credentials tool, you will begin with the input function and getpass module; the 

getpass module hides the password entered into the console. As we are developing the tool, we’ll 
print the password using the print statement for our convenience.

pynetauto@ubuntu20s1:~/my_tools$ mkdir tool2_login
pynetauto@ubuntu20s1:~/my_tools$ cd tool2_login
pynetauto@ubuntu20s1:~/my_tools/tool2_login$ nano get_cred1.py

To collect the user ID and network password and enable the secret password, the most basic tool 
will look similar to this:

get_cred1.py
from getpass import getpass
uid = input("Enter Network Admin ID : ")
pwd = getpass("Enter Network Admin PWD : ")
secret = getpass("Enter secret password : ")
print(uid, pwd, secret)

Run the initial script for a quick test.

pynetauto@ubuntu20s1:~/my_tools/tool2_login$ python3 get_cred1.py
Enter Network Admin ID : pynetauto
Enter Network Admin PWD : ********
Enter secret password : *********
pynetauto cisco123 secret123

With a simple user ID and password collection tool as shown earlier, there are two problems. First, 
you can enter any information or nothing and still move to the next step, so the script at least needs 
to get a valid entry from the user before proceeding to the next step. Second, with the getpass 
module, it does not display the password entered, so you cannot tell if you have entered the correct 
password until the script runs and errors out during the SSH or Telnet authentication process. So, 
we have to improve this script by adding a validation step.



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

775

# Task

2 Let’s make some improvements to this tool to bring it up to acceptable standards. In this iteration, 
we will take care of the second problem, the getpass module, by adding the validation script for 
the password and secret. You have to enter the password and secret twice to make sure that the 
entered passwords match and are correct. We will also prompt the user if the password and secret 
are the same as in the production environment. Both the password and secrets are the same, 
and hence by answering y or yes, the user does not have to type the secret again. After the first 
reiteration, your code will look similar to the code written next. Notice that I have moved the secret 
collection into a separate function to make this script more concise, and also, if the user answers 
other than y, yes, n, or no, the user will be prompted to provide the correct response. This function 
makes the user provide only the expected responses: any one of the y, yes, n, or no responses.
Referencing get_cred1.py, let’s start putting it together.

pynetauto@ubuntu20s1:~/my_tools/tool2_login$ nano get_cred2.py

get_cred2.py
from getpass import getpass
def get_secret():

global secret
resp = input("Is secret the same as password? (y/n) : ")
resp = resp.lower()
if resp == "yes" or resp == "y":

secret = pwd
elif resp == "no" or resp == "n":

secret = None
while not secret:

secret = getpass("Enter the secret : ")
secret_verify = getpass("Confirm the secret : ")
if secret != secret_verify:

print("! Secrets do not match. Please try again.")
secret = None

else:
get_secret()

def get_credentials():
global uid
uid = input("Enter Network Admin ID : ")
global pwd
pwd = None
while not pwd:

pwd = getpass("Enter Network Admin PWD : ")
pwd_verify = getpass("Confirm Network Admin PWD : ")
if pwd != pwd_verify:

print("! Network Admin Passwords do not match. Please try again.")
pwd = None

get_secret()
return uid, pwd, secret

get_credentials()
print(uid, pwd,secret)

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

776

# Task

Once you have completed writing the previous script, test your application.

pynetauto@ubuntu20s1:~/my_tools/tool2_login$ python3 get_cred2.py
Enter Network Admin ID : pynetauto
Enter Network Admin PWD : ********
Confirm Network Admin PWD : ******* # Enter mismatched password
! Network Admin Passwords do not match. Please try again.
Enter Network Admin PWD : ********
Confirm Network Admin PWD : ********
Is secret the same as password? (y/n) : n
Enter the secret : ********
Confirm the secret : ******** # Enter mismatched password
! secret do not match. Please try again.
Enter the secret : ********
Confirm the secret : ********
pynetauto cisco123 secret123

The previous user ID, password, and secret collection tool looks a lot better than the original in task 
1. Still, as mentioned, it has another flaw where the user can input a username, password, or secret 
of any length, so this is another problem we have to solve to make the tool more realistic. Look at 
the following example to see what this means:

pynetauto@ubuntu20s1:~/my_tools/tool2_login$ python3 get_cred_b_test.py
Enter Network Admin ID : a
Enter Network Admin PWD : *
Confirm Network Admin PWD : *
Is secret the same as password? (y/n) : n
Enter the secret : *
Confirm the secret : *

3 We can use a couple of regular expressions to control the user inputs, which will fix the previous 
problem. In a well-managed IT environment, administrators always enforce conventions for 
usernames and passwords. Hence, for our script, we will follow the same practice and only 
allow acceptable inputs to our standards. For the username, the convention is that it needs to 
be 5 to 30 characters long and must begin with a letter and use no special characters anywhere 
in the username except _ and -. For the password conventions, the password must begin with a 
lowercase or uppercase letter, and the password must be longer than eight characters but equal or 
less than 50 characters. The characters between the 2nd and 50th can include special characters. 
Let’s see how we can enforce these conventions on usernames and passwords. While writing the 
Python code, you have to be flexible and creative with your regular expressions to make your code 
do what you want, and this is one of those instances.

Referencing get_cred2.py, start putting the code together.

pynetauto@ubuntu20s1:~/my_tools/tool2_login$ nano get_cred3.py

get_cred3.py
import re
from getpass import getpass

p1 = re.compile(r'^[a-zA-Z0-9][a-zA-Z0-9_-]{3,28}[a-zA-Z0-9]$') # You must 
comprehend Chapter 9!
p2 = re.compile(r'^[a-zA-Z].{7,49}') # You must read through and complete all 
exercise in Chapter 9.



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

777

# Task

def get_secret():
global secret
resp = input("Is secret the same as password? (y/n) : ")
resp = resp.lower()
if resp == "yes" or resp == "y":

secret = pwd
elif resp == "no" or resp == "n":

secret = None
while not secret:

secret = getpass("Enter the secret : ")
while not p2.match(secret): # apply the re pattern 2 secret

secret = getpass(r"*Enter the secret : ")
secret_verify = getpass("Confirm the secret : ")
if secret != secret_verify:

print("!!! secret do not match. Please try again.")
secret = None

else:
get_secret()

def get_credentials():
global uid
uid = input("Enter Network Admin ID : ")
while not p1.match(uid): # apply the re pattern 1 to uid

uid = input(r"*Enter Network Admin ID : ")
global pwd
pwd = None
while not pwd:

pwd = getpass("Enter Network Admin PWD : ")
while not p2.match(pwd): # apply the re pattern 2 password

pwd = getpass(r"*Enter Network Admin PWD : ")
pwd_verify = getpass("Confirm Network Admin PWD : ")
if pwd != pwd_verify:

print("!!! Network Admin Passwords do not match. Please try again.")
pwd = None

get_secret()
return uid, pwd, secret

get_credentials()
print(uid, pwd,secret)

Run the final application and validate the functions; your test run should look similar to the below 
result.

pynetauto@ubuntu20s1:~/my_tools/tool2_login$ python3 get_cred3.py
Enter Network Admin ID : jdoe # Entered only four characters. Minimum of five 
characters required
*Enter Network Admin ID : pynetauto
Enter Network Admin PWD : ******* # Entered only seven characters. Minimum eight 
characters long
*Enter Network Admin PWD : ********
Confirm Network Admin PWD : ********

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

778

# Task

Is secret the same as password? (y/n) : n
Enter the secret : ******* # Entered only seven characters, minimum of 8 characters 
long
*Enter the secret : *********
Confirm the secret : *********
pynetauto cisco123 secret123

After three reiterations of the original code, it looks almost complete and ready for use in the 
upgrade script. Next, let’s see how we can read the IOS name and MD5 values from a CSV file and 
convert them to Python variables.

Now that you have collected the user ID and password from the application user, let’s see how you can 
collect the new IOS filename and MD5 values by reading a file. If you have multiple devices and multiple 
values, entering this information through a command line will be too cumbersome. It is also prone to 
mistakes, so ideally these values are entered into a two-dimensional array form such as Excel or CSV files, 
letting your Python script read the information. We want to save time and reduce human errors during the 
cut-and-paste operation in the command-line console.

 Collect a New IOS Filename and MD5 Value from a CSV File
After the user ID and password are collected, we want to collect even more information required for the 
Cisco IOS upgrade, but this time by reading the contents from a CSV file. The extra information includes new 
IOS names and their respective MD5 values. We can also include the hostname, device type, IP address, and 
other information to feed our script with two-dimensional data.

IOS can be downloaded from the Cisco download site to upgrade to the latest IOS version if you have an 
active service contract or work for Cisco Partners. The engineer who will perform the IOS upgrade usually 
downloads the file and obtains the MD5 value from the vendor’s download site. After the IOS has been 
downloaded to the engineer’s computer, the engineer confirms the MD5 values of that copy of IOS so they 
know that all the software is all intact and not corrupted during the download process. This is one of the 
first verification steps during an IOS upgrade preparation process. Imagine not checking the MD5 values 
and using this file to upgrade the Cisco devices’ IOS software! It could turn into a nasty situation instead of a 
straightforward IOS upgrade.

When we upgrade IOS or any operating system on any vendor product, you have to make sure that 
the vendor’s downloaded software version is correct. You need to make sure the download process has not 
corrupted the IOS due to a lousy Internet connection or other issues. There are two places in the IOS upgrade 
tool where new IOS MD5 values will be validated. First, the user-provided MD5 value of the new IOS is 
validated against the server-checked MD5 value. Second, validate the server-checked MD5 value against the 
MD5 value checked by the Cisco router. Before the router can check the MD5 of a new IOS file, the new IOS 
must be transferred to the router’s flash memory using TFTP/FTP/SFTP/SCP protocol. To be sure, we want 
to check all MD5 tests every time to avoid the unthinkable. Before we can compare the MD5 value found 
on Cisco’s website against the server-side MD5 value, we must feed our script the correct MD5 value. An 
excellent way to feed this information is through an Excel or CSV file. Unlike when using a text file, we can use 
two-dimensional values (with a header) in Python scripts, and they can be handled by the pandas module.

Let’s see how we can import the new IOS name and MD5 value from a file such as an .xlsx or .csv file. 
Although it is more convenient to create two-dimensional files from Windows-based computers, it is more 
advantageous to save the file as a .csv file. It gives you more flexibility in the Linux server’s command-line 
text editors to modify the content. Here in this example, you will work on the file using Excel and then save it 
as a CSV file. Once the pandas module reads the two-dimensional values into our script, you can access and 
turn them into any variable forms that you want.



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

779

# Task
1 Let’s open a new Excel file and enter the following details, with the header on the first row and the 

router information on the second and third rows. At this stage, you must have a copy of the new 
IOS .bin file and the correct MD5 value from the Cisco download site. While we are at it, we can 
enter more information about each device such as the devicename (router name), device (type), 
devicetype (for netmiko dictionary), host (IP address or DNS hostname), newios, and newiosmd5 
values, as shown in Figure 18-1.
If you are using another IOS version, then you will have to update the information accordingly.

If you don’t have Microsoft Excel on your host computer, then you can work in any text editor using 
commas as separators, as shown in Figure 18-2. Alternatively, if you have a couple of devices like 
our example, you can directly enter this information in the Linux server’s vi or nano text editor. If 
you have hundreds of devices, use a spreadsheet program such as Microsoft Excel or Google Sheets.

2 Once you have finished entering the information in Microsoft Excel, save the file as device_info.
csv. Make sure you select “Save as type” and select “CSV (Comma delimited).” See Figure 18-3.

Figure 18-1. Creating a CSV file in Microsoft Excel

Figure 18-2. Creating a CSV file using a text editor

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

780

# Task

3 In the earlier chapters, you used WinSCP to upload files to your Python automation server. If you 
want to upload the file to your Linux server’s working directory, you can do so now. Since the 
CSV file you are trying to upload here is a text (.txt) file with a different file extension (.csv), it is 
possible to copy and paste the information into a new file in Linux’s vi or nano text editor and then 
save the file as a .csv file.

pynetauto@ubuntu20s1:~/my_tools$ mkdir tool3_read_csv
pynetauto@ubuntu20s1:~/my_tools$ cd tool3_read_csv
pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ pwd
/home/pynetauto/my_tools/tool3_read_csv
pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ nano devices_info.csv

devices_info.csv
devices_info.csv
devicename,device,devicetype,host,newios,newiosmd5
csr1000v-1,RT,cisco_xe,192.168.183.111,csr1000v-universalk9.16.09.06.SPA.bin,77878a
e6db8e34de90e2e3e83741bf39
csr1000v-2,RT,cisco_xe,192.168.183.222,csr1000v-universalk9.16.09.06.SPA.bin,77878a
e6db8e34de90e2e3e83741bf39

Figure 18-3. Saving a file as a CSV file in Microsoft Excel



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

781

# Task

Write the base script to read your CSV file. If you are using an .xlsx file, replace the file extension 
type with .xlsx, and pandas will read the file in the same way as a .csv file.

pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ nano read_info1.py

read_info1.py
import pandas as pd

df = pd.read_csv(r'./devices_info.csv')
print(df)

Run the script and print out the dataframe (df).

pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ python3 read_info1.py
devicename device  ...           newios                         newiosmd5
0  csr1000v-1     RT  ...  csr1000v-universalk9.16.09.06.SPA.bin  
77878ae6db8e34de90e2e3e83741bf39
1  csr1000v-2     RT  ...  csr1000v-universalk9.16.09.06.SPA.bin  
77878ae6db8e34de90e2e3e83741bf39

[2 rows x 6 columns]

Now reiterate the script and add two lines of code to read the number of rows; the number of rows 
can also be used as a variable to control the flow of our application.

pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ cp read_info1.py read_info2.py
ynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ nano read_info2.py

read_info2.py
import pandas as pd

df = pd.read_csv(r'./devices_info.csv')
print(df)
number_of_rows = len(df.index)
print(number_of_rows)

Run the previous script to get the number of rows; we are expecting 2 as pandas by default reads 
the first row as the header row.

pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ python3 read_info2.py
devicename device  ...               newios                         newiosmd5
0  csr1000v-1     RT  ...  csr1000v-universalk9.16.09.06.SPA.bin  
77878ae6db8e34de90e2e3e83741bf39
1  csr1000v-2     RT  ...  csr1000v-universalk9.16.09.06.SPA.bin  
77878ae6db8e34de90e2e3e83741bf39

[2 rows x 6 columns]
2

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

782

# Task

4 We are trying to read each value and use them as variables, so we use the specific information in 
our script. We want to read each row and convert it into a type of array such as a list or tuple.

pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ nano read_info3.py

read_info3.py
import pandas as pd

df = pd.read_csv(r'./devices_info.csv')
number_of_rows = len(df.index)

# Read the values and save as a list, read column as df and save it as a list
devicename = list(df['devicename'])
device = list(df['device'])
devicetype = list(df['devicetype'])
ip = list(df['host'])
newios = list(df['newios'])
newiosmd5 = list(df['newiosmd5'])

print(devicename)
print(device)
print(devicetype)
print(ip)
print(newios)
print(newiosmd5)

When you run the previous script, the data is easily accessible now, and it is retrieved as Python 
lists.

pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ python3 read_info3.py
['csr1000v-1', 'csr1000v-2']
['RT', 'RT']
['cisco_xe', 'cisco_xe']
['192.168.183.111', '192.168.183.222']
['csr1000v-universalk9.16.09.06.SPA.bin', 'csr1000v-universalk9.16.09.06.SPA.bin']
['77878ae6db8e34de90e2e3e83741bf39', '77878ae6db8e34de90e2e3e83741bf39']

5 Let’s massage the data a little bit and put it into a single list containing list items.

pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ nano read_info4.py

read_info4.py
import pandas as pd

df = pd.read_csv(r'./devices_info.csv')
number_of_rows = len(df.index)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

783

# Task

# Read the values and save as a list, read column as df and save it as a list
devicename = list(df['devicename'])
device = list(df['device'])
devicetype = list(df['devicetype'])
ip = list(df['host'])
newios = list(df['newios'])
newiosmd5 = list(df['newiosmd5'])

# Convert the list into a device_list
device_list = []
for index, rows in df.iterrows():

device_append = [rows.devicename, rows.device, \
rows.devicetype, rows.host, rows.newios, rows.newiosmd5]
device_list.append(device_append)

print(device_list)

Run the script, and you will notice that the device information read has now turned into a list of 
lists.

pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ python3 read_info4.py
[['csr1000v-1', 'RT', 'cisco_xe', '192.168.183.111', 'csr1000v-
universalk9.16.09.06.SPA.bin', '77878ae6db8e34de90e2e3e83741bf39'], ['csr1000v-2', 
'RT', 'cisco_xe', '192.168.183.222', 'csr1000v-universalk9.16.09.06.SPA.bin', 
'77878ae6db8e34de90e2e3e83741bf39']]

6 If we need only specific information from device_list created by reading the CSV file, such as 
newios and newiosmd5, we can use a simple loop to recall these numbers.

pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ cp read_info4.py read_info5.py
pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ nano read_info5.py

read_info5.py
import pandas as pd

df = pd.read_csv(r'./devices_info.csv')
number_of_rows = len(df.index)

# Read the values and save as a list, read column as df and save it as a list
devicename = list(df['devicename'])
device = list(df['device'])
devicetype = list(df['devicetype'])
ip = list(df['host'])
newios = list(df['newios'])
newiosmd5 = list(df['newiosmd5'])

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

784

# Task

# Convert the list into a device_list
device_list = []
for index, rows in df.iterrows():

device_append = [rows.devicename, rows.device, \
rows.devicetype, rows.host, rows.newios, rows.newiosmd5]
device_list.append(device_append)

for x in device_list:
newios, newiosmd5 = x[4], x[5].lower()
print(newios, newiosmd5)

Run the script now, and you will get each device’s new IOS filename and MD5 value. Since we have 
the same device types, the new IOS name and MD5 values will be the same.

pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ python3 read_info5.py
csr1000v-universalk9.16.09.06.SPA.bin 77878ae6db8e34de90e2e3e83741bf39
csr1000v-universalk9.16.09.06.SPA.bin 77878ae6db8e34de90e2e3e83741bf39

7 Initially, when we created the CSV file, we used more information than required, and there is a 
reason behind this. Using the pandas file read method, we also want to create a list containing the 
netmiko dictionary format. We can pass the values of a dictionary to netmiko ConnectHandler for 
SSH connections while logging into the routers. Let’s study the simple netmiko dictionary format 
and use IP address, and devicetype information from device_list to make another dictionary for 
SSH logins. A device dictionary looks like the following example. You can also add the logging and 
delay factors options, but we’ll keep it simple for our lab use.

device1 = {
'device_type': 'cisco_ios',
'host': '10.10.10.1',
'username': 'username',
'password': 'password',
'secret': 'secret',

}

So, from 10.5.2, we can already collect the username, password, and secret from the user via an 
interactive input session. Now we have read the device_type and host (IP address) values from 
a CSV file. We can use the collected information to turn it into a netmiko compatible dictionary 
format for the SSH connection. Please note that we added the username and password collection 
tool to teach you how they can be collected interactively. If you are running Python scripts in 
an extremely secure environment, you can feed all information through the file read method, 
including the username, password, and secret.

pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ cp read_info5.py read_info6.py
pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ nano read_info6.py

read_info6.py
import pandas as pd



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

785

# Task

df = pd.read_csv(r'./devices_info.csv')
number_of_rows = len(df.index)

# Read the values and save as a list, read column as df and save it as a list
devicename = list(df['devicename'])
device = list(df['device'])
devicetype = list(df['devicetype'])
ip = list(df['host'])
newios = list(df['newios'])
newiosmd5 = list(df['newiosmd5'])

# Convert the list into a device_list
device_list = []
for index, rows in df.iterrows():

device_append = [rows.devicename, rows.device, \
rows.devicetype, rows.host, rows.newios, rows.newiosmd5]
device_list.append(device_append)

i = 0
for x in device_list:

if len(x) !=0:
i += 1
name = f'device{str(i)}'
devicetype, host = x[2], x[3]
device = {
'device_type': devicetype,
'host': host,
'username': 'username',
'password': 'password',
'secret': 'secret',
}
print(name, "=" ,device)

Now when you run the script, you will see that the information is formatted into a dictionary, and 
we can assign the dictionary to variables, in this case, device1 and device2. Imagine you have 
20 or 200 devices to turn the read information into netmiko-friendly dictionaries. Some people 
say that automation is all in the loop commands. If a task is repetitive, that is a potential target for 
automation.

pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ python3 read_info6.py
device1 = {'device_type': 'cisco_xe', 'host': '192.168.183.111', 'username': 
'username', 'password': 'password', 'secret': 'secret'}
device2 = {'device_type': 'cisco_xe', 'host': '192.168.183.222', 'username': 
'username', 'password': 'password', 'secret': 'secret'}

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

786

# Task

8 Copy the previous script and create a new script called read_info7.py. You are going to modify 
it, so the dictionaries are now stored in a list. In other words, you will create a list with multiple 
dictionaries as its items. This way, we can call them out and the dictionary during the SSH 
connection to your devices.

pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ cp read_info6.py read_info7.py
pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ nano read_info7.py

Notice that I have manually added the username, password, and secret to this script for testing 
purposes. However, when we integrate the user ID and password collection tool developed 
earlier, the variables will be replaced. When you work in a production environment, it is highly 
recommended that you remove usernames and password information or completely delete the file 
if they contain sensitive information.

read_info7.py
import pandas as pd

df = pd.read_csv(r'./devices_info.csv')
number_of_rows = len(df.index)

# Read the values and save as a list, read column as df and save it as a list
devicename = list(df['devicename'])
device = list(df['device'])
devicetype = list(df['devicetype'])
ip = list(df['host'])
newios = list(df['newios'])
newiosmd5 = list(df['newiosmd5'])
# Convert the list into a device_list
device_list = []
for index, rows in df.iterrows():

device_append = [rows.devicename, rows.device, \
rows.devicetype, rows.host, rows.newios, rows.newiosmd5]
device_list.append(device_append)

device_list_netmiko = []
i = 0
for x in device_list:

if len(x) !=0:
i += 1
name = f'device{str(i)}'
devicetype, host = x[2], x[3]
device = {
'device_type': devicetype,
'host': host,
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123',
}
device_list_netmiko.append(device)

print(device_list_netmiko)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

787

# Task

When you run the script, you should get a list with two dictionaries as items. You must get familiar 
with massaging the data if you want to parse it to Python scripts to access any information from 
any network device.

pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ python3 read_info7.py
[{'device_type': 'cisco_xe', 'host': '192.168.183.111', 'username': 'pynetauto', 
'password': 'cisco123', 'secret': 'cisco123'}, {'device_type': 'cisco_xe', 'host': 
'192.168.183.222', 'username': 'pynetauto', 'password': 'cisco123', 'secret': 
'cisco123'}]

9 To test that this script will be working as expected, add a netmiko ConnectHandler, and run 
the Cisco router command. Note that only one import statement (from netmiko import 
ConnectHandler) and the last four lines of code are added to the previous script. This Python script 
is available for download from my GitHub site.

Download URL: https://github.com/pynetauto/apress_pynetauto

Create the final script to use the read data and then perform a simple task; in this case, run the 
show clock command to display the time of the CSR routers.

pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ cp read_info7.py read_info8.py
pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ nano read_info8.py

read_info8.py
import pandas as pd
from netmiko import ConnectHandler

[... omitted for brevity. Same as read_info7.py]
[... See the source code for full details.]

for device in device_list_netmiko:
net_connect = ConnectHandler(**device)
show_clock = net_connect.send_command("show clock")
print(show_clock)

When you run the script, you should see each router’s time. The show clock command is one 
of the simplest commands that you can run from your script to check if your SSH connection is 
working. Checking port 22 does not test your credentials, so it is worth writing such code that runs 
a simple show clock command.

pynetauto@ubuntu20s1:~/my_tools/tool3_read_csv$ python3 read_info8.py
*13:37:19.262 UTC Fri Jan 15 2021
*13:37:20.403 UTC Fri Jan 15 2021

https://github.com/pynetauto/apress_pynetauto


Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

788

 Check the MD5 Value of the New IOS on the Server
As discussed earlier, authenticating the new IOS file is the key to a successful IOS upgrade. The MD5 value 
is available from Cisco’s website, or you can use a tool such as WinMD5.exe or even a command line to check 
the MD5 value of the file after the new IOS download. Before uploading the file, we want to check if this MD5 
value is correct to double-check the file’s integrity you are about to upload. When you upload a new IOS file 
manually to a TFTP or FTP server, you will verify this manually, but in our IOS upgrade tool, we are replacing 
the TFTP/FTP file transfer method with Secure Copy Protocol (SCP) file transfer. Before the file transfer 
occurs, we want to check the MD5 value of the IOS file in the SCP folder against the good MD5 value, so the 
file integrity is guaranteed to avoid unexpected results.

