
Python Programming

from Beginner to

Paid Professional

Part 1

Learn Python for Automation & IT

with Video Tutorials

By

A. J. Wright

Python Programming from Beginner to Paid Professional

Copyright © AB Prominent Publisher

9791220820387

Published in the United States

All rights No part of this book and the accompanying video

tutorials may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, without the prior

written permission of the publisher, except in the case of brief

quotations embedded in critical articles or reviews. Every effort has

been made in the preparation of this book and the accompanying

videos to ensure the accuracy of the information presented.

However, the information contained in this book and the videos is

sold without warranty, either express or implied. The

author/publisher, its dealers and distributors will not be held liable

for any damages caused or alleged to be caused directly or

indirectly by this book and its videos. The author/publisher has

endeavored to provide trademark information about all the

companies and products mentioned in this book. However, he

cannot guarantee the accuracy of this information.

Table of Contents

About the Author

How this Book can Help You

How to Use the Video Tutorials, Programs & Practice Exercises

Why Learn Python Programming?

1. The Foundation: Getting Started with Python Programming

1.1. Specialization Introduction

1.2. Course Introduction

1.3. A Minute to Set Yourself up for Success

1.4. Welcome to the Course

1.4.1. How the 6-Week Deadline Works

1.4.2. Getting and Giving Help

1.4.3. Finding Out More Information

1.5. Official Python Discussion Forums: Join, Meet & Greet

2. Introduction to Programming

2.1. The Beginning of Your Programming Journey

2.2. What is Programming?

2.2.1. Difference Between Script and Program

2.3. What is Automation?

2.4. Getting Computers to Work for You

2.5. Discussion Forums: Your Hopes for Automation

2.6. Practice Quiz 1: Introduction to Coding in General - 5

Questions

2.6.1. Answers to Practice Quiz 1

3. Setting up Your Python & Programming Environment

3.1. What is Python?

3.1.1. How to Execute Python Codes

3.2. A Note on Syntax and Code Blocks

3.3. Why is Python Relevant to IT?

3.4. How to Become a Pythoneer or Pythonista

3.5. Other Languages

3.6. Practice Quiz 2: Introduction to Python - 5 Questions

3.6.1. Answers to Practice Quiz 2

4. Hello, World!

4.1. How to Write Hello World in Python

4.1.1. Program Comments (#)

4.1.2. How to Write Comments

4.2. How to Get Information from the User

4.3. Python Can Be Your Calculator

4.4. Cheat Sheet 1: First Programming Concepts

4.5. Practice Quiz 3: Hello World - 5 Questions

4.5.1. Answers to Practice Quiz 3

5. Module Review

5.1. First Steps Wrap Up

5.2. Module 1 Graded Assessment - 10 Questions

5.2.1. Solutions to Module 1 Graded Assessment

6. Expressions and Variables

6.1. Basic Python Syntax introduction

6.2. Data Types

6.3. Data Types Recap

6.4. Variables

6.4.1. Variable Name Restrictions

6.5. Expressions, Numbers and Type Conversions

6.6. Implicit versus Explicit Conversion

6.7. Practice Quiz 4: 5 Questions

6.7.1. Answers to Practice Quiz 4

7. Functions

7.1. Defining Functions

7.2. Defining Functions Recap

7.3. Returning Values

7.4. Returning Values Using Functions

7.5. The Principles of Code Reuse

7.6. Code Style

7.6.1. Principles for Creating Well-styled Code

7.7. Practice Quiz 4: 5 Questions

7.7.1. Answers to Practice Quiz 5

8. Conditionals

8.1. Comparing Things

8.2. Comparison Operators Recap

8.3. Branching with IF statements

8.4. If Statements Recap

8.5. Else Statements

8.6. Else Statements and Modulo Operator Recap

8.7. Elif Statements

8.8 Cheat Sheet 2: Conditionals

8.9. More Complex Branching with elif Statements

8.10. Practice Quiz 6: 5 Questions

8.10.1. Answers to Practice Quiz 6

9. Module Review

9.1. Basic Syntax Wrap Up

9.2. Why I Like Python

9.3. What I Don’t Like About Python

9.4. Module 2 Graded Assessment - 10 Questions

9.4.1. Solutions to Module 2 Graded Assessment:

10. While Loops

10.1. Introduction to Loops

10.2. What is a While loop?

10.3. Anatomy of a While Loop

10.4. More While Loop Examples

10.5. Why Initializing Varaibles Matters

10.6. Common Pitfalls with Variable Initialization

10.7. Infinite Loops and How to Break Them

10.8. Infinite loops and Code Blocks

10.9. Practice Quiz 7: 5 Questions

10.9.1. Answers to Practice Quiz 7

11. For Loops

11.1. What is a For Loop?

11.2. For Loops Recap

11.3. More for Loop Examples

11.4. A Closer Look at the Range() Function

11.5. Nested For Loops

11.6. Common Errors in For Loops

11.7 Cheat Sheet 3: Loops

11.8. Practice Quiz 8: 4 Questions

11.8.1. Answers to Practice Quiz 8

12. Recursion (Optional)

12.1. What is recursion?

12.2. Recursion in Action in the IT Context

12.3. Additional Recursion Sources

12.4. Practice Quiz 9: 5 Questions

12.4.1. Answers to Practice Quiz 9

13. Module Review

13.1. Loops Wrap Up

13.2. Module 3 Graded Assessment – 10 Questions

13.2.1. Solutions to Module 3 Graded Assessment:

14. Strings

14.1. Basic Structures Introduction

14.2. What is a string?

14.3. The Parts of a String

14.4. String Indexing and Slicing Recap

14.5. Creating New Strings

14.6. Basic String Methods

14.7. More String Methods

14.8. Advanced String Methods

14.9. Formatting Strings

14.10. String Formatting Recap

14.11. Cheat Sheet 4: String Reference

14.12. Cheat Sheet 5: Formatting Strings

14.13. Practice Quiz 10: 5 Questions

14.13.1. Answers to Practice Quiz 10

15. Lists

15.1. What is a List?

15.2. Lists Defined

15.3. Modifying the Contents of a List

15.4. Modifying Lists

15.5. Lists and Tuples

15.6. Tuples Recap

15.7. Iterating over Lists and Tuples

15.8. Iterating Over Lists Using Enumerate

15.9. List Comprehensions 1

15.10. List Comprehensions Recap

15.11. Cheat Sheet 6: Lists and Tuples Operations

15.12. Practice Quiz 11: 6 Questions

15.12.1. Answers to Practice Quiz 11

16. Dictionaries

16.1. What is a Dictionary?

16.2. Dictionaries Defined

16.3. Iterating over the Contents of a Dictionary

16.4. Iterating Over Dictionaries Recap

16.5. Dictionaries versus Lists

16.6. Cheat Sheet 7: Dictionary Methods

16.7. Practice Quiz 12: 5 Questions

16.7.1. Answers to Practice Quiz 12

17. Module Review

17.1. Basic Structures Wrap Up

17.2. Module 4 Graded Assessment – 10 Questions

17.2.1. Solutions to Module 4 Graded Assessment

18. Object-oriented Programming (OOP)

18.1. OOP Introduction

18.2. What is OOP?

18.3. Definition of OOP

18.4. Classes and Objects in Python

18.5. Classes and Objects in Detail

18.6. Defining New Classes

18.7. Defining Classes Recap

18.8. Practice Quiz 13: 5 Questions

18.8.1 Answers to Practice Quiz 13

19. Classes and Methods

19.1 Instance Methods

19.2. What Is a Method?

19.3. Constructors and Other Special Methods

19.4. Special Methods Recap

19.5. Documenting Functions, Classes and Methods

19.6. Documenting with Docstrings

19.7. Cheat Sheet 8: Classes and Methods

19.8. About Jupyter Notebooks (Optional)

19.9. Help with Jupyter Notebooks

19.10. Challenge Lab 1: Methods and Classes Lab

20. Code Reuse

20.1. Inheritance

20.2. Object Inheritance

20.3. Composition

20.4. Object Composition

20.5. Python Modules

20.6. Augmenting Python with Modules

20.7. Supplemental Reading for Code Reuse

20.8. Challenge Lab 2: Code Reuse Lab

21. Module Review

21.1. OOP Wrap Up

21.2. Challenge Lab 3: Practice Notebook (Object Oriented

Programming)

22. Writing a Script from the Ground Up

22.1. Final Project Introduction

22.2. Problem Statement

22.3. Research

22.4. Planning

22.5. Writing the Script

22.6. Putting It All Together

22.7. Challenge Lab 4: Putting It All Together

23. Final Project

23.1. Final Project Overview

23.2. Final Project Help

23.2.1 Project goal

23.3. Final Project (Challenge Lab 5)

23.3.1. Instructions

23.4. Final Project Grading

24. Course Wrap up

24.1. Congratulations!

24.2. Discussion Forums: Share Your Learner Journey

24.3. Sneak Peek of the Next Course (Part 2)

25. How to Download the Course Resources

25.1. How to Get Further Help

25.2. More Helpful Resources

About the Author

I have well over 15 years of software development experience. In

the last few years I used my experience to develop solutions using

various programming languages on Windows, Linux, MacOS and

PLCs (programmable logic I also built solutions from scratch and

went as far as modifying open source software to meet my

client’s needs.

I study hard and carry out researches constantly. I also love

helping people get jobs or making their businesses successful.

Nowadays, I work with a dedicated team of Python programmers

who look into specific automation problems and proffer lasting

solutions to them.

How this Book can Help You

This is not just another Python programming book. It is an

intensive and practical Python programming course. It is part 1 of

a 3-part series which serves as my exhaustive collection of step-by-

step tutorials on the latest version 3 of Python programming

language. It is a self-paced course that is excellent for beginners

and accomplished experts alike. If you want to have fun learning

or revising your Python programming with ease, this is the right

course for you.

You will find this book indispensable if you are a computer

programmer, an automation engineer or professional, a system

administrator working in an IT firm, a data analyst/journalist, an

educator, a computer science student or just anyone looking to

acquire Python programming skills they need to succeed in their

job or career. Yes, this course is exactly what you need to become

a Pythoneer or Pythonista.

This course has 6 modules spread out over 25 chapters of both

rich text and visual tutorials. You’re not in this alone. I’m going

to help you through it. Watching people coding is very different

from learning how to code. So, you will not only be learning

Python in this course, you will also be doing.

As you complete the tutorials, you’re also going to get tested a

lot on the materials we are covering by following Python best

practices. Although this is a self-paced course, I strongly

recommend that you complete it in not more than 6 weeks. For

example, if you can complete one module every week, you can

finish the course in 6 weeks.

To fully understand the basics of Python 3 programming, I

strongly recommend you watch all the 53 in-depth HD videos

which are available in the course resources folder that you can

download. The link for download is in Chapter 25 of this book.

These video tutorials simplify everything you need to understand,

and help you speed up your

Important terms and definitions discussed in this book are printed

in bold texts, like Practice quizzes and answers are included at

the end of each chapter to help you test how much you have

improved. Go to Chapter 25 right now. You will find the link to

the course resources Once you open this link, you will be able to

download all the course videos, graded assessments and their

solutions, and handy cheat sheets that give you all the

information you need at a

How to Use the Video Tutorials, Programs & Practice Exercises

Except for revision purposes, the videos are not intended to be

watched in isolation without first studying the content of this

book. You should watch each video when you reach the point

where it is referenced. This will ensure you fully understand the

concept being discussed. The serial number and title (file name)

of the relevant video to watch is stated at the point where it is

referenced.

To have a solid foundation of Python, you must have an in-depth

knowledge and develop Python coding skills quickly. Therefore, I

strongly advise you attempt all the practice exercises like quizes,

graded assessments and projects in this book on your and before

you check the answers and solutions provided. Write your own

program as soon as you see me write mine in each video. Then

cross check your programs with mine. Feel free to pause or

rewatch the videos any time. You can also use or modify any of

my codes as you wish.

Since I assume you have no knowledge of Python programming, I

prepared this course in such a way that when you study it along

with the accompanying videos you will not only have an in-depth

knowledge of Python 3 programming, you will also gain a lot of

job experience you need to build automation and innovation, and

earn higher salary.

This book begins with the fundamental knowledge you need to

start writing your very first Python script. It goes on to teach the

advanced topics you need to become a paid professional in the

field of Python programming. So, after completing this course you

will have a clear understanding of Object-oriented Programming

and be able to apply it to real world industrial automation.

The methods presented in this book and the accompanying videos

are those that are usually employed in the real world of IT and

are the important ones you really need to learn. So the

information in this book is very valuable, not only to those who

are just starting out, but also to other intermediate Python

programmers.

Merely reading a copious Python programming book, or referring

to Python help contents, is far from enough for learning how to

“speak” Python language fluently. This book, unlike many others,

takes the practical approach. It is designed in a course format

with rich practice quizzes, assessments, challenge labs and

interesting projects (with solutions) to engage you and give you

hands-on practical experience.

First, this book will give you a big head start if you have never

written a line of code before. Then it will teach you the

techniques you need to learn, design and build anything from

simple to complex and very useful Python programs.

Why Learn Python Programming?

If you learn Python, you will go mainstream. In case you haven’t

noticed, there are hundreds of today’s most successful

technology/IT companies using Python programs, such as Google,

Netflix, Instagram, Reddit, Lyft, Spotify and so many others.

Python is also being used at Bloomberg, the New York Times,

and even at many local banks.

Python has many clear paths to finding meaningful job and work.

For example, here is the link to apply to top remote USA Python

developer

Although some of these potential jobs are quite obvious - such as

becoming a Python developer - there are other careers where the

knowledge of Python is an asset that are more unexpected.

Module 1

“If milk gets bad it becomes yoghurt. Yoghurt is more valuable than

milk. If it gets even worse, it turns to cheese. Cheese is more

valuable than yoghurt. You are not bad because you made mistakes.

Mistakes are the experiences that make you more valuable as a

person. Christopher Columbus made a navigational error that made

him discover America. Alexander Fleming’s mistake led him to invent

Penicillin. Don’t let your mistakes get you down. It is not practice

that makes perfect. Our mistakes enable us to learn to make

ourselves perfect!” - Josh Aisosa

1. The Foundation: Getting Started with Python Programming

In this module I’ll introduce you to the book’s course format.

Then, we’ll dive into the basics of programming languages and

syntax, as well as automation using scripting. I’ll also introduce

you to the Python programming language and some of the

benefits it offers. Last up, we’ll cover some basic functions and

keywords of the language, along with some arithmetic operations.

1.1. Specialization Introduction

Working in IT is more than just a job. It's a career path.

Research shows that the field of IT support is a launchpad for

future career growth and better wages. In fact, a study on the

subject was recently conducted by the Harvard Business School

Accenture and Burning Glass entitled “Bridge the Gap”.

It found that among today's middle-skilled jobs which require

training but not a formal college degree, IT support offers clear

pathways to prosperity. I saw this phenomenon play out at

Google, in their IT support program. Those who push themselves

to learn how to code in Python typically saw strong career growth.

They built skills that are critical to accessing higher level positions

in the IT field, and after honing those skills through hard work

and determination, they advanced into more technical IT support

specialists. Some of them are systems administrators, technical

solutions engineers, and even site reliability engineers. The

common thread across all of these roles is knowing how to write

code to solve problems and automate solutions.

By expanding your toolbox to include coding skills, you open a

window into the world of systems management that can lead you

towards more advanced technical roles down the line. Python in

particular is having a huge surgeon’s. According to the 2019 Stack

Overflow Developer Survey, Python is the coding language most

people want to learn. The second most loved by those who

already know it and the fourth most popular overall.

So why take this course to learn how to code in Python? Well,

first it's geared towards people who are already in or aspiring to

be in the field of IT. Maybe you're thinking bigger about your

current IT role and want to work towards managing operations at

scale, or maybe you're just starting out and looking to break into

the IT industry.

Perhaps you've taken an IT Support Professional Certificate

program somewhere already, or you have equivalent IT support

knowledge with basic computing skills, like working with files and

directories, familiarity with networking concepts, and understanding

how to install software on your computer. In any case, this course

is tailor-made for you. Second, this course offers three hands-on

methods of teaching coding, Python and automation: Code blocks,

Jupyter notebooks, and labs.

Third, I worked with an awesome group of Googlers who helped

me prepare this course. They all started their careers in IT

support, then learned programming and moved onto more

technical roles like me. I can't wait to share our stories with you

on how we use Python in our day-to-day activities. So, I will

introduce you to the Python programming language with a special

focus on how this language applies to automating tasks in the

world of IT systems support and administration. I'm super excited

to teach you this course.

When I was younger, I had no idea that careers in IT even

existed. Later, I remember going to

a System Administration Summit where there were hundreds of

men and about three women that were sysadmins. A lot has

changed since then but there's still so much we can do to bring

new ideas and representation into the IT field. That's why I want

to share my knowledge with as many people as possible (and the

reason I prepared this book in a rich course format).

I love my Python programming and I love the people I work with

because they make it easy to ask for help and offer their

guidance. This type of support network allows our team and

ultimately our industry to be more successful. I understand from

experience that it can feel pretty intimidating and maybe even a

bit scary to learn a coding language.

Just remember, everyone started where you are right now with the

first command, the first script, and of course, the first of many

errors. When I started out in my career, I strive to get everything

perfectly right the first time I tried it. But that actually slowed

down my progress. So don't be afraid to make mistakes, it will

give you a leg up. So let's get down to it. What's ahead?

This book (Part 1) begins with a crash course in Python where

you will learn to write simple programs and understand their role

in automation. Next (Part 2), we'll get more hands-on focus on

how Python interacts with the operating system. After that, we'll

cover how to use Git and GitHub to manage versions of your

code. Then we will focus on troubleshooting and debugging

techniques to find and solve the root cause of problems in IT

infrastructure.

The next course (Part 3) covers automating at scale where you

will learn to deploy configuration management on a fleet of either

physical or virtual machines running in the Cloud.

Last up, we will bring all this knowledge together and complete

two final projects designed to solve tasks that you might

encounter in real-world IT settings. You can post your projects to

GitHub to show off your fancy new skills to employers or friends

or both.

That was a lot to rattle off! Are you excited? You're in very good

hands!

So, Let's get ready to learn some new skills and maybe even have

some laughs along the way. Let’s dive in straight to the next

section.

1.2. Course Introduction

If you work in IT, computer programming skills open up an

incredible amount of opportunity. Being able to write scripts and

programs that tell your computer to perform a task equips you

with an invaluable tool. Not only does it make your work easier

and more efficient, it can help you grow faster and advance

further in your IT career.

But how do you even start to learn a programming language like

Python? How do you recognize when to tell a computer to

perform a task? And how do you then write a program to actually

get your computer complete the task you want it to do? The

thought of learning to write a program in Python can make you

feel a whole bunch of emotions excitement, anticipation that

feeling of wanting to dive right in and get going and also fear.

You might ask yourself, can I really learn how to code or do I

have it in me? I'm here to tell you, yes, you can absolutely do

this. Learning how to program can be scary and intimidating, but

at the same time it's really fun and really exciting. In coding, as

in as in life if we're going to get philosophical, the most

rewarding work is usually a bit challenging, but ultimately well

worth the effort. Of course, I'm able to say all this from

experience, especially the cheesy parts.

The role of a sysadmin can vary a lot from company to company

and even within different teams in the same company. I happen

to work in the corporate identity and access management

operations team, which is a really long way of saying that we

make sure that everyone is represented correctly and if they need

to access certain resources, they can.

What I love the most about being a sysadmin is that the role has

so many diverse functions. We handle loads of unique problems

and edge cases from tinkering with different systems to

collaborating with other teams. I am always learning something

new, so it's really hard to get bored.

It all starts with knowing how to automate, if you're an IT

support specialist, a systems administrator, or in a role

somewhere in between knowing how to get computers to do the

hard work for you will set you apart from others in similar it

roles and make your life much easier. Think about it, would you

rather manually deploy 100 computers on your own or tell your

computer to do it all for you all at once?

No-brainer, right? Having a coding skill set can help you grow

into more specialized roles like a systems administrator, Cloud

Solutions engineer, DevOps specialist, site reliability engineer, or

who knows, maybe even web developer or data analyst. The point

is, being able to write a program is an essential tool in your IT

toolkit and more and more employers are looking for these skills

in the people they hire.

If you've ever learned a new skill, like playing a musical

instrument, speaking a foreign language, knitting, or skateboarding.

You know that getting good at something new requires a lot of

practice. For me, I love to learn new languages and I'm proud to

say I now speak Spanish, Arabic, French, and I even know ten

words in Russian.

Our world is shaped by the words and the languages we speak

and while some words may be unique to one language you can

always find similarities that help you learn and understand. Being

able to connect the dots between cultures allows me to see

things others might not, kind of sounds like this applies to IT

programming, huh? My point is, whether you're learning French or

Python, it 's never easy.

You have to start small, learn the basics and practice those until

you master them. Only then can you move on to more complex

and impressive stuff. We'll start slow, master the foundation's

together and you'll soon be ready for more challenging stuff. By

the end of this course, you'll understand the benefits of

programming in IT roles.

You'll be able to write simple programs using Python, figure out

how the building blocks of programming fit together, and combine

all this knowledge to solve a complex programming problem.

That's right, by the end of this course, you're going to write a

program in Python that's designed to solve a real-world IT

problem. Super exciting right?

We'll start off by diving into the basics of writing a computer

program. You'll get hands-on experience with programming

concepts through interactive exercises and real-world examples.

You'll quickly start to see how computers can perform a multitude

of tasks. You just have to write code that tells them what to do.

Along the way, we'll be talking about automation, which is process

of getting computers to automatically do a task that us humans

normally have to do by hand.

Now, some of the stuff can get a little complex and confusing. I

promise to do my best to make these lessons clear and easy to

understand, but if you get stuck at any point, please feel free to

re-watch the videos. Practice as much as you like and take the

time you really need to understand these topics. The goal of this

course isn't to teach you everything there is to know about

software engineering because yikes, that would be a long course.

Instead, I’m going to introduce you to some of the key concepts

of programming and scripting that will empower you to spot

opportunities for automation in real life. You're about to learn a

skill that can help you take your career to whole new levels. Are

you excited? I'm excited too, so let's jump in!

1.3. A Minute to Set Yourself up for Success

Did you know that people tends to get more out of a course like

this, and are more likely to succeed when they set their intention

to complete the course before they start? Use a pen and paper to

complete your commitment statement below, and help yourself

reach your goals. Don’t worry – this is just for you and is not

graded.

I commit to my goal to complete this course. I choose to

complete it because…

the sentence. What motivated you to take this

When I run into obstacles or lack motivation at some point

during the course, I will …

the sentence. What would you do or say to motivate your future

(Finally, commit by writing your name here)

Make sure you save your commitment where you can see it

everyday.

1.4. Welcome to the Course

This course is designed to teach you the foundations of

programming in Python. We’re excited to join you on this journey

as you learn one of the most-in-demand job skills in IT today. In

the U.S. alone, according to Burning Glass data from May 2019,

there were approximately 530K job openings in 2018 asking for

Python skills. This course requires no previous knowledge of

programming.

1.4.1. How the 6-Week Deadline Works

I deliberately set a deadline of one week for each module for you

need to complete this course. Heads up: These deadlines are

there to help you organize your time, but you can take the course

at your own pace. If you "miss" a deadline, you can just reset it

to a new date. There’s no time limit in which you have to finish

the course, and you move on to the second part of the course

whenever you finish.

1.4.2. Getting and Giving Help

Here are a few ways you can give and get help:

Official Python Discussion You can share information and ideas

with your fellow learners in the Python discussion forums. These

are also great places to find answers to questions you may have.

If you're stuck on a concept, are struggling to solve a practice

exercise, or you just want more information on a subject, the

discussion forums are there to help you move forward.

Contact Use the Contact us link (email link) at the end of

Chapter 25 to request information on specific issues. These may

include error messages, challenge labs, projects, and problems

with video download or playback.

1.4.3. Finding Out More Information

Throughout this course, I'll be teaching you the basics of

programming and automation. I'll provide a lot of information

through videos and text readings. But sometimes, you may also

need to look things up on your own, now and throughout your

career. Things change fast in IT, so it’s critical to do your own

research so you stay up-to-date on what’s new. We recommend

you use your favorite search engine to find additional information

— it’s great practice for the real world!

On top of search results, here are some good programming

resources available online:

The official Python This tutorial is designed to help people teach

themselves Python. While it goes in a different order than the one

I am taking here, it covers a lot of the same subjects that we

explore in this course. You can refer to this resource for extra

information on these subjects.

The official language This is a technical reference of all Python

language components. At first, this resource might be a little too

complex, but as you learn how Python works and how it’s built,

this can be a useful reference to understand the details of these

interactions.

1.5. Official Python Discussion Forums: Join, Meet & Greet

Join, meet and greet your learner You’re now a part of a growing

group of learners all investing in their future by learning how to

program in Python.

Say hi! Write a brief introduction to help other learners get to

know you better. Not sure what to write? Here’s a few tips:

Hopes and Why are you taking this course? What are your

expectations? What excites you most about learning to program

with Python? What do you hope to achieve once you’ve completed

this course?

Hobbies and What other things are you interested in, besides

programming or IT? You might find fellow learners with the same

interests!

Where are you from. There are learners from all over the globe!

Why not share with others which part of the world you live in?

But remember, don't share specific details like your personal

mailing address.

You don’t have to take part. But it’s more fun if you do!

2. Introduction to Programming

2.1. The Beginning of Your Programming Journey

As the Chinese proverb says, a journey of a thousand miles

begins with a single step. Today's a big day, you're taking your

first step in your journey to learn how to write scripts in Python.

It's going to be a little challenging at times, but really it's not

that scary. We'll go slow and give you everything you need to fully

grasp each concept before we move along.

In the next few sections, you'll discover the fundamental concepts

of computer programming. You'll learn what a programming

language is, what scripting is, what languages are out there other

than Python, and how this all relates to IT. We'll also have you

coding before you know it with small coding exercises we've

cooked up to give you hands-on practice with Python. This will

include writing your very first Python script. But always keep in

mind, if at any point along the way you feel lost or confused,

don't panic.

You can read any section again or watch the videos as many

times as you need to let the concept sink in, plus you can ask

questions in the discussion forums, which is one of the best ways

to find extra information and connect with other learners. When I

was asked to participate in this program, it made me think about

when I first started to code. If I could give that younger version

of myself a piece of advice, this is what I would tell her: it never

works the first time.

Seriously, as a newbie, I expected it all to work like magic. I

thought that following the rules and getting it right the first time

would prove my value as a coder, but that's just not true, not

even the best of the best. If you expect to write perfect code on

the first shot you're going to be disappointed. You hear that

younger self? Try not to feel overwhelmed by the details.

Connecting the dots only comes with experience, so the best way

to learn is to just jump in.

The truth is everyone learns at their own pace. If you already

know some of these concepts, feel free to skip ahead to the parts

that interests you the most. If you're starting from scratch, take

as long as you need for each concept. The assessments will be

right there waiting for you when you're done, and if at any point

you start doubting yourself, remember, even the most advanced

programmers started thinking, Python… what's Python?

Well, we're about to learn all about it, so let's dive in to do a

rundown of what programming is.

2.2. What is Programming?

At a basic level, a computer program is a recipe of instructions

that tells your computer what to do. When you write a program,

you create a step by step recipe of what needs to be done to

complete a task and when your computer executes the program it

reads what you wrote and follows your instructions to the letter.

How nice is that? The recipe is written in a code called

programming

Programming languages are actually similar to humans spoken

languages since they have a syntax and Now if it's been awhile

since your last grammar class, here's a quick refresher on syntax

and semantics.

In a human language, syntax is the rules for how a sentence is

constructed while semantics refers to the actual meaning of the In

English, sentences generally have both a subject, that's a person,

place, or thing, and a predicate usually a verb and a statement

that explains what the subject is doing.

Let's take the sentence, Paula loves to program in Python as an

example. In this sentence, Paula is the subject and loves to

program in Python is the predicate. To form a sentence that

others can understand, you need to know both the syntax that

constructs the sentence and the semantics that gives it meaning.

The same applies to programming languages.

In a programming language like Python, the syntax is the rules for

how each instruction is written and the semantics is the effects

the instructions have. Much like spoken languages, there are lots

of programming languages to choose from. Each has its own

history, features, and applications but they all share the same

fundamental ideas. So once you understand the basic concepts in

one programming language, it becomes much easier to learn

another.

Lastly, computers always do exactly what they're told. So when you

write a program, it's important to be super clear about what you

want the computer to do. Learning the syntax and semantics of

the programming language you choose will allow you to do just

that. Make sense? Before we continue, let's spend a moment on

terminology.

2.2.1. Difference Between Script and Program

In the next few sections you'll hear the term script being used a

bunch. So what's the difference between a script and a The line

between the two can be a bit blurry. In this course, we'll use the

terms interchangeably. In general, you can think of scripts as

programs with a short development cycle that can be created and

deployed rapidly.

In other words, a script is a program that is short, simple, and

can be written very quickly. In this course we'll focus on a specific

scripting language called python which we'll use to learn the

basics of programming. We'll learn about the python syntax, the

rules of how to write a python program, and the semantics or

meaning of the different pieces involved.

Before we start learning how to code and having you write your

first python script, let's talk more about what automation is and

why it's useful.

2.3. What is Automation?

Although we might not realize it, we reap the benefits of

automation all the time in our daily lives. Do you ever pay your

bills with scheduled payments or use a self check out at the

grocery store? I always set my coffee machine to start brewing

before I've even gotten out of bed. The promise of fresh coffee

makes early mornings way easier.

Automation is the process of replacing a manual step with one

that happens automatically. Take a traffic light for example, which

continuously regulates the flow of vehicles at an intersection. A

traffic light requires a human intervention only when it needs

repairs or maintenance.

The automatic regulation of traffic means that humans don't have

to stand at the intersection manually signaling when cars should

stop or go. Instead, people can concentrate on more complex,

creative, or difficult tasks like focusing on where you're driving.

What's more, traffic lights don't get tired, bored, or accidentally

display a green light when they meant red. This highlights another

benefit of automation consistency.

Let's face it, us humans are flawed and sometimes we make

mistakes, a human performing the same tasks hundreds of times

will never be as consistent as a machine doing the same thing.

But for all of its advantages automation isn't a solution for every

situation, some tasks just aren't suited for automation.

For example, they may require a degree of creativity or flexibility

that automatic systems can't provide or for more complicated or

less frequently executed tasks creating the automation may actually

be more effort or cost than it's worth. Think about when you get

a haircut. What would it take to automate the actions of cutting

hair with a machine?

The clients height, the shape of their head, their current hair

length, and desired hairstyle would all need to be taken into

account when designing the automatic system. We need to

replicate the creativity and skills of a trained specialist along with

extensive testing to ensure the clients safety and quality haircut.

And if you've ever had a bad experience at a hair salon, you

know quality can be subjective.

In this case, the cost and effort of automation just isn't worth the

benefits of an automatic haircut would provide which is why we

don't have robot hairstylists. Not too complex, right? Automation

is a powerful tool when used in the right place at the right

moment. It can save time, reduce errors, increase consistency, and

provide a way to centralized solutions and mistakes making them

easier to fix.

Throughout this course, and an upcoming ones we'll be talking

about when it makes sense to apply automation and exactly how

you do it. Eventually knowing when and where to use automation

will become automatic for you.

2.4. Getting Computers to Work for You

Working in IT, a lot of what we do boils down to using a

computer to perform a certain task. In your job you might create

user accounts, configure the network, install software, backup

existing data, or execute a whole range of other computer based

tasks from day to day.

Back in my first IT job, I realized that every day I sat at my

computer to work I typed the same three commands to

authenticate into systems. Those credentials timed out everyday by

design, for security reasons, so I created a script that would

automatically run these commands for me every morning to avoid

having to type them myself.

Funny enough, the team that monitors anomalous activity

discovered my little invention and contacted me to remove it,

oops! Tasks performed by a computer that need to be done

multiple times with little variation are really well suited for

automation, because when you automate a task you avoid the

possibility of human errors, and reduce the time it takes to do it.

Imagine this scenario, your company had a booth at a recent

conference and has gathered a huge list of emails from people

interested in learning more about your products. You want to

send these people your monthly email newsletter, but some of the

people on the list are already subscribed to receive it.

So how do you make sure everyone receives your newsletter,

without accidentally sending it to the same person twice? Well,

you could manually check each email address one by one to make

sure you only add new ones to the list, sounds boring and

inefficient, right?

It could be, and it's also more error prone, you might accidentally

miss new emails, or add emails that were already there, or it

might get so boring you fall asleep at your desk. Even your

automated coffee machine won't help you out there. So what

could you do instead?

You could get the computer to do the work for you. You could

write a program that checks for duplicates, and then adds each

new email to the list. Your computer will do exactly as its told no

matter how many emails there are in the list, so it won't get

tired or make any mistakes.

Even better, once you've written the program you can use the

same code in the future situations, saving you even more time,

pretty cool, right? It gets better, think about when you're going to

send these emails out, if you send them out manually you'll have

to send the same email to everybody, personalizing the emails

would be way too much manual work.

If instead you use automation to send them, you could have the

name and company of each person added to the email

automatically. The result? More effective emails, without you

spending hours inserting names into the text. Automating tasks

allows you to focus on projects that are a better use of your

time, letting computers do the boring stuff for you.

Learning how to program is the first step to being able to do

this, if you want to to get computers to do the work for you,

you're in the right place. Earlier in this section, I told you about

the first task I ever automated, now I want to tell you about the

coolest thing I ever automated.

It was a script that changed a bunch of access permissions for a

whole lot of my company’s Internal Services. The script reversed a

large directory tree with tons of different files, checked the file

contents, and then updated the permissions to the services based

on the conditions that I laid out in the script.

Okay, I admit I'm a total nerd, but I still think it's really cool.

Next up, it's time to share your ideas. What things would you like

to automate using programming? While these discussion prompts

are optional, they're really fun. Seriously, they let you get to know

your fellow learners a bit, and collaborate on ideas and insights.

Make sure you read what others are saying, they may give you

ideas that you haven't even thought of. After that, you're ready to

take your very first quiz of the course. Don't worry, it's just for

practice.

2.5. Discussion Forums: Your Hopes for Automation

What everyday tasks would you like to automate through

programming? Share your ideas, hopes, and goals with your fellow

2.6. Practice Quiz 1: Introduction to Coding in General - 5

Questions

From now on, you will need to open a fresh notepad or Word file

in your computer to answer a quiz like this. Time Allowed: 15

1. What’s a computer program? Select only the correct response. –

1 point

A set of languages available in the computer.

A process for getting duplicate values removed from a list.

A list of instructions that the computer has to follow to reach a

goal.

A file that gets copied to all machines in the network.

2. What’s the syntax of a language? Select only the correct

response. – 1 point

The rules of how to express things in that language.

The subject of a sentence.

The difference between one language and another.

The meaning of the words.

3. What’s the difference between a program and a script? Select

only the correct response. – 1 point

There’s not much difference, but scripts are usually simpler and

shorter.

Scripts are only written in Python.

Scripts can only be used for simple tasks.

Programs are written by software engineers; scripts are written by

system administrators.

4. Which of these scenarios are good candidates for automation?

Select all that apply. – 1 point

Generating a sales report, split by region and product type.

Creating your own startup company.

Helping a user who’s having network troubles.

Copying a file to all computers in a company.

Interviewing a candidate for a job.

Sending personalized emails to subscribers of your website.

Investigating the root cause of a machine failing to boot.

5. What are semantics when applied to programming code and

pseudocode? – 1 point

The rules for how a programming instruction is written.

The difference in number values in one instance of a script

compared to another.

The effect the programming instructions have.

The end result of a programming instruction.

The correct answers are provided below. Use them to grade your

performance (X out of 5) in this quiz. Always use the correct

answers provided to grade your performance in each of the

subsequent practice exercises in this book. X is the total number

of correct answers you get out of a total of 5. Don’t forget to

save your result!

2.6.1. Answers to Practice Quiz 1

C. At a basic level, a computer program is a recipe of

instructions that tells your computer what to do.

A. In a human language, syntax is the rules for how a sentence

is constructed, and in a programming language, syntax is the

rules for how each instruction is written.

A. The line between a program and a script is blurry; scripts

usually have a shorter development cycle. This means that scripts

are shorter, simpler, and can be written very quickly.

A, D, Sending out periodic emails is a time-consuming task that

can be easily automated, and you won't have to worry about

forgetting to do it on a regular basis.

C. Like human language, the intended meaning or effect of words,

or in this case instructions, are referred to as semantics.

3. Setting up Your Python & Programming Environment

3.1. What is Python?

Welcome back. How did you do on your first quiz? If you got

most of the questions right, great job. If not, no worries it's all

part of learning. I'll be here to help you check that you've really

got your head around these concepts with regular quizzes like

this.

If you ever find a question tricky, go back and review the videos

and then try the quiz again. You want to feel super comfortable

with what you've learned before jumping into the next lesson.

Remember, take your time. Whenever you're ready just move on.

Okay. Feeling good? Great. Let us dive in.

In this course, we will use the Python programming language to

demonstrate basic programming concepts and how to apply them

to writing scripts. We have mentioned that there are a bunch of

programming languages out there. So why pick Python?

Well, we chose Python for a few reasons. First off, programming

in Python usually feels similar to using a human language. This is

because Python makes it easy to express what we want to do

with syntax that's easy to read and write.

Check out this example.

1 friends = [“Taylor”, “Alex”, “Pat”, “Eli”]

2 for friend in friends:

3 print("Hi " + friend)

There is a lot to unpack here so don't worry if you don't

understand it right away, we'll get into the nitty-gritty details later

in the course. But even if you've never seen a line of code

before, you might be able to guess what this code does. Each

line of your code may be numbered 1, 2, 3, etc by the

programing editor (or IDE) you use, as shown in the example

above, but it can be removed in many editors.

This code defines a list with names of friends and then creates a

greeting for each name in the list. Now it is your turn to make

friends with Python. You will try something like this out pretty

soon and see what happens.

3.1.1. How to Execute Python Codes

Python code can be written on the Python interpreter console. But

to write a Python code on the interpreter console, we first need

to install Python on our computer. One thing I do not like about

the console is there is no direct way or a single command to

clear it.

Type the following few lines of code to clear your console screen

(for Make sure you press the Enter or Return key at the end of

each line.

import os

os.system('cls')

Alternatively, you can use this script:

import os

def clear():

 os.system('cls')

clear()

Use the following few lines of code to clear your console screen

(for Make sure you press the Enter or Return key at the end of

each line.

import os

os.system('clear')

Alternatively, you can use this script:

import os

def clear():

 os.system('clear')

clear()

You can also use a text editor, assuming you have installed

Python, to write and execute your Python codes. Editors are more

colorful and user-friendly. Throughout this course, you will execute

Python code using either the Python interpreter for your operating

system type (Windows, Linux or Mac) or an IDE (integrated

development Environment) such as Pycharm (use this link to

download We will use the Python interpreter more frequently in

this course.

Here’s a list of some popular editors and open source

applications we can use to write our codes.

Ordinary text editor such as a notepad, or Sublime Text (runs

locally on your computer).

Python interpreter (use this download which you get by installing

Python locally on your computer.

This also runs locally on your computer. It can number every line

of your code.

Command window (also called

Online interpreters such as

Jupyter open-source web application for creating and sharing

documents containing live code, visualizations, equations, narrative

text, etc. You will use this later for your projects.

Watch the following video to learn how to download and install

Pycharm, a popular IDE among Python developers. If you have

not downloaded all the tutorials videos in this course, go to

Chapter 25 right now. Make sure you save all your videos where

you can easily find them.

Video 1 (8:38 How to download and Install Python and Pycharm

(community version)

Now, we'll start with some small coding exercises using code

blocks. Later on as you develop your skills, you'll work on larger

more complex coding exercises using other tools. Getting good at

something takes a whole lot of practice and programming and

Python is no different. I recommend that you practice every

example we share in this course on your own. You can practice

using an online Python

Now I am sure you are wondering what the heck is a Python

interpreter. In programming, an interpreter is the program that

reads and executes code. Remember how we said a computer

program is like a recipe with step-by-step instructions?

Well, if your recipe is written in Python, the Python interpreter is

the program that reads what is in the recipe and translates it into

instructions for your computer to follow. Eventually, you'll want to

install Python on your computer so you can run it locally and

experiment with it as much as you like.

You can practice with the quizzes I provide and with the online

interpreters and code pads that we'll give you links to in the next

section. We'll provide a whole bunch of exercises for you but feel

free to come up with your own and share them in the discussion

forums. Feel free to get creative. Afterall, this is your chance to

show off your new skills!

3.2. A Note on Syntax and Code Blocks

When writing code, using correct syntax is super important. Even

a small typo, like a missing parentheses or an extra comma, can

cause a syntax error and the code won't execute at all. Yikes. If

your code results in an error or an exception, pay close attention

to syntax and watch out for minor mistakes.

If your syntax is correct, but the script has unexpected behavior or

output, this may be due to a semantic problem. Remember that

syntax is the rules of how code is constructed, while semantics

are the overall effect the code has. It is possible to have

syntactically correct code that runs successfully, but doesn't do

what we want it to do.

When working with the code blocks in exercises for this course,

be mindful of syntax errors, along with the overall result of your

code. Just because you fixed a syntax error doesn't mean that the

code will have the desired effect when it runs! Once you’ve fixed

an error in your code, don't forget to retry it to check your work

again.

3.3. Why is Python Relevant to IT?

Remember how we mentioned that Python is simple and easy to

use? Python makes it easy to express the fundamental concepts of

programming like data structures and algorithms with easy to read

syntax. This makes Python a great language to use to learn

programming. And there are other reasons to pick Python, too.

Python is super popular in the IT industry, making it one of the

most common programming languages used today. Python isn't

new. Its first version was released by Guido van Rossum back in

Since then, the community that develops it has grown and the

language has advanced a lot. Whenever there's a significant

change to the semantics or syntax of the language, a new major

version is released.

In 2000, Python 2 was released. In 2008, we got Python 3. In

this course, we'll use the latest Python 3.9.6, which came out in

June 2021. For many years, Python was considered a beginner's

language and was mostly used for teaching concepts or writing

very small simple scripts, like in this course. But in recent years,

the adoption of Python has grown dramatically.

One reason for this is that the language has become more

powerful. It's also because there's more tools available in Python

for a growing range of applications. You can use Python to

calculate statistics, run your e-commerce site, process images,

interact with web services, and do a whole host of other tasks.

Python is perfect for automation. It lets you automate everyday

tasks by writing simple scripts that are easy to understand and

easy to maintain. That's why Python is the language of choice for

lots of people working in IT support, system administration, and

web development. Not only that, but it's also used in fast-growing

areas of IT, like machine learning or data

Last but not least, Python is available for download on a wide

variety of operating systems, like Windows, Linux, and Mac OS.

And what's more, Python is so popular in the workplace that if

you are currently working in IT, you've most likely encountered it

already. And if you're planning a career in IT, chances are you'll

interact with Python quite a bit. So there's a whole lot of reasons

for why Python is relevant to today's IT industry.

A large part of programming is learning through trial and error

and asking questions. So if at any point you get stuck, don't get

discouraged. Making mistakes helps you improve. The more you

see failure or broken code as an opportunity to learn, the quicker

you'll master programming.

I remember the first Python script I ever wrote. It took a lot of

refactoring, debugging, and testing to get it to work. I relied on a

lot of my teammates for help and mentorship and wound up

spending more time on Stack Overflow than actually writing the

code. Thankfully, you don't have to reinvent the wheel.

There's almost always someone on the Internet who's trying to do

what you're doing and can help point you in the right direction

when you're stuck. Sometimes it takes a village. It's really

important to keep in mind that even experienced programmers

may need to ask a colleague a question from time to time or

look something up on the Internet.

Whether you're a programming novice or have some experience in

software development, remember, the best programmers overcome

challenges by seeking help or using other resources. Once you've

completed this program, you'll be well on your way to confidently

programming in basic Python.

There's lots of information online that will help you continue to

develop your programming skills. For example, there are lots of

online courses for specific programming languages. You'll find

answers to your Python coding questions in the official Python

You can use sites like Stack Overflow to discuss and share with

other developers. And you can ask questions in the discussion

forums mentioned in the previous chapter. You can even subscribe

to some of the Python mailing lists to keep in the know on the

latest updates to the language.

You're opening the door to the whole world of programming, and

it's super exciting to be joining the development community. The

most important thing to remember is that you're never alone. Any

questions you may have, any time in your career, there are

resources out there to help you find the answers you need.

Wow, that was a lot of information. Feel free to take a quick

break, grab something to drink, and then head on over to section

3.4 to learn more about Python and the resources out there to

help you learn.

3.4. How to Become a Pythoneer or Pythonista

You should practice using Python on your own. Practicing on your

own as much as you can is the best way to become a Pythoneer

or Pythonista. Open the “Additional Resources” folder you

downloaded earlier. You will find useful files, such as How to

Learn More 40+ Project Ideas for Beginners, Intermediate and

Advanced and so much more!

In this file, you will find links to additional resources that can

help you grow your Python language.

3.5. Other Languages

Although we picked Python for this course, it's important to note

that it's just one of the many coding languages out there. Think

of a given programming language as just one of the many

powerful tools in your IT toolbox. Each language has its unique

set of pros and cons. Some run faster than others. Some are

better suited for enterprise applications. Others are particularly

good at crunching numbers.

There are platform-specific scripting languages like PowerShell

which is used on Windows, and Bash which is used on Linux.

Both are widely used by system administrators on those platforms.

There are also general-purpose scripting languages similar to

Python, like Pearl or which are also widely used for scripting and

automation.

which was originally developed as a client-side scripting language

for the web is increasingly used as a server-side language for a

broader set of tasks. And the list doesn't stop there.

There's a vast array of traditional languages to explore like C,

C++, Java, or Go. As you progress in your career in IT, you'll

probably encounter a number of different languages and learn

when to use each of them. But let's not get ahead of ourselves.

First, we have Python to get our heads around.

A nice feature of learning the basics of programming in one

language is that you can generally apply the same concepts you

learn to other languages. This means that once you're familiar

with Python, you'll find it easier to pick up new coding languages

as you'll spot and understand similarities and differences between

them.

After all, every language needs to do some common things like

create variables, control the flow of a program, read input, and

display output, even if they do these tasks using different

approaches. As we called out earlier, learning a programming

language is somewhat similar to learning a foreign language. You'll

need to grasp the syntax and semantics for that language.

Luckily for us, once you know the fundamentals of programming,

learning another language is much easier than learning a second

foreign language. There are a lot more similarities between

programming languages than differences.

To explore some of the similarities and differences between

various scripting languages, let's take a look at a simple program

that prints the words World!” ten times in three different

languages, Python, Bash and PowerShell. See Fig. 3.5.1.

Fig. 3.5.1: A program that prints the “hello, world” ten times in three

different languages: Python, Bash and PowerShell

As you can see, each language uses a different approach to

printing hello world. But look closer and you'll see similarities too.

Each language must somehow put text onto the screen. The

command for Python is print (p must be in lower case). For Bash

it's and for PowerShell it's

Also notice that each language has to count to ten in some way.

While Python does this by specifying Bash uses a sequence

notation to count from 1 to 10. PowerShell has the most complex

syntax in this example, but it also boils down to starting at 1 and

counting up to 10.

So as we've just seen there's a whole lot of programming

languages out there, but don't let that scare you. In this course,

you will only need to focus on learning Python. Once you can

speak Python you can go on to learn any other language you

want. Up next, we've got another quiz to help you practice what

you've just learned.

3.6. Practice Quiz 2: Introduction to Python - 5 Questions

1. Fill in the correct Python command to put “My first Python

program” onto the screen. - 1 point

1 print(_)

2. Python is an example of what type of programming language? -

1 point

Client-side scripting language

Machine language

Platform-specific scripting language

General purpose scripting language

3. Convert this Bash command into Python: - 1 point

echo Have a nice day.

4. Fill in the correct Python commands to put “This is fun!”

without the quotes onto the screen 5 times. - 1 point

1 for i in range(_):

2 print("_")

5. Write the Python code snippet that corresponds to the following

Javascript snippet: - 1 point

1 for (let i = 0; i < 10; i++) {

2 console.log(i);

3 }

3.6.1. Answers to Practice Quiz 2

1. print("My first Python program")

2.

3. print(“Have a nice day.”)

4.

1 for i in range(5):

2 print("This is fun!")

5.

1 for i in range(10):

2 print(i)

4. Hello, World!

4.1. How to Write Hello World in Python

Now that you've got an idea of what Python code looks like, let's

check out one of the most basic examples and dive deeper into

what's going on. Get ready. We're going to use the Python

interpreter to make our computer say hello to the world.

Video 2 (1:04 Hello World program in Python

Like the statement hello world for example, the print function is

part of the basic Python language. Whenever we use keywords or

functions that are part of the language, we're using the

programming language's syntax to tell the computer what to do.

So, what are functions and

Functions are pieces of code that perform a unit of work. We'll

talk a lot more about functions later on, and you'll even learn

how to write your own. Keywords are reserved words that are

used to construct instructions. These words are the core part of

the language and can only be used in specific ways.

Some examples include and We'll explain all of those and a bunch

more later in the course. As we called out, the keywords and

functions used in Python are what makes up the syntax of the

language. Once we understand how they work, we can use them

to construct more complex expressions that get the computer to

do what we want it to do.

Last off, notice how “Hello, world” is written between double

quotation marks. Wrapping text in quotation marks indicates that

the text is considered a string, which means it's text that will be

manipulated by our script. In programming, any text that isn't

inside quotation marks is considered part of the code.

Now, for a bit of trivia, do you know why we printed the “Hello,

world” in our example? Well, printing hello world has been the

traditional way to start learning a programming language since

way back in the '70s when it was used as the first example in a

famous programming book called the C programming language.

In Python, the hello world example is just one line, in C, it's

three lines, in other languages, it can be even more. While

learning to write hello world won't teach you the whole language,

it gives you a first impression of how functions are used, and

how a program written in that language looks.

4.1.1. Program Comments (#)

Comments are an extremely useful feature in most programming

languages. Everything you’ve written in your programs so far is

Python code. As your programs become longer and more

complicated, you should add notes within your programs that

describe your overall approach to the problem you’re solving. A

comment allows you to write notes in English within your

programs.

4.1.2. How to Write Comments

In Python, the hash mark indicates a comment. Anything following

a hash mark in your code is ignored by the Python interpreter.

For example:

1 # This is the first line of my program.

2 print("Hello world!") # This is the second line of my program.

Hello world!

As you can see, the result of our program is only “Hello world!”.

Python ignores the first line completely and executes only the part

of the second line that does not follow the # mark.

All right, now that we've written our first piece of Python code, I

think you're ready for something a bit more challenging than hello

world. Ready? Let's do it!

4.2. How to Get Information from the User

On the whole, for a program to be useful it needs to get at least

some information from the user. With this data, the program can

take actions that are relevant to the user, instead of generic

actions, like printing hello world.

Data can be provided to a computer in a bunch of different ways.

For example, on a website you might input data by entering text

into text fields or clicking links. If you're using a mobile

application, maybe you'll click on buttons or select preferences

from a drop-down menu.

In a command line program, you might provide additional data by

passing strings this parameters to the program, or you could have

the program ask you for data interactively. All of these various

platforms, programs, and apps process data differently.

Some might take the contents of a file as data to be processed,

others gather data from other sources and process it in the

background. Remember our earlier example, when we automated

the process of identifying and removing duplicate emails?

There, the data provided to the program was the list of emails,

which would usually be given in a file that lists the emails one

per line. Whichever way your application gets the data, it will

need to come from somewhere.

For our first examples in this course, we'll just have the data as

its own line in our block of code. This is limited, but

straightforward. Later in this course, and in upcoming courses,

we'll introduce you to better ways of feeding data into your code.

For now though, let's see this idea in action in a very simple

example in the next video.

Video 3 (0:28 How to Get Information from the User

Next up, we'll learn a few other easy things that you can get

Python to do for you.

4.3. Python Can Be Your Calculator

There's a ton of things that you can do with Python and you'll

learn many of them in this course. But before we dive into

complex subjects, let's have some fun with another simple task

that you can do with Python. We are going to make Python our

calculator. Watch this video:

Video 4 (0:57 Python can be your calculator

Here’s more examples:

print(10+5)

15

print(-1/4)

-0.25

Easy. Repeating or periodic numbers are printed in a longer

format. Let's try 1 divided by 3.

print(1/3)

0.3333333333333333

In math theory, when 1 is divided by 3, the digit 3 repeats forever

after the decimal point. Of course, it's hard to display something

that repeats for ever. So instead, we have a representation

showing lots of decimal places. Not too hard, right?

If you're starting to worry that this is becoming an algebra course,

relax. We're not going to do anything more complex than what

we've just seen. If you're thinking, "Why would I use Python

instead of just a normal calculator?" That's a valid question.

Experimenting in this way, you get familiar with the language's

math capabilities. In IT jobs, there are many tasks that require

you to use math calculations. You might need to count how many

times a certain word appears in a text, or work out the average

time it takes for an operation to complete, or how much you

have to compress an image to fit in certain size constraints.

Whatever you need to calculate, writing a script can help you do

it faster and with more accuracy. So you need to know what

mathematical operations are available to you. Python actually has

a lot more advanced numeric capabilities that are used for data

analysis, statistics, machine learning, and other scientific

applications. We won't get into these in this course. But if you

want to learn more about them on your own, there's a wealth of

online resources available.

4.4. Cheat Sheet 1: First Programming Concepts

Now open and study the “First Programming Concepts Cheat

Sheet” you downloaded to help you with programming concepts

that we've just covered. After that, it's time for another quiz. This

time with a few small coding exercises. Remember, if something is

unclear, you can re-watch the videos as many times as you need.

Ready? You've got this.

4.5. Practice Quiz 3: Hello World - 5 Questions

1. What are functions in Python? - 1 point

Functions let us to use Python as a calculator.

Functions are pieces of code that perform a unit of work.

Functions are only used to print messages to the screen.

Functions are how we tell if our program is functioning or not.

2. What are keywords in Python? - 1 point

Keywords are reserved words that are used to construct

instructions.

Keywords are used to calculate mathematical operations.

Keywords are used to print messages like "Hello World!" to the

screen.

Keywords are the words that we need to memorize to program in

Python.

3. What does the print function do in Python? - 1 point

The print function generates PDFs and sends it to the nearest

printer.

The print function stores values provided by the user.

The print function outputs messages to the screen

The print function calculates mathematical operations.

4. Output a message that says "Programming in Python is fun!"

to the screen. - 1 point

5. Replace the ___ placeholder and calculate the ratio: – 1

point

Tip: to calculate the square root of a number x, you can use x**

(1/2).

ratio = _

print(ratio)

4.5.1. Answers to Practice Quiz 3

1. Python functions encapsulate a certain action, like outputting a

message to the screen in the case of print().

2. A. Using the reserved words provided by the language we can

construct complex instructions that will make our scripts.

3. C. Using the print() we can generate output for the user of

our programs.

4. print("Programming in Python is fun!")

5.

1 ratio = (1+(5**0.5))/2

2 print(ratio)

Do you now see how we can use Python to calculate complex

values?

5. Module Review

5.1. First Steps Wrap Up

Congrats! You made it to the end of the first module. Great job.

You've taken the first steps to learning a new programming

language, and growing your IT skillset. Getting there shows real

determination and a will to learn.

We've covered a lot of topics, and many might be new to you if

you've never learned about programming before. You've discovered

what scripting is, what the syntax and semantics of a

programming language are all about, and how they relate to

automation.

We've got to grip some small blocks of Python code, talked about

why Python is relevant to IT, and explored what other

programming languages are available. We've had our first approach

to how to input data, and write a script that puts this data to

use, and we've seen how you can use Python to perform typical

math calculations. Not bad for your first Python steps, right? This

is just the beginning of an exciting journey, learning to code, and

we hope you're eager to learn more.

Coming up, get ready for your first graded These assessments

help you check whether you've understood all the concepts and

that you're ready to move on to the next stage. Now, don't worry.

If at any point you're not sure about a question, you can always

review the videos, cheat sheets and any section of this book to

remind yourself of the answer.

Remember, that everybody learns at different speeds. So take your

time, really get familiar with the concepts. Once you feel ready,

the assessment is right below waiting for you. I'll get back to you

once you've nailed it.

5.2. Module 1 Graded Assessment - 10 Questions

It’s time for your first graded assessment. Open the “Graded

Assessments” folder you downloaded earlier. It contains the pdf

files of all the graded assessments in this course. Here’s the file

name to search:

Module 1 Graded Assessment – file name

5.2.1. Solutions to Module 1 Graded Assessment

I (or any member of my team) is available to help you grade

your assessments. You can use my help link (email) at the end of

chapter 25 to send your assessment for grading. We will get back

to you in 12 to 24 hours with your result.

However, if you cannot wait, you can open the “Graded

Assessments” folder you downloaded earlier. It contains the pdf

formats of the solutions to all graded assessments in this course.

You can use them to grade your assessments by yourself. Just be

honest as you grade. Here’s the file name to search:

Module 1 Graded Assessment Solutions – file name

Module 2

Programming is like clothing. It is an art, a way to express yourself

artistically in this world.

“You might not think that programmers are artists, but programming

is an extremely creative profession. It’s logic-based creativity” – John

Romero

6. Expressions and Variables

6.1. Basic Python Syntax introduction

Welcome back, and well done for completing your first graded

assessment. You're doing a great job making it this far. Chances

are some topics we've covered may have been a little tricky at

times, especially if you're completely new to programming.

Don't worry if something wasn't obvious right away. We went

through a lot of new concepts and it might take several passes

until you feel comfortable with them. And that's totally normal. We

all went through when we were learning how to code.

In the previous module we explored some basic concepts, like

programming and automation. We called out that each

programming language has a specific syntax, which we need to

learn so we can tell the computer what to do. We then got a

sneak preview of some of the things we could do with Python.

Up next, we'll dive deeper into some basic building blocks of

Python syntax, things like variables, expressions, functions, and

conditional blocks. At first glance these pieces may seem pretty

simple, but when we start to combine them they become a lot

more powerful.

Understanding of programming languages syntax isn't too different

from learning a spoken language. For example, the best way to

learn Spanish is to visit a Spanish speaking country, immerse

yourself in the culture, listen to the people. Then figure out how

to arrange the words to form a sentence that another speaker can

understand.

The same is true for programming. When you immerse yourself in

Python programming you'll learn how to formulate statements of

code that the computer can understand. This is called syntax.

Okay, so as you go through the next few sections keep in mind

that our main goal is to learn the language's syntax. So we'll

focus on how to tell our computer what to do, not on how to

get it to do complicated tasks. Like before, we'll run through

some simple exercises to help you see the concepts in action.

And as you pick up the new skills and get to grips with different

tools we'll start to write more advanced scripts that tackle more

challenging problems. Again, if at any point you feel confused or

that something just isn't clear, remember you can watch the

videos and take the practice quizzes as many times as you need.

The key to getting good at programming is practice, practice and

practice. You have to keep working your programming muscles in

order to get strong, just like building muscles in the gym. Train

hard, train regularly, and you'll be tackling more weighty coding

problems in no time.

All right, ready to jump back in? In the next section we're going

to learn all about data types. Let's get started.

6.2. Data Types

In earlier videos, we called out that text written between quotes in

Python is called a In programming terminology, a string is known

as a data type, whether it's a mobile game or a script used to

automatically create user accounts. Most programs need to

manipulate some kind of data, and that data can come in a lot

of different forms, or like we call them data types.

A string is only one kind of data type found in Python. There's a

bunch of others, like an integer which represents whole numbers

without a fraction, like 1. We also have which represents real

numbers or in other words, a number with a fractional part like

2.5. Other examples are dict (for dictionary), complex (for complex

numbers), bool (for boolean), etc.

In Python programming, data type is an important concept. We

can use variables (see section 6.4) to store data of different types,

and different data types can do different things. The following

data types and their categories are built in by default in Python:

Python:

Python:

Python: Python:

Python:

Python:

Python:

Python:

Python:

Python: Python:

Python:

Python: Python: Python: Python:

Generally, your computer doesn't know how to mix different data

types. Watch the next video to understand data type better:

Video 5 (02:04 Data Types

Adding two integers together makes perfect sense to computers.

print(2+3)

5

Adding together two strings also makes sense. We just end up

with the longer strings that contains the two.

print(“Python programming ” + ”is fun”)

Python programming is fun

But your computer doesn't know how to add an integer and a

string. If you tell it to mix these two different data types, your

computer isn't going to know what to do and will raise an error

as shown in Video

Errors are a common part of programming, and you'll probably

have to deal with them a lot. The trick is to think of errors as

little clues from your computer to help you improve your

programming skills. Read the errors carefully, understand what

they're telling you, and then use that new knowledge to help you

fix the mistake.

In the example shown in Video 5, the last line of the error

message in the Python interpreter shows us that we've

encountered something called a When we get a bit of explanatory

texts, that tells us that the plus sign can't be used between an

int type and a str type, which are short names for integer and

string. I tried this code in Pycharm and got this error which is

similar.

1 print(7 + “8”)

File "C:\user\Documents\python_programs.py", line 1

 print(7 + “8”)

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Process finished with exit code 1

Thinking about what we've already learned about strings, integers,

and mixing data types, can you guess what the error is trying to

tell us? The message “unsupported operand type(s)” in Pycharm

tells us that we can't add the integer 7 and the string “8”

because they're different data types. But what if you didn't have

an instructor to helpfully point that out?

How would you know? You'd need to use your research skills and

the resources we called out earlier in the course to do some

investigating. For example, you could look for information about

the error by pasting the TypeError message into the search bar of

your favorite search engine.

This is a common trick used by almost everyone learning to code,

and even by experienced developers. You'll usually find that other

people on the Internet have reported similar errors and solved

them too.

Back to our example. Maybe you're thinking, aren't we adding two

numbers 7 and 8 here? Looks a bit like it. Well, look carefully and

remember that anything wrapped in quotation marks is considered

a string in Python.

So, “8” is a string here, while 7 is an integer. To the computer,

adding 7 plus “8” is just as strange as adding 7 plus A is to us,

and seven plus A equals no sense at all. It might be helpful to

think about data types in terms of information they can represent.

For example, the name of a file would be represented as a string

data types, while the size of that file might be an integer data

type. If you're ever not 100 percent sure what data types a certain

value is, Python gives you a handy way to find out. You can use

the “type” function, to have the computer tell you the type. This

might come in handy when dealing with code that someone else

wrote and you're not sure what data types it's using.

For example,

print(type("8"))

'str'>

This tells us that “8” belongs to str class, which like we said

earlier is short for string.

print(type(2))

'int'>

The number 2, belongs to the int class, which is short for integer.

We'll talk more about what we mean by “class” later in the

course. For now, you can just use it as a synonym for data type.

So now you know three very common data types in Python.

There are plenty of others you'll be using soon, but don't worry

about them at the moment. As we continue through the course,

we'll come across more data types and learn how to interact with

each of them.

For now, just remember, mixing your data types will get your

computer, well, all mixed up. So keep your strings with your

strings, your integers with your integers, and your floats with your

floats, and you shouldn't get in too much of a tangle.

6.3. Data Types Recap

In Python, text in between quotes - either single or double quotes

- is a string data type. An integer is a whole number, without a

fraction, while a float is a real number that can contain a

fractional part. For example, 1, 7, 342 are all integers, while 5.3,

3.14159 and 6.0 are all floats. When attempting to mix

incompatible data types, you may encounter a You can always

check the data type of something using the type() function.

6.4. Variables

When we ask a computer to perform an operation for us, we

usually need to store values and give them names so that we can

refer to them later. This is where variables come in handy.

Variables are names that we give to certain values in our

programs. Those values can be of any data type; numbers, strings

or even the results of operations.

We already used variables in some of our initial examples like

using them to store a name or a value. Now we are going to

learn exactly how they work and how to make the most of them.

Think of variables as containers for data.

When you create a variable in your code, your computer reserves

a chunk of its own memory to store that value. This lets the

computer access the variable later to read or modify the value.

You can see this in action in this video:

Video 6 (01:47 Variables

Here’s another example. Imagine a simple script that calculates

the area of a triangle using the formula

Area = (base x height) / 2

Area, base and height can all be represented by variables as

shown in this script:

base = 5

height = 3

area = (base*height)/2

print(area)

7.5

In the above script we are creating three variables and storing

different values in each. The process of storing a value inside a

variable is called Here we assign the base variable the value of 5.

We assign the width variable the value of 3, and the area variable

with the result of the expression (base x height) / 2.

An expression is a combination of numbers, symbols or other

variables that produce a result when evaluated. In this example,

we are multiplying the value of two variables and the dividing the

result by 2 to arrive at the value that we want. Finally, we use

our old friend the print function to display the value of the area

on the screen.

All right. We have just seen how to assign values to variables,

use expressions to calculate more complex values and then print

the contents of a variable. Variables are important in programming

because they let you perform operations on data that may change.

For example, if we extended our triangle script to accept any input

as the value of the base and height variables, we could calculate

the area of a triangle of any size.

To give a more IT focused example, say we have a script that

performs a specific operation on a file. We can extend that script

to perform the same operation on any file but only if the program

used a variable to store the file name.

You might have noticed that we assign a value to a variable by

using the = sign in the form of

variable =

Generally, you can name variables whatever you like but there are

some restrictions. Using these reserved terms will make your

program confusing to read and will result in errors.

6.4.1. Variable Name Restrictions

Don’t use Keywords or functions that Python reserves for its own

use, like

Don’t use spaces

You must start with a letter or underscore (_)

Variable names must be made up of only letters, numbers and

underscores (_)

Let's check out some examples of valid and invalid variable names

to understand this better:

I_am_a_variable is a valid variable name.

I_am_a_variable2 is also a valid variable name.

1_is_a_number is an invalid variable name because variable names

must start with a letter or underscore.

apples_&_oranges is invalid because it uses the special character

& (ampersand).

Last thing, remember that precision is important when

programming. Python variables are case sensitive, so capitalization

matters. Lowercase name, uppercase name and all caps name are

all valid and different variable names, and that rule on variables is

6.5. Expressions, Numbers and Type Conversions

Earlier, we saw how we can't use the + operator between an

integer and a string because they're different data types. But what

happens when we try to operate with an integer and a float

instead, let's find out in this video:

Video 7 (01:26 Expressions Numbers and Type Conversions

Print(7+8.5)

15.5

Error-free! Python has no problem performing this operation. But

what's up with that, aren't integer and a float two different data

types? They sure are but there's a lot happening under the hood

here. Behind the scenes the computer is busy automatically

converting our integer seven into a float 7.0.

This lets Python then add together the values to return results

that is also a float. We call this process, implicit The interpreter

automatically converts one data type into another. We've called

this out before, but it's worth highlighting again that Python

operations aren't just restricted to numbers. You can also use the

plus operator to add together strings. This lets you do things like

create sentences from individual words.

Just don't forget to add spaces to each words. Otherwise, the

computer will run them all together.

print(“This” + “is” + “not” + “neat”) # No space afer each word

Thisisnotneat

print(“This ” + “is ” + “pretty ” + “neat!”) # Space added after

each word except the last

This is pretty neat!

So what if you really want to combine a string and a number, is

it possible? It sure is, but only with an explicit In Python, to

convert between one data type and another, we call a function

with the name of the type we're converting to. Let's see how this

works (try writing this script in your own Python interpreter or

IDE).

base = 6

height = 3

area = (base*height)/2

print(“The area of the triangle is: ” + str(area))

Now, things are getting a little bit more complex. Let's take a

moment to unpack this to make sure it all makes sense. In this

script, we're first calculating the area of a triangle, and when

printing it we're adding it to a string. To do this, we need to call

the str() function to convert a number into a string. Let's execute

it and check out what happens:

The area of the triangle is: 9.0

Our number got converted to a string and print it together with

the message. We've learned a little bit about variables, values,

expressions, and conversions. Once we finish section 6.5, we've

got a practice quiz to help you solidify your knowledge. As always,

take your time and review the content if you need. You've totally

got this.

6.6. Implicit versus Explicit Conversion

As we saw earlier, some data types can be mixed and matched

due to implicit conversion. Implicit conversion is where the

interpreter helps us out and automatically converts one data type

into another, without having to explicitly tell it to do so.

By contrast, explicit conversion is where we manually convert from

one data type to another by calling the relevant function for the

data type we want to convert to. We used this in our previous

example when we wanted to print a number alongside some text.

Before we could do that, we needed to call the str() function to

convert the number into a string. Once the number was explicitly

converted to a string, we could join it with the rest of our textual

string and print the result.

6.7. Practice Quiz 4: 5 Questions

1. In this scenario, two friends are eating dinner at a restaurant.

The bill comes in the amount of 47.28 dollars. The friends decide

to split the bill evenly between them, after adding 15% tip for the

service. Calculate the tip by filling the blanks (_), the total

amount to pay, and each friend's share, then output a message

saying "Each person needs to pay: " followed by the resulting

number. - 1 point

1 bill = 47.28

2 tip = bill _ 0.15

3 total = bill + _

4 share = total/2

5 print("Each person needs to pay: " + _(share))

2. This code is supposed to take two numbers, divide one by

another so that the result is equal to 1, and display the result on

the screen. Unfortunately, there is an error in the code. Find the

error and fix it, so that the output is correct. - 1 point

1 numerator = 10

2 denominator = 10

3 result = numerator / denominator

4 print("result")

3. Combine the variables to display the sentence "How do you

like Python so far?" - 1 point

word1 = "How"

word2 = "do"

word3 = "you"

word4 = "like"

word5 = "Python"

word6 = "so"

word7 = "far?"