# Task
1 First, create a directory to place your new IOS file in using WinSCP or FileZilla. See Figure 18-4.

pynetauto@ubuntu20s1:~/my_tools$ mkdir new_ios
pynetauto@ubuntu20s1:~/my_tools$ cd new_ios
pynetauto@ubuntu20s1:~/my_tools/new_ios$ pwd
/home/pynetauto/my_tools/new_ios
pynetauto@ubuntu20s1:~/my_tools/new_ios$ ls
csr1000v-universalk9.16.09.06.SPA.bin

Figure 18-4. ubuntu20s1, copying new IOS to the new_ios directory



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

789

# Task

2 Create the tool4_md5_linux directory; then copy the read_info5.py file as the basis of the md5_
validate1.py script. Also, to help our development, copy the devices_info.csv file. Both the read_
info5.py and devices_info.csv files are from the tool3 development.

pynetauto@ubuntu20s1:~/my_tools/new_ios$ cd ..
pynetauto@ubuntu20s1:~/my_tools$ pwd
/home/pynetauto/my_tools
pynetauto@ubuntu20s1:~/my_tools$ mkdir tool4_md5_linux
pynetauto@ubuntu20s1:~/my_tools$ cd tool4_md5_linux
pynetauto@ubuntu20s1:~/my_tools/tool4_md5_linux$ cp /home/pynetauto/my_tools/tool3_
read_csv/read_info5.py ./md5_validate1.py
pynetauto@ubuntu20s1:~/my_tools/tool4_md5_linux$ cp /home/pynetauto/my_tools/tool3_
read_csv/devices_info.csv ./devices_info.csv

We want to modify the last for loop of the code from read_info5.py, so our task is to modify this for 
loop and add a function to check the MD5 value of the just copied IOS file and also check the file size 
to be used during the flash size check later.

md5_validate1.py
import pandas as pd

df = pd.read_csv(r'./devices_info.csv')
number_of_rows = len(df.index)

# Read the values and save as a list, read column as df and save it as a list
devicename = list(df['devicename'])
device = list(df['device'])
devicetype = list(df['devicetype'])
ip = list(df['host'])
newios = list(df['newios'])
newiosmd5 = list(df['newiosmd5'])

# Convert the list into a device_list
device_list = []
for index, rows in df.iterrows():

device_append = [rows.devicename, rows.device, \
rows.devicetype, rows.host, rows.newios, rows.newiosmd5]
device_list.append(device_append)

for x in device_list:
newios, newiosmd5 = x[4], x[5].lower()
print(newios, newiosmd5)

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

790

# Task

3 Now add the import code for the built-in os.path and hashlib modules. hashlib will be used to check 
the MD5 of the file on the Linux server, and os.path will be used to calculate the actual file size. The 
middle part of the script is the same as the copied script. Still, you will change the for x in device_
list: so the script returns the MD5 value calculated on the server side and the newios size, which will 
be used later to check if the free size on the router’s flash can accommodate the new IOS size. After the 
change, md5_validate1.py should look similar to this:

pynetauto@ubuntu20s1:~/my_tools/tool4_md5_linux$ nano md5_validate2.py

md5_validate2.py
import pandas as pd
import os.path
import hashlib

[... omitted for brevity, same as read_info5.py]

for x in device_list:
print(x[0])
newios = x[4]
newiosmd5 = x[5].lower()
newiosmd5hash = hashlib.md5()
file = open(f'/home/pynetauto/my_tools/new_ios/{newios}', 'rb') # change path to 
your own path
content = file.read()
newiosmd5hash.update(content)
newiosmd5server = newiosmd5hash.hexdigest()
print(newiosmd5server)
newiossize = round(os.path.getsize(f'/home/pynetauto/my_tools/new_ios/
{newios}')/1000000, 2)
print(newiossize, "MB")

Run the script, and it should return the server-side IOS MD5 value and the actual IOS size in 
megabytes. You will also learn how to check the router’s used, free, and total size to make sure that the 
flash has enough free space to accommodate the new IOS.

pynetauto@ubuntu20s1:~/my_tools/tool4_md5_linux$ python3 md5_validate2.py
csr1000v-1
77878ae6db8e34de90e2e3e83741bf39
436.57 MB
csr1000v-2
77878ae6db8e34de90e2e3e83741bf39
436.57 MB



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

791

# Task

4 Once you are happy with the result in step 3, add an if-else statement to the end of the last print line 
and see how you can control the script flow by testing the two MD5 values.

md5_validate3.py
import pandas as pd
import os.path
import hashlib

df = pd.read_csv(r'./devices_info.csv')
number_of_rows = len(df.index)

# Read the values and save as a list, read column as df and save it as a list
devicename = list(df['devicename'])
device = list(df['device'])
devicetype = list(df['devicetype'])
ip = list(df['host'])
newios = list(df['newios'])
newiosmd5 = list(df['newiosmd5'])

# Convert the list into a device_list
device_list = []
for index, rows in df.iterrows():

device_append = [rows.devicename, rows.device, \
rows.devicetype, rows.host, rows.newios, rows.newiosmd5]
device_list.append(device_append)

for x in device_list:
print(x[0])
newios = x[4]
newiosmd5 = str(x[5].lower()).strip()
print(newiosmd5)
newiosmd5hash = hashlib.md5()
file = open(f'/home/pynetauto/my_tools/new_ios/{newios}', 'rb')
content = file.read()
newiosmd5hash.update(content)
newiosmd5server = newiosmd5hash.hexdigest()
print(newiosmd5server.strip())
newiossize = round(os.path.getsize(f'/home/pynetauto/my_tools/new_ios/
{newios}')/1000000, 2)
print(newiossize, "MB")

if newiosmd5server == newiosmd5:
print("MD5 values matched!")

else:
print("Mismatched MD5 values. Exit")
exit()

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

792

# Task

When you run the script, you will see a result similar to the following output. You have now confirmed 
that the information read has been turned into a Python variable for use in our script.

pynetauto@ubuntu20s1:~/my_tools/tool4_md5_linux$ python3 md5_validate3.py
csr1000v-1
77878ae6db8e34de90e2e3e83741bf39
77878ae6db8e34de90e2e3e83741bf39
436.57 MB
MD5 values matched!
csr1000v-2
77878ae6db8e34de90e2e3e83741bf39
77878ae6db8e34de90e2e3e83741bf39
436.57 MB
MD5 values matched!

 Check the Flash Size on Cisco Routers
You learned how to get the IOS size on the server in the previous script, and the new IOS file size was 
436.57 MB. Before you can upload this new IOS file to the router’s flash memory, you have to check if there 
is enough free space in the flash memory. If the flash memory has enough free space, uploading can occur 
immediately. Still, if the flash size is not big enough, you will have to delete old or redundant files, or for 
older IOS devices, you will need to delete the currently running IOS file from the flash. During the boot 
process, the IOS is copied and decompressed in random access memory (RAM) from flash. On some of 
the latest Cisco platforms, the files are already decompressed to save time during the Power On Self-Test 
(POST) process. Either way, you need to make enough room for a new IOS file. To get the free flash size on a 
Cisco device, you can use a show flash: or dir command and then dissect the information using a regular 
expression. If you know what command to run and which information you need, it’s easy to get it. Still, many 
vendor network devices do not provide API support. Also, SNMP has its limitations while trying to work out 
this type of information. Although this is not the smartest or the most sophisticated way to collect the data 
we want, this could be the only option for some devices.

After working out the free flash size, if the IOS size exceeds the flash-free size, we want to give the user 
(or the script) an option to locate the old IOS file and remove it. Sometimes, there might a large sized file on 
the router’s flash memory, so in this case, we also have to give the user (or the script) an option to search the 
file and delete a large file. Let’s see how this can be achieved.

# Task
1 Create another working directory called tool5_fsize_cisco, and then create a new script to run 

and capture either the dir or show flash: command.

pynetauto@ubuntu20s1:~/my_tools/tool4_md5_linux$ cd ..
pynetauto@ubuntu20s1:~/my_tools$ mkdir tool5_fsize_cisco
pynetauto@ubuntu20s1:~/my_tools$ cd tool5_fsize_cisco
pynetauto@ubuntu20s1:~/my_tools/tool5_fsize_cisco$ nano check_flash1.py

Write the following script to capture the output of the dir command on the Cisco router. On IOS 
XE routers, it is easier to capture the information using the dir command, but on other devices, 
the show flash: command works on most devices. For this practice, we’ll use the dir command 
because the output is shorter.



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

793

# Task
check_flash1.py
import time
from netmiko import ConnectHandler

# Borrowed from read_info7.py result.
devices_list =[
{

'device_type': 'cisco_xe',
'host': '192.168.183.111',
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123'

},
{

'device_type': 'cisco_xe',
'host': '192.168.183.222',
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123'

}]

for device in devices_list:
net_connect = ConnectHandler(**device)
net_connect.send_command("terminal length 0")
showdir = net_connect.send_command("dir")
#showflash = net_connect.send_command("show flash:") # Alternatively use 'show 
flash:'
print(showdir)
print("-"*80)
time.sleep(2)

When you run the check_flash1.py script one more time, the output displays the file details and flash 
memory use. We are interested in the free size in the router’s flash memory. Here, we are interested 
in “7897796608 bytes total (5230376448 bytes free) in the last line of the output.

pynetauto@ubuntu20s1:~/my_tools/tool5_fsize_cisco$ python3 check_flash1.py
Directory of bootflash:/

   11  drwx            16384  Sep 28 2020 22:15:16 +00:00  lost+found
32513  drwx             4096  Jan 15 2021 08:38:08 +00:00  .installer
   12  -rw-        377500632  Sep 28 2020 22:15:59 +00:00  csr1000v-mono-
universalk9.16.07.03.SPA.pkg
   13  -rw-      38978681  Sep 28 2020 22:15:59 +00:00  csr1000v-rpboot.16.07.03.SPA.pkg
[...omitted for brevity]
430785  drwx             4096   Dec 3 2020 10:21:10 +00:00  iox
65025  drwx             4096   Dec 3 2020 10:21:25 +00:00  .dbpersist
89409  drwx             4096   Dec 3 2020 10:22:16 +00:00  onep

7897796608 bytes total (6230376448 bytes free)
--------------------------------------------------------------------------------

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

794

# Task

2 So, this is the dir output from the first router. Let’s see how we can use a regular expression to get 
the “bytes free.”

Directory of bootflash:/

   11  drwx            16384  Sep 28 2020 22:15:16 +00:00  lost+found
32513  drwx             4096   Oct 5 2020 11:50:08 +00:00  .installer
   12  -rw-        377500632  Sep 28 2020 22:15:59 +00:00  csr1000v-mono-
universalk9.16.07.03.SPA.pkg
   13  -rw-         38978681  Sep 28 2020 22:15:59 +00:00  csr1000v-rpboot.16.07.03.
SPA.pkg
   14  -rw-             1941  Sep 28 2020 22:15:59 +00:00  packages.conf
365761  drwx             4096  Sep 28 2020 22:16:36 +00:00  core
390145  drwx             4096  Sep 28 2020 22:16:29 +00:00  .prst_sync
81281  drwx             4096  Sep 28 2020 22:16:36 +00:00  .rollback_timer
455169  drwx            12288   Oct 5 2020 12:00:45 +00:00  tracelogs
48769  drwx             4096  Sep 28 2020 22:16:55 +00:00  virtual-instance
   15  -rw-               30   Oct 5 2020 11:51:27 +00:00  throughput_monitor_params
   16  -rw-              848   Oct 5 2020 11:51:35 +00:00  cvac.log
447041  drwx             4096  Sep 28 2020 22:17:39 +00:00  CRDU
   17  -rw-               16  Sep 28 2020 22:17:43 +00:00  ovf-env.xml.md5
   18  -rw-              157   Oct 5 2020 11:51:35 +00:00  csrlxc-cfg.log
   19  -rw-               35  Sep 28 2020 22:22:44 +00:00  pnp-tech-time
   20  -rw-            51746  Sep 28 2020 22:22:45 +00:00  pnp-tech-discovery-summary

7897796608 bytes total (7060598784 bytes free)

Since there are many digits, we have to locate the number with pinpoint accuracy, which can be 
achieved by using a positive lookahead method. Since the digits are in front of bytes free, we can 
use this as the search handle and simply find the string of digits ahead of this specific string. So the 
regular expression required is as shown here:

\d+(?=\sbytes\sfree\))

So, the previous regular expression should match any digits occurring in front of bytes free, which 
is 7060598784 in our example.

Regular Expression Explanation

\d+ This means any digits more than a single number.

(?=) This is the positive lookahead regular expression.

\sbytes\sfree\) We are looking for an actual string, but we only use it to search, and we 
match the string in front of this string. \s means a whitespace.



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

795

# Task

3 Make a copy of the first script and create the following script to apply our regular expression:

pynetauto@ubuntu20s1:~/my_tools/tool5_fsize_cisco$ cp check_flash1.py check_flash2.py
pynetauto@ubuntu20s1:~/my_tools/tool5_fsize_cisco$ nano check_flash2.py
nano check_flash2.py
import time

from netmiko import ConnectHandler
import re # Import re module
# This is borrowed from read_info7.py result
devices_list =[
{

'device_type': 'cisco_xe',
'host': '192.168.183.111',
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123'

},
{

'device_type': 'cisco_xe',
'host': '192.168.183.222',
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123'

}]

for device in devices_list:
net_connect = ConnectHandler(**device)
net_connect.send_command("terminal length 0")
showdir = net_connect.send_command("dir")
#showflash = net_connect.send_command("show flash:")
#print(showdir) # Hash out the line
print("-"*80)
time.sleep(2)

p1 = re.compile("\d+(?=\sbytes\sfree\))") # Compiled Regular expression
m1 = p1.findall(showdir) # Match regular expression
flashfree =  ((int(m1[0])/1000000)) # convert bytes into MB
print(flashfree)

Run the previous script, and now you have the free bytes in megabytes. The first value is from 
csr1000v-1, and the second value is from csr1000v-2.

pynetauto@ubuntu20s1:~/my_tools/tool5_fsize_cisco$ python3 check_flash2.py
--------------------------------------------------------------------------------
7060.598784
--------------------------------------------------------------------------------
7060.578304

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

796

# Task

When we combine the previous script with md5_validate2.py from previous exercises, we can 
check if the flash’s free size is bigger than the new IOS file size. The application flow can be altered 
using the result of the comparison. There is almost 7 GB of free flash memory on the routers, and 
our IOS size is 436.57 MB, so there is no need to remove any files before uploading the file to the 
flash. However, as mentioned, on older Cisco devices, the flash memory size is often tight, and 
as part of your script, you may have to offer the user an option to delete some files from the flash 
memory to make room for a new IOS upload. Usually, we are upgrading IOS on a mission-critical 
device such as a router or switch. Engineers invest more than 80 percent of their time preparing 
for this type of change, meaning that a lack of space in the flash memory will be detected at the 
beginning of the preparations. Most of the time, the problem needs to be taken care of before the 
actual upgrade takes place. But sometimes an engineer will try to cut corners during the change 
preparation process. These days, most reputable IT-driven companies have taken up the ITIL 
process, and ITIL guides the change management. The owners of such change cases perform end-
to-end checks even before a change is approved by stakeholders, and only then can the change 
begin. For this reason, to save pages in this chapter, I am excluding the script that would give the 
user an option to remove a file or look for a file in a directory. I will leave this as your homework to 
figure out how you can add this feature to your script.

 Make Backups of running-config, the Interface Status, 
and the Routing Table
Assuming that our routers have enough flash memory to accommodate the new IOS for the router, you 
now want to make backups of the running configuration. In most production environments, the routers’ 
configurations will be backed up daily or weekly on a configuration backup server. In this case, you have to 
make sure that the last backed-up configuration of the device you are upgrading is not older than a couple 
of hours old. In other words, the most up-to-date running-config backup of your router is the one you 
captured just before the router goes into a reload. With the Python script in use, there are two ways that you 
can make backups of your routers’ running-config. The first is to save the configuration on your Python 
server’s local disk, and the second method is to run the copy running-config tftp/ftp: command. The 
second method will be the preferred running-config backup method if the backup will be stored for a while. 
Still, if this backup is for a recovery process, if the system loses the configuration for some unseen reason, 
making a backup on your server will be more than enough. For this reason, you will learn how to save the 
running configurations using the show command via an SSH connection.

Before making any changes, make backups of the running configuration before reloading the routers.



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

797

# Task
1 Once again, make a separate directory to work on a new tool. Since this section’s content has been 

covered in the earlier chapters, you should be quite familiar with file handling. You will write this tool 
in a single attempt without reiteration, so follow along here by typing in each word and refer to the 
explanation noted in the lines of code.

pynetauto@ubuntu20s1:~/my_tools/tool5_fsize_cisco$ cd ..
pynetauto@ubuntu20s1:~/my_tools$ mkdir tool6_make_backup
pynetauto@ubuntu20s1:~/my_tools$ cd tool6_make_backup
pynetauto@ubuntu20s1:~/my_tools/tool6_make_backup$ nano make_backup1.py

This script will make each device’s dictionaries with their variables to make it more straightforward. 
You will call out each device’s IP address to form the names of each file. This way, each device will 
have its own unique backup filename, and when troubleshooting issues later, you will not have a 
single file containing multiple devices’ configurations. You can run any show command and make 
backups of your router’s running configurations. However, some of the basic show commands worth 
capturing for Cisco routers are show running-config, show ip route, and show ip interface 
brief. If you are working with Cisco switches, the show running-config, show ip interface brief, 
and show switch commands could be helpful. Now, let’s write this code and run it.

make_backup1.py
import time
from netmiko import ConnectHandler
# Converted the list of dictionaries back to each variables
device1 = {

'device_type': 'cisco_xe',
'host': '192.168.183.111',
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123'

}
device2 = {

'device_type': 'cisco_xe',
'host': '192.168.183.222',
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123'

}
devices_list = [device1, device2] # Make a list of devices

for device in devices_list: # Read each device from device_list
print(device) # Print out each device information during development
ip = str(device['host']) # To make unique file names, assign IP address of device 
as variable, ip.
f1 = open(ip + '_showrun_1.txt', 'w+') # Create and open f1
net_connect = ConnectHandler(**device) #Connect to device, ** denotes parsing of a 
dictionary
net_connect.send_command("terminal length 0") # Change terminal length to 0
showrun = net_connect.send_command("show running-config") # Run show run and save 
to showrun variable

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

798

# Task
f1.write(showrun) # Write showrun to f1. showrun is in the memory.
time.sleep(1) # Pause for 1 second
f1.close() # Close f1

# The remaining codes are same as above except the file name and actual command
f2 = open(ip + '_show_ip_route_1.txt', 'w') # Crate and open f2
#net_connect.enable()
showiproute = net_connect.send_command("show ip route")
#net_connect.exit_enable_mode()
f2.write(showiproute)
time.sleep(1)
f2.close()

f3 = open(ip + '_show_ip_int_bri_1.txt', 'w')
showiproute = net_connect.send_command("show ip interface brief")
f3.write(showiproute)
time.sleep(1)
f3.close()

print("All tasks completed successfully") # Information to let you know that all tasks 
completed

2 Now run the script. It will make backups by running the show commands of your choice. Here we are 
capturing three show command outputs to separate files. Later, the post-upgrade check will rerun the 
same commands and create post-reload files. Then, the script will perform the post-upgrade check to 
ensure that the before and after configurations remain the same and the IOS upgrade did not cause 
any failures.

Once you have completed writing the make_backup1.py Python code, run it to make backups of the 
show commands.

pynetauto@ubuntu20s1:~/my_tools/tool6_make_backup$ python3 make_backup1.py
{'device_type': 'cisco_xe', 'host': '192.168.183.111', 'username': 'pynetauto', 
'password': 'cisco123', 'secret': 'cisco123'}
{'device_type': 'cisco_xe', 'host': '192.168.183.222', 'username': 'pynetauto', 
'password': 'cisco123', 'secret': 'cisco123'}
All tasks completed successfully

Use the ls –lh Linux command to check the backups of the show commands and running 
configuration.

pynetauto@ubuntu20s1:~/my_tools/tool6_make_backup$ ls -lh
total 28K
-rw-rw-r-- 1 pynetauto pynetauto  323 Jan 15 15:33 192.168.183.111_show_ip_int_bri_1.txt
-rw-rw-r-- 1 pynetauto pynetauto  842 Jan 15 15:33 192.168.183.111_show_ip_route_1.txt
-rw-rw-r-- 1 pynetauto pynetauto 4.0K Jan 15 15:33 192.168.183.111_showrun_1.txt
-rw-rw-r-- 1 pynetauto pynetauto  323 Jan 15 15:33 192.168.183.222_show_ip_int_bri_1.txt
-rw-rw-r-- 1 pynetauto pynetauto  842 Jan 15 15:33 192.168.183.222_show_ip_route_1.txt
-rw-rw-r-- 1 pynetauto pynetauto 1.8K Jan 15 15:33 192.168.183.222_showrun_1.txt
-rw-rw-r-- 1 pynetauto pynetauto 1.8K Jan 15 15:33 make_backup1.py



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

799

You have successfully created a handy tool to make your device backups before making any 
configuration changes. Now we are going to complete the initial pre-check tools before we can upload the 
new IOS to the Cisco routers. Let’s see how we can upload the new IOS to the router’s flash.

 Part B: IOS Uploading and More Pre-check Tools 
Development
Let’s move on to the next topic.

 IOS Uploading Tool
After the entire pre-check has passed and the current running configurations of each device have been 
backed up, we need to upload the new IOS from a server to the router’s flash. As discussed earlier, the file 
upload process uses SCP because the netmiko library has a built-in module that supports the timing of 
different file sizes. As a netmiko library user, we do not have to worry about how big the file is to upload the 
file; netmiko already has a built-in module taking care of this. Thanks again to Kirk Byers for writing and 
sharing such a handy library. I have tested file transfers using both the FTP and TFTP methods, and although 
they worked OK, they were not as reliable as netmiko’s SCPConn file transfer method.

We already know that the actual IOS file we are trying to upload is 436.57 MB in size, and uploading 
such a file to a networking device’s flash memory will take around 8 to 15 minutes on the production 
network. Even within your lab topology on your computer, it will take several minutes. So, while you are 
developing a testing tool, you should be using a smaller file, saving you time. In this example, I am using the 
full 436.57 MB file for demonstration purposes. In production, one network’s speed will differ from another 
network; hence, the file transfer time will also vary significantly from one network to another.

# Task
1 Create another working directory for the IOS uploading tool. This time, you will copy the script 

created in the last section and rewrite the code to test the file uploading.

pynetauto@ubuntu20s1:~/my_tools/tool6_make_backup$ cd ..
pynetauto@ubuntu20s1:~/my_tools$ mkdir tool7_upload_ios
pynetauto@ubuntu20s1:~/my_tools$ cd tool7_upload_ios
pynetauto@ubuntu20s1:~/my_tools/tool7_upload_ios$ pwd
/home/pynetauto/my_tools/tool7_upload_ios
pynetauto@ubuntu20s1:~/my_tools/tool7_upload_ios$ cp /home/pynetauto/my_tools/tool6_
make_backup/make_backup1.py ./upload_ios1.py
pynetauto@ubuntu20s1:~/my_tools/tool7_upload_ios$ ls
upload_ios1.py

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

800

# Task

2 In the IOS uploading section, we copied the new IOS file to the /home/pynetauto/my_tools/new_ios/ 
directory. For the SCP file uploading test, we can point the file location to this folder or copy the current 
working directory. So, s_newios (source file location) points to the new IOS file: /home/pynetauto/my_
tools/new_ios/csr1000v-universalk9.16.09.06.SPA.bin. For d_newios (for the destination filename, 
use the new IOS filename, ending with .bin). The file will be saved to the router’s flash:/ directory.

Three configuration items are required on Cisco routers (or switches) for the SCP file transfer to 
initiate and successfully copy files across to the routers. First, the user must have level 15 privilege, 
second, aaa authentication login must be configured, and third, an authorization exec must be 
preconfigured. If device access is controlled by the TACACS server in the production environment, 
you should make a slight change to the following script. The login will work in the same way except 
that the authentication is via the server. Also, in many environments, the TACACS server is not used. 
In this case, we can take advantage of local aaa authorization and authentication, and this is what 
you are going to use in this example. The script will check if your username has level 15 privileges 
first and then check if aaa authentication and authorization are configured.

One last requirement for SCP file transfer is that the router must play the role of SCP server, so we 
will check if the ip scp server command has been configured, and if it has not been configured, 
the script will enable the SCP service on the router and then start the IOS file transfer process. At the 
end of file transfer, this SCP service will be disabled.