4. This code is supposed to display "2 + 2 = 4" on the screen,

but there is an error. Find the error in the code and fix it, so

that the output is correct. - 1 point

print("2 + 2 = " + (2 + 2))

5. What do you call a combination of numbers, symbols, or other

values that produce a result when evaluated? – 1 point

An explicit conversion

An expression

A variable

An implicit conversion

6.7.1. Answers to Practice Quiz 4

1.

bill = 47.28

tip = bill * 0.15

total = bill + tip

share = total/2

print("Each person needs to pay: " + str(share))

2.

1 numerator = 10

2 denominator = 10

3 result = numerator / denominator

4 print(result)

3. print(word1 + " " + word2 + " " + word3 + " " + word4 + "

" + word5 + " " + word6 + " " + word7)

4. print("2 + 2 = " + str(2 + 2))

5. B.

7. Functions

7.1. Defining Functions

You made it through another quiz. You are doing awesomely, keep

it up! So far we've been looking at variables, expressions and

operations which are the smallest components of scripts. Up next,

we're going to look at functions which are another crucial

programming building block.

We've come across a few Python functions in our examples so

far: the print() function that writes text on the screen, the type()

function which tells us the type of a certain value and the str()

function which converts a number into a string.

All those functions come as a part of the language, and we'll look

into a bunch of other built-in Python functions throughout this

course. But now we're going to see how to define our own

functions to tell the computer to do things that the language’s

built-in functions don't.

Video 8 (02:13 Defining Functions

Let's start with a simple example. In the following piece of code,

we're defining a function:

def greeting(name):

 print("Welcome, " + name)

Our function takes the parameter “name” and prints a greeting

for that name. This snippet is small but it already shows a lot of

important points about how we define functions in Python. Let's

go through this step-by-step.

To define a function, we use the def keyword. The name of the

function is what comes after the keyword. In this example, the

function's name is “greeting”. So to call the function later in the

script, we'll use the word greeting. After the name, we have the

parameter of the function which is written between parentheses ().

In this example, we only have one parameter, name, followed by a

: (colon) at the end of the line. After the colon, we have the

body of the function. That's where we state what we want our

function to do. Note how the body is indented to the right. This

is a key characteristic of Python and we'll come across to the

bunch.

For now, just keep in mind that the body of the function must be

to the right of the definition. In this example, the body contains

just one line that calls the print function. Looks simple, right? But

creating functions can actually be super powerful.

The body of a function can have as many lines as we want it to

and do all sorts of fun stuff. We'll find out exactly what in later

sections. But for now, let's execute our function twice and see

what happens. Type this in your editor (don’t copy and paste in

the editor):

greeting("kay") # First example.

Welcome, kay

greeting("Cameron") # Second example.

Welcome, Cameron

That's nice. But it's not too interesting yet. Let's make it do a

little more as shown in this example:

def greeting(name, department):

 print("Welcome, " + name) # This is indented 2 spaces

 print("You are part of " + department) # This is also indented

2 spaces

Our function now receives two parameters instead of one, name

and department and it writes two separate messages. Again, notice

the indentation. We can add as many lines as we'd like to the

body of the function but each line must be indented the same

number of spaces to the right. In this example, we're using 2

spaces. We could use 4 or 8 or, any other number as long as

they're all consistent.

Let's try calling our new and improved greeting function.

greeting("Blake", "IT support") # We are calling our function here.

Welcome, Blake

You are part of IT support

greeting("Ellis", "Software Engineering") # We are calling our

function again.

Welcome, Ellis

You are part of Software Engineering

Nice results. That's more useful, and we're only just scratching

the surface of what we can do with functions. Remember that

these are just simple examples but a function can do a lot more

than just print messages. In this course and throughout the

upcoming courses, we'll explore a bunch of other tasks that we

can do with Python and usually we'll write them inside functions.

How are you feeling so far? These new concepts are coming fast

and furious now. Are you starting to get to grips with it all? If

so, awesome, and if some things are still a little fuzzy, now is a

great moment to go back and review everything we've covered up

till now. Once you're feeling good, meet me on over in the next

section.

7.2. Defining Functions Recap

We looked at a few examples of built-in functions in Python, but

being able to define your own functions is incredibly powerful. We

start a function definition with the def keyword, followed by the

name we want to give our function. After the name, we have the

parameters, also called arguments, for the function enclosed in

parentheses.

A function can have no parameters, or it can have multiple

parameters. Parameters allow us to call a function and pass it

data, with the data being available inside the function as variables

with the same name as the parameters. Lastly, we put a colon at

the end of the line.

After the colon, the function body starts. It’s important to note

that in Python the function body is delimited by indentation. This

means that all code indented to the right following a function

definition is part of the function body.

The first line that’s no longer indented is the boundary of the

function body. It’s up to you how many spaces you use when

indenting - just make sure to be consistent. So if you choose to

indent with 4 spaces, you need to use 4 spaces everywhere in

your code.

7.3. Returning Values

We've seen how we can pass values into a function as parameters

by passing values like the name or department in the example

earlier. But what about getting values out of a function? This is

where the concept of return values comes to play. The work that

functions do can produce new results. Sure, we can print the

results on the screen, but what if we wanted to use those results

later in our script or didn't want to print them at all?

We can do this by returning values from the functions we defined

ourselves. Let's go back to calculating the area of a triangle.

Video 9 (02:49 Returning Values

Do you remember this triangle example from our earlier exercise?

base = 6

height = 3

area = (base*height)/2

The area of the triangle is calculated as base times height divided

by 2. Imagine we need to calculate this value several times in our

code. It would be useful to have a function that does this for us.

Check out how this would look:

def area_triangle(base, height):

 return base*height/2

We use the keyword return to tell Python that this is the return

value of a function. When we call the function, we store that

value in a variable. Let's say we have the two triangles and we

want to add up the sum of both areas. Here's what we would do.

First, we calculate the two areas separately. Then, we add the sum

of both areas together:

area_a = area_triangle(5, 4)

area_b = area_triangle(7, 3)

sum = area_a + area_b

Finally, we print the result converting it to a string.

print(“The sum of both areas is: “ + str(sum))

The sum of both areas is: 20.5

The second line of code is the result that Python generates. As

you can see in this example, the area of triangle function returns

a value which is not surprisingly the area of the triangle. We store

that value in a different variable for each call to the function, in

this case, area_a and Then we operate with those values adding

them into the variable called sum and only printing this final

result.

This shows the power of the return statement. It allows us to

combine calls to functions and to more complex operations which

makes your code more Return statements in Python are even

more interesting because we can use them to return more than

one value.

Let's say you have a duration of time in seconds and you want to

convert that to the equivalent number of hours, minutes, and

seconds. Here's how to do that in Python:

1 def convert_seconds(seconds):

2 hours = seconds//3600

3 minutes = (seconds - hours*3600)//60

4 remaining_seconds = seconds - hours * 3600 - minutes * 60

5 return hours, minutes, remaining_seconds

Did you spot the new operator in this function? That // (double

slash) operator is called floor A floor division divides a number

and takes the integer part of the division as the result. For

example, 5 // 2 is 2 instead of 2.5.

In our example, the first operation (line 1) is calculating how

many hours are in a given amount of seconds, while the second

line (line 2) works out how many minutes are left once we

subtract the hours. The third line then works out how many

seconds remain after subtracting minutes. We end up with three

numbers as a result: return

So the function returns all three of them. Let's see what this

looks like when we're calling our function:

hours, minutes, seconds = convert_seconds(5000)

print(hours, minutes, seconds)

1 23 20

As you can see from the result above, we have 1 hour, 23

minutes, 20 seconds in 5000 seconds. Because we know that the

function returns three values, we assign the result of the function

to three different variables. There's one last thing we should call

out about returning values. It is possible to return nothing and

that's perfectly okay. Let's look at an example from section 7.1.

def greeting(name):

 print("Welcome, " + name)

Here the function just printed a message and didn't return

anything. What do you think would happen if we try to assign the

value of this function to a variable? Let's try it out and see.

result = greeting(“John”)

Welcome, John

print(result)

None

Here when we call the function, it printed a message just like we

expected. We stored the return value in the result variable, but

there was no return statement in the function. So the value of

results is

None is a very special data type in Python used to indicate that

things are empty or that they return nothing.

Wow! That was a lot to learn about functions and the return

values. Remember that the key to getting this right is to practice

writing the code you've just learned as many times as you need.

Functions and return values can be tricky concepts to master, but

they let us do a bunch of cool stuff. So put the time and effort

into learning for some really valuable returns!

7.4. Returning Values Using Functions

Sometimes we don't want a function to simply run and finish. We

may want a function to manipulate data we passed it and then

return the result to us. This is where the concept of return values

comes in handy.

We use the return keyword in a function, which tells the function

to pass data back. When we call the function, we can store the

returned value in a variable. Return values allow our functions to

be more flexible and powerful, so they can be reused and called

multiple times.

Functions can even return multiple values. Just don't forget to

store all returned values in variables! You could also have a

function return nothing, in which case the function simply exits.

7.5. The Principles of Code Reuse

As we've called out before, functions are powerful because you

can create your own. You can use them to organize the code in

your scripts into logical blocks, which makes the code you write

easier to use and reuse. Check out this example:

Video 10 (01:20 The Principles of Code Reuse

name = "Kay"

number = len(name) * 9

print("Hello " + name + ". Your lucky number is " + str(number))

name = "Cameron"

number = len(name) * 9

print("Hello " + name + ". Your lucky number is " + str(number))

As you can see, this code is written in two parts (3 lines for

each). Here’s our results:

Hello Kay. Your lucky number is 27

Hello Cameron. Your lucky number is 63

This script uses the len function, which returns the length of a

string. In this example the script then uses that length to

calculate a number, which we're calling the lucky number here.

Finally, it prints a message with the name and the number.

Each time you want to perform the calculation, we change the

values of the variables and write the formula. Then, print a

greeting followed by the lucky number.

See how the following line is duplicated in the first and second

part of the code:

number = len(name) * 9

When you find code duplication in your scripts, it's a good idea

to check if you can clean things up a bit by using a function.

How about we rewrite this code creating a function to group all

the duplicated code into just one line, like this (try to write and

run this code in your Python terminal 3.9):

def lucky_number(name):

 number = len(name) * 9

 print("Hello " + name + ". Your lucky number is " +

str(number))

lucky_number(“Kay”)

lucky_number(“Cameron”)

The updated script gives us the exact same result as the original

one, but it looks a lot cleaner. See Fig. 7.5.1.

Fig. 7.5.1: Lucky_Number script inside Python 3.9.6 Terminal

You should get exactly the same result if you write and run this

script in your Pycharm. See Fig. 7.5.2.

Fig. 7.5.2: Lucky_Number script inside Pycharm 2021.1.2

First, we've defined a function called lucky number, which carries

out our calculation and prints it for us. Then we call the function

twice, once with each name. Since we've grouped the calculation

and print statements into a function, our code is not only easier

to read but it's also now reusable. We can execute the code

inside the lucky number function as many times as we need it, by

just calling it with a different name. So we don't have to write it

out and again and again for each new name. Does that make

sense?

Hopefully, these examples have helped explain how functions are

used and defined, and also demonstrated how useful they can be.

Did you notice that we're feeding information into our functions

through their parameters? This is one of the many ways that we

can input data into our code.

The values for those parameters may come from different places,

like a file on our computer or through a form on a website, but

that doesn't impact our code. The result of the function is still

the same, no matter where the parameters come from.

Functions are your friends. They can help clean up your code and

do a math so you don't have to. You'll be using them a lot both

in this course and in your programming life. So get ready to get

real friendly with functions.

7.6. Code Style

So far, we've looked into how the Python syntax is used for

variables, expressions, and defining and using functions. There's a

lot more syntax to come but before we dive into that, let's talk a

bit about a different side of programming:

On the whole, having good or bad style when you write code

doesn't make much difference between a script succeeding or

crashing, but it can make a big difference for the people who use

it and contribute to it. Poor programming style can make life

difficult for the IT specialists or system administrators who have

to read the script after it's written or make changes to it so it

works with a new system.

Bad style can even give the scripts author a headache if it's been

awhile since they wrote it. Imagine having to rewrite your own

code because it's too messy to understand. Yikes!

On the flip side, good style can make a script look almost like

natural human language. It can make the scripts intent and

construction immediately clear to the reader. Goods style makes

life easier for people who have to maintain the code and helps

them understand what it does and how it does it. It can also

reduce errors since it makes updating the code easier and more

straightforward. Most importantly good style makes you look cool,

right?

So we agree, our code should be stylish. But what makes the

style of a piece of code good or bad? Although there are no hard

and fast rules that apply to every programming language and

situation, keeping a few principles in mind will go a long way to

creating good well styled code.

7.6.1. Principles for Creating Well-styled Code

First off, you want your code to be self-documenting as possible.

Self-documenting code is written in a way that's readable and

doesn't conceal its intent. This principle can be applied to all

aspects of writing code, from picking your variable names to

writing clear concise expressions. This is explained further in this

video:

Video 11 (0:46 The Principles of Code Reuse

Take this code snippet for example:

def calculate(d):

 q = 3.14

 z = q* (d**2)

 print(z)

calculate(5)

78.5

It's hard to determine the purpose of this code by just looking at

it. The names of the variables don't give the reader much

information and although you can likely work out the result of the

calculation, there are no clues to what that result (78.5) might be

used for.

In programming lingo, when we re-write code to be more self-

documenting, we call this process This is how it would look if we

refactored this code:

def circle_area(radius):

 pi = 3.14

 area = pi * (radius**2)

print(area)

circle_area(5)

78.5

With this refactored code, the intent should now be more clear.

The names of the variables and the function reflect their purpose,

which helps the reader understand the code more quickly.

You should always aim for your code to be self-documenting. But

even then, sometimes you may need to use a particularly tricky

bit of code in your script. When good naming and clean

organization can't make the code clear, you can add a bit of

explanatory texts to the code.

You do this by adding what we call a comment. As already

discussed in section 4.1, Python comments are indicated by the #

(hash) character. When your computer sees a # character and

understands that it should ignore everything that comes after that

character on that line. Check out how this looks:

This is how you write a comment in Python!

Using comments lets you explain why a function does something

a certain way. It also allows you to leave notes to your future self

or other programmers to remind you of what needs to be

improved and why. Obviously, it's much easier to read your own

code than someone else's.

In my job, I work on code that was written by lots of different

people and everybody designs things a little differently. This is why

it's so important to comment and document your code well. More

often than not, your code will eventually be used by someone

other than you. So be a good neighbor.

Use the style guide to structure your code in a way that's

readable by others or by you in six months when you've forgotten

why you wrote that code in the first place. In upcoming exercises

in this course, we'll use comments to let you know what you

need to do with the code. You can always write as many extra

comments as you need.

Coming up, a quiz to consolidate your newly acquired knowledge

about functions. Don't worry. You've got this.

7.7. Practice Quiz 4: 5 Questions

1. This function converts miles to kilometers - 1 point

def convert_distance(miles):

km = miles * # approximately 1.6 km in 1 mile

return

my_trip_miles = 55

2) Convert my_trip_miles to kilometers by calling the function

above

my_trip_km = convert_distance(_)

3) Fill in the blank to print the result of the conversion

distance in kilometers is " +

4) Calculate the round-trip in kilometers by doubling the result,

and fill in the blank to print the result

round-trip in kilometers is " +

Complete the function to return the result of the conversion.

Call the function to convert the trip distance from miles to

kilometers.

Fill in the blank to print the result of the conversion.

Calculate the round-trip in kilometers by doubling the result, and

fill in the blank to print the result.

2. This function compares two numbers and returns them in

increasing order. Fill in the blanks, so the print statement displays

the result of the function call in order. – 1 point

if a function returns multiple values, don't forget to store these

values in multiple variables.

This function compares two numbers and returns them

in increasing order.

def order_numbers(number1, number2):

if number2 > _:

return _, _

return number2, number1

1) Fill in the blanks so the print statement displays the result

of the function call.

smaller, bigger = order_numbers(100, 99)

bigger)

3. What are the values passed into functions as input called?

Select the correct response – 1 point

Variables

Return values

Parameters

Data types

4. Let's revisit our lucky_number function. We want to change it,

so that instead of printing the message, it returns the message.

This way, the calling line can print the message, or do something

else with it if needed. Fill in the blanks to complete the code to

make it work. – 1 point

def lucky_number(name):

 number = * 9

 message = "Hello " + name + Your lucky number is " +

return _

5. What is the purpose of the def keyword? – 1 point

Used to define a new function

Used to define a return value

Used to define a new variable

Used to define a new parameter

7.7.1. Answers to Practice Quiz 5

1.

def convert_distance(miles):

km = miles * # approximately 1.6 km in 1 mile

return

my_trip_miles = 55

2) Convert my_trip_miles to kilometers by calling the function

above

my_trip_km = convert_distance(my_trip_miles)

3) Fill in the blank to print the result of the conversion

distance in kilometers is " +

4) Calculate the round-trip in kilometers by doubling the result,

and fill in the blank to print the result

round-trip in kilometers is " +

2.

This function compares two numbers and returns them

in increasing order.

def order_numbers(number1, number2):

if number2 > number1:

return number1, number2

return number2, number1

1) Fill in the blanks so the print statement displays the result

of the function call.

smaller, bigger = order_numbers(100, 99)

3. C. A parameter, also sometimes called an argument, is a value

passed into a function for use within the function.

4.

def lucky_number(name):

 number = * 9

 message = "Hello " + name + Your lucky number is " +

return message

5. A. When defining a new function, we must use the def keyword

followed by the function name and properly indented body.

8. Conditionals

8.1. Comparing Things

We've seen a few arithmetic expressions so far, like addition,

subtraction, and division. Remember when we turned Python into

a calculator? Well, Python can also compare values. This lets us

check whether something is smaller than (<), equal to (=), or

bigger than (>) something else. This allows us to take the result

of our expressions and use them to make decisions.

Check out these examples:

Video 12 (3:05 Comparing Things

print(10>1)

True

In this example, 10 is greater than 1, so the value True is printed

as a result. True is a value that belongs to another data type

called the

Booleans represent one of two possible states, either true or false.

Every time you compare things in Python the result is a Boolean

of the appropriate value.

print(“cat” == “dog”)

False

In this example we can see our very first equality operator (==),

which is formed by putting two equal signs together. We use this

operator to test whether two things are equal to each other. In

this example the string cat is not equal to the string dog, so the

Boolean that's printed is

print(1 != 2)

True

In this example we're doing the opposite comparison. By pairing !

(exclamation mark) and an equal sign, we're using the not equals

operator (!=), which is the negated form of the equality operator.

In this particular line of code the operator checks that 1 is not

equal to 2.

We call out before that the plus operator doesn't work between

integers and strings. What do you think will happen if we try to

compare an integer and string? Let's find out by seeing if the

number 1 is taller than the string 1.

print(1 < "1")

Traceback (most recent call last):

 File "", line 1, in

TypeError: '<' not supported between instances of 'int' and 'str'

As you can see, we get a type error. That's the same error we got

before. This happens because Python doesn't know how to check

if a number is smaller than a string. And what about the equality

operator?

print(1 == “1”)

False

In this case the Interpreter has no problem telling us that the

integer 1 and the string 1 aren't the same. Basically although they

may seem similar to us because they both contain the same

number, it's clear to the computer that one is a number and the

other is the string. For the computer it's obvious that they are

completely different entities.

On top of the comparison and equality operators, Python also has

a set of logical These operators allow you to connect multiple

statements together and perform more complex comparisons. In

Python, the logical operators are the words and Let's look at

some examples:

print(“Yellow” > “Cyan” and “Brown” > “Magenta”)

False

To evaluate as true, the and operator would need both expressions

to be true at the same time here.

Here, we're comparing strings, and the > and < operators refer to

alphabetical order. Yellow comes after cyan, but brown doesn't

come after magenta. So this means that the first statement is but

the second one is not which makes the result of the whole

expression

If we use the or operator instead, the expression will be true if

either of the expressions are true, and false only when both

expressions are false. Let's try it out.

print(25 > 50 or 1 != 2)

True

25 is definitely not bigger than 50, but 1 is different than 2. So in

the end the whole expression is true.

Last up, the not operator inverts the value of the expression that's

in front of it. If the expression is true, it becomes false. If it's

false, it becomes true, just like this:

print(not 42 == “Answer”)

True

Logical operators are important because they help us write more

complex expressions. We'll see this in action in the next few

sections. If this is the first time you've come across these

operators it might seem like there's a lot to remember. But don't

worry, you'll learn most of them very quickly just by practicing.

In the section 8.9, we have a cheat sheet that lists all the

operators available and what each one does. It's a handy resource

you're sure to find useful when writing your own scripts.

8.2. Comparison Operators Recap

In Python, we can use comparison operators to compare values.

When a comparison is made, Python returns a boolean result, or

simply a True or False.

To check if two values are the same, we can use the equality

operator: ==

To check if two values are not the same, we can use the not

equals operator: !=

We can also check if values are greater than or lesser than each

other using > and If you try to compare data types that aren’t

compatible, like checking if a string is greater than an integer,

Python will throw a

We can make very complex comparisons by joining statements

together using logical operators with our comparison operators.

These logical operators are and When using the and operator,

both sides of the statement being evaluated must be true for the

whole statement to be true.

When using the or operator, if either side of the comparison is

true, then the whole statement is true. Lastly, the not operator

simply inverts the value of the statement immediately following it.

So if a statement evaluates to True, and we put the not operator

in front of it, it would become False.

8.3. Branching with IF statements

Now that we're armed with knowledge of Python's expressions,

comparators, and variables, we can dive right into how to use

them in our scripts to perform different actions based on their

values. The ability of a program to alter its execution sequence is

called and it's a key component in making your scripts useful.

You probably use the idea of branching a bunch in your everyday

life. For example, if it's before noon, you might greet someone by

saying good morning instead of good afternoon or good evening.

If it's raining outside, you might choose to take an umbrella. If

it's cold, you probably wear a jacket.

In your scripts, you can instruct your computer to make decisions

based on inputs too. Let's take a look at an IT-focused example.

In many companies, new employees can choose the username

they'll use to access the company's systems, and usually, the

chosen username needs to fit with a given set of guidelines.

Companies can set different criteria for what a valid username

looks like.

Video 13 (1:14 Branching with if statements

For now, let's assume that at your company, a valid username has

to have at least three characters. You've been tasked with writing

a program that will tell the user if their choices valid or not. To

do that, you could write a function like this:

def hint_username(username):

 if len(username) < 3:

 print(“Invalid username. Must be at least 3 characters long”)

This function checks whether the length of the username is

smaller than 3. If it is, the function prints a message saying that

the username is invalid. Look closely at how the if statement is

written. We write the keyword if followed by the condition that we

want to check for, and then followed by a After that, comes the

body of the if block, which is indented further to the right.

You may notice that there are some similarities between how an if

block and the function are defined. The keyword, either def or

indicates the start of a special block. At the end of the first line,

we use a colon, and then the body of the function or the if block

is indented to the right.

But there's also an important difference between how an if block

and a function are defined: The body of the if block will only

execute when the condition evaluates to true; otherwise, it

skipped.

Of course, you can do a lot more things inside the body of the if

block than just printing stuff. As we expand our programming

abilities, we'll learn how to do things like shorten texts that's too

long, delete a file if it exists, start a service if it's not running,

and a bunch more. If your code is inside a function, you could

also choose to return a value depending on whether a certain

condition is met. Can you imagine how that would look?

By now, you know how to define functions, and inside those

functions, you can now make your program do something only

when certain conditions are met. Ready to branch out and make

our branches even more interesting with else statements?

Then hop on over to the next section, or else, you'll miss out!

8.4. If Statements Recap

We can use the concept of branching to have our code alter its

execution sequence depending on the values of variables. We can

use an if statement to evaluate a comparison. We start with the if

keyword, followed by our comparison. We end the line with a

colon. The body of the if statement is then indented to the right.

If the comparison is the code inside the if body is executed. If

the comparison evaluates to then the code block is skipped and

will not be run.

8.5. Else Statements

The if statement is already a pretty useful construct, but we can

extend it to make it even more powerful. Think about the

username example from section 8.3.

Video 14 (1:36 Branching with if statements

What if we also wanted to print a message when the username

was valid? We can include an else statement to achieve this:

def hint_username(username):

 if len(username) < 3:

 print(“Invalid username. Must be at least 3 characters long”)

 else:

 print(“Valid username”)

The program can now go in one of two directions depending on

the length of the username. If it's not long enough, we get a

message indicating that the username is invalid. But if the

program verifies that the username is long enough, it will print a

message saying it is valid.

Pay attention to how the else statement is written. It uses the else

keyword followed by a colon to indicate the beginning of the else

block. Once again, the body of the block is further indented to

the right.

As we've called out before these blocks can contain multiple lines

and do more than just print messages. They can do calculations,

modify values, return values, and a lot more.

And remember that you can choose to use as many or as few

spaces as you want for the indentation, but you always need to

indent and you always need to use the same number of spaces.

The else statement is very useful, but we don't always need it.

Say we want to have a function that checks if a value is even or

odd. We could do that with a piece of code like this:

def is_even(number)

 if number % 2 == 0:

 return True

 return False

Here, we're using a new operator so let's first explain that. The

modulo operator is represented by the % (percentage) sign. It

returns the remainder of the integer division between two

numbers. The integer division is an operation between integers

that yields two results which are both integers, the quotient and

the remainder. So if we do an integer division between 5 and 2,

the quotient is 2 and the remainder is 1.

If we do an integer division between 11 and 3, the quotient is 3

and the remainder is 2. Even numbers are all multiples of 2

which means the remainder of the integer division between an

even number and 2 is always going to be 0.

In this function, we're using this principle to decide whether a

number is even or not. So how come we have these two return

statements, one below the other, without an else statement? The

trick is that when a return statement is executed, the function

exits so that the code that follows doesn't get executed. This

means that if the number is even, the computer will reach the

“return True” statement and exit the function.

Anything that comes after that will only be executed if the

condition in the if statement was false. In other words, once the

function reaches the “return False” line, we know for sure that the

if condition was false which means the number was odd.

At first, you might feel more comfortable including the else

statement, even if it's not needed and that's totally okay. It's

important to know that both ways of writing this are correct.

Remember that this technique can only be used when you're

returning a value inside the if statement.

To recap, the if statement allows us to branch the execution

based on a specific condition being true. The else statement lets

us set a piece of code to run only when the condition of the if

statement was false. If you return a value inside an if block then

the code after the block will only be executed if the condition was

false. All make sense?

If all these if ’s and else’s are starting to get a little confusing,

that's okay. There's a lot to soak up here and the best way to do

that is yeah, you guessed it, So review the content and practice

on your own as much as you need. Once you're done, go to the

next section.

8.6. Else Statements and Modulo Operator Recap

We just covered the if statement, which executes code if an

evaluation is true and skips the code if it’s false. But what if we

wanted the code to do something different if the evaluation is

false? We can do this using the else statement.

The else statement follows an if block, and is composed of the

keyword else followed by a colon. The body of the else statement

is indented to the right, and will be expected if the above if

statement doesn’t execute.

We also touched on the modulo operator, which is represented by

the percent sign: This operator performs integer division, but only

returns the remainder of this division operation.

If we’re dividing 5 by 2, the quotient is 2, and the remainder is 1.

Two 2s can go into 5, leaving 1 left over. So 5%2 would return 1.

Dividing 10 by 5 would give us a quotient of 2 with no

remainder, since 5 can go into 10 twice with nothing left over. In

this case, 10%2 would return 0, as there is no remainder.

8.7. Elif Statements

The if and else blocks allow us to branch execution depending on

whether a condition is true or false. But what if there are more

conditions to take into account? This is where the elif statement,

which is short for else comes into play.

But before we jump into how to use it, let's take a look at why

we need it in the first place. Let's go back to our trusty username

validation example.

Video 15 (1:04 Elif Statements

def hint_username(username):

 if len(username) < 3:

 print(“Invalid username. Must be at least 3 characters long”)

 else:

 print(“Valid username”)

Now, what if your company also had a rule that usernames longer

than 15 characters aren't allowed? How could we let the user

know if their chosen username was too long? We could do it like

this:

def hint_username(username):

 if len(username) < 3:

 print(“Invalid username. Must be at least 3 characters long”)

else:

 if len(username) > 15:

 print(“Invalid username. Must be at most 15 characters

long”)

 else:

print(“Valid username”)

In this case, we're adding an extra if block inside the else block

(shown in red color). This works, but the way the code is nested

makes it kind of hard to read. To avoid unnecessary nesting and

make the code clearer, Python gives us the elif keyword, which lets

us handle more than two comparison cases. Take a look.

def hint_username(username):

 if len(username) < 3:

 print(“Invalid username. Must be at least 3 characters long”)

elif len(username) > 15:

print(“Invalid username. Must be at most 15 characters long”)

 else:

 print(“Valid username”)

The elif statement looks very similar to the if statement (shown in

blue color). It's followed by a condition and a colon, and a block

of code indented to the right that forms the body. The condition

must be true for the body of the elif block to be executed.

The main difference between elif and if statements is we can only

write an elif block as a companion to an if block. That's because

the condition of the elif statement will only be checked if the

condition of the if statement wasn't true.

So in this example, the program first checks whether the

username is less than 3 characters long, and prints a message if

that's the case. If the username has at least 3 characters, the

program then checks if it's longer than 15 characters. If it is, we

get a message to tell us that.

Finally, if none of the above conditions were met, the program

prints a message indicating that the username is valid.

There's no limit to how many conditions we can add, and it's

easy to include new ones. For example, say the company decided

that the username shouldn't include numbers. We could easily add

an extra elif condition to check for this. Cool, right?

You now know how to compare things and use those

comparisons for your if, elif, and else statements, and you are

using all of them inside functions. Using branching to determine

your program's flow opens up a whole new realm of possibilities

in your scripts. You can use comparisons to pick between

executing different pieces of code, which makes your script pretty

flexible.

Branching also helps you do all kinds of practical things like

only backing up files with a certain extension, or

only allowing login access to a server during certain times of the

day.

Any time your program needs to make a decision, you can specify

its behavior with a branching statement. Are you starting to notice

tasks in your day-to-day that could be made more efficient with

scripting? There are so many possibilities, and we're only just

getting started with all the cool stuff Python programming can

help you do.

Wow! we've covered a lot in these last few sections. Remembering

all these concepts can take some time, and the best way to learn

them is to use them (learn by doing). So I've put together a

cheat sheet for you:

8.8 Cheat Sheet 2: Conditionals

You'll find all these operators and branching blocks listed in your

Cheat Sheets folder in one handy resource. It's super useful when

you need a quick refresher.

8.9. More Complex Branching with elif Statements

Building off of the if and else blocks, which allow us to branch

our code depending on the evaluation of one statement, the elif

statement allows us even more comparisons to perform more

complex branching.

Very similar to the if statements, an elif statement starts with the

elif keyword, followed by a comparison to be evaluated. This is

followed by a colon, and then the code block on the next line,

indented to the right. An elif statement must follow an if

statement, and will only be evaluated if the if statement was

evaluated as false. You can include multiple elif statements to

build complex branching in your code to do all kinds of powerful

things!

8.10. Practice Quiz 6: 5 Questions

1. What's the value of this Python expression: (2**2) == 4? – 1

point

4

2**2

True

False

2. Complete the script by filling in the missing parts. The function

receives a name, then returns a greeting based on whether or not

that name is "Taylor". - 1 point

_ "Hello there, " + _

3. What’s the output of this code if number equals 10? - 1 point

4. Is "A dog" smaller or larger than "A mouse"? Is 9999+8888

smaller or larger than 100*100? Replace the plus sign in the

following code to let Python check it for you and then answer. - 1

point

5. If a filesystem has a block size of 4096 bytes, this means that

a file comprised of only one byte will still use 4096 bytes of

storage. A file made up of 4097 bytes will use 4096*2=8192 bytes

of storage. Knowing this, can you fill in the gaps in the

calculate_storage function below, which calculates the total number

of bytes needed to store a file of a given size?

Use floor division to calculate how many blocks are fully occupi

ed.

_ block_size

Use the modulo operator to check whether there's any remainde

r

Depending on whether there's a remainder or not, return

the total number of bytes required to allocate enough blocks

to store your data.

+ _) * block_size

* full_blocks

8.10.1. Answers to Practice Quiz 6

1. C. The conditional operator == checks if two values are equal.

The result of that operation is a boolean: either True or False.

2.

3. 2. Our number is 10, which is < 12, so it matches that

condition.

4.

5.

Use floor division to calculate how many blocks are fully occupi

ed.

// block_size

Use the modulo operator to check whether there's any remainde

r

Depending on whether there's a remainder or not, return

the total number of bytes required to allocate enough blocks

to store your data.

+ 1) * block_size

* full_blocks

Answer Should be 4096.

Answer Should be 4096.

Answer Should be 8192.

Answer Should be 8192.

9. Module Review

9.1. Basic Syntax Wrap Up

You just completed your second module and learned a whole lot

about Python syntax. Congrats!

Video 16 (0:18 Basic Syntax Wrap Up

We've learned how to operate with different data types and how

to create our own variables and expressions. We've defined our

first functions and learned how to make them return values so

that they're more reusable.

We then dove into creating branches in our scripts which lets

them act in different ways depending on the values of our

variables. We learned a lot of new and very powerful stuff.

Knowing how to structure your code and functions and how to

make your code act in different ways depending on the values is

what allows us to tell our computer what to do. We'll keep using

these tools throughout the course as we move on to more

complex and interesting things.

Next step, you can put everything you've learned to the test in

the next graded assessment. Don't worry if you don't feel ready

yet. Remember that you can re-watch the videos and do the

practice quizzes as many times as you need to make sure you

fully understand everything we've covered.

When you're ready for the test, take your time and best of luck.

I'll catch you after you finished in the next module, where we'll

learn all about loops. See you there!

9.2. Why I Like Python

My team is responsible for maintaining the operating system of a

bunch of computers in the fleet of Google. And many of the

things we do are done through Python scripts. For example, we

have a script that keeps the computer up to date. The software is

updated everyday and is written in Python.

We also have a script that ensures the computer doesn't have any

specific problems, and if there is a problem, raises an alert for

the user so that the he can take action. That one is also written

in Python.

We have a bunch of other scripts like that run in the computers

of our users that are all written in Python. One of the things I

like the most about Python is that the code is really readable. You

can give a piece of Python code to someone that doesn't even

know how to program and most of the time, they will have at

least some idea of what is going on.

Another thing I like about Python is that it comes with a lot of

modules that do a lot of the things we want to do already.

Python has been around for a while. There's a lot of people that

have contributed all of these modules. So it's very likely that the

thing you want to do, is already in a module, and you only have

to import it and use it.

9.3. What I Don’t Like About Python

No computer language is perfect. Every computer language has its

advantages and disadvantages. In the case of Python, the one

thing that I find the most annoying is that, because it is not a

compiled language, there could be errors in the code that only

gets detected very late in the development process.

And well, it's not good that all these hidden errors could be in

the code. If you write tests codes that can test all of your code,

then you can be assured that your code works successfully. That's

why I think Python is great for writing small scripts that are self-

contained and sometimes for big software projects that have a lot

of infrastructure on them.

9.4. Module 2 Graded Assessment - 10 Questions

It’s time again for your second graded assessment. Open the

“Graded Assessments” folder you downloaded earlier. It contains

the pdf files of all the graded assessments in this course. Here’s

the file name to search:

Module 2 Graded Assessment – file name

9.4.1. Solutions to Module 2 Graded Assessment:

I (or any member of my team) is available to help you grade

your assessments. You can use my help link (email) at the end of

chapter 25 to send your assessment for grading. We will get back

to you in 12 to 24 hours with your result.

However, if you cannot wait, you can open the “Graded

Assessments” folder you downloaded earlier. It contains the pdf

formats of the solutions to all graded assessments in this course.

You can use them to grade your assessments by yourself. Just be

honest as you grade. Here’s the file name to search:

Module 2 Graded Assessment Solutions – file name

Module 3

“Happiness is the longing for repetition” – Milan Kundera

10. While Loops

10.1. Introduction to Loops

Welcome back. Before we dive back in, I want to first say well

done. You've learned a lot of new skills in a short amount of

time and tackled some pretty tricky concepts. None of this stuff is

easy and you're doing so great.

So we've got some fun concepts lined up for the next few

sections. So far we've seen how to organize our code and

functions. We've also made our code branch in two different paths

depending on certain conditions.

In this module we'll learn how to get computers to do repetitive

tasks, which is another cornerstone of programming. As we've

called out before computers are great at repeating the same task

over and They never get bored or make a mistake.

You could ask a computer to do the same calculation a thousand

times in the first result would be just as accurate as the last,

which isn't something we can say about us humans. Have you

ever tried to do something at thousand times in a row? It could

be enough to drive you loopy, which is why in this course, we're

going to learn how to leave the loops up to the computer.

The ability to accurately perform repetitive tasks and never get

tired is why computers are so great for automation. The

automated task could be anything like copying files to a bunch of

computers on a network, sending personalized emails to a list of

users, or verifying that a process is still running.

It doesn't matter how complex the task is your computer will do

it as many times as you tell it to, which leaves you time for

more interesting things like planning future hardware needs, or

managing software roll out.

In the next few sections we'll explore three techniques for

automating repetitive tasks. These are while for and Each of these

techniques are used to tell the computer to repeat a task, but

each takes a slightly different approach.

We're going to learn how to write the code for each, and how to

know when to use one technique instead of the others. So, are

you ready? Let's get started!

10.2. What is a While loop?

First off, we're going to talk about while loops.

While Loops instruct your computer to continuously execute your

code based on the value of a condition.

This works in a similar way to branching if statements. The

difference here is that the body of the block can be executed

multiple times instead of just once. Check out this video:

Video 17 (2:20 What is a while loop?

Type these 5 lines of code in your Pycharm IDE in the order it is

written. Do not copy and paste:

1 x = 0

2 while x < 5:

3 print(“Not there yet, x = ” + str(x))

4 x = x + 1

5 print(“x=” + str(x))

Can you guess what it does? Before we execute it to find out,

let's go through it together line by line.

In the first line (1), we're assigning the value of 0 to the variable

We call this action which means giving an initial value to a

variable. In the line two, we're starting the while loop. We're

setting a condition for this loop that X needs to be smaller than

5. Right now we know that x is 0 since we've just initialized it,

so this condition is currently true.

On the next two lines (3 and 4), we have a block that's indented

to the right. Here, we can use what we learned about functions

and conditionals to identify that this is the while loop's

There are two lines in the body of the loop. In the first line (3),

we print a message followed by the current value of X. In the

second line (4), we increment the value of X. We do this by

adding 1 to its current value and assigning it back to X.

So after the first execution of the body of the loop, X will be 1

instead of 0. Because this is a loop, the computer doesn't just

continue executing with the next line in the script. Instead, it

loops back around to re-evaluate the condition for the while loop.

Because 1 here is still smaller than 5, it executes the body of the

loop It then prints the message and, once more, increments X by

1. So the X is now 2.

The computer will keep doing this until the condition isn't true

anymore. In this example, the condition will be false when X is

no longer smaller than 5. Once the condition is false, the loop

and the next line is executed. Finally, the last line of our code

prints the last value of X.

Now that this code makes a bit more sense, what do you think

will happen when we execute it? Ready to find out? Let's execute

the code and see what happens:

Not there yet, x = 0

Not there yet, x = 1

Not there yet, x = 2

Not there yet, x = 3

Not there yet, x = 4

x=5

So we had five lines with the message, Not there yet, and then

at the end of the script the value of X was 5. This was a simple

example of how a while loop behaves.

As we've said before, we're learning the building blocks of

programming. Once you know those building blocks, you can

combine them to create more complex expressions. As an IT

specialist, while loops can be super helpful. You can use them to

keep asking for a username if the one provided isn't valid, or

maybe try an operation until it succeeds.

Knowing how to construct these expressions can help you get

your computer to do a whole lot with only a little bit of code. It's

pretty powerful stuff we're learning here. Now that you've got an

idea of how a while loop works, we will spice it up with another

example in section 10.4.

10.3. Anatomy of a While Loop

A while loop will continuously execute code depending on the

value of a condition. It begins with the keyword while, followed by

a comparison to be evaluated, then a colon. On the next line is

the code block to be executed, indented to the right.

Similar to an if statement, the code in the body will only be

executed if the comparison is evaluated to be true. What sets a

while loop apart, however, is that this code block will keep

executing as long as the evaluation statement is true. Once the

statement is no longer true, the loop exits and the next line of

code will be executed.

10.4. More While Loop Examples

In section 10.2, we saw a very simple example of a while loop.

We looked at a basic syntax of the loop and how it works. Let's

now apply this knowledge to a similar example, but this time with

a while loop inside a function.

Video 18 (2:04 More while loop Examples

Type this code in your Pycharm IDE in the order it is written. Do

not copy and paste:

def attempts(n):

x = 1

 while x <= n:

 print(“Attempt ” + str(x))

 x += 1

 print(“Done”)

attempts(5)

Can you work out what this function does? In this example, we

start out by initializing a variable called X. In this case, we

initialize it with a value of 1. Then, we enter our while loop which

checks to see if the value inside of the X variable is less than the

parameter n that the function received.

If that comparison evaluates to true, then the code inside the

while block is executed. Say we pass a value of 5 as a parameter

to this function.

In the first pass through the loop, X is always equal to 1, so the

comparison 1 smaller than or equal to 5 would be true and we

then enter the body of the loop.

In the body, we first print a message indicating that current

attempt number, and then we increase the value of X by 1. To

increment the number we're using a slightly different expression

than before.

x +=1 is a shorthand version of x = You can use either expression

since they both mean the same thing.

The process continues until the result of the comparison isn't true

anymore, which happens when X is bigger than n. In our current

example, this would be when the value of x is 6. Let's run this

script to see it in action.

Attempt 1

Attempt 2

Attempt 3

Attempt 4

Attempt 5

Done

In these past examples, we've used the simple conditions of a

number being smaller, or smaller or equal than another number.

These are common conditions, but they're by no means the only

conditions you can have in a while loop. It's common for example

to call a separate function that evaluates the condition, like this

(not complete):

Username = get_username()

while not valid_username(username):

print(“Invalid username”)

username = get_username()

In this case, there's of lot of code hidden behind functions and

it's doing stuff we don't see.

There's a get_username() function that asks the user for a

username and a function that validates that username. All this is

happening in just a handful of characters.

As you can see, you can pack a lot of punch into just a short

line of code. In this case, the body of the while loop will be

executed until the user enters a valid username.

The important thing to remember is that the condition used by

the while loop needs to evaluate to true or false. It doesn't

matter if this is done by using comparison operators or calling

additional functions.

The conditions used in while loops can also become more

complex if we use the logical operators that we encountered when

looking into branching, and This lets us combine the values of

several expressions to get the result we want.

Okay, we've now covered what a while loop is and learned its

syntax and basic behavior. Some of this stuff can be a bit tricky

and you're doing great. Keep sticking with it.

Next, we're going to do a rundown of some of the most common

pitfalls that you may come across when writing your own loops.

Head on over to the next section to get started.

10.5. Why Initializing Varaibles Matters

As we've called out earlier writing loops allows us to get our

computer to do repetitive work for us. So one of the main

benefits of writing scripts in IT is to save time by automating

repetitive tasks. Loops are super useful. So let's make sure you

avoid some of the most common mistakes people make when

writing loops.

One of the most common errors is forgetting to initialize variables

with the right We've all made this mistake when starting to code.

Remember how in the earlier examples we initialized our variable

X to 0 in one case and to 1 in the other.

When we forget to initialize a variable two different things can

happen as explained in this video:

Video 19 (2:10 Why Initializing Variables Matters

The first possible outcome and the easiest to catch is that Python

might raise an error telling us that we're using a variable we

haven't defined, which looks like this:

while my_variable < 10:

 my_variable += 1

Traceback (most recent call last):

 File Programming\My_Programs\Book Jotter.py", line 1, in

 while my_variable < 10:

NameError: name 'my_variable' is not defined

As we've done with other errors we've come across, we can look

at the last line to understand what's going on. This error type is

a NameError and the message that comes after it says we're

using an undefined variable. It's straightforward to fix, we just

need to initialize the variable before using it like this:

my_variable = 5

while my_variable < 10:

 print(“Hello”)

 my_variable += 1

Hello

Hello

Hello

Hello

Hello

As you can see we now have our output. So the error is fixed.

Now, there's a second issue we might face if we forget to

initialize variables with the right value. We might have already used

the variable in our program. In this case, if we reuse the variable

without setting the correct value from the start, it will still have

the value from before. This can lead to some pretty unexpected

behavior. Try this script:

x = 1

sum = 0

while x < 10:

 sum += x

 x += 1

product = 1

while x < 10:

 product = product * x

 x += 1

print(sum, product)

Can you spot the problem?

In the first block, we correctly initialize X to 1 and sum to 0, and

then iterate until x equals 10, summing up all the values in

between. So by the end of that block, sum equals the result of

adding all the numbers from 1 to 10 and X is 10.

In the second part of the code, the original intention was to get

the product of all the numbers from 1 to 10, but if you look

closely, you can see that we're initializing product but forgetting to

initialize So X is still 10.

This means that when the while condition gets checked, X is

already 10 at the start of the iteration. The while condition is false

before it even starts and the body never executes.

If you run this script yourself, you can confirm that this is the

output:

45 1

In this case, it might be harder to catch the problem because

python doesn't raise an error. The problem here is that our

product variable has the wrong value (1). If you have a loop that's

gone rogue and not behaving as expected, it's a good idea to

check if all the variables are correctly initialized.

In this example, we need to set X back to 1 before starting the

second loop, like this:

x = 1

product = 1

while x < 10:

 product = product * x

 x += 1

print(sum, product)

45 362880

Fix this script by your self and confirm that the correct value of

product is 362880.

As always, the best way to learn is to practice it yourself. Makes

sense? Remember, if you ever feel stuck or a little unsure about

something you can always ask for help in the discussion forums.

These forums are there to let you get the help you need when

you need it, so don't forget to use them.

So, to recap, whenever you're writing a loop check that you're

initializing all the variables you want to use before you use them.

Don't worry if you don't get it right the first time, we've all been

there when learning how to code.

As we've called out before, the way to master programming is to

practice, practice and practice. Keep practicing until you're

comfortable and even then it's still okay to make mistakes. So

don't feel like you can't loop back around to review and practice

everything we've covered so far!

10.6. Common Pitfalls with Variable Initialization

You'll want to watch out for a common mistake: forgetting to

initialize If you try to use a variable without first initializing it,

you'll run into a This is the Python interpreter catching the

mistake and telling you that you’re using an undefined variable.

The fix is pretty simple: initialize the variable by assigning the

variable a value before you use it.

Another common mistake to watch out for that can be a little

trickier to spot is forgetting to initialize variables with the correct

value. If you use a variable earlier in your code and then reuse it

later in a loop without first setting the value to something you

want, your code may wind up doing something you didn't expect.

Don't forget to initialize your variables before using them!

10.7. Infinite Loops and How to Break Them

You may remember by now that while loops use the condition to

check when to exit. The body of the while loop needs to make

sure that the condition being checked will change. If it doesn't

change, the loop may never finish and we get what's called an

infinite a loop that keeps executing and never stops. Check out

the example in this video:

Video 20 (1:21 Infinite Loops and How to Break Them

while x % 2 == 0:

 x = x / 2

It uses the modulo operator that we saw a while back. This cycle

will finish for positive and negative values of X. But what would

happen if X was 0 (zero)? The remainder of 0 divided by 2 is 0,

so the condition would be true. The result of dividing 0 by 2

would also be zero, so the value of X wouldn't change.

This loop would go on for ever, and so we'd get an infinite loop.

If our code was called with X having the value of zero, the

computer would just waste resources doing a division that would

never lead to the loop stopping.

The program would be stuck in an infinite loop circling back

endlessly, and we don't want that. All that looping might make

your computer “dizzy”. To avoid this, we need to think about what

needs to happen for a loop to be successful. Look at this one:

if x != 0:

 while x % 2 == 0:

 x = x / 2

In this example, we said that X needs to be different than zero.

So we could nest this while loop inside an if statement just like

this. With this approach, the while loop is executed only when X

is not zero.

Alternatively, we could add the condition directly to the loop using

a logical operator like in this example:

while x != 0 and x % 2 == 0:

 x = x / 2

This makes sure we only enter the body of the loop for values of

X that are both different than zero and even. Talking about infinite

loop reminds me of one of the first times I used while loops

myself.

I wrote a script that emailed me as a way of verifying that the

code worked, and while some condition was true, I forgot to exit

the loop. It turned out those e-mails got sent faster than once

per second. As you can imagine, I got about 500 e-mails before I

realized what was going on. I am infinitely grateful for that little

lesson!

When you're done laughing at my story, remember, when you're

writing loops, it's a good idea to take a moment to consider the

different values a variable can This helps you make sure your loop

won't get stuck. If you see that your program is running forever

without finishing, have a second look at your loops to check

there's no infinite loop hiding somewhere in the code.

While you need to watch out for infinite loops, they are not

always a bad thing. Sometimes you actually want your program to

execute continuously until some external condition is met. If

you've used the ping utility on Linux or macOS system, or ping-t

on a Windows system, you've seen an infinite loop in action.

This tool will keep sending packets of data and printing the

results to the terminal unless you send it the interrupt signal,

usually pressing Ctrl + C. If you were looking at the program

source code, you'll see that it uses an infinite loop to do this

with a block of code with instructions to keep sending the packets

forever.

One thing to call out is it should always be possible to break the

loop by sending a certain signal. In the ping example, that signal

is the user pressing Ctrl + C. In other cases, it could be that the

user pressed the button on a graphical application, or that

another program sent a specific signal, or even that a time limit

was reached.

In your code, you could have an infinite loop that looks

something like this:

while True:

 do_something_cool()

 if user_requested-to_stop():

 break

In Python, we use the break keyword which you can see in the

above script to signal that the current loop should stop running.

We can use it not only to stop infinite loops but also to stop a

loop early if the code has already achieved what's needed. So a

quick refresh.

How do you avoid the most common pitfalls when writing while

loops?

First, remember to initialize your variables, and

second, check that your loops won't run forever.

10.8. Infinite loops and Code Blocks

Another easy mistake that can happen when using loops is

introducing an infinite loop. An infinite loop means the code block

in the loop will continue to execute and never stop. This can

happen when the condition being evaluated in a while loop

doesn't change.

Pay close attention to your variables and what possible values they

can take. Think about unexpected values, like zero.

In one of my code blocks, I sometimes see an error message that

reads "Evaluation took more than 5 seconds to complete." This

means that the code encountered an infinite loop, and it timed

out after 5 seconds. Then I take a closer look at the code and

variables to spot where the infinite loop is.

Wow! All this talk of loops is making me feel a little dizzy right

now. I'm going to have to go and lie down while you do the next

practice quiz. Best of luck! Meet me over in the next section

when you're done.

10.9. Practice Quiz 7: 5 Questions

1. What are while loops in Python? – 1 point

While loops let the computer execute a set of instructions while a

condition is true.

While loops instruct the computer to execute a piece of code a

set number of times.

While loops let us branch execution on whether or not a

condition is true.

While loops are how we initialize variables in Python.

2. Fill in the blanks to make the print_prime_factors function

print all the prime factors of a number. A prime factor is a

number that divides another without a remainder. - 1 point

Start with two, which is the first prime factor.

Keep going until the factor is larger than the number.

Check if factor is a divisor of number.

If it is, print it and divide the original number.

 number = number / factor

If it's not, increment the factor by one.

Should print 2,2,5,5.

DO NOT DELETE THIS COMMENT.

3. The following code can lead to an infinite loop. Fix the code

so that it can finish successfully for all numbers. Note: Try

running your function with the number 0 as the input, and see

what you get! - 1 point

Check if the number can be divided by two without a remainde

r

If after dividing by two the number is 1, it's a power of two

4. Fill in the empty function so that it returns the sum of all the

divisors of a number, without including it. A divisor is a number

that divides into another without a remainder. - 1 point

_

Return the sum of all divisors of n, not including n

_

_

_

_

0

sum of 1

1

sum of 1+2+3+4+6+9+12+18

55

114

5. The multiplication_table function prints the results of a number

passed to it multiplied by 1 through 5. An additional requirement

is that the result is not to exceed 25, which is done with the

break statement. Fill in the blanks to complete the function to

satisfy these conditions.

Initialize the starting point of the multiplication table

Only want to loop through 5

 result = number * multiplier

What is the additional condition to exit out of the loop?

break

Increment the variable for the loop

Should print: 3x1=3 3x2=6 3x3=9 3x4=12 3x5=15

Should print: 5x1=5 5x2=10 5x3=15 5x4=20 5x5=25

Should print: 8x1=8 8x2=16 8x3=24

10.9.1. Answers to Practice Quiz 7

1. A. Using while loops we can keep executing the same group of

instructions until the condition stops being true.

2.

Start with two, which is the first prime

Keep going until the factor is larger than the number

Check if factor is a divisor of number

If it is, print it and divide the original number

 number = number / factor

If it's not, increment the factor by one

Should print 2,2,5,5

DO NOT DELETE THIS COMMENT

3.

Check if the number can be divided by two without a remainde

r

If after dividing by two the number is 1, it's a power of two

4.

Return the sum of all divisors of n, not including n

0

1

55

114

5.

Initialize the starting point of the multiplication table

Only want to loop through 5

 result = number * multiplier

What is the additional condition to exit out of the loop?

break

Increment the variable for the loop

Should print: 3x1=3 3x2=6 3x3=9 3x4=12 3x5=15

Should print: 5x1=5 5x2=10 5x3=15 5x4=20 5x5=25

Should print: 8x1=8 8x2=16 8x3=24

11. For Loops

11.1. What is a For Loop?

Okay, how are you doing? If all this talk of loops is starting to

make your head spin, remember that there's nothing wrong with

looping back around and reviewing what you've learned. It's the

quickest way to stop feeling like you're running in circles. All

right, feeling good? Great, Then we're ready for a different type of

loop. In this video, we're going to meet the for loop.

A for loop iterates over a sequence of

A very simple example of a for loop is to iterate over a sequence

of numbers, like this:

Video 21 (3:03 What is a for loop?

for x in range(5):

Notice how the structure is kind of similar to the structures we've

already seen. The first line indicates the distinguishing keyword. In

this case, that's And it ends with a colon. The body of the loop

is indented to the right, like we saw in the while loop, the if

block, and the function definitions.

The difference in this case is that we have the keyword Also,

between the for keyword and in keyword, we have the name of a

variable. This variable will take each of the values in the sequence

that loop iterates through. So in this example, it'll iterate through

a sequence of numbers generated using the range function.

There are two important things I want to call out about this

range function. First, in Python and a lot of other programming

languages, a range of numbers will start with the value 0 by

default. Second, the list of numbers generated will be one less

than the given value.

In the simple example here, x will take the values 0, 1, 2, 3, and

4. Let's check this out (run this program yourself):

for x in range(5):

 print(x)

0

1

2

3

4

So there, we have a very basic for loop. It iterates over a

sequence of numbers generated by the range function. When

using a for loop, we point the variable defined between for and in

this case, x, at each element of the sequence. This means on the

first iteration x points at 1.

On the second iteration, it points at 2, and so on. Whatever code

we put in the body of the loop will be executed on each of the

values, one value at a time. As we said earlier, the loops body

can do a lot of things with the values it iterates.

For example, you could have a function to calculate the square of

a number, and then use a for loop to sum the squares of the

numbers in a range. Iterating over numbers looks very similar to

the while loop examples we showed before. So you may be

wondering why have two loops that look like they do the same

thing?

Well, the power of the for loop is that we can use it to iterate

over a sequence of values of any not just a range of numbers.

Think all the way back to our very first Python example in this

course. Remember our trusty hi friends script? In it, we saw a for

loop that iterated over a list of strings. It looks like this.

1 friends = [“Taylor”, “Alex”, “Pat”, “Eli”]

2 for friend in friends:

3 print("Hi " + friend)

We'll talk a lot more about lists later on. But for now, you only

need to know that we can construct lists using square brackets,

and separate the elements in them with In this example, we're

iterating a list of strings, and for each of the strings in the list,

were printing a greeting.

The sequence that the for loop iterates over could contain any

type of element, not just strings. For example, we could iterate

over a list of numbers to calculate the total sum and average.

Here's one way of doing this:

values = [23, 52, 59, 37, 48]

sum = 0

length = 0

for value in values:

 sum += value

 length += 1

print(“total sum: ” + str(sum) + “ – Average: ” + str(sum/length)

Here, we're defining a list of values. After that, we're initializing

two variables, sum and that will update in the body of the for

loop. In the for loop, we're iterating over each of the values in

the list, adding the current value to the sum of values, and then

also adding 1 to length, which calculates how many elements

there are in the list.

Once we've gone through the whole list, we print out the sum

and the average. We'll keep using for loops in our examples every

time we want to iterate over the elements of any sequence and

operate with them.

Some examples of sequences that we can iterate are:

the files in a directory

the lines in a file

the processes running on a machine.

And there's a bunch of others. So as an IT specialist, you'll use

for loops to automate tons of stuff. For example, you might use

them to

copy files to machines

process the contents of files

automatically install software

and a lot more.

A few weeks ago, I had to update a lot of files with different

values depending on their contents. So I used a for loop in a

script to iterate over all the files. Then, my script took different

actions based on an if condition and updated all of those files for

me.

It would have taken me forever if I had done this manually file by

file. If you're wondering when you should use for loops and when

you should use while oops, here's a way to tell:

Use for loops when there's a sequence of elements that you want

to iterate.

Use while loops when you want to repeat an action until a

condition changes.

And if whatever you're trying to do can be done with either for or

while loops, just use whichever one's your favorite. I'm more of a

while gal myself, but it's totally your call.

In section 11.3, I've put together more examples to help get you

more practice with for loops and discover some of the cool things

you could do with them.

11.2. For Loops Recap

For loops allow you to iterate over a sequence of values. Let's

take the example from the beginning of video 21 (section 11.1):

for x in range(5):

 print(x)

Similar to if statements and while loops, for loops begin with the

keyword for with a colon at the end of the line. Just like in

function definitions, while loops and if statements, the body of the

for loop begins on the next line and is indented to the right.

But what about the stuff in between the for keyword and the

colon? In our example, we’re using the range() function to create

a sequence of numbers that our for loop can iterate over. In this

case, our variable x points to the current element in the sequence

as the for loop iterates over the sequence of numbers.

Keep in mind that in Python and many programming languages, a

range of numbers will start at 0, and the list of numbers

generated will be one less than the provided value. So range(5) will

generate a sequence of numbers from 0 to 4, for a total of 5

numbers.

Bringing this all together, the range(5) function will create a

sequence of numbers from 0 to 4. Our for loop will iterate over

this sequence of numbers, one at a time, making the numbers

accessible via the variable x and the code within our loop body

will execute for each iteration through the sequence. So for the

first loop, x will contain 0, the next loop, 1, and so on until it

reaches 4. Once the end of the sequence comes up, the loop will

exit and the code will continue.

The power of for loops comes from the fact that it can iterate

over a sequence of any kind of data, not just a range of

numbers. You can use for loops to iterate over a list of strings,

such as usernames or lines in a file.

Not sure whether to use a for loop or a while loop? Remember

that a while loop is great for performing an action over and over

until a condition has changed. A for loop works well when you

want to iterate over a sequence of elements.

11.3. More for Loop Examples

In the last section, we talked about the range function, and how

it generates a sequence of numbers starting with zero. Sometimes,

though, we don't want to start with zero. For these situations, the

range function also allows us to specify the first element of the

list to generate. We do that by passing two parameters to the

function instead of one, like in this example:

Video 22 (2:01 What is a for loop?

product = 1

for n in range(1, 10):

product = product * n

print(product)

362880

In this example, we're calculating the products of all numbers

from 1 to 10. For this operation, it's important that we start with

1 and not with 0. If we'd started with 0, the whole product would

be zero.

Additionally, we can specify a third parameter to change the size

of each step. This means that instead of going one by one, we

could have a larger difference between the elements. Let's check

out this example when you might want to do something like this.

def to_celsius(x):

 return (x-32)*5/9

for x in range(0,100,10):

 print(x, to_celsius(x))

First, we're defining a function that converts a temperature value

from Fahrenheit to Celsius, and we're simply using a conversion

formula to do that. Then we have a for loop that starts at zero,

and goes up to 100 in steps of 10. Notice that we're using 101

for the upper limit instead of 100. We're doing this because the

range never includes the last element, and we want to include

100 in our range.

The body of the for-loop prints the value in Fahrenheit and the

value in Celsius, creating a conversion table. Let's run the

program to see this in action:

0 -17.77777777777778

10 -12.222222222222221

20 -6.666666666666667

30 -1.1111111111111112

40 4.444444444444445

50 10.0

60 15.555555555555555

70 21.11111111111111

80 26.666666666666668

90 32.22222222222222

100 37.77777777777778

That example got you feeling the heat? Don't worry, there's a

quick rundown of what we've learned. The range function can

receive one, two or three parameters. If it receives one parameter,

it will create a sequence one by one from zero until one less

than the parameter received. If it receives two parameters, it will

create a sequence one by one from the first parameter until one

less than the second parameter.

Finally, if it receives three parameters, it will create a sequence

starting from the first number and moving towards the second

number. But this time, the jumps between the numbers will be

the size of the third number, and again, it will stop before the

second number.

Sound like a lot to remember, but don't panic. As we've said

before, you don't have to try to memorize it all, just keep

practicing. It'll soon become second nature. To help you practice,

we've included all of this in a handy cheat sheet to refer to

whenever you need it. You'll find that in section 11.7.

11.4. A Closer Look at the Range() Function

Previously we had used the range() function by passing it a single

parameter, and it generated a sequence of numbers from 0 to

one less than we specified. But the range() function can do much

more than that.

We can pass in two parameters: the first specifying our starting

point, the second specifying the end point. Don't forget that the

sequence generated won't contain the last element; it will stop

one before the parameter specified.

The range() function can take a third parameter, too. This third

parameter lets you alter the size of each step. So instead of

creating a sequence of numbers incremented by 1, you can

generate a sequence of numbers that are incremented by 5.

To quickly recap the range() function when passing one, two, or

three parameters:

One parameter will create a sequence, one-by-one, from zero to

one less than the parameter.

Two parameters will create a sequence, one-by-one, from the first

parameter to one less than the second parameter.

Three parameters will create a sequence starting with the first

parameter and stopping before the second parameter, but this

time increasing each step by the third parameter.

11.5. Nested For Loops

You're doing great getting your head around all these loops. I

think you're ready for something a little bit more complex. We're

going to explore what happens when you get loops inside of

loops. Does that make your head spin? Don't worry, we're about

to break it down for you with a couple of examples.

Have you ever played dominoes before? There's a bunch of fun

games you can play with these tiles. In case you're not familiar,

each Domino Tiles has two numbers represented by a collection

of dots carved on each half of the tile. The numbers go from

zero to six. Tiles can be rotated so that each combination of

numbers is represented only once in a set of Domino Tiles. In

other words, the two three tile is the same as the three two tile,

and there's only one per set.

Now, imagine we wanted to write a program that prints each

Domino Tile in a set. If we take all of the tiles that have zero on

the left, we can print tiles with numbers from zero to six on the

right. That should be easy to do with a four loop.

But what about tiles that have one on the left? Well, we need to

skip the one zero tile, because that one was already printed as

zero one. So we can print a list of tiles with one on the left and

numbers from one to six on the right.

When we look at two, we would need to skip both zero and one,

and so on. Are you following along? How you think we'd write

the code for this? Turning this into code means that we'd need to

write two for loops, one inside the other. This is what we call

nested for loops. Check out how this looks on Python code:

Video 23 (3:26 Nested for loops

for left in range(7):

 for right in range (left, 7):

 print(“[” + str(left) + “|” + str(right) + “]”, end= “

 print()

[0|0] [0|1] [0|2] [0|3] [0|4] [0|5] [0|6]

[1|1] [1|2] [1|3] [1|4] [1|5] [1|6]

[2|2] [2|3] [2|4] [2|5] [2|6]

[3|3] [3|4] [3|5] [3|6]

[4|4] [4|5] [4|6]

[5|5] [5|6]

[6|6]

In this code, we're using a new parameter that we passed to the

print function. This parameter is called Normally, once print has

taken the content we passed and written it to the screen, then it

writes a special character that creates a new line called the

newline character. If we want print to write something else instead

of the newline character, we use the end parameter, like we see in

this example.

Notice how the second for loop iterates over a different number

of elements each time it's called as the value of left changes.

Depending on what you want to achieve with your nested loops,

you may want both loops to always go through the same number

of elements, or you might want the second loop to connect to

the first one. Let's look at a different example.

Let's say you run a local girl's basketball league in your town. You

have four teams that will play against each other in the league,

both at home and away. You've stored the names of the teams in

a list, like this:

teams = [‘Dragons’, ‘Wolves’, ‘Pandas’, ‘Unicorns’]

We want to write a script that will output all possible team

pairings. For this, the order of the names matters because for

each game, the first name will be the home team and the second

name is the away team. Of course, what we don't want to do is

have a team playing against itself. So what statement do we need

to use to avoid that?

To do this, we need to use a conditional that makes sure we only

print the pairing when the names are different. Check out what

this looks like:

teams = [‘Dragons’, ‘Wolves’, ‘Pandas’, ‘Unicorns’]

for home_team in teams:

 for away_team in teams:

 if home_team != away_team:

 print(home_team + “ vs ” + away_team)

Dragons vs Wolves

Dragons vs Pandas

Dragons vs Unicorns

Wolves vs Dragons

Wolves vs Pandas

Wolves vs Unicorns

Pandas vs Dragons

Pandas vs Wolves

Pandas vs Unicorns

Unicorns vs Dragons

Unicorns vs Wolves

Unicorns vs Pandas

Success! As you can see, nested loops are super useful for

solving certain problems, like pairing teams. What it doesn't solve

is the question, who would win in a face-off between dragons and

unicorns? If only there were some code for that!

Anyway, we've seen that nested loops are a handy tool, but we

need to be careful not to just blindly apply them to any problem.

Why? Well, because the longer the list your code needs to iterate

through, the longer it takes your computer to complete the task.

Let's say your manager asks you to do an operation that will run

through a list of 10,000 elements. If the operation takes one

millisecond per element, the whole loop would take one

millisecond times 10,000 to complete, which is 10 seconds.

Now, imagine we add a nested loop that has to go over the

same 10,000 elements. This means that each iteration of the

outside loop would do a full iteration of the inside loop, which

again, would take ten seconds to go through the whole list. So,

now the whole iteration takes 10,000 times 10 seconds, which is

100,000 seconds, that's over 27 hours! I have the patience of a

gnat, so that would definitely not work for me.

This doesn't mean we shouldn't use nested loops. They are a

useful tool when solving problems that require them, but we need

to be careful of where and how we use them. Throughout this

course, and one is coming up (Part 2), we'll look at a lot of

techniques that can help us pick the right tool to use for each

type of problem.

Up next, we'll look into some common errors that you might

come across when writing your for loops and what to do about

them.

11.6. Common Errors in For Loops

We've now seen how to write for loops, combine them with

functions, nest a for loop inside a different loop, and even

combine a nested loop with conditionals. Nice job, you're

chugging right along. But before we're done with for loops, let's

check out some common mistakes you may come across while

trying this yourself.

As we've called out are ready, for loops iterate over sequences.

The interpreter will refuse to iterate over a single element. As you

see here:

Video 24 (1:57 Common Errors in for Loops

for x in 25:

print(x)

Traceback (most recent call last):

 File "D:\ajwright\Documents\Python

Programming\My_Programs\Book Jotter.py", line 1, in

 for x in 25:

TypeError: 'int' object is not iterable

In this example, we're trying to iterate over the number 25. Python

prints a type error telling us that integers are not iterable. There

are two solutions to this problem, depending on what we're trying

to do. If we want to go from 0 to 25, then we use the range

function, so,

for x in range(25):

 print(x)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

But if we're trying to iterate over a list that has 25 as the only

element, then it needs to be a list, and that means writing it

between square brackets as follows.

for x in [25]

 print(x)

25

You might be wondering why would you ever want to iterate over

a list of one element, and that's a good question. Well, this kind

of issue usually happens when you have a function with a for

loop inside it, which is iterating over the elements of a list

received by parameter. Say for example, you have a function that

fixes the permissions of a list of files received by parameter, and

you want to call this function to fix the permissions of just one

specific file.

To do that, you need to pass the file as the single element of a

list. Let's check this out with some code we're familiar with, our

friendliest of Python examples. We're going to modify it to have

the greetings inside a function:

def greet_friends(friends)

 for friend in friends:

 print(“Hi “ + friend)

greet_friends([‘Taylor’, ‘Luisa’, ‘Jamaal’, ‘Eli’])

Hi Taylor

Hi Luisa

Hi Jamaal

Hi Eli

We've defined a greet_friends function that receives a list by

parameter and iterates over that list, greeting each friend. But

what if we only want to greet one friend instead of four? Well, we

still need to define a list, but with only one element.

But first, let's see what would happen if we don't do that:

greet_friends("Barry")

Hi B

Hi a

Hi r

Hi r

Hi y

Not what we expected, right? Well, what's going on here? This

happens because strings are iterable, the for loop will go over

each letter of the string and do the operation we asked it to do,

which in this case is print a greeting. Depending on what you're

trying to do, you may actually want to iterate through the letters

of a string. But in this case, we don't.

So to sum it up, if you get an error that a certain type is not

iterable, you need to make sure the for loop is using a sequence

of elements and not just one, and if you find your code iterating

through each letter of a string when you want it to do it for the

whole string, you probably want to have that string be a part of a

list.

We've now learned how to write while loops and for loops. You

might remember, for loops are best when you want to iterate over

a known sequence of elements but when you want to operate

while a certain condition is true, while loops are the best choice.