Now modify the content of your Python file, and when you complete your SCP IOS upload application, 
it should look similar to the following. If you want to add some other features, you can do so and 
explore other options. The beauty of free Python scripting is that there are no shackles around your 
ankles like with YAML code in Ansible. With Python scripting, you are the designer, mechanic, and 
driver in your car, where with Ansible, you are only a driver. You are free to go ahead and write your 
tools with Python scripting. As before, you will find explanations next to the important lines of code.

upload_ios1.py
import time
from netmiko import ConnectHandler, SCPConn # Import SCPConn

# From section 10.5.3
s_newios = "/home/pynetauto/my_tools/new_ios/csr1000v-universalk9.16.09.06.SPA.bin" # 
Source file, ensure you have specified the correct directory path
d_newios = "csr1000v-universalk9.16.09.06.SPA.bin" # Destination file name
# newiosmd5 = "77878ae6db8e34de90e2e3e83741bf39" # MD5 value of new IOS file

device1 = {
'device_type': 'cisco_xe',
'host': '192.168.183.111',
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123'

}
device2 = {

'device_type': 'cisco_xe',
'host': '192.168.183.222',
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123'

}



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

801

# Task

devices_list = [device1, device2]

for device in devices_list:
print(device) # Print dictionary item for confirmation only
ip = str(device['host']) # Assign a variable, ip to IP Address of device
username = str(device['username']) # Assign a variable, username to username of device
net_connect = ConnectHandler(**device) # Parse netmiko dictionary to ConnectHandler
net_connect.send_command("terminal length 0") # Set terminal to display without any 
breaks
showrun = net_connect.send_command("show running-config") # Run show running-config
check_priv15 = (f'username {username} privilege 15') # Assign a variable to 
username config
aaa_authenication = "aaa authentication login default local enable" # Assign a 
variable to authentication config
aaa_authorization = "aaa authorization exec default local" # Assign a variable to 
authorization config

if check_priv15 in showrun: # Check if showrun contains (meets) basic 
configuration requirements

print(f"{username} has level 15 privilege - OK")
if aaa_authenication in showrun:

print("check_aaa_authentication - OK")
if aaa_authorization in showrun:

print("check_aaa_authorization - OK") # All three conditions are met, 
then continue

else:
print("aaa_authorization - FAILED ")
exit() # exit application for a review

else:
print("aaa_authentication - FAILED ")
exit() # exit application for a review

else:
print(f"{username} has not enough privilege - FAILED")
exit() # exit application for a review

net_connect.enable(cmd='enable 15') # Enable level 15 privilage
net_connect.config_mode() # Enter configuration mode
net_connect.send_command('ip scp server enable') # Enable SCP service on the router
net_connect.exit_config_mode() # Exit configuration mode
time.sleep(1) # Pause for  1 second
print("New IOS uploading in progress! Please wait...")
scp_conn = SCPConn(net_connect) # Create object for netmiko SCPConn
scp_conn.scp_transfer_file(s_newios, d_newios) # Start file transfer from source to 
destination
scp_conn.close() # close scp_conn session
time.sleep(1) # Pause for 1 second
net_connect.config_mode() # Enter configuration mode
net_connect.send_command('no ip scp server enable') # Disable SCP service on the router
net_connect.exit_config_mode() # Exit configurator mode
print("-"*80) # Line divider

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

802

# Task

3 We know that the user pynetauto is correctly configured with level 15 admin privileges, but the aaa 
new model is not enabled on the csr1000v-1 router. Let’s run the previous script to test which error 
message is returned.

pynetauto@ubuntu20s1:~/my_tools/tool7_upload_ios$ python3 upload_ios1.py
{'device_type': 'cisco_xe', 'host': '192.168.183.111', 'username': 'pynetauto', 
'password': 'cisco123', 'secret': 'cisco123'}
pynetauto has level 15 privilege - OK
aaa_authentication - FAILED

Now, go ahead and add the following aaa configurations to the first router:

csr1000v-1(config)#aaa new-model
csr1000v-1(config)#aaa authentication login default local enable

4 Let’s run the IOS upload application one more time and observe where the script stops. Although 
the admin user has a level 15 privilege, the script complains that the user does not have the right 
privilege because it has now moved to aaa local authentication.

pynetauto@ubuntu20s1:~/my_tools/tool7_upload_ios$ python3 upload_ios1.py
{'device_type': 'cisco_xe', 'host': '192.168.183.111', 'username': 'pynetauto', 
'password': 'cisco123', 'secret': 'cisco123'}
pynetauto has not enough privilege - FAILED

To counter this problem, add the last aaa configuration to the first router.

csr1000v-1(config)#aaa authorization exec default local

5 Stop! Do not run the script yet. If you run the application one more time, you should see the 
following messages on your console, and the application will move to the next phase to check for 
SCP configuration on the router.

To keep things simple, we can check this before initiating the new IOS upload to the first device. 
This check can be performed on all devices at the beginning of the script so we can detect any 
configuration issues on all devices before uploading begins. In the final script, we will try to slightly 
change this part so that this becomes part of the pre-check script.

pynetauto@ubuntu20s1:~/my_tools/tool7_upload_ios$ python3 upload_ios1.py
{'device_type': 'cisco_xe', 'host': '192.168.183.111', 'username': 'pynetauto', 
'password': 'cisco123', 'secret': 'cisco123'}
pynetauto has level 15 privilege - OK
check_aaa_authentication - OK
check_aaa_authorization - OK

6 Go ahead and enable aaa configurations on the second router, csr1000v-2, as well.

csr1000v-2(config)#aaa new-model
csr1000v-2(config)#aaa authentication login default local enable
csr1000v-2(config)#aaa authorization exec default local



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

803

# Task

7 Then, enable the following debugging command on both routers:

csr1000v-2#debug ip scp
Incoming SCP debugging is on
csr1000v-2#terminal monitor

csr1000v-1# debug ip scp
Incoming SCP debugging is on
csr1000v-1#ter mon

8 Now rerun the Python script. If all the configuration verifications have passed, the new IOS file 
transfer will begin for the first router. When the file transfer completes on csr1000v-1, the same 
script will run against the second router, csr1000v-2. Here, I am only demonstrating IOS uploading 
on two routers, but imagine if we had 20 or 200 routers to upload IOS images to. Also, note that now 
we can schedule this script to run outside of business hours, so you no longer have to stare at the 
screen for hours before you are excused to go home. This probably is the best part of automating 
boring and repetitive tasks such as this.

pynetauto@ubuntu20s1:~/my_tools/tool7_upload_ios$ python3 upload_ios1.py
{'device_type': 'cisco_xe', 'host': '192.168.183.111', 'username': 'pynetauto', 
'password': 'cisco123', 'secret': 'cisco123'}
pynetauto has level 15 privilege - OK
check_aaa_authentication - OK
check_aaa_authorization – OK
New IOS uploading in progress! Please wait...
--------------------------------------------------------------------------------
{'device_type': 'cisco_xe', 'host': '192.168.183.222', 'username': 'pynetauto', 
'password': 'cisco123', 'secret': 'cisco123'}
pynetauto has level 15 privilege - OK
check_aaa_authentication - OK
check_aaa_authorization – OK
New IOS uploading in progress! Please wait...
--------------------------------------------------------------------------------

The username, password, and secret are printed on the screen during development to check that the 
developing applications are working as they were designed, but in the production implementations, 
you must disable any redundant print() statements. As mentioned at the beginning of this book, 
the print() function is for us; the computer does not have to output the information to the screen.

9 While the script is running, check the terminal screens of both routers. If you observe the following 
on-screen logs, you know that the new IOS file transfer has been completed successfully.

csr1000v-1#
*Jan 15 03:21:00.687: %SYS-5-CONFIG_I: Configured from console by pynetauto on vty1 
(192.168.183.132)
*Jan 15 03:21:02.228: SCP: [22 -> 192.168.183.132:46546] send <OK>
*Jan 15 03:21:02.229: SCP: [22 <- 192.168.183.132:46546] recv C0644 436573677 
csr1000v-universalk9.16.09.06.SPA.bin
*Jan 15 03:21:02.230: SCP: [22 -> 192.168.183.132:46546] send <OK>
*Jan 15 03:25:34.917: SCP: [22 <- 192.168.183.132:46546] recv 436573677 bytes

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

804

# Task

*Jan 15 03:25:34.918: SCP: [22 <- 192.168.183.132:46546] recv <OK>
*Jan 15 03:25:34.918: SCP: [22 -> 192.168.183.132:46546] send <OK>
*Jan 15 03:25:34.922: SCP: [22 <- 192.168.183.132:46546] recv <EOF>
*Jan 15 03:25:36.192: %SYS-5-CONFIG_I: Configured from console by pynetauto on vty1 
(192.168.183.132)

csr1000v-2#
*Jan 15 03:25:37.522: %SYS-5-CONFIG_I: Configured from console by pynetauto on vty1 
(192.168.183.132)
*Jan 15 03:25:39.072: SCP: [22 -> 192.168.183.132:36148] send <OK>
*Jan 15 03:25:39.073: SCP: [22 <- 192.168.183.132:36148] recv C0644 436573677 
csr1000v-universalk9.16.09.06.SPA.bin
*Jan 15 03:25:39.074: SCP: [22 -> 192.168.183.132:36148] send <OK>
*Jan 15 03:30:10.935: SCP: [22 <- 192.168.183.132:36148] recv 436573677 bytes
*Jan 15 03:30:10.935: SCP: [22 <- 192.168.183.132:36148] recv <OK>
*Jan 15 03:30:10.935: SCP: [22 -> 192.168.183.132:36148] send <OK>
*Jan 15 03:30:10.937: SCP: [22 <- 192.168.183.132:36148] recv <EOF>
*Jan 15 03:30:12.230: %SYS-5-CONFIG_I: Configured from console by pynetauto on vty1 
(192.168.183.132)

10 Check the uploaded file on both routers and save the configuration to complete the task.

csr1000v-1#show flash: | in csr1000v-universalk9.16.09.06.SPA.bin
215  436573677 Oct 07 2020 03:25:34.0000000000 +00:00 /bootflash/csr1000v-
universalk9.16.09.06.SPA.bin
csr1000v-1#write memory
Building configuration...
[OK]

csr1000v-2#show flash: | in csr1000v-universalk9.16.09.06.SPA.bin
215  436573677 Oct 07 2020 03:30:10.0000000000 +00:00 /bootflash/csr1000v-
universalk9.16.09.06.SPA.bin
csr1000v-2#write memory
Building configuration...
[OK]

 Check the New IOS MD5 Value on the Cisco Device’s Flash
In the previous IOS uploading tool development, you have successfully uploaded the new IOS version to 
both the csr1000v-1 and csr1000v-2 routers. We need to write a script to validate the verify IOS command 
and validate the MD5 value of the IOS copy on the router’s flash. This time we will only allow the script to 
run if the actual IOS file is found in the flash:/ root. Then run the verify command and check that after a 
successful IOS verification command, the script will expect “Verified” in the output, so a regular expression 
will be used to verify the IOS verification result. If it is successful, the script will print out the MD5 value of 
the original value and the MD5 value of the new IOS file on the flash. We also want to continue to run this 
application even if the first router is not reachable on the network, so we have to include a netmiko timeout 
exception to counter this problem. Often, even if your script encounters an exception, you want to continue 
to run the script until the last device in your list.



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

805

Let’s quickly write this application and test-drive it in our lab.

# Task
1 As always, let’s begin with creating a new directory and then create a new Python script.

pynetauto@ubuntu20s1:~/my_tools/tool7_upload_ios$ cd ..
pynetauto@ubuntu20s1:~/my_tools$ mkdir tool8_md5_cisco
pynetauto@ubuntu20s1:~/my_tools$ cd tool8_md5_cisco
pynetauto@ubuntu20s1:~/my_tools/tool8_md5_cisco$ nano md5_verify1.py

2 Most of this script is the same as the previous script. Let’s quickly rewrite the code to verify the 
command and compare the MD5 provided by the user and the MD5 calculated on the router. The 
application flow will be based on the result of the two MD5 value comparisons.

Your script will look similar to the following after completing the IOS MD5 checker application for 
Cisco IOS routers. As always, your script does not have to look the same as this one as long as it is 
optimized and works well. Try to write the code one line at a time as this is good practice to get a feel 
for what it is like to write code for a living. If you like to do everything yourself, then you will enjoy 
writing lines of code.

md5_verify1.py
from netmiko import ConnectHandler
from netmiko.ssh_exception import  NetMikoTimeoutException  # To handle Timeout/
Network exception
import re  # For match specific characters from the verified output

d_newios = "csr1000v-universalk9.16.09.06.SPA.bin"
newiosmd5 = "77878ae6db8e34de90e2e3e83741bf39"

device1 = {
'device_type': 'cisco_xe',
'host': '192.168.183.111',
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123',
'global_delay_factor': 2 # Run netmiko commands twice slower. If you are getting 
errors due to slow router/switch response, use these attributes to slow down the 
script

}
device2 = {

'device_type': 'cisco_xe',
'host': '192.168.183.222',
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123',
'global_delay_factor': 2

}

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

806

# Task

devices_list = [device1, device2]

for device in devices_list:
print(device)
ip = str(device['host'])
try:

net_connect = ConnectHandler(**device)
net_connect.send_command("terminal length 0")
locate_newios = net_connect.send_command(f"show flash: | in {d_newios}")  # 
Check router's flash for new IOS image file

if d_newios in locate_newios: # If new IOS is found on the router's flash, run 
this script

result = net_connect.send_command("verify /md5 flash:{} {}".format(d_
newios,newiosmd5)) # Cisco IOS/IOS XE verify command, run and assign 
variable result to the output
print(result) # Print the result, informational for user
net_connect.disconnect() # Disconnect session
p1 = re.compile(r'Verified') # Regular Expression (re) compiler for word 
'Verified'
p2 = re.compile(r'[a-fA-F0-9]{31}[a-fA-F0-9]') # re compiler for MD5 value
verified = p1.findall(result) # Find 'Verified' in result
newiosmd5flash = p2.findall(result) # Find the MD5 value from result
if verified: # If 'Verified' was found in result, run this part of the script

result = True
print("-"*80)
print("MD5 values MATCH! Continue")
print("MD5 of new IOS on Server : ",newiosmd5)
print("MD5 of new IOS on flash  : ",newiosmd5flash[0])
print("-"*80)

else: # If 'Verified' was not found in result, print and exit the application
result = False
print("-"*80)
print("MD5 values DO NOT MATCH! Exiting.")
print("-"*80)
exit()

else: # If no new IOS file was found on the router's flash:/. Print the statement
print("No new IOS found on router's flash. Continue to next device...")
print("-"*80)

except (NetMikoTimeoutException): # Handle Timeout error due to network issue
print (f'Timeout error to : {ip}')
print("-"*80)
continue  # Continue to next device

except unknown_error: # Handle other errors as exception
print ('Unknown error occured : ' + str(unknown_error))
print("-"*80)
continue # Continue to next device

print("Completed new IOS verification.") # Informational



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

807

# Task

3 Make sure that both routers are powered on and in normal operational mode. Run the application 
to check the MD5 value of the newly uploaded IOS image file. If everything worked correctly, you 
should get the same output as shown here. Some of the output has been omitted to save space.

pynetauto@ubuntu20s1:~/my_tools/tool8_md5_cisco$ python3 md5_verify1.py
{'device_type': 'cisco_xe', 'host': '192.168.183.111', 'username': 'pynetauto', 
'password': 'cisco123', 'secret': 'cisco123', 'global_delay_factor': 2}
...........................................................[omitted for brevity]
...........................................................................Done!
Verified (bootflash:csr1000v-universalk9.16.09.06.SPA.bin) = 
77878ae6db8e34de90e2e3e83741bf39

--------------------------------------------------------------------------------
MD5 values MATCH! Continue
MD5 of new IOS on Server :  77878ae6db8e34de90e2e3e83741bf39
MD5 of new IOS on flash  :  77878ae6db8e34de90e2e3e83741bf39
--------------------------------------------------------------------------------
{'device_type': 'cisco_xe', 'host': '192.168.183.222', 'username': 'pynetauto', 
'password': 'cisco123', 'secret': 'cisco123', 'global_delay_factor': 2}
..........................................................[...omitted for brevity]
...........................................................................Done!
Verified (bootflash:csr1000v-universalk9.16.09.06.SPA.bin) = 
77878ae6db8e34de90e2e3e83741bf39

--------------------------------------------------------------------------------
MD5 values MATCH! Continue
MD5 of new IOS on Server :  77878ae6db8e34de90e2e3e83741bf39
MD5 of new IOS on flash  :  77878ae6db8e34de90e2e3e83741bf39
--------------------------------------------------------------------------------
Completed new verification.

4 To simulate a scenario where csr1000v-1 is not on the network (unreachable), disable 
GigabitEthernet1. You have to disable the port via VMware Workstation’s main console.

csr1000v-1#config terminal
csr1000v-1(config)#interface GigabitEthernet1
csr1000v-1(config-if)#shutdown

Now rerun the Python script to check the result. Because we have already added an exception to 
counter this problem, the script will continue to run until the end. If the exception handler was not 
added, then you will see the following errors:

pynetauto@ubuntu20s1:~/my_tools/tool8_md5_cisco$ python3 md5_verify1.py
{'device_type': 'cisco_xe', 'host': '192.168.183.111', 'username': 'pynetauto', 
'password': 'cisco123', 'secret': 'cisco123', 'global_delay_factor': 2}
Traceback (most recent call last):

File "/usr/local/lib/python3.8/dist-packages/netmiko/base_connection.py", line 920, 
in establish_connection

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

808

# Task

self.remote_conn_pre.connect(**ssh_connect_params)
File "/usr/lib/python3/dist-packages/paramiko/client.py", line 368, in connect

raise NoValidConnectionsError(errors)
paramiko.ssh_exception.NoValidConnectionsError: [Errno None] Unable to connect to 
port 22 on 192.168.183.111

During handling of the previous exception, another exception occurred:

Traceback (most recent call last):
File " md5_verify1.py", line 29, in <module>

net_connect = ConnectHandler(**device)
File "/usr/local/lib/python3.8/dist-packages/netmiko/ssh_dispatcher.py", line 312, 
in ConnectHandler

return ConnectionClass(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/netmiko/cisco/cisco_ios.py", line 17, 
in __init__

return super().__init__(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/netmiko/base_connection.py", line 
346, in __init__

self._open()
File "/usr/local/lib/python3.8/dist-packages/netmiko/base_connection.py", line 
351, in _open

self.establish_connection()
File "/usr/local/lib/python3.8/dist-packages/netmiko/base_connection.py", line 
942, in establish_connection

raise NetmikoTimeoutException(msg)
netmiko.ssh_exception.NetmikoTimeoutException: TCP connection to device failed.

Common causes of this problem are:
1. Incorrect hostname or IP address.
2. Wrong TCP port.
3. Intermediate firewall blocking access.

Device settings: cisco_xe 192.168.183.111:22



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

809

# Task

5 Now delete the new IOS version from the first router and check if your script runs successfully. You 
will have to enable csr1000v-1’s GigabitEthernet1 port from the VMware Workstation console as 
you will lose the connection to this device via SSH.

csr1000v-1#delete flash:/csr1000v-universalk9.16.09.06.SPA.bin
Delete filename [csr1000v-universalk9.16.09.06.SPA.bin]?
Delete bootflash:/csr1000v-universalk9.16.09.06.SPA.bin? [confirm]

The script should run successfully and continue to run till the end, this also should not be a show 
stopper in our script.

pynetauto@ubuntu20s1:~/my_tools/tool8_md5_cisco$ python3 md5_verify2.py
{'device_type': 'cisco_xe', 'host': '192.168.183.111', 'username': 'pynetauto', 
'password': 'cisco123', 'secret': 'cisco123', 'global_delay_factor': 2}
No new IOS found on router's flash. Continue to the next device...
--------------------------------------------------------------------------------
{'device_type': 'cisco_xe', 'host': '192.168.183.222', 'username': 'pynetauto', 
'password': 'cisco123', 'secret': 'cisco123', 'global_delay_factor': 2}
...........................................................[omitted for brevity]
...........................................................................Done!
Verified (bootflash:csr1000v-universalk9.16.09.06.SPA.bin) = 
77878ae6db8e34de90e2e3e83741bf39

--------------------------------------------------------------------------------
MD5 values MATCH! Continue
MD5 of new IOS on Server :  77878ae6db8e34de90e2e3e83741bf39
MD5 of new IOS on flash  :  77878ae6db8e34de90e2e3e83741bf39
--------------------------------------------------------------------------------
Completed new IOS verification.

6 You have deleted the new IOS version from csr1000v-1’s flash to validate our script. To prepare for 
the next lab, we have to run the IOS upload tool one more time. Run the new IOS uploading script 
one more time so you have the new IOS on csr1000v-1’s flash.

If you want to upload the file on the first router only, delete or comment out the device2 or 
csr1000v-2 information shown here; this will save you about five minutes.

# device2 = {
# 'device_type': 'cisco_xe',
# 'host': '192.168.183.222',
# 'username': 'pynetauto',
# 'password': 'cisco123',
# 'secret': 'cisco123',
# 'global_delay_factor': 2

# }

While developing your Python tools, you have to test your scripts multiple times to ensure the 
automated tasks are repeatable with the same expected results.

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

810

 Options to Stop or Reload the Routers
Here, you will write a script to give the user two options: an option to change the boot system’s backup 
running configuration and reload and an option to exit the application for a reload later. For the first option, 
you will have to write the code to change the boot system, save the change, and then optionally make a 
backup of the running-config for change validation later.

# Task
1 Change the directory, create a new directory for this section, and create a new base script to work on.

pynetauto@ubuntu20s1:~/my_tools/tool8_md5_cisco$ cd ..
pynetauto@ubuntu20s1:~/my_tools$ mkdir tool9_yes_no
pynetauto@ubuntu20s1:~/my_tools$ cd tool9_yes_no
pynetauto@ubuntu20s1:~/my_tools/tool9_yes_no$ nano yesno.py

2 This time you will write a quick yes/no function, so the expected input is either yes/y or no/n. If 
the user input is anything else, then the yes_or_no function will run again until the correct input is 
entered. This way, you control the input, and based on the input, the script flow will change. If the 
response is yes, we can change the configuration of routers and reload. If the response is no, exit 
the application to reload the routers later.

yesno.py
yes = ['yes', 'y']
no = ['no', 'n']

def yes_or_no():
resp = input("Would you like to reload your devices? (y/n)? ").lower()
if resp in yes:

print("YES")
elif resp in no:

print("NO")
else:

yes_or_no()

yes_or_no()

print("All tasks completed.")

After completing the previous script, run the script and test it as shown here:

pynetauto@ubuntu20s1:~/my_tools/tool9_yes_no$ python3 yesno.py
Would you like to reload your devices? (y/n)? y
YES
All tasks completed.
pynetauto@ubuntu20s1:~/my_tools/tool9_yes_no$ python3 yesno.py
Would you like to reload your devices? (y/n)? yes
YES
All tasks completed.
pynetauto@ubuntu20s1:~/my_tools/tool9_yes_no$ python3 yesno.py



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

811

# Task

Would you like to reload your devices? (y/n)? N
NO
All tasks completed.
pynetauto@ubuntu20s1:~/my_tools/tool9_yes_no$ python3 yesno.py
Would you like to reload your devices? (y/n)? NO
NO
All tasks completed.
pynetauto@ubuntu20s1:~/my_tools/tool9_yes_no$ python3 yesno.py
Would you like to reload your devices? (y/n)? sure
Would you like to reload your devices? (y/n)? Why not?
Would you like to reload your devices? (y/n)? 12345
Would you like to reload your devices? (y/n)? OK
Would you like to reload your devices? (y/n)? YES
YES
All tasks completed.

3 Now it is time to use this base script and expand it to our scenario. Make a copy and modify the 
script, as shown in reload_yesno1.py.

pynetauto@ubuntu20s1:~/my_tools/tool9_yes_no$ cp yesno.py reload_yesno1.py
pynetauto@ubuntu20s1:~/my_tools/tool9_yes_no$ nano reload_yesno1.py

The following script will change the boot system statement on the device, save the configuration, 
and perform some show commands to capture the pre-reload operational status. Finally, it will 
reload the router.

reload_yesno1.py
from netmiko import ConnectHandler
import time

d_newios = "csr1000v-universalk9.16.09.06.SPA.bin"
newiosmd5 = "77878ae6db8e34de90e2e3e83741bf39"

device1 = {
'device_type': 'cisco_xe',
'host': '192.168.183.111',
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123',
'global_delay_factor': 2 # Used to slow down the script

}
device2 = {

'device_type': 'cisco_xe',
'host': '192.168.183.222',
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123',
'global_delay_factor': 2

}

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

812

# Task

devices_list = [device1, device2]
yes_list = ['yes', 'y']
no_list = ['no', 'n']

def yes_or_no():
resp = input("Would you like to reload your devices? (y/n)? ").lower()
if resp in yes_list:

print("Reloading devices")
for device in devices_list:

ip = str(device['host'])
net_connect = ConnectHandler(**device)
net_connect.enable(cmd='enable 15')
config_commands1 = ['no boot system', 'boot system flash:/' + d_newios, 
'do write memory']
output = net_connect.send_config_set(config_commands1)
print (output)
net_connect.send_command('terminal length 0\n')
show_boot = net_connect.send_command('show boot\n')
show_dir = net_connect.send_command('dir\n')
if d_newios not in show_dir:

print('Unable to locate new IOS on the flash:/. Exiting.')
print("-"*80)
exit()

elif d_newios not in show_boot:
print('Boot system was not correctly configured. Exiting.')
print("-"*80)
exit()

elif d_newios in show_boot and d_newios in show_dir:
print(f'Found {d_newios} in show boot')
print("-"*80)
net_connect.send_command("terminal length 0")
time.sleep(1)
with open(f'{ip}_showver_pre.txt', 'w+') as f1:

print("Capturing pre-reload 'show version'")
showver_pre = net_connect.send_command("show version")
f1.write(showver_pre)

time.sleep(1)
with open(f'{ip}_showrun_pre.txt', 'w+') as f2:

print("Capturing pre-reload 'show running-config'")
showrun_pre = net_connect.send_command("show running-config")
f2.write(showrun_pre)

time.sleep(1)
with open(f'{ip}_showint_pre.txt', 'w+') as f3:

print("Capturing pre-reload 'show ip interface brief'")
showint_pre = net_connect.send_command("show ip interface brief")
f3.write(showint_pre)

time.sleep(1)
with open(f'{ip}_showroute_pre.txt', 'w+') as f4:



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

813

# Task

print("Capturing pre-reload 'show ip route'")
showroute_pre = net_connect.send_command("show ip route")
f4.write(showroute_pre)

time.sleep(1)
print("-"*80)
# Trigger the device reload
print("Your device is now reloading.")
net_connect.send_command('reload', expect_string='[confirm]')
net_connect.send_command('yes\n')
net_connect.send_command('\n')
net_connect.disconnect()
print("-"*80)

elif resp in no_list:
print("You have chosen to reload the devices later. Exiting the application.")

else:
yes_or_no()

yes_or_no()
print("All tasks completed.")

4 When you run the previous script, it will hang in the middle of the script, time out, and continue to 
run until the end of the script. But the script does not initiate the routers to reload.

When you try to reload the router manually, it will complain about the end-user license agreement 
and reveal the actual problem. We forgot to accept the end-user license agreement and have not set 
the router platform’s correct feature set.

csr1000v-1#reload
% Unfortunately EULA is not detected for following feature/features:
% ax
% Please configure 'license accept end user agreement' and
% use 'write' command to ensure license configurations take effect
% Continue reload will cause functionality loss for above feature/features.