Next up, we've got a super useful cheat sheet for you that puts

all this into one handy resource. After that, head over to the

practice quiz 8 to test your knowledge and check in on how

you're doing.

11.7 Cheat Sheet 3: Loops

To locate the Loops Cheat Sheet file, open the “Cheat Sheets”

folder. It’s one of the folders inside the course resources folder

you downloaded earlier.

11.8. Practice Quiz 8: 4 Questions

1. How are while loops and for loops different in Python? – 1

point

While loops can be used with all data types, for loops can only

be used with numbers.

For loops can be nested, but while loops can't.

While loops iterate while a condition is true, for loops iterate

through a sequence of elements.

While loops can be interrupted using break, for loops using

continue.

2. Fill in the blanks to make the factorial function return the

factorial of n. Then, print the first 10 factorials (from 0 to 9) with

the corresponding number. Remember that the factorial of a

number is defined as the product of an integer and all integers

before it. For example, the factorial of five (5!) is equal to

1*2*3*4*5=120. Also recall that the factorial of zero (0!) is equal

to 1. 1 point

3. Write a script that prints the first 10 cube numbers (x**3),

starting with x=1 and ending with x=10. - 1 point

4. Write a script that prints the multiples of 7 between 0 and

100. Print one multiple per line and avoid printing any numbers

that aren't multiples of 7. Remember that 0 is also a multiple of

7. - 1 point

11.8.1. Answers to Practice Quiz 8

1. C. We can use while loops when we want our code to execute

repeatedly while a condition is true, and for loops when we want

to execute a block of code for each element of a sequence.

2.

3.

4.

12. Recursion (Optional)

12.1. What is recursion?

Welcome back. How are you feeling after the last quiz? You're

starting to learn some pretty cool things that you could do in

your code. Who knew loops can be so fascinating?

You've now discovered two looping techniques that you could use

in Python: while loops and for We use while loops when we want

to do an operation repeatedly while a certain condition is true. We

use for loops when we want to iterate over the elements of a

sequence.

Now, we're going to check out a third technique called But before

we dive in, you may have noticed that this chapter is marked as

optional. That's because while recursion is a very common

technique used in software engineering, it's not used that much in

automation.

Still, we think it's valuable for you to know about recursion and

to have an idea of how to use it. You may see it in code written

by others or you may face a problem where recursion is the best

way to solve it. So while the next few sections are optional, it's

still super valuable stuff. Of course, feel free to skip them if you'd

just rather focus on the other concepts. Let's dive in.

Video 25 (1:11 What is Recursion?

Recursion is the repeated application of the same procedure to a

smaller

Have you ever played with a Russian nesting doll? They are a

great visual example of recursion. Each doll has a smaller doll

inside it. When you open up the doll to find the smaller one

inside, you keep going until you reach the smallest doll which

can't be opened.

Recursion let's us tackle complex problems by reducing the

problem to a simpler

Take our Russian nesting dolls, all nested inside each other.

Imagine we want to find out how many dolls there are in total.

We would need to open each doll one by one until we got to the

last one and then count how many dolls we've opened. That's

recursion in action.

Here's another example with a more complex problem. Imagine

you're in a line of people and you want to know how many

people are in front of you. If the line is long, it might be hard to

count the people without leaving the line and losing your place.

Instead you can ask the person in front of you how many people

are in front of them. Since this person will be in the same

situation as you, they'll have to ask the same question to the

person in front of them and so on and so on until the question

reaches the first person in the line. This person can confidently

reply that there are no people in front of them. So then the

second person in line can reply one, the person behind them

replies two, and so on until the answer reaches you.

Okay. I know the chances are pretty small that all of those people

would play along just so you can know where you are in line, but

it's a useful way to visualize how recursion works. How does this

translate into programming? Well, in programming, recursion is a

way of doing a repetitive task by having a function call itself.

A recursive function calls itself usually with a modified parameter

until it reaches a specific condition. This condition is called the

base In our earlier examples, the base case would be the smallest

Russian doll or the person at the front of the queue. Let's check

out an example of recursive function to understand what we're

talking about.

def factorial(n):

 if n < 2:

 return 1

 return n*factorial(n-1)

Here, we're defining a function called factorial. At the beginning of

the function, we have a conditional block defining the base case,

where n is smaller than 2. It simply returns the value 1. After the

base case, we have a line where the factorial function is calling

itself with n minus 1. This is called the recursive This creates a

loop.

Each time the function is executed, it calls itself with a smaller

number until it reaches the base case. Once it reaches the base

case, it returns the value 1. Then the previously called function

multiplies that by two and the previously called function multiplies

it by three and so on.

This loop will keep going until the first factorial function called

returns the desired result. It's a bit complex. Let's add a few print

statements in our Pycharm IDE to see exactly how this works:

def factorial(n):

 print(“Factorial called with ” + str(n))

 if n < 2:

 print(“Returning 1”)

 return 1

 = n*factorial(n-1)

 print(“Returning ” + str(result) + “ for factorial of ” + str(n))

 return result

factorial(4)

Factorial called with 4

Factorial called with 3

Factorial called with 2

Factorial called with 1

Returning 1

Returning 2 for factorial of 2

Returning 6 for factorial of 3

Returning 24 for factorial of 4

So the result of factorial (4) is 24. Here we can see the function

kept calling itself until it reached the base case. After that, each

function returned the value of the previous function multiplied by

n until the original function returned. Cool, huh?

Next up, we're going to check out some more examples of when

to use recursion and when it's best to avoid it.

12.2. Recursion in Action in the IT Context

By now you've seen what a recursive function looks like, how to

write a base case and the recursive case. You might be wondering

why do we need recursive functions if I can just use a for or

while loop? Well, solutions to some specific problems are easier

to write and understand when using recursive functions.

A lot of math functions like the factorial or the sum of all the

previous numbers are good examples of this. If a math function

is already defined in recursive terms, it's straightforward to just

write the code as a recursive function. But it's not just about

math functions. Let's check out a couple of examples of how this

could help an IT specialist trying to automate tasks.

Let's say that you need to write a tool that goes through a bunch

of directories (folders) in your computer and calculates how many

files are contained in each. When listing the files inside a

directory, you might find subdirectories inside them and you'd

want to count the files in those subdirectories as well. This is a

great time to use recursion.

The base case would be a directory with no subdirectories. For

this case, the function would just return the amount of files. The

recursive case would be calling the recursive function for each of

the contained subdirectories. The return value of a given function

call would be the sum of all the files in that directory plus all the

files in the contained subdirectories.

A directory of files that can contain other directories is an

example of a recursive

Because directories can contain subdirectories that contain

subdirectories that contain subdirectories, and so on. When

operating over recursive structure, it's usually easier to use

recursive functions than for or while loops.

Another IT-focused example of a recursive structure is anything

that deals with groups of users that can contain other groups. We

see this situation a lot when using administrative tools like active

directory or LDAP (Lightweight Directory Access Protocol).

Say your group management software allows you to create groups

that have both users and other groups as their members, and you

want to list all human users that are part of a given group. Here

you would use a recursive function to go through the groups.

The base case would be a group that only includes users listing

all of them. The recursive case would mean going through all the

groups contained listing all the users in them and then listing any

users contained in the current group.

It's important to call out that in some languages there's a

maximum amount of recursive calls you can use. In Python by

default, you can call a recursive function 1,000 times until you

reach the That's fine for things like subdirectories or user groups

that aren't thousands of levels deep.

But it might not be enough for mathematical functions like the

ones we saw in section 12.1. Let's go back to our factorial

example from section 12.1 and try to call it with n equals 1,000:

def factorial(n):

 print(“Factorial called with ” + str(n))

 if n < 2:

 print(“Returning 1”)

 return 1

 result = n*factorial(n-1)

 print(“Returning ” + str(result) + “ for factorial of ” + str(n))

 return result

factorial(1000)

Traceback (most recent call last):

 File "D:\ajwright\Documents\Python

Programming\My_Programs\Book Jotter.py", line 9, in

 factorial(1000)

 File "D:\ajwright\Documents\Python

Programming\My_Programs\Book Jotter.py", line 6, in factorial

 result = n*factorial(n-1)

 File "D:\ajwright\Documents\Python

Programming\My_Programs\Book Jotter.py", line 6, in factorial

 result = n*factorial(n-1)

 File "D:\ajwright\Documents\Python

Programming\My_Programs\Book Jotter.py", line 6, in factorial

 result = n*factorial(n-1)

 [Previous line repeated 993 more times]

 File "D:\ajwright\Documents\Python

Programming\My_Programs\Book Jotter.py", line 2, in factorial

 print("Factorial called with " + str(n))

RecursionError: maximum recursion depth exceeded while calling a

Python object

Do you see that recursion error (last line) above? It's telling us

that we've reached the maximum limit for recursive calls. So while

you can use recursion in a bunch of different scenarios, we only

recommend using it when you need to go through a recursive

structure that won't reach a thousand nested levels.

All right, I've just added recursion to your growing scripting tool

box. They're ready for you whenever the situation calls for it.

12.3. Additional Recursion Sources

In the past sections, we visited the basic concepts of recursive

functions. A recursive function must include a recursive case and

base The recursive case calls the function again, with a different

value. The base case returns a value without calling the same

function.

A recursive function will usually have this structure:

 recursive_function(modified_parameters)

For more information on recursion, check out this resource:

Wikipedia Recursion

12.4. Practice Quiz 9: 5 Questions

1. What is recursion used for? – 1 point

Recursion is used to create loops in languages where other loops

are not available.

We use recursion only to implement mathematical formulas in

code.

Recursion is used to iterate through sequences of files and

directories.

Recursion lets us tackle complex problems by reducing the

problem to a simpler one.

2. Which of these activities are good use cases for recursive

programs? Select all that apply. - 1 point

Going through a file system collecting information related to

directories and files.

Creating a user account.

Installing or upgrading software on the computer.

Managing permissions assigned to groups inside a company, when

each group can contain both subgroups and users.

Checking if a computer is connected to the local network.

3. Fill in the blanks to make the is_power_of function return

whether the number is a power of the given base.

base is assumed to be a positive number. for functions that

return a boolean value, you can return the result of a comparison.

- 1 point

Base case: when number is smaller than base.

If number is equal to 1, it's a power (base**0).

 number/=base # This is equivalent to number = number / base

Recursive case: keep dividing number by base.

should be True

should be True

should be False

4. The count_users function recursively counts the amount of

users that belong to a group in the company system, by going

through each of the members of a group and if one of them is a

group, recursively calling the function and counting the members.

But it has a bug! Can you spot the problem and fix it? - 1 point

count += 1

 count += count_users(member)

5. Implement the sum_positive_numbers function, as a recursive

function that returns the sum of all positive numbers between the

number n received and 1. For example, when n is 3 it should

return 1+2+3=6, and when n is 5 it should return 1+2+3+4+5=15. -

1 point

12.4.1. Answers to Practice Quiz 9

1. D. By reducing the problem to a smaller one each time a

recursive function is called, we can tackle complex problems in

simple steps.

2. A, D.

A is a correct answer because directories can contain

subdirectories that can contain more subdirectories, going through

these contents is a good use case for a recursive program.

D is also a correct answer because the groups can contain both

groups and users, this is the kind of problem that is a great use

case for a recursive solution.

3.

Base case: when number is smaller than base.

If number is equal to 1, it's a power (base**0).

 number/=base

Recursive case: keep dividing number by base.

should be True

should be True

should be False

4.

count += 1

 count += count_users(member)

5.

13. Module Review

13.1. Loops Wrap Up

Wow, we've come a long way and you've learned a lot already.

Now's a good time to stop and give yourself a big pat on the

back. In this module, we've looked at ways we can use to tell a

computer to do an action Python gives us three different ways to

perform repetitive tasks: while loops, for loops, and recursion.

We use while loops when we want to do an operation while a

certain condition is true or alternatively until it becomes

We use for loops when we want to iterate over the elements of

the sequence or a range of

We use recursion when the problem is best solved in smaller

steps and then combining those steps towards a larger

If you're still not sure which is the best tool to choose for a

specific problem don't worry, that's normal. As you keep practicing

your automation skills, choosing between one option and another

will become natural.

So next time you find yourself doing the same or similar things

over and over again, that's your call to see if you can use a loop

to get your computer to do the work for you.

Up next it's test time again, with the next graded assessment.

Like always remember you can take as much time as you need

before taking the assessment. Go at your own pace, review

everything we've covered, and practice the examples. So there's no

chance loops will ever throw you for a loop!

13.2. Module 3 Graded Assessment – 10 Questions

It’s time again for your next graded assessment. Open the

“Graded Assessments” folder you downloaded earlier. It contains

the pdf files of all the graded assessments in this course. Here’s

the file name to search:

Module 3 Graded Assessment – file name

13.2.1. Solutions to Module 3 Graded Assessment:

I (or any member of my team) is available to help you grade

your assessments. You can use my help link (email) at the end of

chapter 25 to send your assessment for grading. We will get back

to you in 12 to 24 hours with your result.

However, if you cannot wait, you can open the “Graded

Assessments” folder you downloaded earlier. It contains the pdf

formats of the solutions to all graded assessments in this course.

You can use them to grade your assessments by yourself. Just be

honest as you grade. Here’s the file name to search:

Module 3 Graded Assessment Solutions – file name

Module 4

If you’re not a string, at least your name is! I’m sure I’m glad I did

not lose you. You’re still in my list and dictionary.

14. Strings

14.1. Basic Structures Introduction

Welcome back and congratulations on getting this far. I’m sure

I'm glad we didn't lose you and all those loops we covered in the

last module. You're doing great and making tons of progress.

In earlier sections, we covered the basic elements of Python

syntax. We talked about how to define functions, how to make

your computer act differently based on conditionals, and how to

make it perform operations repeatedly using while, and for loops,

and recursion.

Now that we have the basics of syntax out of the way, we can

start growing our Python knowledge which will let us do more

and more interesting operations. Remember, one of our main

goals in this course is to help you learn to write short Python

scripts that automate actions, you've made big steps towards

getting there.

In the upcoming sections, you're going to learn a bunch of new

super useful skills to add to your programming toolbox. We'll

check out some datatypes provided by the Python language to

help us solve common problems with our scripts. In particular,

will do a deep dive into and

Heads-up, while we've used strings in our scripts already, we

barely scratched the surface of all the things we can do with

them in Python. We also ran into a few lists in some examples

but there's a lot more of them we haven't seen yet.

Dictionaries are a whole new datatype for us to dig our teeth

into. These are all data types or data structures that are super

flexible. We're going to use them to write all kinds of scripts in

Python. So it's a good idea to spend some time getting to know

them, and learning when to use them, and how to make the

most out of them.

We've got a lot of new and exciting concepts to discover. So let's

get right to it.

14.2. What is a string?

By now, we've used strings in a lot of examples, but we haven't

spent time looking at them in detail yet. Before we dive into the

nitty-gritty though, let's go over what we've seen so far and add a

few more points. First, a quick refresher.

A string is a data type in Python that's used to represent a piece

of text. It's written between quotes, either double quotes or single

quotes, your

Video 26 (1:01 What is a string?

It doesn't matter which type of quotes you use as long as they

match. If we mix up double and single quotes, Python won't be

too happy:

name = ‘Sasha’

color = ‘gold’

place = “Cambridge’

File “”, line 1 place = “Cambridge’

SytaxError: EOL while scanning string literal.

As you can see it returns a syntax error, telling us it couldn't find

the end of the string.

A string can be as short as zero characters, usually called an

empty string or really long. We also learned that we can use

strings to build longer strings using the plus sign and action

called like this:

Print(“Name: ” + name + “, Favorite color: “ + color)

Name: Sasha, Favorite color: gold

A less common operation is to multiply the string by a number,

which multiplies the content of the string that many times, like

this:

“example” * 3

‘exampleexampleexample’

If we want to know how long a string is, we can use the len

function which we saw in earlier sections. The len function tells

us the number of characters contained in the string, for example,

since name = Sasha,

len(name)

5

We can use strings to represent a lot of different things. They can

hold a username, the name of a machine, an email address, the

name of a file, and any other text. A lot of the data that we'll

interact with will be stored in strings, so it's important to know

how to use them.

There are tons of things we could do with strings in our scripts.

For example, we can check if files are named a certain way by

looking at the filename and seeing if they match our criteria, or

we can create a list of emails by checking out the users of our

system and concatenating our domain.

I recently wrote a script that worked with a bunch of files and

took different actions according to the name of each file. So the

file ended in a certain extension say, .TXT , then my script would

print it. If the file had a certain string and the name, say, test,

then my script would ignore it and move on to the next thing

and so on. The contents of a text file are also strings.

A few months ago, I had to change the default values for a

bunch of configuration options from true to false. So I wrote a

function that would find the string “true” in a file and replace it

with “false”.

You can probably think of more examples where your code needs

to handle strings, but to use strings effectively, we need to know

what options are available to us in Python.

In the next few sections, we'll cover some of the operations we

can perform over strings, including how to access parts of them

and modify them.

14.3. The Parts of a String

When we first came across the for loop, we called out that we

can iterate over a string character by character. But what if we

want to access just a specific character or characters? We might

want to do this, for example, if we have a text that's too long to

display and we want to show just a portion of it, or if we want

to make an acronym by taking the first letter of each word in a

phrase.

We can do that through an operation called string This operation

lets us access the character in a given position or index using

square brackets and the number of the position we want. Like

this:

Video 27 (2:57 The parts of a String

name = ‘Jaylen’

print(name[1])

a

This might seem confusing at first, like Python is acting up. We're

asking for the first character, and it's giving us the second. What

gives Python? Well, what's happening here is that Python starts

counting indexes from 0 not Just like it does with the range

function. So if we want the first character, we need to access the

one at index 0.

print(name[0])

J

Knowing that indexes start at 0, which one do you think will be

the last index in the string? It'll always be one less than the

length of the string. In this case, our string has six characters, so

the last index will be 5. Let's try it out.

print(name[5])

n

We see that the character in position five is the last character of

the string. If we try to access index six, we get an index error

telling us that it's out of range. So, we can only go up to length

minus 1.

What if you want to print the last character of a string but you

don't know how long it is? You can do that using negative Let's

see that in a different example:

text = “Random string with a lot of characters”

print(text[-1])

s

print(text[-2])

r

In the above example, we don't know the length of the string, but

it doesn't matter. Using negative indexes lets us access the

positions in the string starting from the Nice, right?

On top of accessing individual characters, we can also access a

slice of a A slice is the portion of a string that can contain more

than one also sometimes called a We do that by creating a range

using a colon as a separator. Let's see an example of this:

color = “Orange”

color[1:4]

ran

The range we use when accessing a slice of a string works just

like the one created by the range function. It includes the first but

goes up to one less than the last In this case, we start with

indexed one, the second letter of the string, and go up to index

three, the fourth letter of the string.

Another option for the range is to include only one of the two In

that case, it's assumed that the other index is either 0 for the

first value or the length of the string for the second value. Check

this out:

fruit = “Pineapple”

print(fruit[:4])

Pine

Accessing the slice from nothing to 4 takes the first four

characters of the string, indexes 0 to 3. Accessing the slice from

4 to nothing takes everything from index 4 onward.

print(fruit[4:])

apple

All of this indexing might seem confusing at first. Don't worry, we

all took time to wrap our heads around it. Just like all the

challenges we've come across so far, the key is to keep practicing

until you master There are a bunch of exercises ahead to help

you with that.

Now that we know how to select, slice, and access the parts of

the string we want, we're going to learn how to modify them.

That's coming up next.

14.4. String Indexing and Slicing Recap

String indexing allows you to access individual characters in a

string. You can do this by using square brackets and the location,

or index, of the character you want to access. It's important to

remember that Python starts indexes at 0.

So to access the first character in a string, you would use the

index [0]. If you try to access an index that’s larger than the

length of your string, you’ll get an This is because you’re trying to

access something that doesn't exist! You can also access indexes

from the end of the string going towards the start of the string

by using negative values. The index [-1] would access the last

character of the string, and the index [-2] would access the

second-to-last character.

You can also access a portion of a string, called a slice or a This

allows you to access multiple characters of a string. You can do

this by creating a range, using a colon as a separator between

the start and end of the range, like [2:5].

This range is similar to the range() function we saw previously. It

includes the first number, but goes to one less than the last

number. For example:

>>> fruit = "Mangosteen" >>> fruit[1:4] 'ang'

The slice includes the character at index 1, and excludes the

character at index 4. You can also easily reference a substring at

the start or end of the string by only specifying one end of the

range. For example, only giving the end of the range:

>>> fruit[:5] 'Mango'

This gave us the characters from the start of the string through

index 4, excluding index 5. On the other hand this example gives

is the characters including index 5, through the end of the string:

>>> fruit[5:] 'steen'

You might have noticed that if you put both of those results

together, you get the original string back!

>>> fruit[:5] + fruit[5:] 'Mangosteen'

Cool!

14.5. Creating New Strings

In the last section, we saw how to access certain characters

inside a string. Now, what if we wanted to change them? Imagine

you have a string with a character that's wrong and you want to

fix it, like the one shown in this one:

Video 28 (4:44 Creating New Strings

message = “A kong string with a silly typo”

Taking into account what you learned about string indexing, you

might be tempted to fix it by accessing the corresponding index

and changing the character. Let's see what happens if we try that:

message[2] = “l”

TypeError: 'str' object does not support item assignment

We get a type error, right? In this case, we're told that strings

don't support item assignment. This means that we can't change

individual characters because strings in Python are which is just a

fancy word, meaning they can't be What we can do is create a

new string based on the old one, like this:

new_message = message[0:2] = + “l” + message[3:]

print(new_message)

“A long string with a silly typo”

Nice, we fixed the typo. But does this mean the message variable

can never change? Not really. We can assign a new value to the

same variable. Let's do that a couple of times to see how it

works.

message = “This is a new message”

print(message)

This is a new message

message = “And another one”

print(message)

And another one

What we're doing here, is giving the message variable a whole

new value. We're not changingthe underlying string that was

assigned to it before. We're assigning a whole new string with

different content. If this seems a bit complex, that's okay. You

don't need to worry about this right now.

We'll call this out whenever it's relevant for the programmer

writing. So, we figured out how to create a new message from

the old one. But how are we supposed to know which character

to change? Let's try something different:

pets = “Cats & Dogs”

pets.index(“&”)

5

In this case, we're using a method to get the index of a certain

character. A method is a function associated with a specific We'll

talk a lot more about classes and methods later. For now, what

you need to know is that this is a function that applies to a

variable, and we can call it by following the variable with a dot.

Let's try this a few more times:

pets.index(“C”)

0

pets.index(“Dog”)

7

So the index method returns the index of the given inside the

string. The substring that we pass, can be as long or as short as

we want. What if there's more than one of the substring?

pets.index(“S”)

3

In this example, we know there are two s characters, but we only

get one value. That's because the index method returns just the

first position that What happens if the string doesn't have the

substring we're looking for?

pets.index(“x”)

ValueError: Substring not found

The index method can't return a number because the substring is

not there, so we get a ValueError instead. We said, that if the

substring isn't there, we would get an error. So how can we know

if a substring is contained in a string to avoid the error? Let's

check this out:

“Dragons” in pets

False

“Cats” in pets

True

We can use the keyboard in to check if a substring is contained

in a string. We came across the keyword when using four loops.

In that case, it was used for iteration. Here, it's a conditional that

can be either true or It will be true if the substring is part of the

string, and false if it is not. So here, the Dragons substring is

not part of the string, and sadly, we can't have a Dragon as a

pet!

All right, we just covered a bunch of new things and you're doing

awesome. Let's put all the stuff together to solve a real-world

problem.

Imagine that your company has recently moved to using a new

domain, but a lot of the company email addresses are still using

the old one. You want to write a program that replaces this old

domain with the new one in any outdated email addresses. The

function to replace the domain would look like this:

1 def replace_domain(email, old_domain, new_domain):

2 if "@" + old_domain in email:

3 index = email.index("@")

4 new_email = email[:index] + "@" + new_domain

5 return new_email

6 return email

This function is a bit more complex than others, so let's go

through it line by line. First, we define the replace_domain

function (line 1) which accepts three parameters: the email

address to be checked, the old domain, and the new domain.

Having all these values as parameters instead of directly in the

code, makes our function We are not just changing one domain

to the other. We have a function that will work with all domains.

Pretty sweet.

In the first line of the body of the function (line 2), we check if

the concatenation of the @ sign and the old domain are

contained in the email address, using the keyword We check this

to make sure the email has old domain on the portion that

comes after the @ sign.

If the condition is true, the email address needs to be updated.

To do that, we first find out in line 3 the index where the old

domain, including the @ sign, starts. We know that this index will

be a valid number because we've already checked that the

substring was present.

So, using this index, we create the new email (line 4). This is a

string that contains the first portion of the old email, up until the

index we had calculated, followed by the @ sign and the new

domain.

Finally, in line 5, we return this new email. If the email didn't

contain the new domain, then we can just return it, which is

what we do in the last line 6.

Wow, that was a really complex function with a lot of new things

in it. So don't worry if you're finding it a bit tricky. Re-watch the

video and take your time. If there's a specific part that's tripping

you up, remember, you can always ask for help in the discussion

forum. You may even find that someone has asked and got the

answer to the same question already.

When you feel ready to move on, meet me over in the next

section, where we're going to learn a lot more handy string

methods.

14.6. Basic String Methods

In Python, strings are immutable. This means that they can't be

modified. So if we wanted to fix a typo in a string, we can't

simply modify the wrong character. We would have to create a

new string with the typo corrected. We can also assign a new

value to the variable holding our string.

If we aren't sure what the index of our typo is, we can use the

string method index to locate it and return the index. Let's

imagine we have the string "lions tigers and bears" in the variable

We can locate the index that contains the letter g using which will

return the index; in this case 8.

We can also use substrings to locate the index where the

substring begins. animals.index("bears") would return 17, since

that’s the start of the substring. If there’s more than one match

for a substring, the index method will return the first match. If we

try to locate a substring that doesn't exist in the string, we’ll

receive a ValueError explaining that the substring was not found.

We can avoid a ValueError by first checking if the substring exists

in the string. This can be done using the in keyword. We saw

this keyword earlier when we covered for loops. In this case, it's a

conditional that will be either True or False. If the substring is

found in the string, it will be True. If the substring is not found

in the string, it will be False.

Using our previous variable we can do "horses" in animals to

check if the substring "horses" is found in our variable. In this

case, it would evaluate to False, since horses aren’t included in

our example string. If we did "tigers" in we'd get True, since this

substring is contained in our string.

14.7. More String Methods

We said earlier that we had a lot of new exciting concepts coming

up. Well, I'm not going to “string” you along anymore. We're

going to tie up our lessons on strings with a bunch of fun

methods for transforming our string text.

So far, we've seen ways you can access portions of strings using

the indexing technique, create new strings by slicing and

concatenating, find characters and strings using the index method,

and even test if one string contains another. On top of all this

string processing power, the string class provides a bunch of

other methods for working with text.

Now, we'll show you how to use some of these methods.

Remember, the goal is not for you to memorize all of this.

Instead, we want to give you an idea of what you can do with

strings in Python.

Video 29 (2:38 More String Methods

Some string methods let you perform transformations or

formatting on the string text, like and its opposite,

“Mountains”.upper()

‘MOUNTAINS’

“Mountains”.lower()

‘mountains’

These methods are really useful when you're handling user input.

Let's say you wanted to check if the user answered yes to a

question. How would you know if the user typed it using upper

or lower case? You don't need to, you just transform the answer

to the case you want. Like this example:

answer = ‘YES’

if answer.lower() == “yes”:

 print(“User said yes”)

User said yes

Another useful method when dealing with user input is the strip

method. This method will get rid of surrounding spaces in the

string:

“yes ”.strip()

“yes”

If we ask the user for an answer, we usually don't care about any

surrounding spaces. So it's a good idea to use the strip method

to get rid of any white space. This means that strip doesn't just

remove spaces, it also removes tabs and new line which are all

characters we don't usually want in user-provided strings.

There are two more versions of this method, lstrip and to get rid

of the whitespace characters just to the left or to the right of the

string instead of both sides.

“ yes ”.lstrip()

‘yes ‘

“ yes ”.rstrip()

‘ yes’

Other methods give you information about the string itself. The

method count() returns how many times a given substring appears

within a string.

“The number of times e occurs in this string is 4”.count(“e”)

4

The method endswith() returns whether the string ends with a

certain substring.

“Forest”.endswith(“rest”)

True

The method isnumeric() returns whether the string's made up of

just numbers.

“Forest”.isnumeric()

False

“12345”.isnumeric()

True

Adding to that, if we have a string that is numeric, we can use

the int function to convert it to an actual number.

int(“12345”) + int(“54321”)

66666

In earlier videos, we showed that we can concatenate strings

using the plus sign.

The join method can also be used for concatenating. To use the

join method, we have to call it on the string that'll be used for

joining.

“ ”.join([“This”, “is”, “a”, “phrase”, “joined”, “by”, “spaces”])

‘This is phrase joined by spaces’

In this case, we're using a string with a space in it. The method

receives a list of strings and returns one string with each of the

strings joined by the initial string. Let's check out another

example:

“…”.join([“This”, “is”, “a”, “phrase”, “joined”, “by”, “tripple”, “dots”])

‘This…is…phrase…joined…by…tripple…dots’

Finally, we can also split a string into a list of strings. The split

method returns a list of all the words in the initial string and it

automatically splits by any whitespace.

“This is another example”.split()

[‘This’, ‘is’, ‘another’, ‘example’]

Are you starting to see how these string methods could be useful

in your IT job? Okay, so we've just learned a bunch of new

methods. But there are tons more that you can use on strings.

We've included a list with the ones we talked about, and some

new ones in the next cheat sheet.You'll also find a link to the full

Python documentation there, which gives you all the info on each

available method.

As we've said before, don't worry about trying to memorize

everything. You'll pick these concepts up with and the

documentation is always there if you need it. All right, last up in

our string of string tutorials, we're going to check out how to

format strings in section 14.9.

14.8. Advanced String Methods

We've covered a bunch of String class methods already, so let's

keep building on those and run down some more advanced

methods.

The string method lower will return the string with all characters

changed to lowercase. The inverse of this is the upper method,

which will return the string all in uppercase. Just like with

previous methods, we call these on a string using dot notation,

like "this is a This would return the string "THIS IS A This can

be super handy when checking user input, since someone might

type in all lowercase, all uppercase, or even a mixture of cases.

You can use the strip method to remove surrounding whitespace

from a string. Whitespace includes spaces, and newline You can

also use the methods lstrip and rstrip to remove whitespace only

from the left or the right side of the string, respectively.

The method count can be used to return the number of times a

substring appears in a string. This can be handy for finding out

how many characters appear in a string, or counting the number

of times a certain word appears in a sentence or paragraph.

If you wanted to check if a string ends with a given substring,

you can use the method This will return True if the substring is

found at the end of the string, and False if not.

The isnumeric method can check if a string is composed of only

numbers. If the string contains only numbers, this method will

return True. We can use this to check if a string contains

numbers before passing the string to the int() function to convert

it to an integer, avoiding an error. Useful!

We took a look at string concatenation using the plus sign,

earlier. We can also use the join method to concatenate strings.

This method is called on a string that will be used to join a list

of strings. The method takes a list of strings to be joined as a

parameter, and returns a new string composed of each of the

strings from our list joined using the initial string. For example, "

".join(["This","is","a","sentence"]) would return the string "This is a

The inverse of the join method is the split method. This allows

us to split a string into a list of strings. By default, it splits by

any whitespace characters. You can also split by any other

characters by passing a parameter.

14.9. Formatting Strings

Up to now we've been making strings using the plus sign (+) to

just concatenate the parts of the string we wanted to create.

We've also used the str function to convert numbers into strings

so that we can concatenate them, too. This works, but it's not

ideal, especially when the operations you want to do with the

string are on the tricky side. There's a better way to do this using

the format method. Let's see a couple of examples.

Video 30 (3:23 Formatting Strings

name = “Manny”

number = len(name) * 3

print(“Hello {}, your lucky number is {}”.format(name, number))

Hello Manny, your lucky number is 15

In this example, we have two variables, name and We generate a

string that has those variables in it by using the curly brackets {}

placeholder to show where the variables should be written. We

then pass the variables as a parameter to the format method.

See how it doesn't matter that name is a string and number is

an integer? The format method deals with that, so we don't have

to. Pretty neat, right?

The curly brackets aren't always empty. By using certain

expressions inside those brackets, we can take advantage of the

full power of the format expression. Heads up, this can get

complex fast. If at any point, you get confused, don't panic, you

only really need to understand the basic usage of the format

method we just saw.

One of the things we can put inside the curly brackets is the

name of the variable we want in that position to make the whole

string more readable. This is particularly relevant when the text

can get rewritten or translated and the variables might switch

places.

In this example, we could rewrite the message to make the

variables appear in a different order. In that case, we'd need to

pass the parameters to format in a slightly different way:

print(“Your lucky number is {number},

{name}.”.format(name=name, number=len(name)*3))

Your lucky number is 15, Manny.

Because we're using placeholders with variable the order in which

the variables are passed to the format function doesn't matter.

But for this to work, we need to set the names we're going to

use and assign a value to them inside the parameters to

That's just the tip of the iceberg of what we can do with the

format method. Want to dive a little deeper? Great, let's keep on

going. We're going to check out a different example. Let's say you

want to output the price of an item with and without tax.

Depending on what the tax rate is, the number might be a long

number with a bunch of decimals.

price = 7.5

with_tax = price * 1.09

print(price, with_tax)

7.5, 8.175

So if something costs $7.5 without tax and the tax rate is 9%,

the price with tax would be $8.175. Since there's no such thing as

half a penny anymore, that number doesn't make sense. So to fix

this we can make the format function print only two decimals,

like this:

print("Base price: ${:.2f}. With Tax: ${:.2f}".format(price, with_tax))

Base price: $7.50. With Tax: $8.18

In this case between the curly brackets we're writing a formatting

There are a bunch of different expressions we can write. These

expressions are needed when we want to tell Python to format

our values in a way that's different from the default.

The expression starts with a colon to separate it from the field

name that we saw before. After the colon, we write .2f. This

means we're going to format a float number and that there

should be two digits after the decimal dot. So no matter what the

price is, our function always prints two decimals.

Remember when we did the table to convert from Fahrenheit to

Celsius temperatures? Our table looked kind of ugly because it

was full of float numbers that had way too many decimal digits.

Using the format function, we can make it look a lot nicer:

def to_celcius(x):

return (x - 32) * 5 / 9

for x in range(0, 101, 10):

print("{:>3} F | {:>6.2f} C".format(x, to_celcius(x)))

Align text to the right with a total of 3 spaces for x

and 6 spaces for to_celcius

0 F | -17.78 C

10 F | -12.22 C

20 F | -6.67 C

30 F | -1.11 C

40 F | 4.44 C

50 F | 10.00 C

60 F | 15.56 C

70 F | 21.11 C

80 F | 26.67 C

90 F | 32.22 C

100 F | 37.78 C

In these two expressions we're using the greater than operator to

align text to the right so that the output is neatly aligned. In the

first expression we're saying we want the numbers to be aligned

to the right for a total of three spaces. In the second expression

we're saying we want the number to always have exactly two

decimal places and we want to align it to the right at six spaces.