Continue to reload? (yes/[no]):

We will follow the instructions, add the ax (Enterprise) license level, and then accept the EULA and save 
the configuration. After you have accepted the license on csr1000v-1, repeat the process on csr1000v-2.

csr1000v-1#configure terminal
csr1000v-1(config)#license boot level ax
% use 'write' command to make license boot config take effect on next boot
csr1000v-1(config)#license accept end user agreement
[omitted for brevity]
Activation  of the  software command line interface will be evidence of
your acceptance of this agreement.
ACCEPT? (yes/[no]): yes
csr1000v-1(config)#exit
csr1000v-1#write memory
Building configuration...
[OK]

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

814

# Task

When you issue a reload command, we expect to see [confirm] from the router.

csr1000v-1#reload
Proceed with reload? [confirm]

You have to accept the end-user license agreement on the second router, csr1000v-2, as well. 
Repeat the process shown earlier.

5 After accepting the end-user license agreement (EULA) and saving the configuration, this is the right time 
to take a snapshot of your routers. You will be running your script against these devices multiple times and 
do not want to reverse the change every time you want to test this feature. So, on VMware Workstation, go 
to the Snapshot Manager feature and take another snapshot of both routers. See Figure 18-5.

Take a snapshot of the csr1000v-2 router as well. VMware Workstation Pro allows you to take a 
snapshot of Cisco routers, and if you want to come back to re-run the same test, you can always 
come back to this snapshot. Take a special note, in the production environment, and Cisco usually 
does not allow administrators to take snapshots of Cisco virtual machines due to timestamp and 
database-related issues.

6 Now run the script one more time, and this time the first router reloads OK but returns the 
“OSError: Socket is closed” error and disconnects our netmiko ConnectHandler connection. This 
is good if we are working with only a single device upgrade and want to finish the task. We want the 
script to continue to run the set of commands on the second router as well. Network automation’s 
real power is realized only if we can apply the solution on multiple devices with a consistent result.
It looks like we have to make an exception for this error so that it runs and reloads the second 
router. This can be achieved by using the try ~ except method.

pynetauto@ubuntu20s1:~/my_tools/tool9_yes_no$ python3 reload_yesno1.py
Would you like to reload your devices? (y/n)? y
Reloading devices
configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
csr1000v-1(config)#no boot system
csr1000v-1(config)#boot system flash:/csr1000v-universalk9.16.09.06.SPA.bin

Figure 18-5. Snapshot Manager, taking a snapshot of csr1000v-1



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

815

# Task

csr1000v-1(config)#do write memory
Building configuration...
[OK]
csr1000v-1(config)#end
csr1000v-1#
Found csr1000v-universalk9.16.09.06.SPA.bin in show boot
--------------------------------------------------------------------------------
Capturing pre-reload 'show version'
Capturing pre-reload 'show running-config'
Capturing pre-reload 'show ip interface brief'
Capturing pre-reload 'show ip route'
--------------------------------------------------------------------------------
Your device is now reloading.
Traceback (most recent call last):

File "reload_yesno1.py", line 88, in <module>
yes_or_no()

File "reload_yesno1.py", line 79, in yes_or_no
[...omitted for brevity]

File "/usr/lib/python3/dist-packages/paramiko/channel.py", line 1198, in _send
raise socket.error("Socket is closed")

OSError: Socket is closed

7 Let’s copy and refactor our script so it includes the try ~ except statement to catch the OSError 
so, the script continues to run.

pynetauto@ubuntu20s1:~/my_tools/tool9_yes_no$ cp reload_yesno1.py reload_yesno2.py
pynetauto@ubuntu20s1:~/my_tools/tool9_yes_no$ nano reload_yesno2.py

reload_yesno2.py
from netmiko import ConnectHandler
import time

d_newios = "csr1000v-universalk9.16.09.06.SPA.bin"
newiosmd5 = "77878ae6db8e34de90e2e3e83741bf39"

device1 = {
'device_type': 'cisco_xe',
'host': '192.168.183.111',
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123',
'global_delay_factor': 2

}
device2 = {

'device_type': 'cisco_xe',
'host': '192.168.183.222',
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123',
'global_delay_factor': 2

}

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

816

# Task

devices_list = [device1, device2]
yes_list = ['yes', 'y']
no_list = ['no', 'n']

def yes_or_no():
resp = input("Would you like to reload your devices? (y/n)? ").lower()
if resp in yes_list:

print("Reloading devices")
for device in devices_list:

ip = str(device['host'])
net_connect = ConnectHandler(**device)
net_connect.enable(cmd='enable 15')
config_commands1 = ['no boot system', 'boot system flash:/' + d_newios, 
'do write memory']
output = net_connect.send_config_set(config_commands1)
print (output)
net_connect.send_command('terminal length 0\n')
show_boot = net_connect.send_command('show boot\n')
show_dir = net_connect.send_command('dir\n')
if d_newios not in show_dir:

print('Unable to locate new IOS on the flash:/. Exiting.')
print("-"*80)
exit()

elif d_newios not in show_boot:
print('Boot system was not correctly configured. Exiting.')
print("-"*80)
exit()

elif d_newios in show_boot and d_newios in show_dir:
try:

print(f'Found {d_newios} in show boot')
print("-"*80)
net_connect.send_command("terminal length 0")
time.sleep(1)
with open(f'{ip}_showver_pre.txt', 'w+') as f1:

print("Capturing pre-reload 'show version'")
showver_pre = net_connect.send_command("show version")
f1.write(showver_pre)

time.sleep(1)
with open(f'{ip}_showrun_pre.txt', 'w+') as f2:

print("Capturing pre-reload 'show running-config'")
showrun_pre = net_connect.send_command("show running-
config")
f2.write(showrun_pre)

time.sleep(1)
with open(f'{ip}_showint_pre.txt', 'w+') as f3:

print("Capturing pre-reload 'show ip interface brief'")
showint_pre = net_connect.send_command("show ip interface 
brief")
f3.write(showint_pre)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

817

# Task

time.sleep(1)
with open(f'{ip}_showroute_pre.txt', 'w+') as f4:

print("Capturing pre-reload 'show ip route'")
showroute_pre = net_connect.send_command("show ip route")
f4.write(showroute_pre)

time.sleep(1)
print("-"*80)
# Trigger the device reload
print("Your device is now reloading.")
net_connect.send_command('reload', expect_string='[confirm]')
net_connect.send_command('yes')
net_connect.send_command('\n')
net_connect.disconnect()
print("-"*80)

except OSError:
print("Device is now reloading. This may take 2-5 minutes.")
time.sleep(10)
print("-"*80)

elif resp in no_list:
print("You have chosen to reload the devices later. Exiting the application.")

else:
yes_or_no()

yes_or_no()
print("All tasks completed.")

Now, rerun the script, and you will see that the script reaches the last line of code successfully. 
Also, both csr1000v-1 and csr1000v-2 should be reloaded and POST into the new IOS XE image, 
csr1000v-universalk9.16.09.06.SPA.bin.

pynetauto@ubuntu20s1:~/my_tools/tool9_yes_no$ python3 reload_yesno2.py
Would you like to reload your devices? (y/n)? yes
Reloading devices
configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
csr1000v-1(config)#no boot system
csr1000v-1(config)#boot system flash:/csr1000v-universalk9.16.09.06.SPA.bin
csr1000v-1(config)#do write memory
Building configuration...
[OK]
[...omitted for brevity]
Your device is now reloading.
Device is now reloading. This may take 2-5 minutes.
--------------------------------------------------------------------------------
All tasks completed.

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

818

# Task

8 While the script runs, keep an eye on the first router’s console, and you will see that the system is 
booting into the .bin file of the new IOS XE image. See Figure 18-6.

After the router goes through the POST process, check the IOS version by running the show 
version command, and now the router is running on the new IOS image. The script continues to 
run on the second router, and the same result will be observed on the csr1000v-2 router.

csr1000v-1#show version
Cisco IOS XE Software, Version 16.09.06
Cisco IOS Software [Fuji], Virtual XE Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), 
Version 16.9.6, RELEASE SOFTWARE (fc2)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2020 by Cisco Systems, Inc.
Compiled Thu 27-Aug-20 02:35 by mcpre

Cisco IOS-XE software, Copyright (c) 2005-2020 by cisco Systems, Inc.
All rights reserved.  Certain components of Cisco IOS-XE software are
licensed under the GNU General Public License ("GPL") Version 2.0.  The
software code licensed under GPL Version 2.0 is free software that comes
with ABSOLUTELY NO WARRANTY.  You can redistribute and/or modify such
GPL code under the terms of GPL Version 2.0.  For more details, see the
documentation or "License Notice" file accompanying the IOS-XE software,
or the applicable URL provided on the flyer accompanying the IOS-XE
software.

Figure 18-6. csr1000v-1, booting into new IOS XE image



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

819

# Task

ROM: IOS-XE ROMMON

csr1000v-1 uptime is 1 minute
Uptime for this control processor is 2 minutes
System returned to ROM by reload
System image file is "bootflash:/csr1000v-universalk9.16.09.06.SPA.bin"
Last reload reason: Reload Command

9 You will also get copies of four show commands for each router on the previous application’s 
successful run. These files will be compared to the same set of show command results after the 
IOS upgrade. This gives a full validation that the IOS upgrade ran successfully without causing any 
outages to the network serviced via these devices. This is only a development lab, but if you run the 
script in a production environment, the file may contain hundreds of lines.

pynetauto@ubuntu20s1:~/my_tools/tool9_yes_no$ ls -lh
total 44K
-rw-rw-r-- 1 pynetauto pynetauto  323 Jan 15 16:57 192.168.183.111_showint_pre.txt
-rw-rw-r-- 1 pynetauto pynetauto  842 Jan 15 16:57 192.168.183.111_showroute_pre.txt
-rw-rw-r-- 1 pynetauto pynetauto 4.0K Jan 15 16:57 192.168.183.111_showrun_pre.txt
-rw-rw-r-- 1 pynetauto pynetauto 2.3K Jan 15 16:57 192.168.183.111_showver_pre.txt
-rw-rw-r-- 1 pynetauto pynetauto  323 Jan 15 16:57 192.168.183.222_showint_pre.txt
-rw-rw-r-- 1 pynetauto pynetauto  842 Jan 15 16:57 192.168.183.222_showroute_pre.txt
-rw-rw-r-- 1 pynetauto pynetauto 1.8K Jan 15 16:57 192.168.183.222_showrun_pre.txt
-rw-rw-r-- 1 pynetauto pynetauto 2.3K Jan 15 16:57 192.168.183.222_showver_pre.txt
-rw-rw-r-- 1 pynetauto pynetauto 3.6K Jan 15 16:31 reload_yesno1.py
-rw-rw-r-- 1 pynetauto pynetauto 3.9K Jan 15 16:56 reload_yesno2.py
-rw-rw-r-- 1 pynetauto pynetauto  285 Jan 15 16:30 yesno.py

Now that we have reloaded both routers and they are running the newest IOS XE images, we have to 
put the icing on the cake by logging back into the device and performing the post-upgrade check using the 
captured information. Continue to the next section.

 Check the Reloading Device and Perform a Post-Reload 
Configuration Verification
You have reached the final tool we will develop. You will learn how to create a tool to scan and check that 
port 22 is in open status after a router reload was initiated by our script. When the script detects an open 
port 22, the application will SSH into the device and then perform the post-reload capture of running 
configurations. The pre-reload capture can be compared to using Python’s difflib library. Let’s follow the 
step-by-step process to develop the final tool.

# Task
1 To keep things simple, you can copy the previous script and modify it to create the last mini script 

for this chapter.

pynetauto@ubuntu20s1:~/my_tools/tool9_yes_no$ cd ..
pynetauto@ubuntu20s1:~/my_tools$ mkdir tool10_post_check
pynetauto@ubuntu20s1:~/my_tools$ cd tool10_post_check
pynetauto@ubuntu20s1:~/my_tools/ tool10_post_check $ touch post_check1.py
pynetauto@ubuntu20s1:~/my_tools/tool10_post_check$ nano post_check1.py

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

820

# Task

2 Here, we are going to create a socket application that checks port 22. When it detects that port 22 is 
open, it will log into that device and run the show clock command. Otherwise, it will go to sleep for 
10 seconds and recheck port 22. This check will repeat 60 times, which means that the check will run 
for 10 minutes, and this is when we are having the router reboot and boot into the new IOS XE image. 
In production, this value will have to be different based on the network speed and actual hardware 
CPU processor speed, and you have to work out the estimate of the wait time. This lab assumes that if 
the device’s port 22 is not back in service after the reload command, it may require troubleshooting.

post_check1.py
import socket
import time
from netmiko import ConnectHandler

t1 = time.mktime(time.localtime()) # Timer start to measure script running time

device1 = {
'device_type': 'cisco_xe',
'host': '192.168.183.111',
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123',
'global_delay_factor': 2

}
device2 = {

'device_type': 'cisco_xe',
'host': '192.168.183.222',
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123',
'global_delay_factor': 2

}

devices_list = [device1, device2]

for device in devices_list:
ip = str(device['host'])
port = 22
retry = 60
delay = 10
def isOpen(ip, port):

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.settimeout(3)
try:

s.connect((ip, int(port)))
s.shutdown(socket.SHUT_RDWR)
return True



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

821

# Task

except:
return False

finally:
s.close()

t1 = time.mktime(time.localtime())
ipup = False
for i in range(retry):

if isOpen(ip, port):
ipup = True
print(f"{ip} is online. Logging into device to perform post reload check")
net_connect = ConnectHandler(**device)
print(net_connect.send_command("show clock"))
break

else:
print("Device is still reloading. Please wait...")
time.sleep(delay)

t2 = time.mktime(time.localtime()) - t1
print("Total wait time : {0} seconds".format(t2))

When you run the previous script, it will check for port 22, and if port 22 is opened on the target 
device, it should SSH into the router and run the show clock command. Then it will break out of 
the for loop and move to the next device, so your result should look similar to this output. Now you 
know that the port 22 post-checkers are working fine, and we are ready to write our full post-check 
application.

pynetauto@ubuntu20s1:~/my_tools/tool10_post_check$ python3 post_check1.py
192.168.183.111 is online. Logging into device to perform post reload check
*16:13:37.425 UTC Fri Jan 15 2021
192.168.183.222 is online. Logging into device to perform post reload check
*16:13:42.200 UTC Fri Jan 15 2021
Total wait time : 4.0 seconds

3 Now from the VMware Workstation user interface, go to csr1000v-1’s console and enable an access 
list to block port 22 to test the application. Enable access-list 100 to block traffic on port 22 on 
csr1000v-1. See Figure 18-7.

Username: pynetauto
Password: ********
csr1000v-1> enable
csr1000v-1#conf terminal
csr1000v-1(config)#access-list 100 deny tcp any any eq 22
csr1000v-1(config)#access-list 100 permit ip any any
csr1000v-1(config)#interface Gi1
csr1000v-1(config-if)#ip access-group 100 in
csr1000v-1(config-if)#

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

822

# Task

4 Use the following Python command to run the base post-check script. Since we blocked port 22 to 
simulate an unreachable device, it will return the “Device is still reloading. Please wait…” message 
every 10 seconds.

pynetauto@ubuntu20s1:~/my_tools/tool10_post_check$ python3 post_check1.py
Device is still reloading. Please wait...
Device is still reloading. Please wait...

On VMware Workstation’s main console, log into csr1000v-1 and remove access group 100 from 
the GigabitEthernet1 interface; this will allow the script to detect when port 22 is open for SSH.

csr1000v-1(config-if)# no ip access-group 100 in

As soon as the access list is removed from interface GigabitEthernet1, your script will detect an 
open port 22, log into the router, and run the show clock command. Then continues to the second 
router and completes the loop.

pynetauto@ubuntu20s1:~/my_tools/tool10_post_check$ python3 post_check1.py
Device is still reloading. Please wait...
Device is still reloading. Please wait...
Device is still reloading. Please wait...
Device is still reloading. Please wait...

Figure 18-7. VMware console, csr1000v-1, enabling access-list 100 to block traffic on port 22



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

823

# Task

192.168.183.111 is online. Logging into device to perform post reload check
*16:19:26.299 UTC Fri Jan 15 2021
192.168.183.222 is online. Logging into device to perform post reload check
*16:19:29.063 UTC Fri Jan 15 2021
Total wait time : 2.0 seconds

5 To test the previous application, you are going to need the files created from the previous 
development. Let’s copy all of the pre-reload show files from the tool9 development.

pynetauto@ubuntu20s1:~/my_tools/tool10_post_check$ pwd
/home/pynetauto/my_tools/tool10_post_check
pynetauto@ubuntu20s1:~/my_tools/tool10_post_check$ ls
post_check1.py
pynetauto@ubuntu20s1:~/my_tools/tool10_post_check$ ls /home/pynetauto/my_tools/
tool9_yes_no/
reload_yesno1.py  192.168.183.111_showroute_pre.txt  192.168.183.222_showroute_pre.
txt
reload_yesno2.py  192.168.183.111_showrun_pre.txt    192.168.183.222_showrun_pre.txt
yesno.py          192.168.183.111_showver_pre.txt    192.168.183.222_showver_pre.txt
192.168.183.111_showint_pre.txt  192.168.183.222_showint_pre.txt
pynetauto@ubuntu20s1:~/my_tools/tool10_post_check$ cp /home/pynetauto/my_tools/tool9_
yes_no/192.* ./
pynetauto@ubuntu20s1:~/my_tools/tool10_post_check$ ls
192.168.183.111_showint_pre.txt    192.168.183.111_showver_pre.txt    
192.168.183.222_showrun_pre.txt
192.168.183.111_showroute_pre.txt  192.168.183.222_showint_pre.txt    
192.168.183.222_showver_pre.txt
192.168.183.111_showrun_pre.txt    192.168.183.222_showroute_pre.txt  post_check1.py

6 Make a copy of the first file and name it post_check2.py. Use this as the base for our final script.

pynetauto@ubuntu20s1:~/my_tools/tool10_post_check$ cp post_check1.py post_check2.py

Write the following code and complete the application. This application will check port 22 and then 
log into each router and capture the four show commands from each router. Then, using Python’s 
difflib library, we compare the pre- and post-capture configurations line by line. Next, we save 
each comparison set in HTML format for easy viewing for a review. Read and study each line of 
code carefully; the explanations are embedded in the following code for your reference:

post_check2.py
from netmiko import ConnectHandler
import socket
import time
import difflib

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

824

# Task

d_newios = "csr1000v-universalk9.16.09.06.SPA.bin"

device1 = {
'device_type': 'cisco_xe',
'host': '192.168.183.111',
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123',
'global_delay_factor': 2

}
device2 = {

'device_type': 'cisco_xe',
'host': '192.168.183.222',
'username': 'pynetauto',
'password': 'cisco123',
'secret': 'cisco123',
'global_delay_factor': 2

}

devices_list = [device1, device2]

# Checks SSH port and then logs back in to complete the post-upgrade check.
def post_check():

for device in devices_list:
ip = str(device['host'])
port = 22
retry = 120
delay = 10
def isOpen(ip, port):

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.settimeout(3)
try:

s.connect((ip, int(port)))
s.shutdown(socket.SHUT_RDWR)
return True

except:
return False
finally:
s.close()

t1 = time.mktime(time.localtime())
ipup = False
for i in range(retry):

if isOpen(ip, port):
ipup = True
print(f"{ip} is online. Logging into device to perform post reload 
check")



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

825

# Task

# Capture four show commands result from each router
print("Performing post upgrade check.")
net_connect = ConnectHandler(**device)
net_connect.enable(cmd='enable 15')
config_commands1 = ['no boot system', 'boot system flash:/' + d_
newios, 'do write memory']
output = net_connect.send_config_set(config_commands1)
print (output)
net_connect.send_command('terminal length 0\n')
with open(f'{ip}_showver_post.txt', 'w+') as f1:

print("Capturing post-reload 'show version'")
showver_post = net_connect.send_command("show version")
f1.write(showver_post)

time.sleep(1)
with open(f'{ip}_showrun_post.txt', 'w+') as f2:

print("Capturing post-reload 'show running-config'")
showrun_post = net_connect.send_command("show running-config")
f2.write(showrun_post)

time.sleep(1)
with open(f'{ip}_showint_post.txt', 'w+') as f3:

print("Capturing post-reload 'show ip interface brief'")
showint_post = net_connect.send_command("show ip interface brief")
f3.write(showint_post)

time.sleep(1)
with open(f'{ip}_showroute_post.txt', 'w+') as f4:

print("Capturing post-reload 'show ip route'")
showroute_post = net_connect.send_command("show ip route")
f4.write(showroute_post)

time.sleep(1)

# Compare pre vs post configurations
showver_pre = "showver_pre"
showver_post = "showver_post"
showver_pre_lines = open(f"{ip}_showver_pre.txt").readlines() 
#converts into strings first for comparison
#time.sleep(1)
showver_post_lines = open(f"{ip}_showver_post.txt").readlines() 
#converts into strings first for comparison
#time.sleep(1)
# Four arguments required in HtmlDiff function
difference = difflib.HtmlDiff(wrapcolumn=70).make_file(showver_pre_
lines, showver_post_lines, showver_pre, showver_post)
difference_report = open(f"{ip}_show_ver_compared.html", "w+")
difference_report.write(difference) # Writes the differences to html 
file
difference_report.close()
time.sleep(1)
print("-"*80)

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

826

# Task

showrun_pre = "showrun_pre"
showrun_post = "showrun_post"
showrun_pre_lines = open(f"{ip}_showrun_pre.txt").readlines()
showrun_post_lines = open(f"{ip}_showrun_post.txt").readlines()
difference = difflib.HtmlDiff(wrapcolumn=70).make_file(showrun_pre_
lines, showrun_post_lines, showrun_pre, showrun_post)
difference_report = open(f"{ip}_show_run_compared.html", "w+")
difference_report.write(difference)
difference_report.close()
time.sleep(1)

showint_pre = "showint_pre"
showint_post = "showint_post"
showint_pre_lines = open(f"{ip}_showint_pre.txt").readlines()
showint_post_lines = open(f"{ip}_showint_post.txt").readlines()
difference = difflib.HtmlDiff(wrapcolumn=70).make_file(showint_pre_
lines, showint_post_lines, showint_pre, showint_post)
difference_report = open(f"{ip}_show_int_compared.html", "w+")
difference_report.write(difference)
difference_report.close()
time.sleep(1)

showroute_pre = "showroute_pre"
showroute_post = "showroute_post"
showroute_pre_lines = open(f"{ip}_showroute_pre.txt").readlines()
showroute_post_lines = open(f"{ip}_showroute_post.txt").readlines()
difference = difflib.HtmlDiff(wrapcolumn=70).make_file(showroute_
pre_lines, showroute_post_lines, showroute_pre, showroute_post)
difference_report = open(f"{ip}_show_route_compared.html", "w+")
difference_report.write(difference)
difference_report.close()
time.sleep(1)
print("-"*80)
break

else:
print("Device is still reloading. Please wait...")
time.sleep(delay)

t2 = time.mktime(time.localtime()) - t1
print("Total wait time : {0} seconds".format(t2))
print("="*80)
time.sleep(1)

post_check()
print("All tasks completed. Check pre and post configuration comparison html 
files.")



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

827

# Task

5 Run the script; it should create backup files post-reload and then create the HTML files after 
comparing each line. This script will not trigger the routers to reload as part of the previous script. 
Here we are interested in creating the files, and then pre- and post-file contents are compared. In 
the final script, we will need to add this script to reload_yesno2.py and turn it into a fully working 
application. So, don’t be alarmed if the HTML is different from what you have expected.

pynetauto@ubuntu20s1:~/my_tools/tool10_post_check$ python3 post_check2.py
192.168.183.111 is online. Logging into device to perform post reload check
Performing post upgrade check.
configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
csr1000v-1(config)#no boot system
csr1000v-1(config)#boot system flash:/csr1000v-universalk9.16.09.06.SPA.bin
csr1000v-1(config)#do write memory
Building configuration...
[OK]
csr1000v-1(config)#end
csr1000v-1#
Capturing post-reload 'show version'
Capturing post-reload 'show running-config'
Capturing post-reload 'show ip interface brief'
Capturing post-reload 'show ip route'
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Total wait time : 19.0 seconds
================================================================================
192.168.183.222 is online. Logging into device to perform post reload check
Performing post upgrade check.
configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
csr1000v-2(config)#no boot system
csr1000v-2(config)#boot system flash:/csr1000v-universalk9.16.09.06.SPA.bin
csr1000v-2(config)#do write memory
Building configuration...
[OK]
csr1000v-2(config)#end
csr1000v-2#
Capturing post-reload 'show version'
Capturing post-reload 'show running-config'
Capturing post-reload 'show ip interface brief'
Capturing post-reload 'show ip route'
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Total wait time : 18.0 seconds
================================================================================
All tasks completed. Check pre and post configuration comparison html files.

(continued)



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

828

# Task

Connect to the ubuntu20s1 server using WinSCP or FileZilla and locate the backup and comparison 
files in the /home/yourname/my_tools/tool10_post_check/ directory. You can copy the HTML 
files and open them in a web browser. See Figure 18-8.

6 Copy the files from the automation server onto your Windows host PC and open the HTML files 
in a web browser. If everything worked, you will see the headings with _pre and _post for each 
respective show command. Since we have not integrated this script with the reload_yesno2.py 
script, it will still display the currently running configurations. We will integrate all ten applications 
we have developed so far in the next chapter and turn them into an end-to-end working 
application. See Figure 18-9.

Figure 18-8. WinSCP, checking and copying HTML compared files



Chapter 18 ■ python network automation Lab: CisCo ios upgrade mini tooLs deveLopment

829

 Summary
You developed ten mini tools in this chapter, which has prepared you for the final Cisco IOS upgrade 
application in the next chapter. Each tool developed in this chapter has its use cases and can also be used 
as a stand-alone tool with minor or no modifications for production use. As you have seen, we have used 
various Python modules to develop our own Python applications that fulfill our requirements. These tools 
can be combined into one application; we can come up with various workflows and develop different 
Python network applications (tools). The general process of writing a Python program is much the same 
across all vendor networking devices. As long as Python modules support specific vendor products, you can 
apply similar automation application development strategies for any vendor product. Now let’s combine all 
ten applications and create a fully functioning Cisco IOS XE upgrade tool.

Figure 18-9. Copying and opening an HTML file check example

# Task



831
© Brendan Choi 2021 
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3_19

CHAPTER 19

Python Network Automation 
Labs: Combining and Completing 
the Cisco IOS Upgrade Application

In this final chapter, you will put together the ten Python stand-alone applications we developed in  
Chapter 18. The application will be a fully functional Cisco IOS/IOS-XE upgrade application consisting 
of pre-check, IOS upload, pre-reload check, pre-reload configuration backup, reload, and post-upgrade 
verification check. We have been upgrading IOS on Cisco network devices manually for years, but now you 
can develop and combine various Python tools to let your Python code do to work for you.

Once you have reached the end of this chapter, you will have learned how to put together smaller 
applications to make a sophisticated and production-ready application. Python allows programmers the 
freedom to write almost any code they like, and the only limitation is the programmer’s imagination. On the 
other hand, configuration and orchestration tools such as Ansible and Puppet provide nonprogramming 
engineers with idempotent features to configure and manage network devices with a lot of flexibility. 
However, you still have to work within the framework set by production. After completing this chapter, and 
hence this book, you will have reached the first milestone in your Python network programming journey.

 

In the previous chapter, you developed ten applications related to the Cisco IOS upgrade. Now it is 
time to combine those tools and make a fully functioning Cisco IOS XE upgrade tool. As you work on more 
Python projects, you will always find something new that you have not encountered before. One of the best 
ways to learn is through project work with lots of unknowns and challenges. However, if you are starting 
your Python network automation journey, then try to find a smaller task to focus your efforts and document 
what tasks you can. Start to automate more straightforward tasks and then spend the time researching and 
studying books, taking online courses, searching the information on Google, or seeking advice from others 
who have already done something similar.

I briefly introduced you to object-oriented programming (OOP) at the beginning of the previous 
chapter. We will not use it here in our final IOS XE upgrade application as it adds more complexity. Even 
though OOP is a must-understand concept, we can still write code without creating custom OOP classes.  

https://doi.org/10.1007/978-1-4842-6806-3_19#DOI


Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

832

In Python, almost everything can be considered an object, and even if you are not aware of OOP, you are still 
using it. Please note that I have purposefully removed the OOP portion of the final script, and it will not be 
part of our final Python application.

You have made it to the final exercise, which is the book’s real climax. I want to congratulate you on a 
mammoth effort for following along with all the chapters of the book. A few years back, when I began my first 
journey in network automation with Python, it was still considered a relatively new technology trend and 
felt like a distant dream to automate tasks such as a Cisco IOS upgrade on enterprise routers and switches. 
Network automation has recently gained momentum, and now network automation and Python coding are 
on every IT/network team’s mind. So without further ado, let’s get on with completing the final application: a 
working IOS upgrade tool.

 before starting your final tasks in this section, please review Figure 17-14 and Figure 17-15 in Chapter 17. 
you may need a quick refresher to gauge what we are about to achieve in this final lab. the final script's 
workflow will be almost identical to the automation tasks described in Figure 17-15.

 Creating a Single Python File
For simplicity, we will create only a single Python file (upgrade_crs1000v.py). In a real-world production 
environment, the best practice is to create and save tools into smaller files (modules) to reduce the number 
of lines written to the main script. However, here we are still exploring and learning, so it is more important 
to see the whole picture of how each application works. After you have finished the book, you can move 
some parts of the code into separate modules, which was discussed in the previous chapter. As discussed 
earlier, we will make this application an interactive tool, getting the user credentials and user inputs while 
the script runs. The device information will be written to a .csv file and read from the file using the pandas 
module as df (dataframe); this is a more convenient way to read a large text-based data than to make the 
user enter the data.

# Task
1 You will be continuing the tasks from the /home/pynetauto/my_tools/ directory; this directory 

contains all the mini Python applications we developed in Chapter 18. Change to the my_tools 
directory and then create the upgrade_crs1000v.py file inside this directory now.

pynetauto@ubuntu20s1:~$ pwd
/home/pynetauto
pynetauto@ubuntu20s1:~$ cd my_tools
pynetauto@ubuntu20s1:~/my_tools$ touch upgrade_crs1000v.py
pynetauto@ubuntu20s1:~/my_tools$ ls
upgrade_crs1000v.py

We will start filling in the final upgrade_crs1000v.py script soon; leave it there as a placeholder for 
the time being.



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

833

# Task
2 Let’s quickly discuss which files will be referenced for our application development. If you followed 

Chapter 18 in detail and completed all of the development tasks, you will remember the ten 
applications we have developed and each corresponding tool’s directory names. The names of the 
files you will reference are listed next. If you prefer to work in the Windows text editor or an IDE, 
you can save the listed files to your Windows folder. I have copied the files to the /home/pynetauto/
my_tools/ directory for reference, but for the completed IOS applications to work, you will require 
the upgrade_crs1000v.py and devices_info.csv files in the /home/pynetauto/my_tools/ 
directory and also a new IOS file in the /home/pynetauto/my_tools/new_ios/ directory. If you have 
completed the development task in the IOS uploading section, you will have the new IOS file already 
in this directory. If you have not uploaded the new IOS file (csr1000v-universalk9.16.09.06.SPA.
bin) yet, refer to the IOS uploading section and complete that task now.

pynetauto@ubuntu20s1:~/my_tools$ ls -lh
total 52K
# Main script and files
-rw-rw-r-- 1 pynetauto pynetauto    0 Jan 15 22:03 upgrade_crs1000v.py
-rw-rw-r-- 1 pynetauto pynetauto  271 Jan 15 23:13 devices_info.csv
# Python application scripts referenced:
-rw-rw-r-- 1 pynetauto pynetauto  955 Jan 15 23:14 check_flash2.py
-rw-rw-r-- 1 pynetauto pynetauto 1.5K Jan 15 23:13 get_cred2.py
-rw-rw-r-- 1 pynetauto pynetauto 1.8K Jan 15 23:18 make_backup1.py
-rw-rw-r-- 1 pynetauto pynetauto 1.3K Jan 15 23:14 md5_validate3.py
-rw-rw-r-- 1 pynetauto pynetauto 2.4K Jan 15 23:18 md5_verify2.py
-rw-rw-r-- 1 pynetauto pynetauto  681 Jan 15 23:14 ping_tool6.py
-rw-rw-r-- 1 pynetauto pynetauto 1009 Jan 15 23:14 ping_tool6_tools.py
-rw-rw-r-- 1 pynetauto pynetauto 6.1K Jan 15 23:18 post_check2.py
-rw-rw-r-- 1 pynetauto pynetauto 1.3K Jan 15 23:13 read_info8.py
-rw-rw-r-- 1 pynetauto pynetauto 3.9K Jan 15 23:18 reload_yesno2.py
-rw-rw-r-- 1 pynetauto pynetauto 3.2K Jan 15 23:14 upload_ios1.py
# new IOS .bin file location
pynetauto@ubuntu20s1:~/my_tools$ ls /home/pynetauto/my_tools/new_ios
csr1000v-universalk9.16.09.06.SPA.bin

3 If you do not have the devices_info.csv file from the previous chapter, you can create it now. You 
can create this file using Microsoft Excel or directly in a text editor using comma-separated values 
(separate values with a comma and no spaces). After creating your file, it should look the same as 
the following:

pynetauto@ubuntu20s1:~/my_tools$ nano devices_info.csv

devices_info.csv
devicename,device,devicetype,host,newios,newiosmd5
csr1000v-1,RT,cisco_xe,192.168.183.111,csr1000v-universalk9.16.09.06.SPA.bin,77878ae
6db8e34de90e2e3e83741bf39
csr1000v-2,RT,cisco_xe,192.168.183.222,csr1000v-universalk9.16.09.06.SPA.bin,77878ae
6db8e34de90e2e3e83741bf39

(continued)



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

834

# Task
4 Now that the standard procedures are out of the way, let’s begin the final application development. 

You will now add the series of scripts to the upgrade_crs1000v.py script in a linear fashion, and 
once everything has been strung together, it will work as an application that can be directly used in 
most production environments.

First, you will add all the Python modules that will be used in our application and then add and 
modify the scripts one at a time. Follow these instructions to initially create and test a single file 
application, which will run from end to end.

pynetauto@ubuntu20s1:~/my_tools$ nano upgrade_crs1000v.py

Add all the modules used, as shown here:

upgrade_crs1000v.py
import socket # For socket networking
import os # For Python Server OS
import time # Python time module
import pandas as pd # Pandas to read data into a data frame
import re # Python regular expression module
from getpass import getpass # For password collection
import os.path # For Python Server OS directory
import hashlib # For MD5 checks
from netmiko import ConnectHandler, SCPConn # For netmiko's SSH connection and SCP 
file transfer
from netmiko.ssh_exception import  NetMikoTimeoutException # To accept netmiko 
timeout exceptions
import difflib # For analyzing two files and differences

t = time.mktime(time.localtime()) # Timer start to measure script running time

In the next step, you will append and modify sections of code from each tool and slowly build up the 
main application script.

5 A. Use get_cred2.py (tool2_login) and turn it into a function. This script will interactively get the 
network administrator ID and password, prompt to enable the secret, and give the user the option to 
select yes or no. We are also using a regular expression to control the user’s input for the username 
and password. For p1, the expected characters are from 5 to 30 characters long, starting with a letter 
and finishing with a letter or a number. For p2, the expected characters are from 8 to 50 characters 
long, starting with a letter and finishing with any character. Regular expression can be a difficult 
topic for some people; you should review Chapter 9 if you need help.

"""
Step 1. From get_cred2.py (tool2_login) application:
Get network administrator ID and password, also prompt for enable secret and give 
the user option to select yes or no.
p1: Between 5-30 characters long, starting with an alphabet & finishes with an 
alphabet or a number
p2: Between 8 to 50 characters long, starting with an alphabet & finishes with any 
characters
"""

def get_secret(p2):
    global secret
    resp = input("Is secret same as password? (y/n) : ")



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

835

# Task
    print("-"*80)
    resp = resp.lower()
    if resp == "yes" or resp == "y":
        secret = pwd

    elif resp == "no" or resp == "n":
        secret = None
        while not secret:
            secret = getpass("Enter the secret : ")
            while not p2.match(secret):
                secret = getpass(r"*Enter the secret : ")
            secret_verify = getpass("Confirm the secret : ")
            if secret != secret_verify:
                print("!!! the secret does not match. Please try again.")
                print("-"*80)
                secret = None
    else:
        get_secret(p2)

def get_credentials():
    p1 = re.compile(r'^[a-zA-Z][a-zA-Z0-9_-]{3,28}[a-zA-Z0-9]$')
    p2 = re.compile(r'^[a-zA-Z].{7,49}')
    global uid
    uid = input("Enter Network Admin ID : ")
    while not p1.match(uid):
        uid = input(r"*Enter Network Admin ID : ")
    global pwd
    pwd = None
    while not pwd:
        pwd = getpass("Enter Network Admin PWD : ")
        while not p2.match(pwd):
            pwd = getpass(r"*Enter Network Admin PWD : ")
        pwd_verify = getpass("Confirm Network Admin PWD : ")
        if pwd != pwd_verify:
            print("!!! Network Passwords do not match. Please try again.")
            print("-"*80)
            pwd = None
    # Trigger get_secret function to run
    get_secret(p2)
    return uid, pwd, secret
# Trigger get_Credential function to run
get_credentials()

Now you have completed the above task A, continue with the task B.

(continued)



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

836

# Task
6 B. Copy and paste read_info8.py (tool3_read_csv); this is the script that reads the devices_info.

csv file to feed our script and convert the read items into variables to be used throughout our script. 
Turn this into a function for portability and readability. Ensure that you pass the three arguments 
received from task A, so that the script runs without argument error. Remember, this application 
expects three arguments from the previous workflow: uid, pwd, and secret.

"""
Step 2. From read_info8.py (tool3_read_csv) application:
Read the content of the devices_info.csv file and convert the values into two lists. 
device_list to be used as an information feeder to the script device_list_netmiko to 
be used as netmiko friendly dictionary items for SSH connection
"""

def read_info(uid, pwd, secret):
    df = pd.read_csv(r'./devices_info.csv') # ensure the correct file location
    number_of_rows = len(df.index)
    # Read the values and save as a list, read column as df and save it as a list
    devicename = list(df['devicename'])
    device = list(df['device'])
    devicetype = list(df['devicetype'])
    ip = list(df['host'])
    newios = list(df['newios'])
    newiosmd5 = list(df['newiosmd5'])
    # Append the items and convert to a list, device_list
    global device_list # For md5_validate3.py
    device_list = []
    for index, rows in df.iterrows():
        device_append = [rows.devicename, rows.device, \
        rows.devicetype, rows.host, rows.newios, rows.newiosmd5]
        device_list.append(device_append)
    # Using device_list, create a netmiko friendly list device_list_netmiko
    global device_list_netmiko
    device_list_netmiko = []
    i = 0
    for x in device_list:
        if len(x) != 0: # As long as number of items in device_list is not 0 (empty)
            i += 1
             name = f'device{str(i)}' # Each for loop, the name is updated to device1, 

device2, device3, ...
            devicetype, host = x[2], x[3]
            device = {
            'device_type': devicetype,
            'host': host,
            'username': uid,
            'password': pwd,
            'secret': secret,
            }
            device_list_netmiko.append(device)
# Trigger read_info function to run
read_info(uid, pwd, secret)



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

837

# Task
7 C. This module is almost straight out of ping_tool6.py and ping_tool6_tools.py (tool1_ping). 

Copy the script and modify it; then use it to test the connectivity to all devices in our device list. This 
script uses both Linux’s OS ping command and socket networking to check for an open socket 22 
status. If an IP address is unreachable, the script will exit the application, and you must troubleshoot 
why the particular device is unreachable on the network. This script should produce three separate 
files containing reachability status. If port 22 is open, then the device’s IP address gets written to f1; 
if port 22 is closed, the script will test port 23’s status and write the IP address to f2. If the device is 
unreachable, then the IP address will be written to f3.

"""
Step 3. From ping_tool6.py and ping_tool6_tools.py (tool1_ping) application:
Perform connectivity tests, first using ICMP ping, Second, check port 22. Also, 
separate the ips with open port 22. If port 22 is closed, then test port 23 create 
three files containing the result of the reachability tests
"""
def test_connectivity(device_list_netmiko):
    f1 = open('reachable_ips_ssh.txt',  'w+')
    f2 = open('reachable_ips_telnet.txt', 'w+')
    f3 = open('unreachable_ips.txt', 'w+')
    for device in device_list_netmiko:
    ip = device['host'].strip()
    print(ip)
    resp = os.system('ping -c 4 ' + ip)
    if resp == 0:
        for port in range (22, 23):
            destination = (ip, port)
            try:
                with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
                    s.settimeout(3)
                    connection = s.connect(destination)
                    print(f"{ip} {port} open")
                    print("-"*80)
                    f1.write(f"{ip}\n")
            except:
                print(f"{ip} {port} closed")
                f3.write(f"{ip} {port} closed\n")
                for port in range (23, 24):
                    destination = (ip, port)
                    try:
                        with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
                            s.settimeout(3)
                            connection = s.connect(destination)
                            print(f"{ip} {port} open")
                            print("-"*80)
                            f2.write(f"{ip}\n")
                    except:
                        print(f"{ip} {port} closed")
                        print("-"*80)
                        f3.write(f"{ip} {port} closed\n")

(continued)



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

838

# Task
        else:
            print(f"{ip} unreachable")
            print("-"*80)
            f3.write(f"{ip} unreachable\n")
    f1.close()
    f2.close()
    f3.close()
# Trigger test_connectivity function to run
test_connectivity(device_list_netmiko)

8 D. This part is from md5_validate3.py (tool4_md5_linux), and as explained earlier, this will 
validate the MD5 value of the new IOS file on the server. Since the file and script runs from a single 
Python automation server, we can use Python’s hashilib to test the IOS’s MD5 value in a directory. 
Testing the MD5 values rigorously throughout our workflow will guarantee a successful IOS upgrade 
to a newer IOS XE version. Also, you have to ensure that your new IOS is in the correct directory.

"""
Step 4. From md5_validate3.py (tool4_md5_linux) application:
Validate the MD5 value of the new IOS file on the Python Server against the value 
you have provided on the csv file. Must be validated before moving on.
"""

def validate_md5(device_list):
    for x in device_list:
        print(x[3], x[0], x[1], x[2])
        newios = x[4]
        newiosmd5 = str(x[5].lower()).strip()
        print(newiosmd5)
        newiosmd5hash = hashlib.md5()
         file = open(f'/home/pynetauto/my_tools/new_ios/{newios}', 'rb') # New IOS 

directory here
        content = file.read()
        newiosmd5hash.update(content)
        newiosmd5server = newiosmd5hash.hexdigest()
        print(newiosmd5server.strip())
        global newiossize
         newiossize = round(os.path.getsize(f'/home/pynetauto/my_tools/new_ios/

{newios}')/1000000, 2)
        print(newiossize, "MB")
       if newiosmd5server == newiosmd5:
            print("MD5 values matched!")
            print("-"*80)
        else:
            print("Mismatched MD5 values. Exit")
            print("-"*80)
            exit()
    return newiossize
# Trigger validate_md5 function to run
validate_md5(device_list)



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

839

# Task
9 E. In this task, the script is almost a carbon copy of check_flash2.py (tool5_fsize_cisco). As you 

create the function, make sure you parse the correct variables from the previous workflow. In this 
case, we are parsing in the device_list_netmiko list for the SSH connection and in the variable 
newiossize to confirm that the router has enough free space in the flash memory to accommodate 
the new IOS file size. If the free space is less than one-and-a-half times the new IOS file size, the 
script will exit. On newer Cisco devices, the flash free size is not much of a challenge as they can 
accommodate multiple larger IOS and IOS XE files, but on older devices, you will have to remove 
the old IOS from the flash to make room. You could write something funky here and automatically 
locate the largest or oldest file if you want. Anyway, always check the free size during your change 
planning process.

"""
Step 5. From check_flash2.py (tool5_fsize_cisco) application:
Checks available flash size on the router
"""

def check_flash(device_list_netmiko, newiossize):
    for device in device_list_netmiko:

ip = str(device['host'])
net_connect = ConnectHandler(**device)
net_connect.send_command("terminal length 0")
showdir = net_connect.send_command("dir")
#showflash = net_connect.send_command("show flash:") # For switches
time.sleep(2)
p1 = re.compile("\d+(?=\sbytes\sfree\))")
m1 = p1.findall(showdir)
flashfree = ((int(m1[0])/1000000))
print(f"{ip} Free flash size : ", flashfree, "MB")
print("-"*80)
if flashfree < (newiossize * 1.5):

print(f"Not enough space on {ip}'s flash! Exiting")
print("!"*80)
exit()

else:
print(f"{ip} has enough space for new IOS.")
print("-"*80)

# Trigger check_flash function to run
check_flash(device_list_netmiko, newiossize)

(continued)



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

840

# Task
10 F. This script is from upload_ios1.py (tool7_upload_ios), and it forms a big part of the main script. 

As the name suggests, after the previous task, the application is ready to upload the new IOS to the 
first router’s flash, but before uploading the file, some housekeeping needs to take place. First, the 
logged-in user has a level 15 privilege to perform IOS uploading tasks via SCP. Second, the router 
has the right configuration allowing aaa authentication and authorization for this user. If the first 
and second requirements are not met, you have overlooked your change preparation, so you must 
go back and fix the access issue first before attempting to run this application. But if everything 
is correctly configured with the right access to this device, then the application checks for ip scp 
server enable to turn on the SCP server service on the Cisco device. If this feature is disabled, the 
script will automatically enable it before the new IOS file upload and then disable it after the upload 
finishes. Note that the next task will continue at the end of this task.

"""
Step 6. From upload_ios1.py (tool7_upload_ios) application:
First, check the aaa configuration requirements. If not met, exit for correct configuration. 
Second, check if 'ip scp enable' is enabled for SCP file transfer. Enable ip scp.
Third, upload the IOS file to the router, then disable ip scp.
"""

def ios_upload(device_list_netmiko, device_list):
i = 0
for device in device_list_netmiko:

device_x = device_list[i]
newios = device_x[4] # Call out newios value
newiosmd5 = device_x[5] # Call out newiosmd5 value
i += 1

s_newios = f'/home/pynetauto/my_tools/new_ios/{newios}'
print("*"*80)
#print(device)
ip = str(device['host'])
print(f'{ip} beginning IOS XE upgrade.')
username = str(device['username'])
net_connect = ConnectHandler(**device)
net_connect.send_command("terminal length 0")
showrun = net_connect.send_command("show running-config")
check_priv15 = (f'username {username} privilege 15')
aaa_authenication = "aaa authentication login default local enable"
aaa_authorization = "aaa authorization exec default local"
if check_priv15 in showrun:

print(f"{username} has level 15 privilege - OK")
if aaa_authenication in showrun:

print("check_aaa_authentication - OK")
if aaa_authorization in showrun:

print("check_aaa_authorization - OK")
else:

print("aaa_authorization - FAILED ")
exit()

else:
print("aaa_authentication - FAILED ")
exit()



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

841

# Task
else:

print(f"{username} has not enough privilege - FAILED")
exit()

net_connect.enable(cmd='enable 15')
net_connect.config_mode()
net_connect.send_command('ip scp server enable')
net_connect.exit_config_mode()
time.sleep(1)
print("New IOS uploading in progress! Please wait...")
scp_conn = SCPConn(net_connect)
scp_conn.scp_transfer_file(s_newios, newios)
scp_conn.close()
time.sleep(1)
net_connect.config_mode()
net_connect.send_command('no ip scp server enable')
net_connect.exit_config_mode()

11 G. In this task, you can borrow the script from md5_verify2.py (in tool8_md5_cisco) to perform 
the MD5 verification of the newly uploaded IOS on the router’s flash and compare it to the MD5 
value calculated on the server. Once again, we are utilizing the power of regular expressions to test 
if Cisco IOS XE’s verify command has run successfully by examining the “Verified” characters in 
the command’s output. Then we find the 32-character MD5 value using the re (regular expression) 
compiler and use it as a variable to test the validity of the MD5 value. If any errors occur, try and 
except will catch most of them.

"""
Step 7. From md5_verify2.py (in tool8_md5_cisco) application:
Fourth, verify the MD5 value of the new IOS on the router flash, then
compare it with the server-side MD5 value.
"""

try:
locate_newios = net_connect.send_command(f"show flash: | in {newios}")
if newios in locate_newios:

result = net_connect.send_command("verify /md5 flash:{} {}".format(newios,newiosmd5))
print(result)
p1 = re.compile(r'Verified')
p2 = re.compile(r'[a-fA-F0-9]{31}[a-fA-F0-9]')
verified = p1.findall(result)
newiosmd5flash = p2.findall(result)
if verified:

result = True
print("MD5 values MATCH! Continue")
print("MD5 of new IOS on Server : ",newiosmd5)
print("MD5 of new IOS on flash  : ",newiosmd5flash[0])
print("-"*80)

else:
result = False
print("MD5 values DO NOT MATCH! Exiting.")
print("-"*80)
exit()

(continued)



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

842

# Task
else:

print("No new IOS found on router's flash. Continue to next device...")
print("-"*80)

except (NetMikoTimeoutException):
print (f'Timeout error to : {ip}')
print("-"*80)
continue

except unknown_error:
print ('Unknown error occurred : ' + str(unknown_error))
print("-"*80)
continue

12 H. Under normal circumstances, this may not be required, but to make the application a little more 
real, I have decided to make this application more interactive where on completion of a new IOS 
upload, it gives the user an option to reload the router by answering yes or no. This is a large portion 
of the script. As soon as you respond with y or yes and press the Enter key, the script will reconfigure 
the router’s boot system configuration and then save the running configuration to the startup 
configuration. This is followed by pre-reload configuration captures of the four show commands. 
It issues a reload command to initiate the reloading of the device. As soon as the router goes into 
reloading mode, you will lose the SSH connection, and also, the Python automation server will return 
EoFError. To continue running our script on the server, we use the try and except methods to catch 
this error and wait for the first 60 seconds; then we run the check_port_22_post function to scan port 
22 for its status every 5 seconds.  The check_port_22_post application is smart, so it will automatically 
detect that the router is up and follow through with the post-reload configuration check; then it will 
produce multiple HTML comparison files for IOS upgrade validation.