We can use string formatting like this to make the output of our

program look nice and also to generate useful logging and

debugging messages. Over the course of my sysadmin career, I've

grown used to formatting strings to create more informative error

messages. They help me understand what's going on with a script

that's failing.

There's a ton more formatting options you can use when you

need them. But don't worry about learning them all at once, we'll

explain any others as they come along and we'll put everything in

a cheat sheet that you can refer to whenever you need a

formatting expression.

We will take a look at that in section 14.12 and then we'll have a

quiz in section 14.13 to help you get more familiar with all this

new knowledge.

14.10. String Formatting Recap

You can use the format method on strings to concatenate and

format strings in all kinds of powerful ways. To do this, create a

string containing curly brackets, as a placeholder, to be replaced.

Then call the format method on the string using .format() and

pass variables as parameters. The variables passed to the method

will then be used to replace the curly bracket placeholders. This

method automatically handles any conversion between data types

for us.

If the curly brackets are empty, they’ll be populated with the

variables passed in the order in which they're passed. However,

you can put certain expressions inside the curly brackets to do

even more powerful string formatting operations. You can put the

name of a variable into the curly brackets, then use the names in

the parameters. This allows for more easily readable code, and for

more flexibility with the order of variables.

You can also put a formatting expression inside the curly brackets,

which lets you alter the way the string is formatted. For example,

the formatting expression {:.2f } means that you’d format this as a

float number, with two digits after the decimal dot. The colon acts

as a separator from the field name, if you had specified one. You

can also specify text alignment using the greater than operator:

For example, the expression {:>3.2f } would align the text three

spaces to the right, as well as specify a float number with two

decimal places. String formatting can be very handy for outputting

easy-to-read textual output.

14.11. Cheat Sheet 4: String Reference

To locate the String Reference Cheat Sheet pdf file, open the

“Cheat Sheets” folder. It’s one of the folders inside the course

resources folder you downloaded earlier.

14.12. Cheat Sheet 5: Formatting Strings

To locate the Formatting Strings Cheat Sheet pdf file, open the

“Cheat Sheets” folder. It’s one of the folders inside the course

resources folder you downloaded earlier.

14.13. Practice Quiz 10: 5 Questions

1. The is_palindrome function checks if a string is a palindrome.

A palindrome is a string that can be equally read from left to

right or right to left, omitting blank spaces, and ignoring

capitalization. Examples of palindromes are words like kayak and

radar, and phrases like "Never Odd or Even". Fill in the blanks in

this function to return True if the passed string is a palindrome,

False if not. – 1 point

We'll create two strings, to compare them

Traverse through each letter of the input string

Add any non-blank letters to the

end of one string, and to the front

of the other string.

Compare the strings

2. Using the format method, fill in the gaps in the

convert_distance function so that it returns the phrase "X miles

equals Y km", with Y having only 1 decimal place. For example,

convert_distance(12) should return "12 miles equals 19.2 km".

3. If we have a string variable named Weather = "Rainfall", which

of the following will print the substring or all characters before

the "f"?

print(Weather[:4])

print(Weather[4:])

print(Weather[1:4])

print(Weather[:"f"])

4. Fill in the gaps in the nametag function so that it uses the

format method to return first_name and the first initial of

last_name followed by a period. For example, nametag("Jane",

"Smith") should return "Jane S."

Should display "Jane S."

Should display "Francesco R."

Should display "Jean-Luc G."

5. The replace_ending function replaces the old string in a

sentence with the new string, but only if the sentence ends with

the old string. If there is more than one occurrence of the old

string in the sentence, only the one at the end is replaced, not

all of them. For example, replace_ending("abcabc", "abc", "xyz")

should return abcxyz, not xyzxyz or xyzabc. The string comparison

is case-sensitive, so replace_ending("abcabc", "ABC", "xyz") should

return abcabc (no changes made).

Check if the old string is at the end of the sentence

Using i as the slicing index, combine the part

of the sentence up to the matched string at the

end with the new string

Return the original sentence if there is no match

Should display "It's raining cats and dogs"

Should display "She sells seashells by the seashore"

Should display "The weather is nice in May"

Should display "The weather is nice in April"

14.13.1. Answers to Practice Quiz 10

1.

We'll create two strings, to compare them

Traverse through each letter of the input string

Add any non-blank letters to the

end of one string, and to the front

of the other string.

Compare the strings

2.

3. A. Formatted this way, the substring preceding the character

"f", which is indexed by 4, will be printed.

4.

Should display "Jane S."

Should display "Francesco R."

Should display "Jean-Luc G."

5.

Check if the old string is at the end of the sentence

Using i as the slicing index, combine the part

of the sentence up to the matched string at the

end with the new string

 i = sentence.rindex(old)

Return the original sentence if there is no match

Should display "It's raining cats and dogs"

Should display "She sells seashells by the seashore"

Should display "The weather is nice in May"

Should display "The weather is nice in April"

15. Lists

15.1. What is a List?

As you know by now, Python comes with a lot of ready-to-use

data types. We've seen integers, floats, Booleans, and strings in

detail. But those data types can only take you so far. Eventually in

your scripts, you want to develop code that manipulates

collections of items like a list of strings representing all the file

names in a directory or a list of integers representing the size of

network packets.

This is where the list data type comes in handy. You can think of

lists as long boxes with the space inside the box divided up into

different slots.

Video 31 (3:06 What is a List?

Each slot can contain a different value. Like we mentioned earlier

when we first came across the list, in Python, we use square

brackets []to indicate where the list starts and ends. Let's check

out an example:

x = [“Now”, “we”, “are”, “cooking!”]

Here, we've created a new variable called x and set its contents

to be a list of strings. We can check the type of x using the type

function we saw a little while ago:

type(x)

‘list’>

Nice. Python tells us this is a list. In the same way, we've done

with other variables, we can show the contents of the whole list

using the print function:

print(x)

[‘Now’, ‘we’, ‘are’, ‘cooking!’]

The length of the list is how many elements it has. To get that

value, we'll use the same len function we used for strings:

len(x)

4

That's right. Our list has four elements. When calling len for the

list, it doesn't matter how long each string is on its own. What

matters is how many elements the list has. To check if a list

contains a certain element, you can use the keyword in like in

these examples:

“are” in x

True

“Today” in x

False

Again, like when we use this with strings, the result of this check

is a Boolean, which we can use as a condition for branching or

looping. We can also use indexing to access individual elements

depending on their position in the list. To do that, we use the

square brackets and the index we want to access, exactly like we

did with strings:

print(x[0])

Now

print(x[3])

cooking!

Remember that the first element is given the index zero. This

means the last index of the list will be the length of the list

minus one. What happens if we try to access an element after

the end of the list?

print(x[4])

IndexError: List index out of range

You might have seen this coming. We get an index error. We

can't go over the end of the list. Remember that because list

indexes start at zero, accessing the item at index 4 means we're

trying to access the 5th element in the list. There are only 4

elements. So we're out of range if we try to access the index

number 4.

Does this seem a bit confusing? If it does, the visualization in

the video might help you out. As you can see in the video, index

4 doesn't point at anything since there's no slot 4 in our list.

As with strings, we can also use indexes to create a slice of the

list. For this, we use ranges of two numbers separated by a

colon:

x[1:3]

[‘we’, ‘are’]

Again, the second element is not included in the slice. So the

range goes to the second index minus one. Here’s another

example:

x[:2]

[‘Now’, ‘we’]

Here, we start at index one and go up to 1 less than 3, which is

2. We can also leave out one of the range indexes empty:

x[2:]

[‘are’, ‘cooking!’]

The first value defaults to 0 and the second value to the length

of the list. Makes sense? If all this sounds really familiar to what

we said about strings, then this course is working as intended.

That's because strings and lists are very similar data types.

In Python, strings and lists are both examples of There are other

sequences too, and they all share a bunch of operations like

iterating over them using for loops, indexing using the len

function to know the length of the sequence, using + to

concatenate two sequences and using in to verify if the sequence

contains an element. So this is great news.

While understanding indexing is hard, once you know it for one

data type, you've pretty much mastered it for every data type. So

you actually know way more than you thought.

Wow! Now, we're really cooking! Next up, we're going to look at

some more list operations. This time, actually specific to lists.

15.2. Lists Defined

Lists in Python are defined using square brackets, with the

elements stored in the list separated by commas: list = ["This",

"is", "a", You can use the len() function to return the number of

elements in a list: len(list) would return

You can also use the in keyword to check if a list contains a

certain element. If the element is present, it will return a True

boolean. If the element is not found in the list, it will return

False. For example, "This" in list would return True in our

example.

Similar to strings, lists can also use indexing to access specific

elements in a list based on their position. You can access the

first element in a list by doing which would allow you to access

the string

In Python, lists and strings are quite similar. They’re both

examples of sequences of data. Sequences have similar properties,

like (1) being able to iterate over them using for (2) support

indexing; (3) using the len function to find the length of the

sequence; (4) using the plus operator + in order to concatenate;

and (5) using the in keyword to check if the sequence contains a

value. Understanding these concepts allows you to apply them to

other sequence types as well.

15.3. Modifying the Contents of a List

One of the ways that lists and strings are different is that lists

are which is another fancy word to say that they can change. This

means we can add, remove, or modify elements in a list. Let's go

back to our example of thinking of a list as a long box.

Video 32 (3:10 Modifying the Contents of a List?

Changing the list means we keep the same box and we add,

remove, or change the elements inside that box. We'll now go

through the methods that let us modify the list one by one. If all

these details seem a little overwhelming, that's okay. As usual,

there will be a cheat sheet at the end and you'll have lots of

chances to practice each of these methods as we go along. You

don't need to learn all those by heart, and of course you can

always review anything that isn't clear. So don't worry, I got your

back.

We'll start with the simplest change; adding an element to a list

using the append method. Let's check this out in the tastiest

example yet:

fruits = [“Pineapple”, “Banana”, “Apple”, “Melon”]

fruits.append(“Kiwi”)

print(fruits)

[“Pineapple”, “Banana”, “Apple”, “Melon”, “Kiwi”]

The append method adds a new element at the end of the list.

No matter how long the list is, the element always gets added to

the end. You could start with an empty list and add all of its

items using append.

If you want to insert an element in a different position, instead of

at the end, you can use the insert method:

fruits.insert(0, “Orange”)

print(fruits)

[“Orange”, “Pineapple”, “Banana”, “Apple”, “Melon”, “Kiwi”]

The insert method takes an index as the first parameter and an

element as the second parameter. It adds the element at that

index in the list. To add it as the first element, we use index

zero. We can use any other number. What happens if we use a

number larger than the length of the list?

fruits.insert(25, “Peach”)

print(fruits)

[“Orange”, “Pineapple”, “Banana”, “Apple”, “Melon”, “Kiwi”,

“Peach”]

No errors. You can say that it even worked just peachy! If we use

an index higher than the current length, the element just gets

added to the end. You can pass any number to insert but usually,

you either add at the beginning using insert at the zero index or

at the end using

We can also remove elements from the list. We can do it using

the value of the element we want to remove. Can you guess what

method we would use? You got it! Use the remove method.

fruits.remove(“Melon”)

print(fruits)

[“Orange”, “Pineapple”, “Banana”, “Apple”, “Kiwi”, “Peach”]

The remove method removes from the list the first occurrence of

the element we pass to it. What happens if the element is not in

the list?

fruits.remove(“Pear”)

ValueError: list.remove(x): x not in the list

We got a value error, telling us the element isn't in the list.

Another way we can remove elements is by using the pop

method, which receives an index.

fruits.pop(3)

‘Apple’

print(fruits)

[“Orange”, “Pineapple”, “Banana”, “Kiwi”, “Peach”]

The pop method returns the element that was removed at the

index that was passed.

The last way to modify the contents of a list is to change an

item by assigning something else to that position, like this:

fruits[2] = “Strawberry”

print(fruits)

[“Orange”, “Pineapple”, “Strawberry”, “Kiwi”, “Peach”]

Wow, the contents of our fruits variable have changed a lot since

we started this section. But it's always the same variable, the

same box. We've just modified what's inside. Modifying the

contents of lists will come up in tons of scripts as we operate

with them.

If the list contains hosts on a network, you could add or remove

hosts as they come online or offline. If the list contains users

authorized to run a certain process, you could add or remove

users when permissions are granted or removed and so on.

You've now seen a number of methods that let us modify the

contents of a list, adding, removing, and changing the elements

that are stored inside the list. Whenever you need to write a

program that will handle a variable amount of elements, you'll use

a list.

What if you need a sequence of a fixed amount of elements?

That's coming up in the next section.

15.4. Modifying Lists

While lists and strings are both sequences, a big difference

between them is that lists are This means that the contents of

the list can be changed, unlike which are You can add, remove,

or modify elements in a list.

You can add elements to the end of a list using the append

method. You call this method on a list using dot notation, and

pass in the element to be added as a parameter. For example,

list.append("New data") would add the string "New data" to the

end of the list called list.

If you want to add an element to a list in a specific position, you

can use the method The method takes two parameters: the first

specifies the index in the list, and the second is the element to

be added to the list. So list.insert(0, "New data") would add the

string "New data" to the front of the list. This wouldn't overwrite

the existing element at the start of the list. It would just shift all

the other elements by one. If you specify an index that’s larger

than the length of the list, the element will simply be added to

the end of the list.

You can remove elements from the list using the remove method.

This method takes an element as a parameter, and removes the

first occurrence of the element. If the element isn’t found in the

list, you’ll get a ValueError error explaining that the element was

not found in the list.

You can also remove elements from a list using the pop method.

This method differs from the remove method in that it takes an

index as a parameter, and returns the element that was removed.

This can be useful if you don't know what the value is, but you

know where it’s located. This can also be useful when you need

to access the data and also want to remove it from the list.

Finally, you can change an element in a list by using indexing to

overwrite the value stored at the specified index. For example, you

can enter list[0] = "Old data" to overwrite the first element in a

list with the new string "Old data".

15.5. Lists and Tuples

As we called out before, there are a number of data types in

Python that are all sequences.

Video 33 (2:25 Lists and Tuples

Strings are sequences of characters and are immutable. Lists are

sequences of elements of any type and are mutable. A third data

type that's a sequence and also closely related to lists is the

tuple. Tuples are sequences of elements of any type that are We

write tuples in parentheses instead of square brackets. For

example,

fullname = (‘Garce’, ‘M’, ‘Hopper’)

You might be wondering, why do we even need another sequence

type? Weren't lists great? Yes, lists are great. They can hold any

number of elements and we can add, remove and modify their

contents as much as we want, but there are cases when we want

to make sure an element in a certain position or index refers to

one specific thing and won't change. In these situations, lists

won't help us.

In our example, we have a tuple that represents someone's full

name. The first element of the tuple is the first name (Grace).

The second element is the middle initial, and the third element is

the last name. If we add another element somewhere in there,

what would that element represent?

It would just be confusing and our code wouldn't know what to

do with it, and that's why modifying isn't allowed. In other words,

when using tuples the position of the elements inside the tuple

have

Tuples are used for lots of different things in Python. One

common example is the return value of functions. When a

function returns more than one value, it's actually returning a

tuple. Remember the function to convert seconds to hours,

minutes, and seconds that we saw a while back?

def convert_seconds(seconds):

 hours = seconds//3600

 minutes = (seconds - hours*3600)//60

 remaining_seconds = seconds - hours * 3600 - minutes * 60

 return hours, minutes, remaining_seconds

Just to remind you, this function returns three values. In other

words, it returns a tuple of three elements (hours, minutes and

remaining_seconds). Let's give it a try:

result = convert_seconds(5000)

type(result)

‘tuple’>

We see the result is a tuple. What if we print it?

print(result)

(1, 23, 20)

We see that it has the three elements we expect it to have.

Remember, since this is a tuple, the order matters. The first

element represents the hours, the second one represents the

minutes, and the third represents the seconds. One interesting

thing we can do with tuples is unpack This means that we can

turn a tuple of three elements into three separate

Because the order won't change, we know what those variables

represent, like this.

hours, minutes, seconds = result

print(hours, minutes, seconds)

1, 23, 20

So now we've split the tuple into three separate values. We've

seen before that we can also do this directly when calling the

function without the intermediate result variable.

hours, minutes, seconds = convert_seconds(1000)

print(hours, minutes, seconds)

0, 16, 40

In Python, it's really common to use tuples to represent data that

has more than one value and that needs to be kept For example,

you could use a tuple to have a filename and its size, or you

could store the name and email address of a person, or a date

and time and the general health of the system at any point in

time.

Can you see how these different data types could help you

automate some of your IT work? Pretty cool, right? Knowing when

to use tuples and when to use lists can seem a little fuzzy at

first, but don't worry, it'll get clearer as we tackle more examples.

15.6. Tuples Recap

As we mentioned earlier, strings and lists are both examples of

sequences. Strings are sequences of characters and are immutable.

Lists are sequences of elements of any data type and are mutable.

The third sequence type is the tuple. Tuples are like lists, since

they can contain elements of any data type. But unlike lists,

tuples are immutable. They’re specified using parentheses instead

of square brackets.

You might be wondering why tuples are a thing, given how similar

they are to lists. Tuples can be useful when we need to ensure

that an element is in a certain position and will not change.

Since lists are mutable, the order of the elements can be changed

on us. Since the order of the elements in a tuple can't be

changed, the position of the element in a tuple can have

meaning.

A good example of this is when a function returns multiple

values. In this case, what gets returned is a tuple, with the return

values as elements in the tuple. The order of the returned values

is important, and a tuple ensures that the order isn’t going to

change. Storing the elements of a tuple in separate variables is

called This allows you to take multiple returned values from a

function and store each value in its own variable.

15.7. Iterating over Lists and Tuples

When we looked at for loops, we said they iterate over a

sequence of elements. One of the examples we checked out was

iterating over a list. Let's take a little trip to the zoo to see this

in action:

Video 34 (5:25 Iterating Over Lists and Tuples

animals = [“Lion”, “Zebra”, “Dolphin”, “Monkey”]

chars = 0

for animal in animals:

 chars += len(animal)

print(“Total characters: {}, Average length: {}”.format(chars,

chars/len(animals)))

Total characters: 22, Average length: 5.5

In this code, we're iterating over a list of strings. For each of the

strings, we get its length and add it to the total amount of

characters. At the end we print the total and the average which

we get by dividing the total by the length of the list.

You can see we're using the len function twice, once to get the

length of the string and then again to get the amount of

elements in the list. What if you wanted to know the index of an

element while going through the list? You could use the range

function and then use indexing to access the elements at the

index that range returned. Or you could just use the enumerate

function.

winners = [“Ashley”, “Dylan”, “Reese”]

for index, person in enumerate(winners):

 print(“{} – {}”. Format(index + 1, person))

1 – Ashley

2 – Dylan

3 - Reese

The enumerate function returns a tuple for each element in the

list. The first value in the tuple is the index of the element in the

sequence. The second value in the tuple is the element in the

sequence. You're the real winner with the enumerate function

because it does all the work for you! Pretty useful, right?

Let's use all of this now to solve a slightly more interesting

problem. Say you have a list of tuples containing two strings

each. The first string is an email address and the second is the

full name of the person with that email address.

You want to write a function that creates a new list containing

one string per person including their name and the email address

between angled brackets, the format usually used in emails, like

this: Terrance Ford

So, what do we need to do? We'll start by defining a function

that receives a list of people, that is takes the argument

Remember, people is a list of tuples where the first element is the

email address and the second one is the full name. So, in our

function, we first create the variable that we will use as a return

value which will be a list and we'll call it

def full_emails(people):

result = []

for name, email in people:

result.append("{} <{}>".format(name, email))

 return result

Will this work? Try it out yourself!

print(full_emails([("alex@example.com", "Alex Diego"),

(“Shay@example.com”, “Shay Brandt”)]))

[‘Alex Diego ’, ‘Shay Brandt ’]

Yes, this works as expected.

Before we move on, a quick word of caution about some

common errors when dealing with lists in Python. Because we use

the range function so much with for loops, you might be tempted

to use it for iterating over indexes of a list and then to access

the elements through indexing. You could be particularly inclined

to do this if you're used to other programming languages before.

Because in some languages, the only way to access an element of

a list is by using indexes. This works but looks ugly. It's more

idiomatic in Python to iterate through the elements of the list

directly or using enumerate when you need the indexes like we've

done so far.

There are some specific cases that do require us to iterate over

the indexes, for example, when we're trying to modify the

elements of the list we're iterating. By the way, if you're iterating

through a list and you want to modify it at the same time, you

need to be very careful. If you remove elements from the list

while iterating, you're likely to end up with an unexpected result.

In this case, it might be better to use a copy of the list instead.

We've now seen a bunch of different things we can do with lists,

and hopefully you're starting to see how they can be a very

powerful tool in your IT specialist toolkit. Next up, we're going to

learn a powerful technique for creating lists.

15.8. Iterating Over Lists Using Enumerate

When we covered for loops, we showed the example of iterating

over a list. This lets you iterate over each element in the list,

exposing the element to the for loop as a variable. But what if

you want to access the elements in a list, along with the index of

the element in question?

You can do this using the enumerate() function. The enumerate()

function takes a list as a parameter and returns a tuple for each

element in the list. The first value of the tuple is the index and

the second value is the element itself.

15.9. List Comprehensions 1

We're almost done with our deep dive into Python list. But before

we continue to our next data structure, let's talk about creating

lists in a shorter way.

Video 35 (2:44 List Comprehensions

Say we wanted to create a list with multiples of 7 from 7 to 70,

we could do it like this.

multiples = []

for x in range(1,11):

 multiples.append(x*7)

print("Multiples of 7:", multiples)

Multiples of 7: [7, 14, 21, 28, 35, 42, 49, 56, 63, 70]

This works fine and is a good way of solving it. But because

creating lists based on sequences is such a common task, Python

provides a technique called list comprehension that lets us do it

in just one line. This is how we would do the same with list

comprehension:

multiples = [x*7 for x in range(1,11)]

print("Multiples of 7:", multiples)

Multiples of 7: [7, 14, 21, 28, 35, 42, 49, 56, 63, 70]

The result is the same.

List comprehensions let us create new lists based on sequences

or

So we can use this technique whenever we want to create a list

based on a range like in this example, or based on the contents

of a list, a tuple, a string or any other Python sequence. The

syntax tries to copy how you would express these concepts with

natural language, although it can still be confusing sometimes.

Let's check out a different example.

Say we have a list of strings with the names of programming

languages like this one,

languages = [“Python”, “Perl”, “Ruby”, “Go”, “Java”, “C”]

and we want to generate a list of the length of the strings. We

could iterate over the list and add them using append like we did

before, or we could use a list comprehension like this:

lengths = [len(language) for language in languages]

print(lengths)

[6, 4, 4, 2, 4, 1]

List comprehensions also let us use a conditional clause. Say we

wanted all the numbers that are divisible by 3 between 0 and a

100, we could create a list like this:

z = [x for x in range(0,101) if x % 3 == 0]

print(z)

[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51,

54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99]

In this case we just want the element x to be a part of the list,

but we only want the numbers where the remainder of the

division by 3 is 0. So we add the conditional clause after the

range.

Using list comprehensions when programming in Python is totally

optional. Sometimes it can make the code look nicer and more

readable, at other times it can have the opposite effect, especially

if we try to pack too much information together. In general, it's a

good idea to know that list comprehensions exist, especially when

you're trying to understand someone else's code.

All right, we've now seen a bunch of different methods we can

use to operate with lists and tuples, and Python provides even

more of them that we didn't get to talk about.

In section 15.10, you'll find a list of the most common operations

and links to the official documentation in case you want to learn

more. After that you can practice your new skills in the next quiz.

15.10. List Comprehensions Recap

You can create lists from sequences using a for loop, but there’s

a more streamlined way to do this: list List comprehensions allow

you to create a new list from a sequence or a range in a single

line.

For example, [x*2 for x in range(1,11)] is a simple list

comprehension. This would iterate over the range 1 to 10, and

multiply each element in the range by 2. This would result in a

list of the multiples of 2, from 2 to 20.

You can also use conditionals with list comprehensions to build

even more complex and powerful statements. You can do this by

appending an if statement to the end of the comprehension. For

example, [x for x in range(1,101) if x % 10 == 0] would

generate a list containing all the integers divisible by 10 from 1 to

100. The if statement we added here evaluates each value in the

range from 1 to 100 to check if it’s evenly divisible by 10. If it is,

it gets added to the list.

List comprehensions can be really powerful, but they can also be

super complex, resulting in code that’s hard to read. Be careful

when using them, since it might make it more difficult for

someone else looking at your code to easily understand what the

code is doing.

15.11. Cheat Sheet 6: Lists and Tuples Operations

To locate the Lists and Tuples Operations Cheat Sheet pdf file, open

the “Cheat Sheets” folder. It’s one of the folders inside the course

resources folder you downloaded earlier.

15.12. Practice Quiz 11: 6 Questions

1. Given a list of filenames, we want to rename all the files with

extension hpp to the extension h. To do this, we would like to

generate a new list called newfilenames, consisting of the new

filenames. Fill in the blanks in the code using any of the methods

you’ve learned thus far, like a for loop or a list – 1 point

Generate newfilenames as a list containing the new filenames

using as many lines of code as your chosen method requires.

newfilenames = []

Should be ["program.c", "stdio.h", "sample.h", "a.out", "math.h", "

hpp.out"]

2. Fill in the blanks in the code to create a function that turns

text into pig latin: a simple text transformation that modifies each

word moving the first character to the end and appending "ay" to

the end. For example, python ends up as ythonpay. - 1 point

Separate the text into words

 container = []

 words = text.split()

Create the pig latin word and add it to the list

Turn the list back into a phrase

3. The permissions of a file in a Linux system are split into

three sets of three permissions: read, write, and execute for the

owner, group, and others. Each of the three values can be

expressed as an octal number summing each permission, with 4

corresponding to read, 2 to write, and 1 to execute. Or it can be

written with a string using the letters r, w, and x or - when the

permission is not granted. For example: 640 is read/write for the

owner, read for the group, and no permissions for the others;

converted to a string, it would be: "rw-r-----" 755 is

read/write/execute for the owner, and read/execute for group and

others; converted to a string, it would be: "rwxr-xr-x" Fill in the

blanks to make the code convert a permission in octal format into

a string format. - 1 point

Iterate over each of the digits in octal

Check for each of the permissions values

 x -= value

4. Tuples and lists are very similar types of sequences. What is

the main thing that makes a tuple different from a list? - 1 point

A tuple is mutable

A tuple contains only numeric characters

A tuple is immutable

A tuple can contain only one type of data at a time

5. The group_list function accepts a group name and a list of

members, and returns a string with the format: group_name:

member1, member2, … For example, group_list("g", ["a","b","c"])

returns "g: a, b, c". Fill in the gaps in this function to do that. -

1 point

 members = []

6. The guest_list function reads in a list of tuples with the

name, age, and profession of each party guest, and prints the

sentence "Guest is X years old and works as __." for each one.

For example, guest_list(('Ken', 30, "Chef"), ("Pat", 35, 'Lawyer'),

('Amanda', 25, "Engineer")) should print out: Ken is 30 years old

and works as Chef. Pat is 35 years old and works as Lawyer.

Amanda is 25 years old and works as Engineer. Fill in the gaps in

this function to do that. - 1 point

#Click Run to submit code

"""

Output should match:

Ken is 30 years old and works as Chef

Pat is 35 years old and works as Lawyer

Amanda is 25 years old and works as Engineer

"""

15.12.1. Answers to Practice Quiz 11

1.

Generate newfilenames as a list containing the new filenames

using as many lines of code as your chosen method requires.

newfilenames = []

 eachname = filenames[counter]

 newfilenames.append(tempnames)

Should be ["program.c", "stdio.h", "sample.h", "a.out", "math.h", "

hpp.out"]

2.

Separate the text into words

 container = []

 words = text.split()

Create the pig latin word and add it to the list

Turn the list back into a phrase

3.

Iterate over each of the digits in octal

Check for each of the permissions values

 result += letter

 x -= value

4. C. Unlike lists, tuples are immutable, meaning they can't be

changed.

5.

 members = []

6.

#Click Run to submit code

"""

Output should match:

Ken is 30 years old and works as Chef

Pat is 35 years old and works as Lawyer

Amanda is 25 years old and works as Engineer

"""

16. Dictionaries

16.1. What is a Dictionary?

How are you feeling so far? Lists and strings are pretty cool,

right? These tools let us do a ton of neat stuff in our code so

they can be super fun to experiment with.

We're now going to learn about another data type, Like lists,

dictionaries are used to organize elements into collections. Unlike

lists, you don't access elements inside dictionaries using their

position. Instead, the data inside dictionaries take the form of

pairs of keys and

To get a dictionary value we use its corresponding key. Another

way these two vary is while in a list the index must be a number,

in a dictionary you can use a bunch of different data types as

keys, like strings, integers, floats, tuples, and more.

The name dictionary comes from how they work in a similar way

to human language dictionaries. In an English language dictionary,

the word comes with a definition. In the language of a Python

dictionary, the word would be the key and the definition would be

the value. Make sense? Let's check out an example.

Video 36 (4:02 What is a dictionary?

You can create an empty dictionary in a similar way to creating

an empty list, except instead of square brackets dictionaries use

curly brackets to define their content.

x = {}

Once again, we can use the type function to check that the

variable we've just created is a dictionary:

type(x)

‘dict’>

Creating initialized dictionaries isn't too different from the syntax

we used in earlier videos to create initialized lists or tuples. But

instead of a series of slots with values in them, we have a series

of keys that point at values. Okay, let's check out an example

dictionary. We'll call it

file_counts = {"jpg": 10, "txt": 14, "csv": 2, "py": 23}

print(file_counts)

{'jpg': 10, 'txt': 14, 'csv': 2, 'py': 23}

In this file_counts dictionary, we've stored keys that are strings, like

jpg, that point at integer values, like 10. When creating the

dictionary we use colons, and between the key and the value we

separate each pair by commas. In a dictionary, it's perfectly fine to

mix and match the data types of keys and values like this and

can be very useful.

In this example, we're using a dictionary to store the number of

files corresponding to each extension. It makes sense to encode

the file extension formatting in a string, while it's natural to

represent a count as an integer number.

Let's say you want to find out how many text files there are in

the dictionary. To do this, you would use the key txt to access its

associated value.

file_counts["txt"]

14

The syntax to do this may look familiar, since we used something

similar in our examples of indexing strings, lists, and tuples. You

can also use the in keyword to check if a key is contained in a

dictionary. Let's try a couple of keys.

"jpg" in file_counts

True

"html" in file_counts

False

Dictionaries are

You might remember what mutable means from an earlier section.

That's right, it means we can add, remove and replace entries. To

add an entry in a dictionary, just use the square brackets to

create the key and assign a new value to it. Let's add a file count

of eight for a new CFG file extension and dictionary.

file_counts ["cfg"] = 8

print(file_counts)

{'jpg': 10, 'txt': 14, 'csv': 2, 'py': 23, 'cfg': 8}

This brings up an interesting point about dictionaries. What do

you think will happen if we try to add a key that already exists in

the dictionary?

file_counts["csv"] = 17

print(file_counts)

{'jpg': 10, 'txt': 14, 'csv': 17, 'py': 23, 'cfg': 8}

When you use a key that already exists to set a value, the value

that was already paired with that key is replaced. As you can see

in this example, the value associated with the csv key used to be

2, but it's now 17. The keys inside of a dictionary are unique. If

we try to store two different values for the same key, we'll just

replace one with the other.

Last off, we can delete elements from a dictionary with the del

keyword by passing the dictionary and the key to the element as

if we were trying to access it.

del file_counts["cfg"]

print(file_counts)

{'jpg': 10, 'txt': 14, 'csv': 17, 'py': 23}

What do you think? Dictionaries seem pretty useful, right? We've

now seen how to create a dictionary and how to add, modify, and

delete elements stored in the dictionary. Up next, we'll discover

some interesting things we can do with them.

16.2. Dictionaries Defined

Dictionaries are another data structure in Python. They’re similar

to a list in that they can be used to organize data into

collections. However, data in a dictionary isn't accessed based on

its position. Data in a dictionary is organized into pairs of keys

and values. You use the key to access the corresponding value.

Where a list index is always a number, a dictionary key can be a

different data type, like a string, integer, float, or even tuples.

When creating a dictionary, you use curly brackets: When storing

values in a dictionary, the key is specified first, followed by the

corresponding value, separated by a colon. For example, animals =

{ "bears":10, "lions":1, "tigers":2 } creates a dictionary with three

key value pairs, stored in the variable animals.

The key "bears" points to the integer value 10, while the key

"lions" points to the integer value 1, and "tigers" points to the

integer 2. You can access the values by referencing the key, like

this: This would return the integer 10, since that’s the

corresponding value for this key.

You can also check if a key is contained in a dictionary using the

in keyword. Just like other uses of this keyword, it will return True

if the key is found in the dictionary; otherwise it will return False.

Dictionaries are mutable, meaning they can be modified by

adding, removing, and replacing elements in a dictionary, similar

to lists. You can add a new key value pair to a dictionary by

assigning a value to the key, like this: animals["zebras"] = This

creates the new key in the animal dictionary called zebras, and

stores the value 2.

You can modify the value of an existing key by doing the same

thing. So animals["bears"] = 11 would change the value stored in

the bears key from 10 to 11. Lastly, you can remove elements

from a dictionary by using the del keyword. By doing del

animals["lions"] you would remove the key value pair from the

animals dictionary.

16.3. Iterating over the Contents of a Dictionary

It probably won't come as a surprise that, just like with strings

lists and tuples, you can use for loops to iterate through the

contents of a dictionary. Let's see how this looks in action.

Video 37 (3:49 Iterating over the Contents of a Dictionary

file_counts = {"jpg":10, "txt":14, "csv":2, "py":23}

for extension in file_counts:

print (extension)

jpg

txt

csv

pv

So if you use a dictionary in a for loop, the iteration variable will

go through the keys in the dictionary. If you want to access the

associated values, you can either use the keys as indexes of the

dictionary or you can use the items method, which returns a tuple

for each element in the dictionary. The tuple's first element is the

key. Its second element is the value.

Let's try that with our example dictionary.

for ext, amount in file_counts.items():

print("There are {} files with the .{} extension".format(amount,

ext))

There are 10 files with the .jpg extension

There are 14 files with the .txt extension

There are 2 files with the .csv extension

There are 23 files with the .py extension

Sometimes you might just be interested in the keys of a

dictionary. Other times you might just want the values. You can

access both with their corresponding dictionary methods like this:

file_counts.keys()

dict_keys([‘jpg’, ‘txt’, ‘csv’, ‘py’])

file_counts.values()

dict_values([10, 14, 2, 23])

These methods return special data types related to the dictionary,

but you don't need to worry about what they are exactly. You just

need to iterate them as you would with any sequence.

for value in file_counts.values():

print(value)

10

14

2

23

So we can use items to get key value pairs, keys to get the keys,

and values to get just the values. Not too hard, right?