"""
Step 8. From reload_yesno2.py (in tool9_yes_no) application:
Fifth, give the user a chance to review the result and let
him/her decide if he wants to reload the device. This can be removed to automate 
this process fully, but this is included to demonstrate how interactive session 
works. If 'Y", reload now, if "n", reload later.       Sixth, change the boot system 
command to boot into new IOS on the flash:/ Save configuration.
"""

yes_list = ['yes', 'y']
no_list = ['no', 'n']
print("!"*80)
print("Note: Devices will be reloaded one at a time.")
resp = input(f"Do you want to reload {ip} now? (y/n)? ").lower()
if resp in yes_list:

print("Reloading devices")
#net_connect = ConnectHandler(**device)
net_connect.enable(cmd='enable 15')
config_commands1 = ['no boot system', 'boot system flash:/' + newios, 'do write 
memory']
output = net_connect.send_config_set(config_commands1)
print (output)
net_connect.send_command('terminal length 0\n')
show_boot = net_connect.send_command('show boot\n')
show_dir = net_connect.send_command('dir\n')



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

843

# Task
if newios not in show_dir:

print('Unable to locate new IOS on the flash:/. Exiting.')
print("-"*80)
exit()

elif newios not in show_boot:
print('Boot system was not correctly configured. Exiting.')
print("-"*80)
exit()

# Seventh, if boot commands are correct, capture another running backup of the 
device for comparison.
elif newios in show_boot and newios in show_dir:

try:
print(f'Found {newios} in show boot')
print("-"*80)
print(f"{ip} [Pre-reload] Capture configuration")
net_connect.send_command("terminal length 0")
time.sleep(1)
with open(f'{ip}_showver_pre.txt', 'w+') as f1:

print("* [Pre-reload] Capturing 'show version'")
showver_pre = net_connect.send_command("show version")
f1.write(showver_pre)

time.sleep(1)
with open(f'{ip}_showrun_pre.txt', 'w+') as f2:

print("* [Pre-reload] Capturing 'show running-config'")
showrun_pre = net_connect.send_command("show running-config")
f2.write(showrun_pre)

time.sleep(1)
with open(f'{ip}_showint_pre.txt', 'w+') as f3:

print("* [Pre-reload] Capturing 'show ip interface brief'")
showint_pre = net_connect.send_command("show ip interface brief")
f3.write(showint_pre)

time.sleep(1)
with open(f'{ip}_showroute_pre.txt', 'w+') as f4:

print("* [Pre-reload] Capturing 'show ip route'")
showroute_pre = net_connect.send_command("show ip route")
f4.write(showroute_pre)

time.sleep(1)
print("-"*80)

t1 = time.mktime(time.localtime()) # To measure time elapsed for reload

# Eighth, initiate the device reload
print(f"{ip} is now reloading.")
net_connect.send_command('reload', expect_string='[confirm]')
net_connect.send_command('yes')
net_connect.send_command('\n')
print("-"*80)
# If you remove the "y" or "n" prompt when reloading is initiated, the 
server will generate
# OSError, use this code to catch the OSError to run the code continuously.

(continued)



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

844

# Task
# If using the interactive as in this example, then it will produce 
EoFError, so leave this
# code as is

# except OSError:
# print("***Device is now reloading. This may take 2-5 minutes.")
# time.sleep(45)
# print("-"*80)
# port = 22
# check_port_22_post(ip, port, device, t1)
# print("-"*80)

except EOFError:
print("***Device is now reloading. This may take 2-5 minutes.")
time.sleep(60)
print("-"*80)
port = 22
# Trigger check_port_22_post function for check port 22 and post check
check_port_22_post(ip, port, device, t1)
print("-"*80)

# If chosen 'n', break out of the operation
elif resp in no_list:

print("You have chosen to reload the devices later. Exiting the application.")
break

print("*"*80)
# Trigger ios_upload main function
ios_upload(device_list_netmiko, device_list)

13 I. This script needs to go before the main script, which needs to be called within the same file. Place 
this script just before task A, so this function is predefined before the main script runs. This script 
will run as the final script within the main script, so Python must be aware of this script. Previously, 
we briefly discussed how this script works, but this is the same script as post_check2.py  
(tool10_post_check). This part of the application will check that port 22 is open or closed with the 
delay (wait) timer of 5 seconds and retry value of 90 (times). The IOS-XE router under a typical 
operation and a virtual router such as CSR 1000v will complete the reloading in approximately three 
to five minutes. Still, it may take longer if multiple routing protocols are enabled and heavy IP traffic 
traverses the production network.

Once the router interface comes back up and port 22 is detected as open for connection, this 
application will SSH back into the router, perform the post-reload tasks, and capture the four show 
configurations post-reload. The two sets of files, pre and post, are compared using the difflib 
library. The library creates four sets of HTML files for IOS upgrade success verification and 
validation. This basically means reusing a make_backup1.py (tool6_make_backup) application. 
In this task, two applications are combined into one. If there is another device, in this case, yes, 
the script will go back to task G and start uploading IOS on the second router and follow the same 
workflow as before. If there are no other devices left for the IOS upgrade, the application will finish 
and output the success message, and also time is taken to run the whole script from end to end.

"""
Step 9. From post_check2.py (tool10_post_check) and make_backup1.py (tool6_make_backup).
Check SSH port 22 and then log back in. Then complete the post-upgrade verification 
check. This script compares before and after running configurations to validate the 
IOS XE upgrade's success for your devices.
"""



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

845

# Task
def check_port_22_post(ip, port, device, t1):

retry = 90 # Try 90 times
delay = 5 # 5 seconds wait
def isOpen(ip, port):

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.settimeout(3)
try:

s.connect((ip, int(port)))
s.shutdown(socket.SHUT_RDWR)
return True # The statements after the return statements are not executed.

except:
return False

finally:
s.close()

# Retry 90 times until the port is in open state.
for i in range(retry):

if isOpen(ip, port):
print(ip + " is back online.")
t2 = time.mktime(time.localtime()) - t1
print(f"{ip}'s reload time : {0} seconds".format(t2))
print(f"Logging back into {ip} to perform post-reload tasks.")
print("Please wait...")
# When port 22 is open, start postreload_check here.
print(ip)
net_connect = ConnectHandler(**device)
print(f'*** {ip} is back online.')
print("-"*80)
# [Post-reload] Capture configuration
print(f"{ip} [Post-reload] Capture configuration")
file14 = open(ip + '_showver_post.txt', 'w+')
net_connect.send_command("terminal length 0")
showver_postreload = net_connect.send_command("show version")
print("* [Post-reload] Capturing 'show version'")
file14.write(showver_postreload)
file14.close()
# Successful upgrade will print IP and correct system boot image name.
p99= re.compile(r'System image file is ".+[?=\"]')
m99 = p99.findall(showver_postreload)
print(f"! {ip}'s {m99}.")
time.sleep(2)
file15 = open(ip + '_showrun_post.txt', 'w+')
showrun_postreload = net_connect.send_command("show running-config")
print("* [Post-reload] Capturing 'show running-config'")
file15.write(showrun_postreload)
file15.close()
time.sleep(2)
file16 = open(ip + '_showint_post.txt', 'w+')
showint_postreload = net_connect.send_command("show ip interface brief")
print("* [Post-reload] Capturing 'show ip interface brief'")

(continued)



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

846

# Task
file16.write(showint_postreload)
file16.close()
time.sleep(2)
file17= open(ip + '_showroute_post.txt', 'w+')
showroute_postreload = net_connect.send_command("show ip route")
print("* [Post-reload] Capturing 'show ip route'")
file17.write(showroute_postreload)
file17.close()
time.sleep(2)
# Compare pre and post configurations to create four html files
showver_pre = "showver_pre"
showver_post = "showver_post"
showver_pre_lines = open(ip+ '_showver_pre.txt').readlines() # Convert to 
strings first for
comparison
time.sleep(1)
showver_post_lines = open(ip+ '_showver_post.txt').readlines() #Convert 
to strings first for
comparison
time.sleep(1)
# Note, four arguments required in HtmlDiff function
difference = difflib.HtmlDiff(wrapcolumn=70).make_file(showver_pre_lines,
showver_post_lines, showver_pre, showver_post)
difference_report = open(ip + "_show_ver_comparison.html", "w+")
difference_report.write(difference) # Write the differences to the 
difference_report
difference_report.close()
time.sleep(1)
showrun_pre = "showrun_pre"
showrun_post = "showrun_post"
showrun_pre_lines = open(ip+ '_showrun_pre.txt').readlines() # Convert to 
strings first for
comparison
time.sleep(1)
showrun_post_lines = open(ip+ '_showrun_post.txt').readlines() # Convert 
to strings first for
comparison
time.sleep(1)
difference = difflib.HtmlDiff(wrapcolumn=70).make_file(showrun_pre_lines,
showrun_post_lines, showrun_pre, showrun_post)
difference_report = open(ip + "_show_run_comparison.html", "w+")
difference_report.write(difference) # Write the differences to the 
difference_report
difference_report.close()
time.sleep(1)
showint_pre = "showint_pre"
showint_post = "showint_post"
showint_pre_lines = open(ip+ '_showint_pre.txt').readlines()
time.sleep(1)



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

847

# Task
showint_post_lines = open(ip+ '_showint_post.txt').readlines()
time.sleep(1)
difference = difflib.HtmlDiff(wrapcolumn=70).make_file(showint_pre_lines,
showint_post_lines, showint_pre, showint_post)
difference_report = open(ip + "_show_int_comparison.html", "w+")
difference_report.write(difference)
difference_report.close()
time.sleep(1)
showroute_pre = "showroute_pre"
showroute_post = "showroute_post"
showroute_pre_lines = open(ip+ '_showroute_pre.txt').readlines()
time.sleep(1)
showroute_post_lines = open(ip+ '_showroute_post.txt').readlines()
time.sleep(1)
difference = difflib.HtmlDiff(wrapcolumn=70).make_file(showroute_pre_lines,
showroute_post_lines, showroute_pre, showroute_post)
difference_report1 = open(ip + "_show_route_comparison.html", "w+")
difference_report1.write(difference)
difference_report1.close()
time.sleep(1)
print("-"*80)
break

else:
print(f'{ip} is still reloading. Please wait...')
time.sleep(delay)

14 J. Append the following script at the end of task H script. When the final application runs successfully, 
the statements in the print functions will be printed on the user screen, including the time taken for 
the whole IOS upgrade process. These are the last lines of code in the IOS upgrade application.

print("Completed new IOS verification.")
print("All tasks completed successfully!")

tt = time.mktime(time.localtime()) - t # Timer finish to measure script running time
print("Total time taken : {0} seconds".format(tt)) # Informational

15 Remember Lego blocks? Like with Lego bricks, we have converted small pieces of scripts and 
converted them into a large script. Now we have a working application written in Python. You will 
find the completed script on my GitHub download page for full reference.

URL: https://github.com/pynetauto/apress_pynetauto

Once you have completed building the Cisco IOS XE upgrade application, run it as shown here, 
and you should get a result similar to what’s shown. Before running the completed application, 
ensure that the new IOS files uploaded in Chapter 18 on csr1000v-1 and csr1000v-2 have been 
deleted from the flash. If the file exists in the flash memory, the script will overwrite it anyway, but it 
is recommended that you delete the testing files from the router’s flash for greater success with the 
IOS upgrade testing. We could also write some code to check whether the same IOS file exists and 
skip the IOS uploading process, but in a production network, you should only trust the files you have 
prepared and uploaded yourself. Hence, leave this script to overwrite any pre-existing files.

(continued)

https://github.com/pynetauto/apress_pynetauto


Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

848

# Task
K. Now, let’s run the final script. Remember, after the IOS uploads to the flash, you will be prompted 
to select Yes or No to reload the router. Select y for yes.

pynetauto@ubuntu20s1:~/my tools/ios_upgrade_tool$ python3 upgrade_crs1000v.py
Enter Network Admin ID : pynetauto
Enter Network Admin PWD : ********
Confirm Network Admin PWD : ********
Is the secret same as the password? (y/n) : y # Type in 'y' for same secret password
--------------------------------------------------------------------------------
192.168.183.111
PING 192.168.183.111 (192.168.183.111) 56(84) bytes of data.
64 bytes from 192.168.183.111: icmp_seq=2 ttl=255 time=1.57 ms
64 bytes from 192.168.183.111: icmp_seq=3 ttl=255 time=1.61 ms
64 bytes from 192.168.183.111: icmp_seq=4 ttl=255 time=1.62 ms

--- 192.168.183.111 ping statistics ---
4 packets transmitted, 3 received, 25% packet loss, time 3019ms
rtt min/avg/max/mdev = 1.573/1.599/1.617/0.019 ms
192.168.183.111 22 open
--------------------------------------------------------------------------------
192.168.183.222
PING 192.168.183.222 (192.168.183.222) 56(84) bytes of data.
64 bytes from 192.168.183.222: icmp_seq=1 ttl=255 time=1.44 ms
64 bytes from 192.168.183.222: icmp_seq=2 ttl=255 time=1.61 ms
64 bytes from 192.168.183.222: icmp_seq=3 ttl=255 time=1.58 ms
64 bytes from 192.168.183.222: icmp_seq=4 ttl=255 time=1.56 ms

--- 192.168.183.222 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3006ms
rtt min/avg/max/mdev = 1.438/1.545/1.607/0.064 ms
192.168.183.222 22 open
--------------------------------------------------------------------------------
192.168.183.111 csr1000v-1 RT cisco_xe
77878ae6db8e34de90e2e3e83741bf39
77878ae6db8e34de90e2e3e83741bf39436.57 MB
MD5 values matched!
--------------------------------------------------------------------------------
192.168.183.222 csr1000v-2 RT cisco_xe
77878ae6db8e34de90e2e3e83741bf39
77878ae6db8e34de90e2e3e83741bf39
436.57 MB
MD5 values matched!
--------------------------------------------------------------------------------
192.168.183.111 Free flash size :  6623.248384 MB
--------------------------------------------------------------------------------
192.168.183.111 has enough space for a new IOS.
--------------------------------------------------------------------------------
192.168.183.222 Free flash size :  6623.55968 MB
--------------------------------------------------------------------------------
192.168.183.222 has enough space for a new IOS.



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

849

# Task
--------------------------------------------------------------------------------
192.168.183.111 original config backup completed.
--------------------------------------------------------------------------------
192.168.183.222 original config backup completed.
--------------------------------------------------------------------------------
********************************************************************************
192.168.183.111 beginning IOS XE upgrade.
pynetauto has level 15 privilege - OK
check_aaa_authentication - OK
check_aaa_authorization - OK
New IOS uploading in progress! Please wait...
..........................................................................
..........................................................................
........................
[omitted for brevity]
....................................................................................
....................................................................................
...................Done!
Verified (bootflash:csr1000v-universalk9.16.09.06.SPA.bin) = 
77878ae6db8e34de90e2e3e83741bf39
MD5 values MATCH! Continue
MD5 of new IOS on Server :  77878ae6db8e34de90e2e3e83741bf39
MD5 of new IOS on flash  :  77878ae6db8e34de90e2e3e83741bf39
--------------------------------------------------------------------------------
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Note: Devices will be reloaded one at a time.
Do you want to reload 192.168.183.111 now? (y/n)? y # Type in 'y' to reload 
csr1000v-1
Reloading devices
configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
csr1000v-1(config)#no boot system
csr1000v-1(config)#boot system flash:/csr1000v-universalk9.16.09.06.SPA.bin
csr1000v-1(config)#do write memory
Building configuration...
[OK]
csr1000v-1(config)#end
csr1000v-1#
Found csr1000v-universalk9.16.09.06.SPA.bin in show boot
--------------------------------------------------------------------------------
192.168.183.111 [Pre-reload] Capture configuration
* [Pre-reload] Capturing 'show version'
* [Pre-reload] Capturing 'show running-config'
* [Pre-reload] Capturing 'show ip interface brief'
* [Pre-reload] Capturing 'show ip route'
--------------------------------------------------------------------------------

(continued)



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

850

# Task
192.168.183.111 is now reloading.
***Device is now reloading. This may take 2-5 minutes.
--------------------------------------------------------------------------------
192.168.183.111 is still reloading. Please wait...
192.168.183.111 is still reloading. Please wait...
192.168.183.111 is still reloading. Please wait...
192.168.183.111 is still reloading. Please wait...
192.168.183.111 is still reloading. Please wait...
192.168.183.111 is still reloading. Please wait...
192.168.183.111 is still reloading. Please wait...
192.168.183.111 is still reloading. Please wait...
192.168.183.111 is still reloading. Please wait...
192.168.183.111 is still reloading. Please wait...
192.168.183.111 is back online.
192.168.183.111's reload time : 0 seconds
Logging back into 192.168.183.111 to perform post-reload tasks.
Please wait...
192.168.183.111
*** 192.168.183.111 is back online.
--------------------------------------------------------------------------------
192.168.183.111 [Post-reload] Capture configuration
* [Post-reload] Capturing 'show version'
! 192.168.183.111's ['System image file is "bootflash:/csr1000v-universalk9.16.09.06.
SPA.bin"'].
* [Post-reload] Capturing 'show running-config'
* [Post-reload] Capturing 'show ip interface brief'
* [Post-reload] Capturing 'show ip route'
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
********************************************************************************
********************************************************************************
192.168.183.222 beginning IOS XE upgrade.
pynetauto has level 15 privilege - OK
check_aaa_authentication - OK
check_aaa_authorization - OK
New IOS uploading in progress! Please wait...
................................................................................
[omitted for brevity]
..........................................................................Done!
Verified (bootflash:csr1000v-universalk9.16.09.06.SPA.bin) = 
77878ae6db8e34de90e2e3e83741bf39
MD5 values MATCH! Continue
MD5 of new IOS on Server :  77878ae6db8e34de90e2e3e83741bf39
MD5 of new IOS on flash  :  77878ae6db8e34de90e2e3e83741bf39
--------------------------------------------------------------------------------
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Note: Devices will be reloaded one at a time.
Do you want to reload 192.168.183.222 now? (y/n)? y # Type in 'y' to reload csr1000v-2
Reloading devices



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

851

# Task
configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
csr1000v-2(config)#no boot system
csr1000v-2(config)#boot system flash:/csr1000v-universalk9.16.09.06.SPA.bin
csr1000v-2(config)#do write memory
Building configuration...
[OK]
csr1000v-2(config)#end
csr1000v-2#
Found csr1000v-universalk9.16.09.06.SPA.bin in show boot
--------------------------------------------------------------------------------
192.168.183.222 [Pre-reload] Capture configuration
* [Pre-reload] Capturing 'show version'
* [Pre-reload] Capturing 'show running-config'
* [Pre-reload] Capturing 'show ip interface brief'
* [Pre-reload] Capturing 'show ip route'
--------------------------------------------------------------------------------
192.168.183.222 is now reloading.
***Device is now reloading. This may take 2-5 minutes.
--------------------------------------------------------------------------------
192.168.183.222 is still reloading. Please wait...
192.168.183.222 is still reloading. Please wait...
192.168.183.222 is still reloading. Please wait...
192.168.183.222 is still reloading. Please wait...
192.168.183.222 is still reloading. Please wait...
192.168.183.222 is still reloading. Please wait...
192.168.183.222 is still reloading. Please wait...
192.168.183.222 is still reloading. Please wait...
192.168.183.222 is still reloading. Please wait...
192.168.183.222 is still reloading. Please wait...
192.168.183.222 is back online.
192.168.183.222's reload time : 0 seconds
Logging back into 192.168.183.222 to perform post-reload tasks.
Please wait...
192.168.183.222
*** 192.168.183.222 is back online.
--------------------------------------------------------------------------------
192.168.183.222 [Post-reload] Capture configuration
* [Post-reload] Capturing 'show version'
! 192.168.183.222's ['System image file is "bootflash:/csr1000v-universalk9.16.09.06.
SPA.bin"'].
* [Post-reload] Capturing 'show running-config'
* [Post-reload] Capturing 'show ip interface brief'
* [Post-reload] Capturing 'show ip route'
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
********************************************************************************
Completed new IOS verification.
All tasks completed successfully!
Total time taken : 976.0 seconds # = 16.27 minutes in total



Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

852

After the IOS XE upgrades complete successfully on both csr1000v-1 and csr1000v-2, you will find 
all files under /home/pynetauto/my_tools/ directory (see Figure 19-1). Copy and open the files to check 
the success of your IOS upgrade. You have now upgraded two IOS-XE routers using a handwritten Python 
network automation code. I hope you have enjoyed this experience.

To watch a demo video of the Cisco IOS-XE upgrade, visit https://www.youtube.com/
watch?v=tnNEeXAGd0M.

 Summary
In a real production environment, the scripts are separated into various functioning scripts, called modules. 
Another way to keep the main script lightweight is to save each application as a different module in another 
file. I have chosen to create this whole application in a single Python script to help you understand how 
it works, but you probably have already noticed how inefficient it is to work with a lengthy scripted code. 
Although I can continue writing this code in several separate modules or files and re-import the functions as 
a module into the main script, I will leave this challenge for you.

I hope your first Python network automation journey was a pleasant surprise and that you are looking 
forward to the next part of your journey. Together, we have covered a lot of ground in this book, but possibly 
we have also left many holes open for improvement. You cannot become good at something overnight; 
writing Python code is not like winning the lottery or becoming an overnight YouTube sensation. It will take 
many months and years to reach a certain level of confidence in Python programming. Remember Joseph 
M. Marshall’s quote, “Life is a circle. The end of a journey means the start of another one.”

Figure 19-1. WinSCP, copying files to validate successful Cisco router IOS-XE upgrades

https://www.youtube.com/watch?v=tnNEeXAGd0M
https://www.youtube.com/watch?v=tnNEeXAGd0M


Chapter 19 ■ python network automation Labs: Combining and CompLeting the CisCo ios upgrade appLiCation

853

 Final Words
Taking on a new programming language to take one’s career to the next level may feel like a daunting task 
for many of us. It is like embarking on a new journey into the unknown. Many Technology evangelists 
encourage people to learn a programming language and start writing code today. Some evangelists preach 
that Python is for everyone. Here, I disagree politely. Programming or writing code is not for everyone. 
However, if you spend hours working in front of a computer, learning a high-level programming language 
like Python can do many wonders at work. If your job involves supporting IT services or infrastructure, I 
cannot find a single excuse not to learn Python coding. Although Python is one of the easiest programming 
languages to learn, not many people talk about what happens after reaching a certain level. Python is the 
same as all other programming languages, and Python or another programming language is only as bright 
as the person writing the code. Learning a programming language cannot be a means to an end. Instead, 
it is another beginning or a new journey with no finish line. So, you always have to keep at school and seek 
opportunities to apply the concepts and skills you have learned along the journey.

In this book, I tried to write a hands-on Python network automation book for new and existing network 
engineers, covering various essential IT administration skills required to build an infrastructure from the 
ground up and write a working application that can help them better manage their network infrastructure. 
I hope you have enjoyed a broad exposure to various technologies, and you have built a strong foundation 
towards better enterprise network administration. Lastly, thank you for purchasing my book to start your 
Python network automation journey. I want to congratulate everyone who has reached this page after 
running the final lab successfully. Even if you are still working toward completing the final lab, you still have 
plenty of time to go over the contents of this book as you now own it.



855
© Brendan Choi 2021 
B. Choi, Introduction to Python Network Automation, https://doi.org/10.1007/978-1-4842-6806-3

Index

��������� A
Access control list (ACL), 401
Amazon Web Services (AWS), 277
Anaconda, 136, 137
Ansible ad hoc command, 681
ansible-playbook command, 682, 684
Ansible, virtualenv

ansible_venv, 684
ansible-playbook, 682
CentOS, 677
deactivate testing, 684
installation, 678–680
lab devices, 677
network automation, 682
show_clock.yml, 683, 684
SSH, 680, 681

Application programming interfaces (APIs), 137, 
549

apt install–y tftp command, 354
Arithmetic operators, 35, 40, 52, 53
Artificial intelligence (AI), 3, 11, 760

��������� B
Bare-metal hypervisors, xxvi, 410
Booleans operators, 54, 55

��������� C
Calculator, 111, 114
capitalize() method, 71
cat command, 297, 321, 322, 325, 581, 639
cat /etc/*release command, 332
cd command, 678
CentOS, 34, 141, 145, 168–170, 222
CentOS 8 server image

downloading, 224–226
GNS3 VM, 269–273
installation

About You screen, 255
CentOS IOS file, 233

configuration, 232
create new VM, 226
destination selection, 237
disk capacity, 231
initial configuration, 249
initial setup, 251
installation progress, 247
language selection, 235
license agreement, 250
network adapter, 243
network/hostname, 242
online accounts, 254
option, 227, 228
OS selection, 228, 229
password configuration, 259
password setting, 256
powering VM, 234
privacy location services, 253
Ready to Go screen, 257
reboot, 248
root user’s password, 245, 246
select options, 234
server name/folder configuration, 230
sign-in, 258
software selection, 238, 239, 241
summary window, 236, 244
Terminal Console, 260
user credentials, 229
virtual machine settings, 232, 233
VM Wizard start page, 227
welcome window, 252

logging, SSH, 261–263
multipurpose lab server, 224
network adapter, Linux

back option, 268
ens160, 265
IP address, 267
manual configuration, 266
NetworkManager TUI, 264
.ova file, 269
saving/exiting TUI, 269

https://doi.org/10.1007/978-1-4842-6806-3#DOI


856

■ INDEX

snapshot/cloning, 269
sudo nmtui command, 263, 264

Ubuntu 20.04, 223
versions, 223

CentOS 8.1 task scheduler, see crond
change take effect, you, 204, 326
check_port() function, 770, 772, 773
Cisco CallManager, 277
Cisco devices

automated upgrade, 758, 759
business-critical applications, 756
enterprise routers/switches, 756
ITIL-driven organization, 756
networking devices, 756
stages, 757
task breakdown, 757, 758
upgrade workflow, 757

Cisco devices task breakdown, 758
Cisco Feature Navigator, 451, 665, 666
Cisco IOS

creating lab topology, 454–462
disadvantages, 430
dynamips method (optional),  

decompressing, 433, 435, 437–442
GNS3 VM, installing, 442, 443, 445, 447–449, 

451–453
images, 430
IP address, 486, 487
lab, 430, 482
Linux application server, importing, 482–485
Linux server to manage R1, 487–489
software license, 430
unpack.exe method, decompressing, 432, 433
versions, 431

Cisco IOS commands, 585
Cisco IOS labs

GNS3 project, 492
Linux VM lab, 491

Cisco Modeling Lab (CML), 14, 19
Cisco Modeling Labs–Personal (CML-PERSONAL)

IOSvL2 image, 516, 517
IOSv/L3 image, 517
license information, 516
software downloads, 516
startup_config files, 517

Cisco Modeling Labs–Personal (CML-PERSONAL) 
L2 switch, GNS3

add template, 524
appliance install pops up, 523
appliances from server, 520
communication tests

ICMP messages, 529
interface speed/duplex, 528
IP address, 529

ip dhcp command, 528
LAB-SW1, 528
log in/configuration, 528
startup configuration, 529

connect network, 526
dragging/dropping, 525
IOSvL2, 525
power-on screen, 526, 527
Qemu setting window, 521, 522
required files, 522, 523
server window, 520, 521
switch icon, 524
switch’s console screen, 527
temple selection, 519
usage window, 523, 524

Cisco Modeling Labs–Personal (CML-PERSONAL) 
L3 router, GNS3, 518

add template, 530, 535
appliance install pops up, 534
appliances, server, 531, 532
CML router

connecting/starting, 536, 537
dragging/dropping, 536
selection, 536

communication tests
copying running configuration, 540
Lab-R1 router, 539, 540
log in/configuration, 539
SSH login, 540
ssh–l username server_IP command, 540

delete template, 530
error, 529
IOS image, 539
new template, 531
Qemu settings, 533
required files, 533, 534
router icon, 535
server selection, 532
servers summary window, 538
topology summary window, 536, 537
usage window, 534, 535
vIOS version, 538

Cisco Modeling Labs–Personal  
(CML-PERSONAL) lab

connect Gi0/0, 541
IP addresses, 545, 546
LAB-R1 configuration, 544, 545
lab-r2 configuration, 541, 542, 545
LAB-SW1 configuration, 543
lab-sw2 configuration, 541, 542, 544
ping command, 547, 548
ping tests, 542, 543
R1 IOS router configuration, 542, 543
server window, 547
summary window, 546

CentOS 8 server image (cont.)



857

■ INDEX

Cisco Systems, 8, 685
Cisco technologies, 277, 429
Cloud computing, 169, 274
Command-line interface (CLI), 279, 549
Control statements

elif statement, 57, 58
else statement, 57, 58
if statement, 57, 58
source code, 58, 59

cp–a command, 312
cp command, 317
CPU utilization monitoring

devices, 718
SMS message

cpu_util_5min1.py, 726, 727
cron.log file, 730
devices, 728
LAB-R1, 727
OID IDs, 724
Python script, 729
Twilo SMS scripts, 725

Twilio testing account
dashboard, 720, 721
registration, 718, 719, 722, 723
SMS messaging, 722
Twilo SMS scripts, 725
window, 724

cron, 637
websites, 648
job definitions, 646–648

crond
chmod +x command, 643
configuration/scheduling, 644
etc/crontab, 643–645
ip_addresses.txt, 641, 642
lab equipments, 641
ping_ip_add.py, 642
ping_sweep1.py, 641, 642
rpm-q cronie command, 643
systemctl status crond  

command, 644
crontab

vs.crond, 646
cron.log, 639, 645
crontab scheduler file, 639
crontab-e command, 639
crontab–l command, 639
definition, 637
/etc/crontab, 645
new directory, 638
pwd command, 638
run code, 638
service cron restart command, 640
service cron start command, 640

service cron stop command, 640
sudo crontab–e, 638
time unit, 647
which python3.8 command, 638

CSV Files
Cisco ISR 4331 router, 132, 133
csv module, 131

ex3_20.py, 128, 131
open, 131
read, 131
2020_router_purchase.csv, 130, 131
Windows PowerShell, 129, 131
Windows users, 130, 131

output, 132

��������� D
Days convertion, 134–136
deactivate command, 679, 699
Debian-based Linux distros, 169
debug all command, 723
Dictionaries

basics, 81
change value, 83
fav_activity, 81
format() function, 83
formatting, 85, 86
keys/values

add, 83
delete, 84

for loop, 85, 86
number of elements, 84
print values, 82
Python script, 84, 85
two lists into single, 82
TypeError, 82

diffie-hellman-group1-sha1 key exchange  
method, 588

difflib libraries, 621
dir flash:old_files/ command, 614
dir() method, 607
dir or show flash: command, 510
Docker

account registration, 701
components, 701
definition, 700
devices, 701
email notification script development, 

Sendmail, 712, 713, 715–717
installation, 702, 703
Sendmail, 707–711
test-drive, 703

docker images command, 703, 704
docker pull command, 704



858

■ INDEX

��������� E
elif statement, 58, 121
else statement, 121, 738
enable and start commands, 504
Encoding vs. Decoding, 128
End-user license agreement (EULA), 814
Exceptions and error handling

concept, 66
ex2_42.py, 66, 68
index number, 68, 69
Notepad++, 67
practicing lists, 69, 70
ValueError, 66

Experimental virtualization programs, 142

��������� F
File handling

byte files, 103
create code, close file, 89, 90
create text file, 90–92
hosts files

open/close, 88, 89
read/display, 87, 88

Python file modes
a+ mode, 99
append (a) mode, 97–99
file processing modes, 102, 103
os.path.isfile() method, 95
os.remove() method, 96
reading (r) mode, 94, 95
r+ mode, 95, 96
w++ mode, 101
writing (w) mode, 100
x+ mode, 102, 104
x mode, 101, 102

reading/writing, text file, 87
remove whitespae, 93
try/except, 104, 105

File Transfer Protocol (FTP), 340
finditer() method, 386
firewall-cmd--reload command, 334
Full automation/fully automated, 24
Functions

default values, 60, 61
definition, 60
goodbye, 61
hello, 61
nesting, 62
odd/even, 62

��������� G
General Public License (GNL), 278, 818
genie parse command, 689, 690

getpass module, 127, 479, 623, 774
getpass/telnet libraries, 480
git clone command, 687
GNS3

administrator, 428, 429
adding switches, 634
canvas, 493, 494, 496
CentOS 8.1, login screen, 497
Cisco IOS, 429
cloning, 633
cmllab-devops, 632
commands, 498, 499
copying, 630
copying (cloning), 511, 512, 514
copy running-config startup-config  

command, 630
deleting redundant copy, 632
desktop icon, 631
downloading, 417, 418
exiting, 630
GUI, 416
installation, 416–418
LAB-R1/lab-r2, 634
LAB-sw3 configuration, 635
Linux virtual machines, 492
linuxvm2ios project, 493
menus/GUI, 425, 426
Microsoft loopback adapter, 462
Open a project from disk, 631
procedures, 419, 421–424
PuTTY, 501
routing, 636, 637
Save project as, 631
start PC-1 (VPCS), 500
shutting down VM, 426, 428
switches’ ping responses, 636
Telnet, 502, 503
uploading/downloading files, Linux VMs, 505

flash memory allocation, 504
IOS router, 511
Python script, 503
Python’s telnetlib library, 511
TFTP services, 504–508
WinSCP, 509, 510

Windows, 415
Windows host PC, 478–482

Graphical user interface (GUI), 16, 276, 277, 416, 549
grep command, 330

��������� H
Hello, World

built-in text editor, 26, 27
print() function, 25
prompt methods, 25
Python interactive coding, Windows 10, 25



859

■ INDEX

Python versions, 26
URLs, 26
writing a script/scripting mode, 26

hello-world command, 702, 703
Hybrid engineer, 2

��������� I
id() function, 38
if and else statement, 121
ifconfig command, 197
if statement, 121
Immutable lists, 80
Immutable sequential objects, 76
input() function, 49, 50
int() method, 53
Integers vs. Strings, 53
Integrated development  

environment (IDE), 2, 12, 26, 136
Internet Control Management  

Protocol (ICMP), 649
Internet Engineering Task Force (IETF), 649
Internet Operating System (IOS), 430
IOS On Unix (IOU), 19
IOS upgrade application

connectivity tool, 762
CSV, 779, 781, 783, 784
database, 761
difflib library, 823
Excel/CSV, 766
flash memory, 792, 794
getpass module, 774
HTML, 827, 828
ICMP, 764, 770
information collector tool, 761
ITIL process, 796
MD5 value, 778, 790, 791
option to stop/reload, 810

copy/modify, 811
end-user license agreement, 813

ping tool, 768
pre-reload, 823
print statement, 765
python3 ping_tool2.py command, 765
running-config, 796
scapy module, 762
show command, 798
SSH console, 763
TFTPFTP, 788
uploading tool, 799, 800, 802
user login, 761, 774
VM ware, 822

IOS upload application
aaa local authentication, 802
file transfer, 803

images, 803
save, 804

IOS verification command, 804
csr1000v-1’s flash, 809
image file, 807
MD5 value, 805
SSH, 809
VM ware, 807

IOS XE image, 817, 818
IOS XE upgrade lab

Cisco devices, 744
csr1000v

additional configuration  
properties, 750, 751

bootstrap properties, 749
Cisco IOS upgrade processes, 756
configure interfaces, 753
deployment options, 748
features, 750
lab equipment, 745, 746
log in/interface status, 751
network adapter configuration, 752, 753
.ova file, 745, 746
PuTTY login, 754
router name, 747
RSA key, 755
settings, 752
snapshot, 755
virtual router, 756

CSR 1000v IOS XE
files, 744
GNS3, 744
memory consumption, 744
routers, 744
software download, 745

IOS upgrade, 743
switches, 744
virtual routers, 744

ip address command, 498, 552, 586, 587

��������� J, K
JavaScript Object Notation (JSON) format, 606

��������� L
len() method, 45, 71, 369
line in ~ method, 123
Linux

benefits, 277
certification links, 327
directories, 280, 281
distributions, 278, 279
enterprise level, 277
environment, 279



860

■ INDEX

file/directory management, 282
file formats, 280, 281
IT engineers, 277
Juniper’s core operating system, 277
offers, 277
study materials, 322
text editors, 276, 282
timelines, 278
tree tool, 313, 314
Windows user’s, 276

Linux administration
cat command, 321
cat > command, 321
cat >> command, 321
echo command, 320
file/directory commands, 309, 310
hideme directory, 319
hostname

centos8s1307
CentOS server, 308
Ctrl+ method, 307, 308
hostnamectl command, 307
sudo reboot command, 308
Ubuntu, 309
update server, 307

less command, 321
mysecrete file, 319
Python application

~/.bashrc/exec bash command, 326
chmod +x print5times.py, 325
create script, 325
ls–l print5times.py, 325
PATH=”$(pwd), 326
sed command, 326
shebang, 325, 326

rename directories, 318
Ubuntu, 311
view file, 321

Linux system
cat command, 332
cat /etc/*release command, 332
CentOS, 334
distribution version, 329
grep command, 330
hostnamectl, 331
install FTP, 340

FileZilla client, 343, 344
Firefox web server, 343
firewall-cmd commands, 342
ID and password, 342
systemctl enable command, 340
systemctl enable vsftpd, 342
user_list file, 342
vsftpd, 340

vsftpd.conf file, 341
WinSCP, 344, 345

install NTP, 355–358
install SFTP, 346–349
install TFTP, 350

apt install–y tftp command, 354
CentOS server, 351
firewall setting, 351
SELinux, 352
service file, 352
setsebool settings, 352
Ubuntu server, 354, 355
user account, 351

kernel, 329, 330
lsb_release–d command, 331
TCP/IP, 359, 360

iptables command, 363
Isof, 362
netstat command, 360
netstat–tuna command, 361
ss command, 362
SSH/SFTP, 360
Windows 10 host, 364

TCP/UDP Port, 332
CentOS VM, 337
firewall-cmd--reload  

command, 334, 335
grep command, 338
IP network, 338
netstat command, 333, 338
netstat–a command, 336
SSH connection, 338
statistics commands, 339

Linux task scheduler, see cron
list () method, 50, 114
Lists

append() function, 64
convert to tuples, 78
creation, 63, 64
extend() function, 64
index terms, 63, 64
insert() function, 64
slicing, 65

Logical lab topology, 275
Logical/membership operators, 56
Loops, 71
lower() method, 124, 125
ls command, 311, 319, 320
ls–a command, 312
lsb_release–d command, 331
ls command

–a command, 323
delete directories, 324
delete files, 323, 324
greetings directory, 322

Linux (cont.)



861

■ INDEX

–l/–h commands, 323
search keyword, 322
* wildcard character, 324

ls command, 311, 319, 320
ls–d command, 311
ls directory_name command, 311
ls-d $PWD/* command, 314
ls–lh command, 604
lstrip() method, 93, 94, 124, 125

��������� M
Management Information Base (MIB), 649, 651
man ls command, 320
Membership operators, 56, 59
Metacharacters, 376, 377
Microsoft loopback adapter

definition, 462
device manager, 465, 466
example, 463, 469
host PC to GNS3 router  

communication, 470–473
Telnet, 477, 478
user account control setting, 475, 477
Windows 10, 467, 468

mkdir command, 312, 315, 608
mv command, 313, 318

��������� N
Named access control list (NACL), 401
Nano text editor

create/open file, 296, 297
customization

line numbering, 305, 306
tab character, 304, 305

cut/paste
Ctrl+K key combination, 298
Ctrl+U key combination, 298
cut-and-paste function, 300
delete line, 298
multiple lines, 301
strings, 299

installation
create/open file, 294
ls /usr/bin/nano command, 295
nano–V or nano--version, 294
uninstall, 295

primary keys, 293
pseudographical user interface, 296
reopening file, 298
string search/replacing strings

matched strings, 302–304
save file, 304
specific word, 302

sudo command, 293
yum command, 293

Native Python methods, 370
Nested virtualization environment, 417
netmiko

definition, 605
JSON object, device information

.bin file, 613
config compare, 621–627
dict class, 607
dictionary, 606
directory, 614
dumps, 607
.flash, 609, 613, 614
IOSv image, 608
LAB-R1, 614
Python interpreter, 607
script, 610–612
simple port scanner, 614–621
ssh_labs directory, 612

nornir, 605
netstat commands, 332, 333, 342
netstat–a command, 336, 338
netstat–tuna command, 708
Network Address Translation (NAT), 157, 164, 185
Network Time Protocol (NTP), 355
Nornir, 605, 676
NumPy modules, 87

��������� O
Object-Identifier (OID), 651
Object-oriented programming (OOP)

Cisco (Pynetauto_co) class, 737
create variables, 736
def __init__ method, 735
devices class, 737
flow control/controlling user input

flaws, 739
getpass module, 742
ID and password, 741, 742
output, 739
yes_or_no1.py, 738, 739
yes or no response, 740

output, 738
Pynetauto_co class, 737

Object-oriented programming (OOP), 831
abstraction, 734
Cisco (Pynetauto_co) class, 737
class, 734
create variables, 736
def __init__ method, 735
definition, 734
devices class, 736, 737
encapsulation, 734



862

■ INDEX

Firewall class, 736
flow control/controlling user input

create directory, 738
flaws, 739
getpass module, 742, 743
ID and password, 741
output, 739
yes or no response, 740

inheritance, 735
object, 734
output, 738
polymorphism, 735
Pynetauto_co class, 737
Router class, 736
show() method, 736
Switch class, 736

��������� P, Q
pandas module, 87, 693, 696, 778
paramiko, 583, 589, 591

configure clock/time zone, 587
CPU utilization, 584
devices, 584
method, 588
Python Interpreter session’s commands, 589
SSH routers/switches, 586, 587
Telnet, 585, 586
Ubuntu Python automation server, 590, 591

configure NTP server
chronyd, 595, 596
Linux cron, 592
devices, 592
directory, 593
display_show_ntp.py, 597, 598
LISTEN status, 595
script, 593, 594
ubuntu8s1 Python, 596, 597

SSH script, TFTP server
centos8s1, 598, 599
centos8s1 server, 604
devices, 598
getpass, 601
print statement, 601
Python automation server, 603, 604
python timer_tool.py, 600
script, 599, 600, 602, 603
var directory, 603

ping commands, 727
ping tool, 768
ping_tool3.py script, 767
pip3 command, 722
pip3 freeze command, 605
Power-On Self-Test (POST), 422

print statement, 35, 51, 57, 580, 765, 803
Procedure-oriented programming, 734
Proof-of-concept (POC), 24
pwd command, 311, 638
pyATS

definition, 685
directory, 686–688
features, 685
lookbehind and positive lookahead, 695, 696
matplotlib graph, 699
pandas, 693
py extension, 693, 694
re module, 695
retrieve device information, 690
run command, 689
testbed.yml, 691
test-drive Genie, 692
virtualenv lab, 686
Windows host PC, 698
WinSCP, 697

pyats run job command, 687
pyNUT code, 565
python3 backup_config.py command, 506
Python file

add modules, 834
check_flash2.py (tool5_fsize_cisco), 839
development tasks, 833
devices_info.csv file, 833
get_cred2.py, 834, 835
IOS upgrades, 848–851
IOS uploading process, 847, 851
Lego bricks, 847
make_backup1.py (tool6_make_backup), 

844–847
md5_validate3.py (tool4_md5_linux), 838
md5_verify2.py (in tool8_md5_cisco), 841, 842
post_check2.py (tool10_post_check), 844–847
reload_yesno2.py (in tool9_yes_no), 842–844
upload_ios1.py (tool7_upload_ios), 840, 841
md5_validate3.py (tool4_md5_linux), 838
md5_verify2.py (in tool8_md5_cisco), 841
pandas module, 832
ping_tool6.py, 837, 838
reload_yesno2.py (in tool9_yes_no), 842
upgrade_crs1000v.py file, 832
upload_ios1.py (tool7_upload_ios), 840

python interactive_backup.py command, 603
Python modules, 23, 24, 369
Python network automation

Ansible, 675, 676
Cisco CML (VIRL, 19
Cisco dCloud, 12
Cisco IOU, 18
Cisco Packet Tracer, 16, 17
CML, 19

Object-oriented programming (OOP) (cont.)



863

■ INDEX

Dynamips, 16–18
enterprise businesses/organizations, 1
GNS, 16
GNS3, 18
goal, 10
hardware requirements, 13, 14
hybrid development environment, 12
IT domain groups, 2

competencies comparison, 4, 5
DevOps group, 4, 5
infrastructure, 4
Linux operating system, 6
network engineer, 5
network group, 4–6
system group, 4, 5
technical capability, 4

IT engineer responsibilities
CCNA, 8
Cisco Systems, 8
core, 8
DevOps group, 8
enterprise automation, 7
general, 6, 7

IT service vendors/enterprises, 10
lab environment, 12
lab/network lab, 16
logical thinking process/physical task, 10
network automation lab, 20
network emulation/simulation program, 16–19
network engineer, 1, 8, 9
network operating systems, 13
network programmability, 1
paramiko/netmiko, 583
programming languages, 11, 12
proper equipment/virtual infrastructure, 16
pyATS, 676
Python syntax/concepts, 10
RedMonk.com, 10
requirements, 2
skills/prerequisites, 2, 3
software requirements, 14–16
SSH labs, 584
supplementary guides/source code, 20
UNL Lite (EVE-NG), 19
use cases/projects, 11
Vagrant, 19

python3 ping_tool2.py command, 765
Python re module, 382, 383

Match object, 388
string methods, 383

re.findall(), 385, 386
re.finditer(), 386
re.match(), 384, 385
re Match object, 387
re.search(), 385

Python SNMP codes
Alex’s blog, 667
interface descriptions

Linux cp command, 671
quicksnmp_v3_get_bulk_auto.py, 673
SNMP query, 672

lab source code, 667–669
SNMPv3 code

device name, 671
get() function, 670
GigabitEthernet0/0, 671
GigabitEthernet0/3, 671
pysnmp library, 669
quicksnmp.py, 669, 670
SNMPUser1, 670

��������� R
re module, 118, 367, 368
Red Hat Enterprise Linux (REHL), 224, 228, 279
Red Hat Enterprise Linux 8 (RHEL8), 223
Relational operators, 54, 55, 59
Reserved keywords, 51
rm command, 317, 319
rmdir command, 312
rm–r command, 319
rm–rf command, 312
Router command, 489, 787
Router purchases

csv module, 134
no module, 133, 134

Regular expression (Regex), 368
A and Z, 396, 397
(^)/($) anchors, 395, 396
android, 376
backlash character (), 392, 393
compile, 388

re.DOTALL, 389
re.IGNORECASE, 389, 390
re. re.MULTILINE, 390, 391
re.VERBOSE, 391

grouping, 399
group method index, 400
Internet, 375
Linux shell, 374, 375
lookarounds, 405, 407–409
MAC address, 369
metacharacters, 376, 377
named groups, 401–403
noncapturing groups, 404
Notepad++, 372, 373
operations

asterisk (*), 380
plus sign (+), 380
character class ([]), 378



864

■ INDEX

dot (.), 379
metacharacter {m, n }, 380, 381
question mark (?), 382
square bracket set, 376, 377

OR operator (|), 394
website, 375

rstrip() method, 93, 124, 125

��������� S
scapy module, 762
Secure Copy Protocol (SCP), 788
Secure File Transfer Protocol (SFTP), 346
sendmailconfig command, 708
Semi-automation, 24
show command, 590, 597, 692, 798, 819
show cdp neigh command, 692
show clock command, 787, 821
show ip interface brief command, 489
show user command, 502, 510
show version commands, 689
Simple Gateway Monitoring Protocol (SGMP), 649
Simple Network Monitoring Protocol (SNMP), 649

access policy, 651
authentication password, 654
Cisco routers/SNMPv3

else condition, 659
Lab-SW4 configuration, 661, 662
paramiko library, 660
ping_sweep1.py, 658
precheck_tool.py, 659
snmp_config.py, 659, 660
SNMP group settings, 660, 661
snmp-server commands, 657, 658

command-line method
MD5 authentication/DES encryption, 655
options, 654
SHA authentication/AES encryption, 655
user creation, 654

interactive mode
snmpd service, 656
SNMP users, 656
SNMPwalk command, 656

manual configuration, 655
message types, 651
MIBs, 651, 653
net-snmp-utils, 654
OIDs, 651, 653
operations, 649
polling vs. Trap method, 649
Python libraries, 652, 653
server programs, 653
SMI, 651
SNMPv3 user, 654

synchronous vs. asynchronous  
communication, 652

TCP/IP protocol stack, 650
versions, 650

Single list, tuple into, 114
Sleep method

built-ins module, 109
calculator, 111
import sys module, 110
lambdas, 111
sys.builtin_module, 109
sys module

add new Filepath, 108, 109
browsing path, 107, 108

time.sleep() function, 106, 107
Slicing method, 65
SNMPwalk command, 657, 723, 724
SNMPwalk, Linux server

GigabitEthernet0/0, 664
GigabitEthernet0/1, 664
GigabitEthernet0/3, 664
interface’s setting status, 663
MIB information, 663
MIBs, 665
operational status, 664
queries, 664
rmon router, 665
router/switch’s name, 663
snmpget command, 663
SNMPwalk command, 662
vIOS, 665

Software-defined network (SDN), 3, 628
Solid-state drive (SSD), 16
sort() function, 72
Sorting and ranges

link lists, 72
list length, 73
for loop, 73, 74
range() function, 73, 74
reverse() method, 73
sort() vs. sorted(), 72
string list, 74, 75

split() method, 50, 124
ssh_labs directory, 593, 625
ssh–l user_name IP_address command, 586
Standard operating environment (SOE), 462
String format (), 114, 115
Strings

Add space, 120, 121
backslash (), 36–38
concatenation, 46, 47
create function, 45
curly brackets {}, 47
enter values, 44, 45
format() method, 47

Regular expression (Regex) (cont.)