Because we know that each key can be present only once,

dictionaries are a great tool for counting elements and analyzing

frequency. Let's check out a simple example of counting how

many times each letter appears in a piece of text:

def count_letters(text):

result = {}

 for letter in text:

 if letter not in result:

result[letter] = 0

 result[letter] += 1

return result

In this code, we're first initializing an empty dictionary, then going

through each letter in the given string. For each letter, we check if

it's not already in the dictionary. In that case, we initialize an

entry in the dictionary with a value of zero. Finally, we increment

the count for that letter in the dictionary.

To sum up, we've created a dictionary where the keys are each of

the letters present in the string and the values are how many

times each letter is present. Let's try out a few example strings.

count_letters(“aaaaa”)

{‘a’: 5}

count_letters("tenant")

{‘t’: 2, ‘e’: 1, ‘n’: 2, ‘a’: 1}

count_letters("a long string with a lot of letters")

{'a': 2, ' ': 7, 'l': 3, 'o': 3, 'n': 2, 'g': 2, 's': 2, 't': 5, 'r': 2, 'i': 2,

'w': 1, 'h': 1, 'f ': 1, 'e': 2}

Here you can see how the dictionary can have any number of

entries and the pairs of key values always count how many of

each letter there are in the string. Also, do you see how our

simple code doesn't distinguish between actual letters and special

characters like a space? To only count the letters, we'd need to

specify which characters we're taking into account.

This technique might seem simple at first, but it can be really

useful in a lot of cases. Let's say for example that you're

analyzing logs in your server and you want to count how many

times each type of error appears in the log file. You could easily

do this with a dictionary by using the type of error as the key

and then incrementing the associated value each time you come

across that error type.

Are you starting to see how dictionaries can be a really useful

tool when writing scripts? In section 16.5, we're going to learn

how to tell when to use dictionaries and when to use lists.

16.4. Iterating Over Dictionaries Recap

You can iterate over dictionaries using a for loop, just like with

strings, lists, and tuples. This will iterate over the sequence of

keys in the dictionary. If you want to access the corresponding

values associated with the keys, you could use the keys as

indexes.

Or you can use the items method on the dictionary, like This

method returns a tuple for each element in the dictionary, where

the first element in the tuple is the key and the second is the

value.

If you only wanted to access the keys in a dictionary, you could

use the keys() method on the dictionary: If you only wanted the

values, you could use the values() method:

16.5. Dictionaries versus Lists

Dictionaries and lists are both really useful and each have

strengths in different situations. So when is it best to use a list

and when is the dictionary the way to go? Think about the kind

of information you can represent in each data

If you've got a list of information you'd like to collect and use in

your script then the list is probably the right approach. For

example, if you want to store a series of IP addresses to ping,

you could put them all into a list and iterate over them.

Or if you had a list of host names and their corresponding IP

addresses, you might want to pair them as key values in a

dictionary. Because of the way dictionaries work, it's super easy

and fast to search for an element in them.

Let's say you have a dictionary that has usernames as keys, and

the groups they belong to as values. It doesn't matter if you have

10 users or 10,000 users, accessing the entry for a given user will

take the same time. Amazing, but this isn't true for lists.

If you've got a list of 10 elements, and you need to check if one

element is in the list, it'll be a very fast check but if your list has

10,000 elements it'll take significantly longer to check if the

element you're looking for is there. So in general, you want to

use dictionaries when you plan on searching for a specific

Another interesting difference is the types of values that we can

store in lists and In you can store any data In we can store any

data type for the values but the keys are restricted to specific The

reasoning behind which types are allowed can get complex and I

don't want to bog you down with unnecessary details.

So as a rule of thumb, you can use any immutable data type;

numbers, booleans, strings and tuples as dictionary But you can't

use lists or dictionaries for that.

On the flip side, like we said, the values associated with keys can

be any type, including lists or even other dictionaries. You can use

them to represent more complex data structures like directory

trees in the file system.

There's a ton of different key value pairs that we need to work

with in system administration. So I use dictionaries all the time.

They're especially useful with large data sets. When I need to

write a script that gets specific keys out of it to manipulate or

modify the associated value.

But it doesn't always need to be that serious. One-time, just for

fun, I wanted to be able to look up which Disney villain is

associated with each protagonist. So I created a dictionary that

stores a key like Snow White, with the value, evil queen. Pretty

good.

There are even more data types available that we haven't checked

out yet. One of these data types is a set which is a bit like a

cross between a list and a dictionary.

A set is used when you want to store a bunch of elements and

be certain that there are only present once. Elements of a set

must also be immutable. You can think of this as the keys of a

dictionary with no associated values or you could see it as a list

where what matters isn't the order of the elements but whether

an element is in the list or not.

Wow, we've covered a lot and we've still only scratched the

surface of what dictionaries can do in your scripts. As you

progress in your IT career, you'll come across a lot of situations

where dictionary is the easiest way to organize your data.

If you're interested, you can learn more about dictionaries in the

official documentation. You'll find links to this in the next cheat

sheet.

16.6. Cheat Sheet 7: Dictionary Methods

To locate the Dictionary Methods Cheat Sheet pdf file, open the

“Cheat Sheets” folder. It’s one of the folders inside the course

resources folder you downloaded earlier.

16.7. Practice Quiz 12: 5 Questions

1. The email_list function receives a dictionary, which contains

domain names as keys, and a list of users as values. Fill in the

blanks to generate a list that contains complete email addresses

(e.g. diana.prince@gmail.com). – 1 point

 emails = []

2. The groups_per_user function receives a dictionary, which

contains group names with the list of users. Users can belong to

multiple groups. Fill in the blanks to return a dictionary with the

users as keys and a list of their groups as values. – 1 point

 user_groups = {}

Go through group_dictionary

Now go through the users in the group

 user_groups[user] = []

Now add the group to the the list of

groups for this user, creating the entry

in the dictionary if necessary

3. The dict.update method updates one dictionary with the items

coming from the other dictionary, so that existing entries are

replaced and new entries are added. What is the content of the

dictionary “wardrobe“ at the end of the following code? – 1 point

wardrobe.update(new_items)

{'jeans': ['white'], 'scarf ': ['yellow'], 'socks': ['black', 'brown']}

{'shirt': ['red', 'blue', 'white'], 'jeans': ['white'], 'scarf ': ['yellow'],

'socks': ['black', 'brown']}

{'shirt': ['red', 'blue', 'white'], 'jeans': ['blue', 'black', 'white'], 'scarf ':

['yellow'], 'socks': ['black', 'brown']}

{'shirt': ['red', 'blue', 'white'], 'jeans': ['blue', 'black'], 'jeans':

['white'], 'scarf ': ['yellow'], 'socks': ['black', 'brown']}

4. What’s a major advantage of using dictionaries over lists? – 1

point

Dictionaries are ordered sets

Dictionaries can be accessed by the index number of the element

Elements can be removed and inserted into dictionaries

It’s quicker and easier to find a specific element in a dictionary

5. The add_prices function returns the total price of all of the

groceries in the dictionary. Fill in the blanks to complete this

function. – 1 point

Initialize the variable that will be used for the calculation

Iterate through the dictionary items

Add each price to the total calculation

Hint: how do you access the values of

dictionary items?

Limit the return value to 2 decimal places

16.7.1. Answers to Practice Quiz 12

1.

 emails = []

2.

 user_groups = {}

Go through group_dictionary

Now go through the users in the group

 user_groups[user] = []

 user_groups[user].append(group)

Now add the group to the the list of

groups for this user, creating the entry

in the dictionary if necessary

3. B. The dict.update method updates the dictionary (wardrobe)

with the items coming from the other dictionary (new_items),

adding new entries and replacing existing entries.

4. D. Because of their unordered nature and use of key value

pairs, searching a dictionary takes the same amount of time no

matter how many elements it contains.

5.

Initialize the variable that will be used for the calculation

Iterate through the dictionary items

Add each price to the total calculation

Hint: how do you access the values of

dictionary items?

 total += price

Limit the return value to 2 decimal places

17. Module Review

17.1. Basic Structures Wrap Up

In this module, we've covered the basic structures we can use to

make the most of our Python scripts; strings, lists, and

dictionaries. We've also called out a couple of associated data

types like tuples and sets. Knowing your way around these

structures lets you solve interesting problems with your programs.

As we keep saying, the key to mastering them and knowing when

to use one or the other is practice. The more you write scripts

that use these concepts, the easier it will become to pick the

right one when you need it.

So how are you feeling? We just learned a lot of new concepts

and it's totally normal to feel a little overwhelmed. If you're feeling

confident that's awesome and if you're starting to think this is too

hard for me I'll never get it, that's also completely normal.

We all felt like that at some point when learning how to code.

First off, you will get this. Second, if you're feeling a little iffy on

any of the content we've covered so far, now is the time to revise

the previous sections or re-watch the videos.

Believe me, you'll be amazed by how much you've learned so far

and a second review is usually all you need to understand what

might seem a little tricky right now. Jobs in IT require problem-

solving and perseverance. You wouldn't be here right now if you

didn't have the grit to learn how to script. So stick with it.

I promised you that it'll only get easier and easier. To wrap up,

we've got a graded assessment to help you put all your new

knowledge to the test. Take it once you feel ready to. Take your

time and remember, you've got this!

17.2. Module 4 Graded Assessment – 10 Questions

It’s time again for your next graded assessment. Open the

“Graded Assessments” folder you downloaded earlier. It contains

the pdf files of all the graded assessments in this course. Here’s

the file name to search:

Module 4 Graded Assessment – file name

17.2.1. Solutions to Module 4 Graded Assessment

I (or any member of my team) is available to help you grade

your assessments. You can use my help link (email) at the end of

chapter 25 to send your assessment for grading. We will get back

to you in 12 to 24 hours with your result.

However, if you cannot wait, you can open the “Graded

Assessments” folder you downloaded earlier. It contains the pdf

formats of the solutions to all graded assessments in this course.

You can use them to grade your assessments by yourself. Just be

honest as you grade. Here’s the file name to search:

Module 4 Graded Assessment Solutions – file name

Module 5

You are an object, at least in Python’s view, and you belong to the

human class...

18. Object-oriented Programming (OOP)

18.1. OOP Introduction

Welcome back and congrats on making it this far. Our journey

together is getting more and more interesting, don't you think?

Let's take a second to review what you've accomplished so far.

We've now gone over all the basic syntax of Python and then

checked out the most common data structures, strings, lists, and

dictionaries.

These let us do a bunch of cool things like processing text,

iterating through elements to do an operation on each, finding

out the frequency of an element and a whole lot more.

In this chapter, we're going to focus on a bunch of new concepts.

We're going to dive into object-oriented programming which is a

way of thinking about and implementing our code. We'll discuss

how to create our own objects and how to use many of Python's

interesting capabilities.

We're going to learn a lot of new terminology too. As usual, we'll

include cheat sheets in the references and in the recaps for you

to refer to whenever you need a quick refresher. As always, if

something isn't clear right away, remember that you can review

the content and do the practice exercises as many times as you

need.

Okay. Ready for your orientation on object-oriented programming?

There's a lot to cover, so let's jump right in!

18.2. What is OOP?

Imagine you have to describe an apple to someone who's never

seen one before, how would you do it? What would you say,

besides that it's delicious? You might start off by saying that an

apple is a type of fruit. You might talk about how there are lots

of different kinds of apples, each with its own color, flavor, and

name.

Well, when you're explaining concepts to your computer, it's a

good idea to approach it in a similar way. Your computer has no

idea what an apple is, or even what a fruit can be. If you want

your computer to understand these things, you have to describe

them in your programs and scripts.

Up to now, we've discussed elements of syntax, like variables,

functions, loops, and some more complex data structures, like

lists and dictionaries. These are powerful tools in an IT specialist's

toolbox, but it can still be difficult to translate real-world concepts,

like what's an apple, or what's a user account into programs.

To make it easier for computers to understand these new

concepts, Python uses a programming pattern called object-

oriented which models concepts using classes and objects. This is

a flexible, powerful paradigm where classes represent and define

while objects are instances of

In our apple example, we can have a class called apple that

defines the characteristics of an apple. We could then have a

bunch of instances of that apple class, which are the individual

objects of that class.

The idea of object-oriented programming might sound abstract

and complex, but you've actually been using objects already

without even realizing it. Almost everything in Python is an object,

all of the numbers, strings, lists, and dictionaries we've seen so

far, and have used in our exercises and quizzes, have been

objects.

Each of them was an instance of a class representing a concept.

The core, apple pun-intended concept of object-oriented

programming comes down to attributes and methods associated

with a type. The attributes are the characteristics associated to a

and the methods are the functions associated to a In the apple

example, the attributes are the color and flavor.

What would the methods be? Well, it depends on what we're

going to do with apple. We could maybe have a cut method that

turns one whole apple into four slices, or we could have an eat

method that reduces the amount of apple available with every

bite.

Let's think about a more IT focused example, like a file in our

computer. A file has lots of attributes, it has a name, a size, the

date it was created, permissions to access it, its contents, and a

whole lot more. There are actually so many different file attributes,

that Python has multiple classes to deal with files.

The typical file object focuses on the file's contents, and so this

object has a bunch of methods to read and modify what's inside

the file. Hopefully, these examples help make object-oriented

programming a little clearer, but don't worry if you haven't fully

wrapped your head around it. In the next section, we'll explore

how to apply these concepts to some classes and objects we've

already used in Python, which will help us dig a little deeper into

how this all works.

18.3. Definition of OOP

In object-oriented programming, concepts are modeled as classes

and objects. An idea is defined using a class, and an instance of

this class is called an object. Almost everything in Python is an

object, including strings, lists, dictionaries, and numbers.

When we create a list in Python, we’re creating an object which is

an instance of the list class, which represents the concept of a

list. Classes also have attributes and methods associated with

them. Attributes are the characteristics of the class, while methods

are functions that are part of the class.

18.4. Classes and Objects in Python

Remember how we use the type function when checking what type

a certain variable was? Let's do that again now:

Video 38 (2:36 Classes and Objects in Python

type(0)

‘int’>

type(“”)

‘str’>

When we use the type function as we just did here, Python tells

us which class the value or variable belongs to. Since this is a

class, it has a bunch of attributes and methods associated with it.

Let's take the string class ‘str’> for an example. In this case, the

only attribute is the content of the string.

What about the methods? Well, in earlier sections, we looked at a

bunch of methods provided by the string class, like upper() to

create an uppercase version of the string; and isnumeric() which

checks whether or not the contents are all numeric.

Each string we've used in Python up to now has been a different

instance of the string class. They all had the same methods, but

the contents were different. This meant that the result of calling

those methods was different also.

You can get your computer to list all the attributes and methods

in a class. To do that Just use the dir function. This gets the

Interpreter to print to the screen a list of all the attributes and

methods:

dir(“”)

['__add__', '__class__', '__contains__', '__delattr__', '__dir__',

'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',

'__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__',

'__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mod__',

'__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__',

'__repr__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__',

'__str__', '__subclasshook__', 'capitalize', 'casefold', 'center', 'count',

'encode', 'endswith', 'expandtabs', 'find', 'format', 'format_map',

'index', 'isalnum', 'isalpha', 'isascii', 'isdecimal', 'isdigit', 'isidentifier',

'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join',

'ljust', 'lower', 'lstrip', 'maketrans', 'partition', 'removeprefix',

'removesuffix', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit',

'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title',

'translate', 'upper', 'zfill']

Well, that's a lot of items! Let's break this down a little bit, so we

all understand what's going on.

The first bunch, from '__add__' to are special methods that begin

and end with double underscores. These methods are not usually

called by those weird names. Instead, they're called by some of

the internal Python functions.

For example, the '__len__' method is called by the len function

that we've used before to find out the length of a string. The

'__ge__' method is used to compare if one string is greater than

or equal to another, when using the >= operator.

After the special methods, we see a lot of string methods that

we've already come across. This list gives the names of all the

methods, but it doesn't tell us how we can use them. There's a

different function to tell us that, which is called help. Let's give

that one a go.

help(“”)

Help on class str in module builtins:

class str(object)

| str(object='') -> str

| str(bytes_or_buffer[, encoding[, errors]]) -> str

|

| Create a new string object from the given object. If encoding

or

| errors is specified, then the object must expose a data buffer

| that will be decoded using the given encoding and error

handler.

| Otherwise, returns the result of object.__str__() (if defined)

| or repr(object).

| encoding defaults to sys.getdefaultencoding().

| errors defaults to

When we use the help function on any variable or value, we're

showing all the documentation for the corresponding class. In this

case, we're looking at the documentation for the str class, the

class of the string object. As before, it starts with the special

method. If we scroll down, we reach the ones we've already seen.

We can see the documentation for a bunch of methods, and it

tells us the parameters that method receives and the type of

return value. It also includes an explanation of what the method

does.

For the count(…) method, we can see that it receives the sub

string that will be counted, and it has optional start and end

arguments to indicate which slice of the string would be looked

at. We know they're optional because they're written between

square brackets [

In general, being able to read and understand a method's

documentation is super important when you're writing your own

code. Using the dir and help functions puts all the documentation

right at your fingertips. This makes it so much easier to figure

out how to use something for the first time. When you're done

looking at documentation, you can just type q to

Python comes with a lot of classes already predefined for us,

which is super useful. But the power of object-oriented

programming is that we can also define our own classes with

their own attributes and methods.

While you might not need to do this when writing a simple

script, as your programs grow in complexity, object-oriented

programming will help you get the most out of the language, and

that includes being able to define your own classes.

Up next, we'll dive into how to write our own class definitions

with their own attributes and methods. Let's get to it!

18.5. Classes and Objects in Detail

We can use the type() function to figure out what class a variable

or value belongs to. For example, type(" ") tells us that this is a

string class. The only attribute in this case is the string value, but

there are a bunch of methods associated with the class. We've

seen the upper() method, which returns the string in all

uppercase, as well as isnumeric() which returns a boolean telling

us whether or not the string is a number.

You can use the dir() function to print all the attributes and

methods of an object. Each string is an instance of the string

class, having the same methods of the parent class. Since the

content of the string is different, the methods will return different

values. You can also use the help() function on an object, which

will return the documentation for the corresponding class. This

will show all the methods for the class, along with parameters the

methods receive, types of return values, and a description of the

methods.

18.6. Defining New Classes

We called out earlier that the point of object-oriented

programming is to help define a real-world concept in a way that

the computer understands. Defining a real-world concept and code

can be tricky. So let's look at how we might go about

representing a concept in Python code. We'll take it step-by-step

and keep it simple. Let's take our apple example from earlier.

Video 39 (3:53 Defining New Classes

We could use this code to define a basic Apple class.

class Apple:

Sure, it doesn't look like much but with these two lines we've

defined our first-class. Let's check out the syntax. In Python, we

use the class reserved keyword to tell the computer that we're

starting a new class. We follow this with the name of the class

and a colon.

The Python style guidelines recommend that class names should

start with a capital So we'll be using that convention. In this

case, our class is called Class definitions follow the same pattern

of other blocks we've seen before like, functions, loops or

conditional branches.

After the line with the class definition comes the body of the

class, which is indented to the In this case, we haven't added

anything to the body yet, so we use the pass keyword, to show

that the body is empty. We can also use the same keyword as a

placeholder in any empty Python block.

So how might we expand our definition of the apple class? Well,

it would probably have the same attributes that represent the

information we want to associate with an apple, like color and

flavor. We can add that information like this:

class Apple:

color = “”

 flavor = “”

So here we're defining two attributes: color and We define them

as strings because that's what we expect these attributes to be. At

the moment, they're empty strings, since we don't know what

values these attributes will have. See how we don't need the pass

keyword anymore now that we've got an actual body for the class.

All right. Now that we've got an Apple class and some attributes,

let see our Apple in action:

jonagold = Apple()

Here, we're creating a new instance of our Apple class and

assigning it to a variable called Check out the syntax. To create a

new instance of any class, we call the name of the class as if it

were a function.

Now that we've got our shiny new apple object, let's set the

values of the attributes:

jonagold.color = "red"

jonagold.flavor = "sweet"

All right. We've just set the color and the flavor as string values.

To check that it worked, let's try retrieving them both and printing

them to the screen:

print(jonagold.color)

red

print(jonagold.flavor)

sweet

The syntax used to access the attributes is called dot notation

because of the dot used in the expression. Dot notation lets you

access any of the abilities that the object might called methods or

information that it might store called like flavor.

The attributes and methods of some objects can be other objects

and can have attributes and methods of their own. For example,

we could use the upper() method to turn the string of the color

attribute to uppercase. So,

print (jonagold.color.upper())

RED

So far we've created one instance of the Apple class and set its

attributes and checked that they are now correctly set. Now, we

could create a new instance of the Apple class with different

attributes.

golden = Apple()

golden.color = "yellow"

golden.flavor = "soft"

Both golden and jonagold are instances of the Apple They have the

same attributes, color and flavor. But those attributes have

different values.

Congrats. You've learned how to create your own classes. Let's

check that we've got all this down with a quick quiz. After that,

we're going to learn how to define new methods for a class.

18.7. Defining Classes Recap

We can create and define our classes in Python similar to how we

define functions. We start with the class keyword, followed by the

name of our class and a colon. Python style guidelines

recommend class names to start with a capital letter. After the

class definition line is the class body, indented to the right. Inside

the class body, we can define attributes for the class.

Let's take our Apple class example:

...

We can create a new instance of our new class by assigning it to

a variable. This is done by calling the class name as if it were a

function. We can set the attributes of our class instance by

accessing them using dot notation. Dot notation can be used to

set or retrieve object attributes, as well as call methods associated

with the class.

>>> jonagold = Apple()

We created an Apple instance called jonagold, and set the color

and flavor attributes for this Apple object. We can create another

instance of an Apple and set different attributes to differentiate

between two different varieties of apples.

>>> golden = Apple()

We now have another Apple object called golden that also has

color and flavor attributes. But these attributes have different

values.

18.8. Practice Quiz 13: 5 Questions

1. Let’s test your knowledge of using dot notation to access

methods and attributes in an object. Let’s say we have a class

called Birds. Birds has two attributes: color and number. Birds

also has a method called count() that counts the number of birds

(adds a value to number). Which of the following lines of code

will correctly print the number of birds? Keep in mind, the

number of birds is 0 until they are counted! – 1 point

A.

bluejay.number = 0

print(bluejay.number)

B.

print(bluejay.number.count())

C.

bluejay.count()

print(bluejay.number)

D.

print(bluejay.number)

2. Creating new instances of class objects can be a great way to

keep track of values using attributes associated with the object.

The values of these attributes can be easily changed at the object

level. The following code illustrates a famous quote by George

Bernard Shaw, using objects to represent people. Fill in the blanks

to make the code satisfy the behavior described in the quote. – 1

point

“If you have an apple and I have an apple and we exchange th

ese apples then

you and I will still each have one apple. But if you have an ide

a and I have

an idea and we exchange these ideas, then each of us will hav

e two ideas.”

George Bernard Shaw

johanna = Person()

martin = Person()

#Here, despite G.B. Shaw's quote, our characters have started wit

h #different amounts of apples so we can better observe th

e results.

#We're going to have Martin and Johanna exchange ALL their appl

es with #one another.

#Hint: how would you switch values of variables,

#so that "you" and "me" will exchange ALL their apples with one

another?

#Do you need a temporary variable to store one of the values?

#You may need more than one line of code to do that, which is

OK.

 you.apples, me.apples = me.apples, you.apples

#"you" and "me" will share our ideas with one another.

#What operations need to be performed, so that each object recei

ves

#the shared number of ideas?

#Hint: how would you assign the total number of ideas to

#each idea attribute? Do you need a temporary variable to store

#the sum of ideas, or can you find another way?

#Use as many lines of code as you need here.

 you.ideas += me.ideas

 me.ideas = you.ideas

exchange_apples(johanna, martin)

exchange_ideas(johanna, martin)

3. The City class has the following attributes: name, country

(where the city is located), elevation (measured in meters), and

population (approximate, according to recent statistics). Fill in the

blanks of the max_elevation_city function to return the name of

the city and its country (separated by a comma), when comparing

the 3 defined instances for a specified minimal population. For

example, calling the function for a minimum population of 1

million: max_elevation_city(1000000) should return "Sofia,

Bulgaria". – 1 point

define a basic city class

create a new instance of the City class and

define each attribute

city1 = City()

create a new instance of the City class and

define each attribute

city2 = City()

create a new instance of the City class and

define each attribute

city3 = City()

Initialize the variable that will hold

the information of the city with

the highest elevation

 return_city = City()

Evaluate the 1st instance to meet the requirements:

does city #1 have at least min_population and

is its elevation the highest evaluated so far?

Evaluate the 2nd instance to meet the requirements:

does city #2 have at least min_population and

is its elevation the highest evaluated so far?

 return_city = city2

Evaluate the 3rd instance to meet the requirements:

does city #3 have at least min_population and

is its elevation the highest evaluated so far?

 return_city = city3

#Format the return string

4. What makes an object different from a class? – 1 point

An object represents and defines a concept

An object is a specific instance of a class

An object is a template for a class

Objects don't have accessible variables

5. We have two pieces of furniture: a brown wood table and a

red leather couch. Fill in the blanks following the creation of each

Furniture class instance, so that the describe_furniture function

can format a sentence that describes these pieces as follows:

"This piece of furniture is made of {color} {material}" – 1 point

table = Furniture()

couch = Furniture()

Should be "This piece of furniture is made of brown wood"

Should be "This piece of furniture is made of red leather"

18.8.1 Answers to Practice Quiz 13

1. C. We must first call the count() method, which will populate

the number attribute, allowing us to print number and receive a

correct response.

2.

“If you have an apple and I have an apple and we exchange th

ese apples then

you and I will still each have one apple. But if you have an ide

a and I have

an idea and we exchange these ideas, then each of us will hav

e two ideas.”

George Bernard Shaw

johanna = Person()

martin = Person()

#Here, despite G.B. Shaw's quote, our characters have started wit

h #different amounts of apples so we can better observe th

e results.

#We're going to have Martin and Johanna exchange ALL their appl

es with #one another.

#Hint: how would you switch values of variables,

#so that "you" and "me" will exchange ALL their apples with one

another?

#Do you need a temporary variable to store one of the values?

#You may need more than one line of code to do that, which is

OK.

 you.apples, me.apples = me.apples, you.apples

#"you" and "me" will share our ideas with one another.

#What operations need to be performed, so that each object recei

ves

#the shared number of ideas?

#Hint: how would you assign the total number of ideas to

#each idea attribute? Do you need a temporary variable to store

#the sum of ideas, or can you find another way?

#Use as many lines of code as you need here.

 you.ideas += me.ideas

 me.ideas = you.ideas

exchange_apples(johanna, martin)

exchange_ideas(johanna, martin)

3.

define a basic city class

create a new instance of the City class and

define each attribute

city1 = City()

create a new instance of the City class and

define each attribute

city2 = City()

create a new instance of the City class and

define each attribute

city3 = City()

Initialize the variable that will hold

the information of the city with

the highest elevation

 return_city = City()

Evaluate the 1st instance to meet the requirements:

does city #1 have at least min_population and

is its elevation the highest evaluated so far?

 return_city = city1

Evaluate the 2nd instance to meet the requirements:

does city #2 have at least min_population and

is its elevation the highest evaluated so far?

 return_city = city2

Evaluate the 3rd instance to meet the requirements:

does city #3 have at least min_population and

is its elevation the highest evaluated so far?

 return_city = city3

#Format the return string

4. B. Objects are an encapsulation of variables and functions into

a single entity.

5.

table = Furniture()

couch = Furniture()

Should be "This piece of furniture is made of brown wood"

Should be "This piece of furniture is made of red leather"

19. Classes and Methods

19.1 Instance Methods

How are you doing so far? Is everything making sense? Are all

those apple examples making you hungry? Feel free to pause and

grab a snack if that's what you need.

We called out earlier that we use methods to get objects to do

stuff. We've seen several methods in our example so far like

lower() for strings, append() for lists or values() for dictionaries.

The key to understanding methods is this.

Video 40 (3:41 Instance Methods

Methods are functions that operate on the attributes of a specific

instance of a

When we call the append method on a list, we're adding an

element to the end of that specific list and not to any other lists.

When we call the lower method on the string, we're making the

contents of that specific string lowercase. How exactly does this

happen? Let's take a closer look by defining our own methods.

First, we need to define a class and create an instance of it like

we've done before.

class Piglet:

 pass

hamlet = Piglet()

Nice. We've created a piglet class. While our new piglet might be

cute, it can't do a whole lot now. What if we wanted to give it a

voice? For objects to perform actions, they need methods and as

we called out before, a method is a function that operates on a

single instance of an object. Let's add a method to our class.

class Piglet:

 def speak(self):

 print("oink oink")

You can see here that we start defining a method with the def

keyword just like we would for a function. See how the line with

the def keyword is indented to the right inside the Piglet class?

That's how we define a function as a method of the

This function is receiving a parameter called This parameter

represents the instance that the method is being executed on.

Let's try this out and see what happens.

hamlet = Piglet()

hamlet.speak()

oink oink

As you can see, the piglet goes oink, oink! But this makes the

piglet say the same thing for all instances of the class. Boring?

Let's make the method do something different depending on the

attribute of the instance:

class Piglet:

 name = "piglet" # We introduce an attribute/variable called

name with a default value of piglet to initialize it..

 def speak(self):

 I'm {}! Oink!".format(self.name))

This time we've studied the body of the class by defining an

attribute called name with a default value of We can change that

value later but it's a good idea to set it now to make sure our

variable is initialized. If you look closely at how we wrote the new

speak method in the last line, you'll see that it's using the value

of self.name to know what name to print.

This means that it's accessing the attribute name from the current

instance of Piglet. Let's try this out.

hamlet = Piglet()

hamlet.name = "Hamlet"

hamlet.speak()

Oink! I’m Hamlet! Oink!

Meet Hamlet, our python pig! You didn't know pigs could talk?

Well, they can in Python!

In this example, the speak method printed the name Hamlet

which was the name attribute that we set. What if we create a

new instance of the same class but with a different name? It

should generate a different output. Let's try this out. I think

Hamlet needs a friend:

petunia = Piglet()

petunia.name = "Petunia"

petunia.speak()

Oink! I’m Petunia! Oink!

We've now created two instances of the piglet class each of them

with their own name. When calling this speak method, each of

them prints their name and not the other.

Variables that have different values for different instances of the

same class are called instance just like the name variable in this

example.

Since methods are just functions that belong to a specific class,

they can work as any other function. So they can receive more

parameters and return values if needed. Let's check out what a

method returning a value looks like:

class Piglet:

 years = 0

 def pig_years(self):

 return self.years * 18

In this case, we've created a method that converts the age of our

piglet to pig years. So the value that the method returns should

change when we change the years attribute of our instance. Let's

create an instance and check how this method works:

Piggy is two years old in human years, how old is he in pig

years?

piggy = Piglet()

print(piggy.pig_years())

0

piggy.years = 2

print(piggy.pig_years())

36

So as the value of the years attribute changes, the return value of

the pig years method changes too.

In section 19.3, we're going to learn about a few special types of

methods including one in particular called

19.2. What Is a Method?

Calling methods on objects executes functions that operate on

attributes of a specific instance of the class. This means that

calling a method on a list, for example, only modifies that

instance of a list, and not all lists globally.

We can define methods within a class by creating functions inside

the class definition. These instance methods can take a parameter

called self which represents the instance the method is being

executed on. This will allow you to access attributes of the

instance using dot notation, like which will access the name

attribute of that specific instance of the class object.

When you have variables that contain different values for different

instances, these are called instance

19.3. Constructors and Other Special Methods

Up to now, we've been creating classes with empty or default

values and their attributes, and then setting the attribute values

after we've created the object. This works, but it's not ideal.

Working this way means we need to write a separate line for each

attribute we want to set, and that makes it really easy to forget

to set an important value.

Us humans are pros at forgetting to do things, even important

things. So when writing code, it's a good idea to do things early

to prevent from forgetting them later on. So let's set those values

as we create the instance. This way, we know that our instance

has all the important values in it from the moment is created

and we don't have to worry about it.

To do this, we need to use a special method called Let’s go back

to our apple example to see this in action:

Video 41 (2:23 Constructors and Other Special Methods

class Apple:

 def __init__(self,color,flavor): #Put 2 underscores after 2

underscores after

 self.color = color

 self.flavor = flavor

The constructor of the class is the method that's called when you

call the name of the class. It's always named You might

remember that all methods that start and end with two

underscores are special

Here, we've defined a constructor, one very important special

method. This method on top of the self variable that represents

the instance receives two more parameters: color and

Then the method sets those values as the values of the current

instance. Let's see how that works with the new instance of the

apple class.

jonagold = Apple("red", "sweet")

Great. Now, let's check that all the attributes are set correctly.

print(jonagold.color)

red

Perfect! So, now by adding a constructor method that sets the

attributes, we can create the class and have its values set right

when it's created. Pretty handy, right?

Constructors aren't the only special methods we can write. When

we use the str or print functions to convert an object to a string,

we are using a super-useful special method. But before we go

ahead and define one, let's see what happens when we don't

define it.

print(jonagold)

<__main__.Apple object at 0x7fc4a58d5c18>

We just tried to print our apple instance, and we got a very weird

message. We have the words Apple and object in there, but what's

the rest of it? Well, when we don't specify a way to print an

object, Python uses the default method that prints the position

where the object is stored in the computer's memory (yours will

be different). This is definitely not what we wanted.

If you ever try and print something and Python prints a random

string of numbers and letters, you'll know that it's likely using the

default representation, which is the position of the object in the

computer's memory.

So how do we tell Python to print something that makes sense

for us? We use the special str method which returns the string

that we want to print. Let's see what this looks like:

class Apple:

 def __init__(self,color,flavor):

 self.color = color

 self.flavor = flavor

def __str__(self):

 return apple is {} and its flavor is {}”.format(self.color,

self.flavor)

By defining the special str we're telling Python that we want it to

display when the print function is called with an instance of our

class. Check it out!

jonagold = Apple("red", "sweet")

print(jonagold)

This apple is red and its flavor is sweet

So the str method lets us print a friendly message instead of a

bunch of numbers. In general, it's a good idea to think ahead

and define the str method when creating objects that you want to

print.

There are a lot of other special methods. We're not going to look

at the rest of them here, but you can find pointers to learn more

about them in the official documentation. You'll find the link to

that in the next section. These concepts are new and not too

easy. So don't worry if you're still trying to figure out the

difference between a method and a function.

We've all been there. The best way to feel confident is to keep

practicing until it's clear. You're doing great. So keep at it!

19.4. Special Methods Recap

Instead of creating classes with empty or default values, we can

set these values when we create the instance. This ensures that

we don't miss an important value and avoids a lot of unnecessary

lines of code. To do this, we use a special method called a Below

is an example of an Apple class with a constructor method

defined.