865

■ INDEX

indexing, 39
lower() methods, 46
multiple comments, 43
number of decimal places, 49
special character meanings, 44
str() method, 46, 47
syntax error

invalid syntax, 41
string literal, 40

text positions, 48
upper() methods, 46
user input, 49, 50
word/characters, 50

strip() method, 124, 125
Structured Management Information (SMI), 651
sub method, 409, 411–413
sudo commands, 293, 702
sudo reboot command, 212
systemctl enable command, 340
systemctl status firewalld command, 350

��������� T
Technical Assistance Center (TAC), 19
Telnet library

Cisco device
alias command, 552
ip address command, 552
python add_lo_ospf1.py command, 555, 556
running-config file, 551
show ip interface brief command, 556
show ip ospf neighbor command, 556, 557
source ~/.bashrc command, 553
touch command, 554
use, 551, 553

cmllab-basic GNS3 topology, 550
IP addresses, 573

Linux server, 576, 577
privilege exec level 3 commands, 578
PuTTY, 578
use, 574

local server, 580, 581
local server storage, 579
loop method, 569–573
python add_vlans_single.py command, 560
template, 557, 558, 560
VLANs, 562

cp command, 564
Python command, 565
show vlan command, 566
use, 563

while loop, 566
script, 568
show vlan command, 569
use, 566, 567

Test-driving docker
commands, 704
docker login, 703
exit, 706
image, 704, 707
systemctl, 705
testfile999.txt file, 705

tftpdir directory, 603
time module, 106, 768
time.sleep() function, 106, 107
time.timezone method, 106
title() method, 124, 125
touch command, 316
Trivial File Transfer Protocol (TFTP), 350
try ~ except method, 814
try ~ except statement, 815
Tuples, 76

assign variables, 79
convert to list, 76–78
create function, 79
immutable, 77
list elements, 80
for loop, 78

Twilio, 675, 676, 718
type() function, 36–38

��������� U
Ubuntu 20.04 LTS task scheduler, see crontab
Ubuntu Server 20.04

configure proxy, 186
default language selection, 183
disk file option, 180
featured server snaps, 193
guided storage configuration, 188, 189, 191, 192
installable image, 176, 177
installation, 172, 175
keyboard selection, 184
login screen, 196
network connections, 185
operation rebooted, 195
server installation’s, 182
user credentials, 178
virtual machine, 173
VM configuration, 181
VM folder, 179

Ubuntu Server 20 image, VM
CentOS server, 169
cloning, 217, 218, 220
downloading/installing, 170
downloading LTS, 171, 172
GUI/packages, 205, 206, 208–210
installing 20.04 LTS, 172, 174
LTS, 170
operating system, 169



866

■ INDEX

PuTTY background/font color change, 202
PuTTY security alert, 201
root user GUI access, 210, 211, 213, 214
root user SSH login, 203, 204
snapshot, 214, 215
SSH, 196, 197, 199, 200

uname commands, 330
undebug all command, 731
Unified Networking Lab’s (UNL), 19
upper() method, 124, 125
User input

getpass() module, 127
version 1, 117
version 2, 118
version 3, 119

��������� V
Variables

abbreviated variable  
assignment, 36

container vs. tag/pointer, 38
creation, 34, 35
data types, 34, 35
name error, 40
naming conventions, 38, 39
print output, 35
type error, 41, 42
variable assignment error, 39, 40

/var/tftpdir directory, 504, 506, 603
Virtualized networking devices, xxvi
Virtual machines (VMs), 145, 491
Virtual network adapters

editor, 152–155
interface, 155, 156, 158

Virtual network interface
types

bridged networking, 161, 163, 164
host-only networking, 159–161
NAT, 164, 165, 167, 168

Visual editor (vi), 282
commands, 282, 283
copying/pasting line, 289, 290
create file, 285
ex_vi, 285

gvim, 291
insert mode, 286
line number, 292, 293
logging, CentOS 8.1, 284
ls files, 286
modes, 282
reopening/closing file

ex_vi directory, 287
modification, 288
view file, 288

string search, 291, 292
tasks, 287
undo last action, 290
write/save/exit file, 286
:x command, 286

VMware Workstation, see IOS XE upgrade lab
VMware Workstation Pro

AMD CPUs, 142, 143
basic operations, 146, 147, 149
BIOS setting, 143, 144
definition, 139
GNS3, 144
menu, 149, 150, 152
network adapters, 139
proof-of-concept lab, 142
Python, 139
Type-1 and Type-2 hypervisors, 141
user window, 146
virtualization, 140

��������� W, X, Y, Z
Windows Python environment

CentOS, 34
code blocks, 30, 31
comments, 31, 32
concepts, 27
data types, 28–30
IDLE, 33, 34
indentation, 30, 31
Linux, 27
naming conventions, 32, 33
Ubunt, 34
UNIX, 34
versions, 34

Windows Subsystem for Linux (WSL), 277, 549

Ubuntu Server 20 image, VM (cont.)


	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Python Network Automation
	Laying the Foundation
	Exploring Your Skills and Prerequisites
	General Competencies of Three Main IT Domain Group
	Comparative Analysis of IT Engineers’ Responsibilities

	Python and Network Automation Studies
	Why Do People Want to Learn Python?

	What Do I Need to Study Network Automation Using Python?
	Hardware: Minimum Specifications for Laptop or PC
	Software Requirements
	Building a Network Automation Development Environment Using GNS3
	Downloading Supplementary Guides and Source Code
	Summary
	Storytime 1: Mega Speed Shoe Factory

	Chapter 2: Learn Python Basics on Windows
	“Hello, World!” and print() Function in Interactive Mode
	Preparing for the Python Exercises
	Understanding Data Types
	Indentation and Code Blocks
	Explanation

	Commenting
	Explanation

	Python Naming Convention

	Doing the Python Exercises
	Variables and Strings
	Exercise 2-1: Create Variables and Assign Various Data Types
	Explanation

	Exercise 2-2: Create Variables and Use the print() Function to Print Output
	Explanation

	Exercise 2-3: Use Abbreviated Variable Assignment
	Explanation

	Exercise 2-4: Enter a String, Escape Character Backslash (\), and type() Function
	Explanation

	Exercise 2-5: Determine If a Variable Is a Container, a Tag, or a Pointer
	Explanation

	Exercise 2-6: Use String Indexing
	Explanation

	Exercise 2-7: Understand Variable Assignment Errors
	Explanation

	Exercise 2-8: Avoid “SyntaxError: EOL While Scanning String Literal”
	Explanation

	Exercise 2-9: Avoid “NameError: name ‘variable_name’ is not defined”
	Explanation

	Exercise 2-10: Avoid “SyntaxError: invalid syntax”
	Explanation

	Exercise 2-11: Avoid “TypeError: ‘str’ object is not callable”
	Explanation

	Exercise 2-12: Add Multiline Comments with Triple Quotation Marks
	Explanation

	Exercise 2-13: Use \ as an Escape Character to Remove Special Character Meanings
	Explanation

	Exercise 2-14: Enter (Inject) Values/Strings in a String Using %s
	Explanation


	Printing, Concatenating, and Converting Strings
	Exercise 2-15: Use the print() and len() Functions to Create a Simple Function
	Explanation

	Exercise 2-16: Use the lower() and upper() String Methods
	Explanation

	Exercise 2-17: Perform String Concatenation and Use the str() Method
	Explanation

	Exercise 2-18: Learn to Change a String Using Curly Brackets and .format()
	Explanation

	Exercise 2-19: Adjust the Text Position with Curly Brackets and .format()
	Explanation

	Exercise 2-20: Adjust the Number of Decimal Places
	Explanation

	Exercise 2-21: Ask for and Receive User Input with input()
	Explanation

	Exercise 2-22: Change a Word or Characters in a String
	Explanation

	Recap: Variables and Strings

	Numbers and Arithmetic Operators
	Exercise 2-23: Use Arithmetic Operators
	Explanation

	Exercise 2-24: Understand Integers vs. Strings
	Explanation

	Recap: Arithmetic Operators

	Booleans and Relational Operators
	Exercise 2-25: Use Booleans
	Explanation

	Exercise 2-26: Use Relational Operators
	Explanation

	Exercise 2-27: Use Boolean Expressions to Test True or False
	Explanation

	Exercise 2-28: Use Logical (Membership) Operators
	Explanation

	Exercise 2-29: Change the Order of Operation with ()
	Explanation


	Control Statements: if, elif, and else
	Exercise 2-30: Use if and else
	Explanation

	Exercise 2-31: Use if, elif, and else
	Explanation

	Exercise 2-32: Write Code with if, elif, and else
	Explanation

	Recap: Boolean and Conditionals

	Functions
	Exercise 2-33: Defining a Function
	Explanation

	Exercise 2-34: Assign Default Values to a Function
	Explanation

	Exercise 2-35: Define Hello and Goodbye Functions
	Explanation

	Exercise 2-36: Use the Odd or Even Function
	Explanation

	Exercise 2-37: Nest a Function Within a Function
	Explanation

	Recap: Functions

	Lists
	Exercise 2-38: Create a List and Index Items
	Explanation

	Exercise 2-39: Use append, extend, and insert in a List
	Explanation


	Slicing
	Exercise 2-40: Slice a List
	Explanation


	Exceptions and Error Handling
	Exercise 2-41: Avoid a ValueError Error
	Explanation

	Exercise 2-42: Handle Errors with try and except in a List
	Explanation

	Exercise 2-43: Find an Index of an Item in a List with the Customized Exception
	Explanation

	Practicing Lists
	Exercise 2-44: Practice a List
	Explanation


	Using for Loops and while Loops
	Exercise 2-45: Use the for Loop’s upper() and capitalize() Methods
	Explanation

	Exercise 2-46: Use the while Loop and len() Function
	Explanation


	Sorting and Ranges
	Exercise 2-47: Use sort() vs. sorted() in a List
	Explanation

	Exercise 2-48: Link Two Lists
	Explanation

	Exercise 2-49: Find the List Length Using the len() Function
	Explanation

	Exercise 2-50: Use range() and the for Loop
	Explanation

	Exercise 2-51: Use the String List for loop() and range() with Arguments
	Explanation

	Recap: Lists and Loops

	Tuples
	Exercise 2-52: See Some Basic Tuple Examples
	Explanation

	Exercise 2-53: Convert a Tuple to a List
	Explanation

	Exercise 2-54: Determine Whether a Tuple Immutable
	Explanation

	Exercise 2-55: Convert a Tuple to a List and a List to a Tuple
	Explanation

	Exercise 2-56: Use a for Loop in a Tuple
	Explanation

	Exercise 2-57: Assign Multiple Variables to a Tuple
	Explanation

	Exercise 2-58: Create a Simple Tuple Function
	Explanation

	Exercise 2-59: Use Tuples as List Elements
	Explanation

	Recap: Tuples

	Dictionaries
	Exercise 2-60: Understand Dictionary Basics
	Explanation

	Exercise 2-61: Avoid a Dictionary TypeError and Convert Two Lists to a Single Dictionary
	Explanation

	Exercise 2-62: Use Keys to Print Values from a Dictionary
	Explanation

	Exercise 2-63: Change a Dictionary Value
	Explanation

	Exercise 2-64: Add a New Set of Keys and Values to a Dictionary
	Explanation

	Exercise 2-65: Find the Number of Dictionary Elements
	Explanation

	Exercise 2-66: Delete Dictionary Keys and Values
	Explanation

	Exercise 2-67: Write a Python Script with a Dictionary
	Explanation

	Exercise 2-68: Use a Dictionary for a Loop and Formatting
	Explanation

	Recap: Dictionaries

	Handling Files
	Exercise 2-69: Read and Display Hosts File from Your PC
	Explanation

	Exercise 2-70: Open and Close Hosts Files
	Explanation

	Exercise 2-71: Create Code to Close a File in Two Ways
	Explanation

	Exercise 2-72: Create a Text File, and Read, Write, and Print
	Explanation

	Exercise 2-73: Use rstrip() or lstrip() to Remove Whitespace
	Explanation

	Exercise 2-74: Python File Mode Exercise: Use r Mode
	Explanation

	Exercise 2-75: Python File Mode Exercise: Use r+ Mode
	Explanation

	Exercise 2-76: Python File Mode Exercise: Use a Mode
	Explanation

	Exercise 2-77: Python File Mode Exercise: Use a+ Mode
	Explanation

	Exercise 2-78: Python File Mode Exercise: Use w Mode
	Explanation

	Exercise 2-79: Python File Mode Exercise: Use w+ Mode
	Explanation

	Exercise 2-80: Python File Mode Exercise: Use x Mode
	Explanation

	Exercise 2-81: Python File Mode Exercise: Use x Mode
	Explanation

	Exercise 2-82: Open a Byte File in Python
	Explanation

	Exercise 2-83: Handle Errors with try and except
	Explanation

	Recap: Python file Handling Concept

	Using Python Modules
	Time Module
	Exercise 2-84: Import the time Module
	Explanation


	Sleep Method
	Exercise 2-85: Use the time.sleep() Function
	Explanation

	Exercise 2-86: Browse a Path Using the sys Module
	Explanation

	Exercise 2-87: Add a New Filepath Using the sys Module
	Explanation

	Exercise 2-88: Check Built-ins and sys.builtin_module
	Explanation

	Exercise 2-89: Use a Simple import sys Module in a try and except Exercise
	Explanation

	Exercise 2-90: Understand Lambdas by Making a Calculator
	Explanation

	Recap: Module Concepts

	Summary

	Chapter 3: More Python Exercises
	Getting Ready for the Exercises
	Exercise 3-1: Concatenate a List and a Tuple into a Single List
	Explanation

	Exercise 3-2: Use Python as a Calculator
	Explanation

	Exercise 3-3: Do Some Basic String format() Exercises
	Explanation

	Exercise 3-4: Ask for a Username
	Explanation

	Exercise 3-5: Get a Username: Version 1
	Explanation

	Exercise 3-6: Get a Username: Version 2
	Explanation

	Exercise 3-7: Get a Username: Version 3
	Explanation

	Exercise 3-8: Add a Temporary Filepath, Import ex3_7.py as a Module, and Run the Script
	Explanation

	Exercise 3-9: Use Commas to Add Spaces Between Strings
	Explanation

	Exercise 3-10: Practice if; if and else; and if, elif, and else
	Explanation

	Exercise 3-11: Practice for ~ in range with end=‘'
	Explanation

	Exercise 3-12: Practice for ~ in range
	Explanation

	Exercise 3-13: Practice for line in ~
	Explanation

	Exercise 3-14: Use the split() Method
	Explanation

	Exercise 3-15: Practice with lstrip(), rstrip(), strip(), upper(), lower(), title(), and capitalize()
	Explanation

	Exercise 3-16: Create a file and read it four different ways
	Explanation

	Exercise 3-17: Read and Output Files for a More Detailed Understanding
	Explanation

	Exercise 3-18: Use the getpass() Module and User Input
	Explanation

	Exercise 3-19: Understand the Difference Between Encoding and Decoding
	Explanation

	Exercise 3-20: Handle CSV Files in Python with the csv Module
	Explanation

	Exercise 3-21: Output a CSV File
	Explanation

	Exercise 3-22: Find the Price of a Cisco ISR 4331 Router from a CSV File
	Explanation

	Exercise 3-23: Calculate the Total Cost of the Router Purchases: No Module
	Explanation

	Exercise 3-24: Calculate the Total Cost of the Router Purchases: Using the csv Module
	Explanation

	Exercise 3-25: Convert dd-mmm-yy and Calculate the Difference in Days and Then in Years
	Explanation


	Exploring the Python IDE Environment
	Summary
	Storytime 2: Machine vs. Human, The First Confrontation

	Chapter 4: Introduction to VMware Workstation
	VMware Workstation at a Glance
	Type-1 vs. Type-2 Hypervisors
	VMware Workstation Pro for a Proof-of-Concept Lab

	Before Using VMware Workstation
	What’s Next on VMware Workstation 15 Pro?
	VMware Workstation 15 Pro User Console

	Basic Operations of VMware Workstation 15 Pro
	VMware Workstation Pro: Basic Operations
	VMware Workstation Menu

	Virtual Network Adapters
	Virtual Network Editor Overview
	Virtual Network Interface Description
	Revealing Each Virtual Network Interface Types
	Host-Only Networking
	Bridged Networking
	Network Address Translation Networking


	Summary

	Chapter 5: Creating an Ubuntu Server Virtual Machine
	Downloading and Installing a Ubuntu Server 20 Image
	Downloading the Ubuntu Server 20.04 LTS Image
	Installing Ubuntu Server 20.04 LTS
	Logging In to a New Ubuntu Server 20 via SSH
	Customize Ubuntu Server
	Ubuntu VM Customization 1: Enable Root User SSH Login on Ubuntu Server 20.04
	Ubuntu VM Customization 2: Install a Desktop GUI and Other Packages
	Ubuntu VM Customization 3: Enable Root User GUI Access

	Taking a Snapshot of a Virtual Machine
	Cloning a Virtual Machine
	Summary

	Chapter 6: Creating a CentOS 8 Server Virtual Machine
	Downloading and Installing a CentOS 8 Server Image
	Downloading the CentOS 8 Server Image
	Installing CentOS 8 Server
	Logging In to a New CentOS 8 Server via SSH
	Managing a Network Adapter on Linux

	Creating a GNS3 VM by Importing an .ova File
	Downloading and Installing the GNS3 VM from an .ova File

	Summary
	Storytime 3: The Origin of Hypervisors

	Chapter 7: Linux Fundamentals
	Why Learn Linux?
	The Beginning of Linux
	Understanding the Linux Environment
	Understanding Linux Directories and File Formats
	vi vs. nano
	Introduction to vi
	Basics of vi
	Reopening a File in vi
	Copying and Pasting a Line in vi
	Undo Last in vi
	Searching for Text in vi
	Display the Line Number in vi

	Introduction to nano
	Installing nano
	Create/Open a File with nano
	Reopen a File with nano
	Cut (Delete) and Paste with nano
	String Search and Replacing String(s)
	Customize nano for Python Coding


	Linux Basic Administration
	Changing the Hostname
	Linux Basic File and Directory Commands
	Linux File and Directory Exercises
	Exercise 7-1
	Exercise 7-2
	Exercise 7-3
	Linux File and Directory Exercise 7-2
	Echo, Cat, More, and Less Command Exercise
	ls Command with Options
	Delete files and directories at once
	Create a Python Application, Make Your File Executable, Add a Shebang, and Run the Application


	Summary

	Chapter 8: Linux Basic Administration
	Information on Linux: Kernel and Distribution Version
	Information on Linux: Use the netstat Command to Validate TCP/UDP Ports
	Installing TFTP, FTP, SFTP, and NTP Servers
	FTP Server Installation
	Installing the SFTP Server
	Installing the TFTP Server
	Installing the NTP Server

	Linux TCP/IP Troubleshooting Exercise
	Summary
	Storytime 4: Becoming a Savvy Linux Administrator, Perhaps Every IT Engineer’s Dream?

	Chapter 9: Regular Expressions for Network Automation
	Why Regex?
	To re or Not to re

	Studying Regular Expressions Using Python
	Method 1: Using Notepad++
	Method 2: Using the Linux Shell
	Regular Expression Breakdown: [A-Z]{3}\d{4}[/]\w+
	Method 3: Using the Internet to Study Regular Expressions

	Regex Operation: The Basics
	Character Class ([])
	Dot (.): Single Character Match
	Asterisk (*): Repetition
	Plus (+): Repetition
	{m, n}: Repetition
	{m}
	{m, n}
	? (Question Mark: Repetition)


	Python’s re Module
	Python re String Methods
	re.match()
	re.search()
	re.findall()
	re.finditer()

	Match Object Method

	Compile Options
	re.DOTALL (re.S)
	re.IGNORECASE (re.I)
	re.MULTILINE (re.M)
	re.VERBOSE (re.X)

	\: Confusing Backslash Character
	Regular Expressions: A Little Revision Plus More
	More Metacharacters
	OR Operator (|)
	^ and $ (Anchors)
	\A and \Z
	\b and \B
	Grouping
	Regular Expression Named Groups

	Lookahead and Lookbehind Assertions
	Lookahead, Lookbehind, and Noncapturing group
	Practice More Lookarounds
	Lookaround Application Examples

	sub Method: Substituting Strings
	Substitute Strings Using sub
	Using sub and \g to Swap Positions
	Insert a Function in sub Method

	Summary

	Chapter 10: GNS3 Basics
	GNS3 at a Glance
	Installing GNS3 for the First Time
	Downloading the GNS3 Installation File

	GNS3 Installation and Setup
	GNS3 Installation
	GNS3 Setup Procedures

	Getting Familiar with GNS3
	GNS3 Menus and GUI
	Gracefully Shutting Down GNS3 and GNS3 VM
	Starting GNS3 as an Administrator

	Using GNS3 for the First Time: Cisco IOS and Windows Lab
	Cisco IOS Software License and Downloading an Older Cisco IOS
	Decompressing Cisco IOS for GNS3 Use
	Decompressing Cisco IOS Using the Unpack.exe Method
	Decompressing Cisco IOS Using Dynamips Method (Optional)


	Installing Cisco IOS on the GNS3 VM
	Creating an IOS Lab Topology on GNS3 and Connecting to the Internet
	Installing the Microsoft Loopback Adapter
	Accessing GNS3 Network Devices Using MS Loopback

	Configuring the GNS3 IOS Router Using a Python Script from the Windows Host PC
	Cisco IOS and GNS3 Appliance Lab
	Importing and Installing the GNS3 Linux Appliance Server
	Manually Assigning IP Address to GNS3 Linux Appliance Server
	Using the GNS3 Appliance Linux’s Python to Manage R1

	Summary

	Chapter 11: Cisco IOS Labs
	Cisco IOS and the Linux VM Lab
	Creating a New GNS3 Project for the Linux VM Lab
	Uploading and Downloading Files to the GNS3 IOS Router from Linux VMs (File Transfer Testing Lab)
	Copying (Cloning) a GNS3 Project
	Summary

	Chapter 12: Building a Python Automation Lab Environment
	Cisco CML-PERSONAL Software License Information and Software Downloads
	Downloading the Cisco CML-PERSONAL IOSvL2 (Switch) Image
	Downloading the Cisco CML-PERSONAL IOSv (Router) Image and startup_config Files
	Installing the Cisco CML-PERSONAL L2 Switch and CML-PERSONAL L3 on GNS3
	Installing the Cisco CML-PERSONAL L2 Switch on GNS3
	Quick Communication Test on CML L2 Switch Integration on GNS3

	Installing the Cisco CML-PERSONAL L3 Router on GNS3
	Quick Communication Test on CML L3 Router Integration on GNS3

	Building a CML-PERSONAL Lab Topology
	Summary

	Chapter 13: Python Network Automation Lab: Basic Telnet
	Python Network Automation: Telnet Labs
	Telnet Lab 1: Interactive Telnet Session to Cisco Devices on a Python Interpreter
	Telnet Lab 2: Configure a Single Switch with a Python Telnet Template
	Telnet Lab 3: Configure Random VLANs Using a for Loop
	Telnet Lab 4: Configure Random VLANs Using a while Loop
	Telnet Lab 5: Configure 100 VLANs Using the for ~ in range Loop Method
	Telnet Lab 6: Add a Privilege 3 User on Multiple Devices Using IP Addresses from an External File
	Telnet Lab 7: Taking Backups of running-config (or startup-config) to Local Server Storage
	Summary

	Chapter 14: Python Network Automation Labs: SSH paramiko and netmiko
	Python Network Automation Labs Using the paramiko and netmiko Libraries
	Python SSH Labs: paramiko
	paramiko Lab 1: Configure the Clock and Time Zone of All Devices Interactively in the Python Interpreter
	paramiko Lab 2: Configuring an NTP Server on Cisco Devices Without User Interaction (NTP Lab)
	paramiko Lab 3: Create an Interactive paramiko SSH Script to Save Running Configurations to the TFTP Server
	Python SSH Labs: netmiko
	netmiko Lab 1: netmiko Uses a Dictionary for Device Information, Not a JSON Object
	netmiko Lab 2: Develop a Simple Port Scanner Using a Socket Module and Then Develop a nemiko Disable Telnet Script
	netmiko Lab 3: config compare
	Summary

	Chapter 15: Python Network Automation Labs: cron and SNMPv3
	Cron and SNMPv3 Labs
	Cloning a GNS3 Project for the Next Lab
	Quick-Start to the Linux Scheduler, cron
	Ubuntu 20.04 LTS Task Scheduler: crontab
	CentOS8.1 Task Scheduler: crond
	Learn cron Job Definitions with Examples

	Using Python to Run an SNMPv3 Query
	Quick-Start Guide to SNMP
	Quick SNMP History
	SNMP Standard Operation
	SNMP Polling vs. Trap (Event Reporting) Method
	SNMP Versions
	Understanding the SNMP Protocol in the TCP/IP Stack
	About SNMP Message Types
	Understanding SNMP’s SMI, MIB, and OID
	SNMP Access Policy
	Synchronous vs. Asynchronous Communication While Using SNMP Traps
	SNMP-Related Python Libraries
	Understanding MIBs and OIDs and Browsing OIDs Directly

	Learn to Use SNMPwalk on a Linux Server
	Installing and Configuring SNMP Server on CentOS8
	Configuring Cisco Routers and Switches to Support SNMPv3 Using a Python Script
	SNMPwalk from Linux Server

	Borrowing Some Example Python SNMP Code
	SNMP Lab Source Code
	SNMPv3 Python Code to Query Cisco Device Information
	Using Python SNMP Code to Run a Query for an Interface Description


	Summary

	Chapter 16: Python Network Automation Labs: Ansible, pyATS, Docker, and the Twilio API
	Python Network Automation Development Labs
	Quick-Start Guide to Ansible: virtualenv Lab 1
	Installing virtualenv and Getting Started with Ansible

	Quick-Start Guide to pyATS (Genie): VirtualEnv Lab 2
	Sendmail Lab Using an Imported Docker Image
	Docker Components and Account Registration
	Docker Installation
	Test-Driving Docker
	Docker Sendmail Python Lab
	Lab: Sendmail Email Notification script Development

	CPU Utilization Monitoring Lab: Send an SMS Message Using Twilio
	TWILIO Account Creation, Install Twilio Python Module and SMS Message Setup
	CPU Utilization Monitoring Lab with an SMS Message

	Summary

	Chapter 17: Upgrading Multiple Cisco IOS XE Routers
	Practical Python Network Automation Lab: IOS XE Upgrade Lab
	Applying OOP Concepts to Your Network
	Flow Control and Controlling User Input: UID, PWD, and Information Collector
	Lab Preparation
	CSR 1000v IOS XE Software and Download
	Cisco CSR 1000v Installation on VMware Workstation

	Discussion of How an IOS (IOS-XE/XR) Is Upgraded on Cisco Devices
	Tasks Involved in a Cisco IOS Upgrade

	Summary

	Chapter 18: Python Network Automation Lab: Cisco IOS Upgrade Mini Tools Development
	Cisco IOS Upgrade Application Development
	Part A: Pre-check Tools Development Connectivity Validation Tool
	Collect User’s Login Credentials and User Input
	Collect a New IOS Filename and MD5 Value from a CSV File
	Check the MD5 Value of the New IOS on the Server
	Check the Flash Size on Cisco Routers
	Make Backups of running-config, the Interface Status, and the Routing Table
	Part B: IOS Uploading and More Pre-check Tools Development
	IOS Uploading Tool
	Check the New IOS MD5 Value on the Cisco Device’s Flash
	Options to Stop or Reload the Routers
	Check the Reloading Device and Perform a Post-Reload Configuration Verification
	Summary

	Chapter 19: Python Network Automation Labs: Combining and Completing the Cisco IOS Upgrade Application
	Creating a Single Python File
	Summary
	Final Words

	Index