When you call the name of a class, the constructor of that class

is called. This constructor method is always named You might

remember that special methods start and end with two underscore

characters. In our example above, the constructor method takes

the self variable, which represents the instance, as well as color

and flavor parameters. These parameters are then used by the

constructor method to set the values for the current instance. So

we can now create a new instance of the Apple class and set the

color and flavor values all in go:

Red

In addition to the __init__ constructor special method, there is

also the __str__ special method. This method allows us to define

how an instance of an object will be printed when it’s passed to

the print() function. If an object doesn’t have this special method

defined, it will wind up using the default representation, which will

print the position of the object in memory. Not super useful.

Here is our Apple class, with the __str__ method added:

...

Now, when we pass an Apple object to the print function, we get

a nice formatted string:

This apple is red and its flavor is sweet. It's good practice to

think about how your class might be used and to define a

__str__ method when creating objects that you may want to print

later.

19.5. Documenting Functions, Classes and Methods

The world of classes and methods can be a little puzzling when

you're still learning your way around, and that's why the help

function can come in handy. You might remember that we can

still use the Python function help to find documentation about

classes and methods. We can also do this on our own classes,

methods, and functions. Let's check this out.

Video 42 (2:07 Documenting Functions Classes and Methods

class Apple:

 def __init__(self,color,flavor):

 self.color = color

 self.flavor = flavor

def __str__(self):

 return “This apple is {} and its flavor is

{}”.format(self.color, self.flavor)

We'll start with the Apple class we used before, and now we'll ask

for some help:

help(Apple)

class Apple(builtins.object)

| Apple(color, flavor)

|

| Methods defined here:

|

| __init__(self, color, flavor)

| Initialize self. See help(type(self)) for accurate signature.

|

| --

| Data descriptors defined here:

|

| __dict__

| dictionary for instance variables (if defined)

|

| __weakref__

| list of weak references to the object (if defined)

See how when we asked for help on our class we got a list of

the methods that are defined in the class? In this example, the

defined methods are the constructor and the conversion to string.

But this documentation is super short and to be honest, it

doesn't explain a whole lot. So let's go back to the interpreter by

typing q.

We want our methods, classes, and functions to give us more

information when we or someone else use the help function. We

can do that by adding a

A docstring is a brief text that explains what something Let's see

how this works with a simple function.

def to_seconds(hours, minutes, seconds):

First off, we want to define the function. We give it the

parameters hours, minutes, and seconds. After that, we add our

docstring. We do this by typing a string between triple quotes and

we indent it to the right like the body of the function.

"""Returns the amount of seconds in a given hours, minutes and

seconds"""

Next, we write the code for our function.

return hours*3600+minutes*60+seconds

So there we have it, we have a function with a docstring in its

body. Let's see how we can use the help function to see it.

help(to_seconds)

Help on function to_seconds in module __main__:

to_seconds(hours, minutes, seconds)

 Returns the amount of seconds in a given hours, minutes

and seconds

Success! The help function shows us the string we wrote. As we

called out earlier, we can add docstrings to classes and methods

too. Let's use our piglet class to see what this would look like:

class Piglet:

"""Represents a piglet that can say their name"""

years = 0

 name = ""

 def speak(self):

"""Outputs a message including the name of the piglet."""

print("Oink. I'm {}! Oink!".format(self.name))

 def pig_years(self):

"""Converts the current age to equivalent pig years."""

return self.years * 18

Now we've got a bunch of helpful information. We've added

docstrings for our piglet class and for its methods. Remember

that the docstring always has to be indented at the same level of

the block it's documenting. Docstrings are super helpful for

figuring out how to use a function you've never used before.

Not only that, if you're reading a piece of code written by

someone else, docstrings let us understand the code much better

because the classes, methods, and functions are clearly

documented. So when writing your code, add docstrings to explain

your functions, classes, and methods, it will make a ton of

difference to anyone who might use your code.

19.6. Documenting with Docstrings

The Python help function can be super helpful for easily pulling

up documentation for classes and methods. We can call the help

function on one of our classes, which will return some basic info

about the methods defined in our class:

...

 | Methods defined here:

 |

 |

 |

 | --

 | Data descriptors defined here:

 |

 | __dict__

 |

 | __weakref__

We can add documentation to our own classes, methods, and

functions using A docstring is a short text explanation of what

something does. You can add a docstring to a method, function,

or class by first defining it, then adding a description inside triple

quotes. Let's take the example of this function:

...

We have our function called to_seconds on the first line, followed

by the docstring which is indented to the right and wrapped in

triple quotes. Last up is the function body. Now, when we call the

help function on our to_seconds function, we get a handy

description of what the function does:

to_seconds(hours, minutes, seconds)

Docstrings are super useful for documenting our custom classes,

methods, and functions, but also when working with new libraries

or functions. You'll be extremely grateful for docstrings when you

have to work with code that someone else wrote!

19.7. Cheat Sheet 8: Classes and Methods

To locate the Classes and Methods Cheat Sheet pdf file, open the

“Cheat Sheets” folder. It’s one of the folders inside the course

resources folder you downloaded earlier.

19.8. About Jupyter Notebooks (Optional)

In all our quizzes so far, we've been working with code blocks.

Code blocks are a great tool for writing small snippets of code,

but now we're tackling more complex problems so we need a

more powerful tool. We're going to start using a new tool called

Jupyter kicking off with the next quiz.

A Jupyter Notebook is a special kind of document that can

contain pieces of programming

We can execute these pieces of code inside the notebooks one

piece at a time, and the notebooks can also contain other things

like text, images, interactive widgets, and a whole lot more. These

extra elements allow us to tell an interactive story with our code

exercises.

Like Code Blocks, Jupyter Notebooks lets us edit and run our

code in the web browser. The difference is that we can add

explanations between the code, and also the pieces of code are

related to each other.

Jupyter Notebooks are an open-source technology that you can use

outside this course, so if you're interested, you could even run it

locally on your computer. Links to Jupyter Notebooks full tutorials

are given in the next section. But first, let's check out in this

video how a Jupyter Notebook works and what you can do with

it.

Video 43 (1:46 About Jupyter Notebook

As explained in the video, once we launch it, we will wait until

the notebook loads. Once it's loaded, you can see some

explanatory text and a bit of code (sample code). We can execute

the code by clicking the run button in the toolbar, or we can also

run it by pressing Shift-Enter on our keyboard.

19.9. Help with Jupyter Notebooks

Jupyter notebooks are easy to use. But, if you get stuck, you can

find more information from the links below.

If you still need help, the discussion forums are a great place to

find it! Use the forums to ask questions and source answers from

your fellow learners.

If you want to learn how to install, run and use Jupyter

Notebooks, check out these resources:

Jupyter Notebook by datacamp.com

How to use Jupyter by codeacademy.com

Teaching and Learning with by university professors using Jupyter

19.10. Challenge Lab 1: Methods and Classes Lab

The code you are going to use in this lab is shown in the

screenshot below. It defines an Elevator class. Look for two files

(both of which contain the same Elevator class code) with file

name in your Challenge Labs folder. This folder is inside the

course resources folder you downloaded earlier.

Open only one of the two files:

C1M5L2_Methods_and_Classes_V3.ipynb file, which you can open in

your Jupyter Notebook, or C1M5L2_Methods_and_Classes_V3.py

which you can open with your Pycharm.

The elevator has a current floor, it also has a top and a bottom

floor that are the minimum and maximum floors it can go to.

Open one of the two Elevator class code versions you prefer to

use and study the code to make sure the elevator goes through

the floors requested.

Fig. 19.10.1: The Elevator class definition code block

To test whether your Elevator class is working correctly, run the

code snippets below:

elevator.up()

elevator.current #should output 1

elevator.down()

elevator.current #should output 0

elevator.go_to(10)

elevator.current #should output 10

If you get a NameError message, be sure to run the Elevator class

definition code block first. If you get an AttributeError message, be

sure to initialize self.current in your Elevator class.

Once you've made the above methods output 1, 0 and 10, it

means the Elevator class and its methods were successfully coded.

For the up and down methods, did you take into account the top

and bottom floors? Keep in mind that the elevator shouldn't go

above the top floor or below the bottom floor. To check that out,

try the code below and verify if it's working as expected. If it's

not, then go back and modify the methods so that this code

behaves correctly.

Go to the top floor. Try to go up, it should stay. Then go

down.

elevator.go_to(10)

elevator.up()

elevator.down()

print(elevator.current) # should be 9

Go to the bottom floor. Try to go down, it should stay. Then

go up.

elevator.go_to(-1)

elevator.down()

elevator.down()

elevator.up()

elevator.up()

print(elevator.current) # should be 1

Now add the str method to your Elevator class definition above so

that when printing the elevator using the print() method, we get

the current floor together with a message. For example, in the 5th

floor it should say "Current floor: 5"

elevator.go_to(5)

print(elevator) # it should say "Current floor: 5"

Remember, Python uses the default method, that prints the

position where the object is stored in the computer’s memory. If

your output is something like:

object at 0x7ff6a9ff3fd0>

Then you will need to add the special str method, which returns

the string that you want to print. Try again until you get the

desired output, "Current floor: 5".

Once you have successfully produced the desired output, you are

all done with this challenge lab. Awesome!

20. Code Reuse

20.1. Inheritance

Wow, we've covered a bunch of new stuff in these last few

sections. You're doing great. We've learned all about object-

oriented programming, and how to define our own classes and

methods, including special methods like constructors or string

conversions.

We've also learned how to document them all. We're now going

to talk about another aspect of object-oriented programming called

Just like people have parents, grandparents, and so on, objects

have an ancestry.

The principle of inheritance let's a programmer build relationships

between concepts and group them together. In particular, this

allows us to reduce code duplication by generalizing our code. For

example, how could we develop our apple representation to

include other types of fruit, too?

Well, one thing we know about an apple is that it's a fruit. So we

could define a separate fruit class. We also know that all fruits

have a color and taste. So what if we moved our color and flavor

attributes into the fruit class?

Video 44 (3:45 Inheritance

class Fruit:

 def __init__(self, color, flavor):

 self.color = color

 self.flavor = flavor

Here, we have a fruit class with a constructor for the color and

flavor attributes. Now, we can rewrite our apple class and easily

add another fruit into the mix, too.

class Apple(Fruit):

 pass

class Grape(Fruit):

 pass

In Python, we use parentheses in the class declaration to show an

inheritance relationship. For our new fruit classes, we've used that

syntax to tell our computer that both the apple and the grape

classes inherit from the fruit class. Because of this, they

automatically have the same constructor, which sets the color and

flavor attributes.

You can think of the fruit class as the parent class, and the apple

and grape classes as siblings. Let's see this in action. First, we

create an instance of the apple class:

granny_smith = Apple("sweet", "tart")

carnelian = Grape("purple", "sweet")

Then, to check that this actually worked, let's print the attributes

values.

print(granny_smith.flavor)

tart

print(carnelian.color)

purple

With the inheritance technique, we can use the fruit class to store

information that applies to all kinds of fruit, and keep apple or

grape specific attributes in their own classes. For example, we

could have an attribute to track how much of an apple is left

after it's partially eaten.

Of course, this applies to both attributes and methods. If a class

has an attribute or a method defined in it, inheriting classes will

have the same attributes and methods defined in them. But we

can also get them to behave differently depending on what we

change.

To explore this, let's go back to our piglet example and change it

so that there's a base animal class.

class Animal:

 sound = ""

 def __init__(self,name):

 self.name = name

 def speak(self):

 print("{sound} I'm {name}!

{sound}".format(name=self.name, sound=self.sound))

class Piglet(Animal):

 sound = "Oink!"

In this code, we've defined a general class called which has an

attribute to store the sound that the animal makes. The

constructor of the class takes the name that will be assigned to

the instance when it's created. There's also a speak method that

prints the name of the animal together with the sound the animal

makes.

Then, we have a piglet class that inherits from the Animal class.

We set the value of the sound attribute to oink in the piglet

class, and that's the only thing we've modified from the original.

Everything else is inherited. Let's see this in action.

hamlet = Piglet("Hamlet")

print(hamlet.speak())

Oink! I'm Hamlet! Oink!

Let's define a new class that also inherits from animal. How

about a Cow class?

class Cow(Animal):

 sound = "Moooo"

Cool. To finish, let's create an instance of this class to make it

speak.

milky = Cow("Milky White")

print(milky.speak())

Moooo I'm Milky White! Moooo

So you can see that we can easily define new classes that inherit

from the base animal class and use both the attributes and

methods that the animal class provides. Pretty cool, right? Let's

think of a different example, something closer to what you might

be doing at your day-to-day job.

In a system that handles the employees at your company, you

may have a class called which could have the attributes for things

like full name of the person, the username used in company

systems, the groups the employee belongs to, and so on.

The employee class could have methods to do a bunch of things,

like check if an employee belongs to a certain group, or create an

email address based on the name and username attributes. The

system could also have a manager class. A manager is an

employee, but has additional information associated with it, like

the employees that report to a specific manager.

Are you starting to get an idea of the power of inheritance?

Inheritance lets you reuse code written for one class in other Next

up, we're going to talk about a different way of reusing code.

20.2. Object Inheritance

In object-oriented programming, the concept of inheritance allows

you to build relationships between objects, grouping together

similar concepts and reducing code duplication. Let's create a

custom Fruit class with color and flavor attributes:

...

We defined a Fruit class with a constructor for color and flavor

attributes. Next, we'll define an Apple class along with a new

Grape class, both of which we want to inherit properties and

behaviors from the Fruit class:

...

...

In Python, we use parentheses in the class declaration to have the

class inherit from the Fruit class. So in this example, we’re

instructing our computer that both the Apple class and Grape

class inherit from the Fruit class. This means that they both have

the same constructor method which sets the color and flavor

attributes. We can now create instances of our Apple and Grape

classes:

tart

purple

Inheritance allows us to define attributes or methods that are

shared by all types of fruit without having to define them in each

fruit class individually. We can then also define specific attributes

or methods that are only relevant for a specific type of fruit. Let's

look at another example, this time with animals:

...

...

...

We defined a parent class, Animal, with two animal types

inheriting from that class: Piglet and Cow. The parent Animal

class has an attribute to store the sound the animal makes, and

the constructor class takes the name that will be assigned to the

instance when it's created. There is also the speak method, which

will print the name of the animal along with the sound it makes.

We defined the Piglet and Cow classes, which inherit from the

Animal class, and we set the sound attributes for each animal

type. Now, we can create instances of our Piglet and Cow classes

and have them speak:

>>> hamlet.speak()

...

...

>>> milky.speak()

We create instances of both the Piglet and Cow class, and set the

names for our instances. Then we call the speak method of each

instance, which results in the formatted string being printed; it

includes the sound the animal type makes, along with the

instance name we assigned.

20.3. Composition

We talked about how inheritance creates an ancestry for our

objects. To check for this ancestry, we can use the “is a” rule. An

apple is a fruit, a piglet is an animal. They inherit the attributes

and methods of their parent class and so they allow us to reduce

code duplication, but what if you have a relationship between

classes, where one class isn't a child of the other? Sounds

confusing? Let's check out an example to get a better idea of this.

Say we have a package class that represents a software package

which could be installed on every machine on our network. This

class has a lot of information on the software, like the name, the

version, the size, and more. We also have a repository class that

represents all the packages that we have available for installation

internally.

In this class, we want to know how many packages there are and

what's the total size of all the packages. In this case, the

repository isn't a package and the package isn't a repository.

Instead, the repository contains packages.

To model this within our code, the repository class will have an

attribute that could be a list or a dictionary, which will contain

instances of the package class. So for this scenario, we'll make

use of the code in the other classes by calling their methods.

This is what's called Let's see this in action.

We'll first create a repository class that starts with an empty

dictionary of packages when it's created. The dictionary will have

the names of the packages as keys and the package objects as

values. Watch the illustration in this video.

Video 45 (4:55 Composition

class Repository:

 def __init__(self):

 self.packages = {}

Nice. We have our class, which starts with an empty dictionary of

packages. You might be wondering why we are adding the

dictionary in the constructor instead of directly to the class. The

answer to this might be a bit tricky to understand. So let's go

back to our juicy apple example to help make sure this is clear.

We defined earlier a class called Apple and set some basic

attributes for it, like color and flavor. All instances of the apple

class will be initialized with the values that we preset for those

attributes.

If we change the color of one apple from red to golden, we

substitute the old value with the new one. Super-important to

remember, this action happens only for that particular instance.

But what if this apple has a worm in it? What if we wanted our

apple class to also have a list of worms?

If we created the list when constructing the class, then all

instances of the apple class would have the same exact list. So if

we added a worm to the list, it would get added to the one list

that's shared by all instances.

To avoid this, we need to create the list at the time of creating

the instance, instead of when creating the class. By doing this,

each instance will have its own list independent of the others.

This happens with all attributes that are mutable, because when

we modify immutable attribute, we're not replacing a value with

another, we're changing the contents of the original attribute.

In our repository case, the packages attribute is a dictionary,

which is mutable. We'll be modifying its contents by adding and

removing elements in it. If we created it at the class level, all

instances of the repository class would use the same dictionary,

and items added or removed would affect all instances at the

same time.

If that's still a bit confusing, don't worry. I was also confused the

first time I came across it. Just take your time. Re-watch this

video if you need and remember this rule of thumb: always

initialize mutable attributes in the

Now, we've got our dictionary, but how will we add packages to

it? We'll create an add_package method (line 4).

1 class Repository:

2 def __init__(self):

3 self.packages = {}

4 def add_package(self, package):

5 self.packages[package.name] = package

Now, we can add packages to the dictionary. We could also write

a similar method to remove the packages, but I bet you can work

that out without my help. Let's do something more interesting

instead.

We said that the packages had a size attribute that holds the size

in bytes that the software package requires. So how could we

calculate the size of the whole repository? We need to iterate over

the packages contained in the dictionary, adding up all their sizes.

I would go something like this:

6 def total_size(self):

7 result = 0

8 for package in self.packages.values():

9 result += package.size

 return result

I will explain the above code as follows. We're going to add up

all the sizes. So the first thing we need to do, is create a result

variable (line 7) that we'll use to sum up the values. So,

awesome. We have our result initialized.

We now need to go through all the packages in the dictionary.

Remember, the keys are the package names and the values are

the package For our calculation, we only care about the objects.

So we'll retrieve them with the values() dictionary method (line 8).

Now, for each package, we want to add the size to the result

variable (line 9). Nice. We're almost done. We just need to return

the result now (line 10).

Take a look at the method we've just written. It's a method inside

the repository class, that's making use of the values method in

the dictionary class and it's accessing the size attribute in the

package class. That is the power of composition. When we have

other objects as attributes, we can use all their attributes and

methods to get our own code to do what we want.

Wow. That was pretty complex. Chances are, you won't get it the

first time around. Most of us don't. So if you're worried you

might have missed something, take your time to review the

contents. We want you to feel confident before moving on. In

section 20.5, where we're going to talk about a different kind of

code we use using Python modules.

20.4. Object Composition

You can have a situation where two different classes are related,

but there is no inheritance going on. This is referred to as

composition -- where one class makes use of code contained in

another class. For example, imagine we have a Package class

which represents a software package. It contains attributes about

the software package, like name, version, and size. We also have

a Repository class which represents all the packages available for

installation.

While there’s no inheritance relationship between the two classes,

they are related. The Repository class will contain a dictionary or

list of Packages that are contained in the repository. Let's take a

look at an example Repository class definition:

... result += package.size

In the constructor method, we initialize the packages dictionary,

which will contain the package objects available in this repository

instance. We initialize the dictionary in the constructor to ensure

that every instance of the Repository class has its own dictionary.

We then define the add_package method, which takes a Package

object as a parameter, and then adds it to our dictionary, using

the package name attribute as the key.

Finally, we define a total_size method which computes the total

size of all packages contained in our repository. This method

iterates through the values in our repository dictionary and adds

together the size attributes from each package object contained in

the dictionary, returning the total at the end.

In this example, we’re making use of Package attributes within our

Repository class. We’re also calling the values() method on our

packages dictionary instance. Composition allows us to use objects

as attributes, as well as access all their attributes and methods.

20.5. Python Modules

So far, we've been using the features that are baked into the

Python language. The basic statements like if, for, while, or the

definition of functions or classes, are part of the language and are

ready for us to use whenever we need them. The same goes for

integers, floats, strings, lists, and dictionaries. They're all part of

the basic Python language because they're used so often. Of

course, this isn't enough to get interesting things done.

We'll need a lot of additional tools like being able to send

packets over the network, read files from our machine, process

images, or who knows what you might want to do to make your

work more effective. To organize the code we need to perform

tasks like these.

Python provides an abstraction called a module. Modules can be

used to organize functions, classes, and other data together in a

structured

Video 46 (3:24 Python Modules

Internally, modules are set up through separate files containing the

necessary classes and functions. Python already comes with a

bunch of ready-to-use All these modules are contained in a group

called the Python standard Let's see how we can use some of

them.

First, we'll use the import keyword to import the random This

module is useful for generating random numbers or making

random choices.

import random

Now that we've imported the module, let's use a function

provided by this module called

random.randint(1, 10)

1

random.randint(1, 10)

4

random.randint(1, 10)

6

This function receives two parameters and generates a random

number between the two parameters that we pass. In this case,

we're generating a random number between 1 and 10. As you can

see, this function returns different numbers each time it's called.

Pretty fun, right?

The syntax used for calling a function provided by a module is

similar to calling a method provided by a class. It uses a dot to

separate the name of the module and the function provided by

that

Let's try using a different module, the datetime module. We use

this for handling dates and times. Now, let's get the current date.

import datetime

now = datetime.datetime.now()

type(now)

'datetime.datetime'>

If you're wondering why we have a doubled datetime, it's because

the datetime module provides a datetime class, and the datetime

class gives us a method called This now method generates an

instance of the datetime class for the current time.

We can operate on this instance of datetime in a bunch of ways.

Let's check out a couple of examples.

print(now)

2021-06-29 14:24:54.667220

When we call print with an instance of the datetime class, we see

the date printed in a specific format. Behind the scenes, the print

function is calling the str method of the datetime class which

formats it in the way that we see here.

We can also access the instance through its attributes and

methods. For example, we can look at the individual parts of the

date like the year, like this:

now.year

2021

The datetime module provides more classes than the datetime

class. For example, we can use the timedelta class to calculate a

date in the future or in the past. Let's try this out.

print(now + datetime.timedelta(days=28))

2021-07-27 14:34:52.989521

In this case, we're creating an instance of the timedelta class with

a value of 28 days, then we're adding it to the instance of the

datetime class that we already had and printing out the result.

There's a lot more things available in the datetime and random

modules. If you're interested in learning more, you can read the

whole reference. It's available online and I will include a link in

section 20.7. This is just a sneak peek into what you could do

with modules. You can also develop your own. We'll talk more

about that in Part 2 of this course. For now, just focus on using

existing Python modules.

20.6. Augmenting Python with Modules

Python modules are separate files that contain classes, functions,

and other data that allow us to import and make use of these

methods and classes in our own code. Python comes with a lot

of modules out of the box. These modules are referred to as the

Python Standard You can make use of these modules by using

the import keyword, followed by the module name. For example,

we'll import the random module, and then call the randint

function within this module:

8

7

1

This function takes two integer parameters and returns a random

integer between the values we pass it; in this case, 1 and 10. You

might notice that calling functions in a module is very similar to

calling methods in a class. We use dot notation here too, with a

period between the module and function names.

Let's take a look at another module: This module is super helpful

when working with dates and times.

>>> now = datetime.datetime.now()

2021-06-29 14:24:54.667220

First, we import the module. Next, we call the now() method

which belongs to the datetime class contained within the datetime

module. This method generates an instance of the datetime class

for the current date and time. This instance has some methods

which we can call:

>>> now.year

2019

2021-07-27 14:34:52.989521

When we call the print function with an instance of the datetime

class, we get the date and time printed in a specific format. This

is because the datetime class has a __str__ method defined which

generates the formatted string we see here. We can also directly

call attributes and methods of the class, as with now.year which

returns the year attribute of the instance.

Lastly, we can access other classes contained in the datetime

module, like the timedelta class. In this example, we’re creating an

instance of the timedelta class with the parameter of 28 days.

We’re then adding this object to our instance of the datetime

class from earlier and printing the result. This has the effect of

adding 28 days to our original datetime object.

20.7. Supplemental Reading for Code Reuse

The official Python documentation lists all the modules included in

the standard library. It even has a turtle in it...

Pypi is the Python repository and index of an impressive number

of modules developed by Python programmers around the world.

20.8. Challenge Lab 2: Code Reuse Lab

Let’s put what we learned about code reuse all together. You can

do this lab right here in this book. Alternatively, you can do it in

your Jupyter Notebooks or Pycharm.

If you choose to do it in your Jupyter Notebooks or Pycharm,

look for two files (both of which contain the same Code Reuse

scripts) with file name C1M5L3_Code_Reuse_V2 in your Challenge

Labs folder. This folder is inside the course resources folder you

downloaded earlier.

Open only one of the two files: if you want to use your Jupyter

Notebook, or if you want to use your Pycharm.

First, let’s look back at Run the following cell that defines a

generic Animal class.

class Animal:

 name = ""

 category = ""

 def __init__(self, name):

 self.name = name

 def set_category(self, category):

 self.category = category

What we have is not enough to do much yet. That’s where you

come in. For the next block, define a Turtle class that inherits

from the Animal class. Then go ahead and set its category. For

instance, a turtle is generally considered a reptile. Although

modern cladistics call this categorization into question, for

purposes of this exercise we will say turtles are reptiles!

When you are done, your result should look like this:

class Turtle(Animal):

 name = ""

 category = "reptile"

Run the following cell to check whether you correctly defined your

Turtle class and set its category to reptile.

print(Turtle.category)

Was the output of the above cell reptile? If not, go back and edit

your Turtle class making sure that it inherits from the Animal

class and its category is properly set to reptile. Be sure to re-run

that cell once you've finished your edits. Did you get it? If so,

great!

Next, let’s practice composition a little bit. This one will require a

second type of Animal that is in the same category as the first.

For example, since you already created a Turtle class, go ahead

and create a Snake class. Don’t forget that it also inherits from

the Animal class and that its category should be set to reptile.

class Snake(Animal):

 name = ""

 category = "reptile"

Now, let’s say we have a large variety of Animals (such as turtles

and snakes) in a Below we have the Zoo class. We’re going to

use it to organize our various Remember, inheritance says a Turtle

is an but a Zoo is not an Animal and an Animal is not a Zoo --

though they are related to one another.

In the Zoo class below you can use zoo.add_animal() to add

instances of the Animal subclasses you created above. Once

you’ve added them all, you should be able to use

zoo.total_of_category() to tell you exactly how many individual

Animal types the Zoo has for each category! Be sure to run the

cell once you've finished your edits.

Run the following cell to check your Zoo class.

turtle = Turtle("Turtle") #create an instance of the Turtle class

snake = Snake("Snake") #create an instance of the Snake class

zoo.add_animal(turtle)

zoo.add_animal(snake)

print(zoo.total_of_category("reptile")) #how many zoo animal types

in the reptile category

Was the output of the above cell If not, go back and edit the Zoo

class making sure to use the appropriate attributes. Be sure to re-

run that cell once you've finished your edits.

Did you get it? If so, perfect! You have successfully defined your

Turtle and Snake subclasses as well as your Zoo class. You are all

done with this lab. Great work!

21. Module Review

21.1. OOP Wrap Up

Object orientation is not easy to understand. So congratulations

on getting through these Concepts. Let's quickly recap the main

Concepts we've just covered.

Video 47 (1:44 OOP Wrap Up

We've learned that in an object-oriented language like python real-

world concepts are represented by We know that instances of

classes are usually called That objects have attributes which are

used to store information about them and we can make objects

do work by calling their

We've also learned that we can access attributes and methods

using dot We then dove into objects can be organized by and

how they can be contained inside each other using

Wow, that really is a lot of new stuff. Congratulations on sticking

with it. Objects are a great way for programmers to model real

world They let us have functions that work on specific things like

reading a file, setting the subject for an email, calculating the size

of a repository of packages and so on.

Isn't it cool to see how all of this is coming together? As a

sysadmin, the objects ideal with the most represent individual

users and their accounts. I use them to group lots of different

properties that help me turn abstract code into tangible

interactions.

I also use objects in my code to group functions based on the

data they act upon. For example, I recently needed to write a

bunch of functions that were all operating on some specific file

attributes. So I used a class to group all those functions making

my code clearer and more reusable. Super helpful, right? I thought

so.

21.2. Challenge Lab 3: Practice Notebook (Object Oriented

Programming)

You can do this lab right here in this book. Alternatively, you can

do it in your Jupyter Notebooks or Pycharm.

If you choose to do it in your Jupyter Notebooks or Pycharm,

look for two files (both of which contain the same Code Reuse

scripts) with file name C1M5_Object_Oriented_Programming_V7 in

your Challenge Labs folder. This folder is inside the course

resources folder you downloaded earlier.

Open only one of the two files: if you want to use your Jupyter

Notebook, or if you want to use your Pycharm.

In this exercise, we'll create a few classes to simulate a server

that's taking connections from the outside and then a load

balancer that ensures that there are enough servers to serve those

connections.

To represent the servers that are taking care of the connections,

we'll use a Server class. Each connection is represented by an id,

that could, for example, be the IP address of the computer

connecting to the server. For our simulation, each connection

creates a random amount of load in the server, between 1 and 10.

Run the following code that defines this Server class.

#Begin Portion 1#

import random

class Server:

 def __init__(self):

 """Creates a new server instance, with no active

connections."""

 self.connections = {}

 def add_connection(self, connection_id):

 """Adds a new connection to this server."""

 connection_load = random.random()*10+1

 # Add the connection to the dictionary with the

calculated load

 def close_connection(self, connection_id):

 """Closes a connection on this server."""

 # Remove the connection from the dictionary

 def load(self):

 """Calculates the current load for all connections."""

 total = 0

 # Add up the load for each of the connections

 return total

 def __str__(self):

 """Returns a string with the current load of the server"""

 return "{:.2f}%".format(self.load())

#End Portion 1#

Now run the following cell to create a Server instance and add a

connection to it, then check the load:

server = Server()

server.add_connection("192.168.1.1")

print(server.load())

After running the above code cell, if you get a NameError

message, be sure to run the Server class definition code block

first.

The output should be 0. This is because some things are missing

from the Server class. So, you'll need to go back and fill in the

blanks to make it behave properly.

Go back to the Server class definition and fill in the missing parts

for the add_connection and load methods to make the cell above

print a number different than zero. As the load is calculated

randomly, this number should be different each time the code is

executed.

Hint: Recall that you can iterate through the values of your

connections dictionary just as you would any sequence.

Great! If your output is a random number between 1 and 10, you

have successfully coded the add_connection and load methods of

the Server class. Well done!

What about closing a connection? Go back to the Server class

definition and work on the close_connection method to make the

following code work correctly:

server.close_connection("192.168.1.1")

print(server.load())

You have successfully coded the close_connection method if the cell

above prints 0.

Hint: Remember that del dictionary[key] removes the item with key

key from the dictionary.

Alright, we now have a basic implementation of the server class.

Let's look at the basic LoadBalancing class. This class will start

with only one server available. When a connection gets added, it

will randomly select a server to serve that connection, and then

pass on the connection to the server. The LoadBalancing class

also needs to keep track of the ongoing connections to be able to

close them. This is the basic structure:

#Begin Portion 2#

class LoadBalancing:

 def __init__(self):

 """Initialize the load balancing system with one server"""

 self.connections = {}

 self.servers = [Server()]

 def add_connection(self, connection_id):

 """Randomly selects a server and adds a connection to

it."""

 server = random.choice(self.servers)

 # Add the connection to the dictionary with the selected

server

 # Add the connection to the server

 def close_connection(self, connection_id):

 """Closes the connection on the the server corresponding

to connection_id."""

 # Find out the right server

 # Close the connection on the server

 # Remove the connection from the load balancer

 for connection in self.connections.keys():

 if connection == connection_id:

 server_ = self.connections[connection]

 server_.close_connection(connection_id)

 del self.connections[connection_id]

 def avg_load(self):

 """Calculates the average load of all servers"""

 # Sum the load of each server and divide by the amount

of servers

 result = 0

 count = 0

 for server in self.servers:

 result += server.load()

 count += 1

 return result/count

 def ensure_availability(self):

 """If the average load is higher than 50, spin up a new

server"""

 if self.avg_load() >= 50:

 self.servers.append(Server())

 def __str__(self):

 """Returns a string with the load for each server."""

 loads = [str(server) for server in self.servers]

 return "[{}]".format(",".join(loads))

#End Portion 2#

As with the Server class, this class is currently incomplete. You

need to fill in the gaps to make it work correctly. For example,

this snippet should create a connection in the load balancer,

assign it to a running server and then the load should be more

than zero:

l = LoadBalancing()

l.add_connection("fdca:83d2::f20d")

print(l.avg_load())

After running the above code, the output is 0. Work on the

add_connection and avg_load methods of the LoadBalancing class

to make this print the right load. Be sure that the load balancer

now has an average load more than 0 before proceeding.

What if we add a new server?

l.servers.append(Server())

print(l.avg_load())

The average load should now be half of what it was before. If it's

not, make sure you work on the add_connection and avg_load

methods so that this code works correctly.

Hint: You can iterate through the all servers in the self.servers list

to get the total server load amount and then divide by the length

of the self.servers list to compute the average load amount.

Fantastic! Now what about closing the connection?

l.close_connection("fdca:83d2::f20d")

print(l.avg_load())

Fill in the code of the LoadBalancing class to make the load go

back to zero once the connection is closed.

Great job! Before, we added a server manually. But we want this

to happen automatically when the average load is more than 50%.

To make this possible, work on the ensure_availability method and

call it from the add_connection method after a connection has

been added. You can test it with the following code:

for connection in range(20):

 l.add_connection(connection)

print(l)

The code above adds 20 new connections and then prints the

loads for each server in the load balancer. If you coded correctly,

new servers should have been added automatically to ensure that

the average load of all servers is not more than 50%.

Run the following code to verify that the average load of the load

balancer is not more than 50%.

print(l.avg_load())

Awesome! If the average load is indeed less than 50%, you are all

done with this assessment.

Module 6

“Operations keeps the lights on, strategy provides a light at the end

of the tunnel, but project management is the train engine that moves

the organization forward.” - Joy Gumz

22. Writing a Script from the Ground Up

22.1. Final Project Introduction

Congratulations on making it here! You're almost at the end of

the course. It's been an interesting and rewarding journey don't

you think? Along the way you've learned the basics of Python

syntax, including functions, conditionals, and for and while loops.

You've also learned how to use the most common data types, like

integers strings, lists, and dictionaries. You even learned about

object-oriented programming. Now we're going to put all this

knowledge together to solve more fun and exciting problems.

We're going to approach these new challenges like they're real-

world problems. We need to solve with a script. By doing this

we'll see yet another example of how these programming skills

can make the work we do in our IT jobs faster and more

efficient.

In the next sections, we'll check out how to go about solving a

more complex problem by writing a script from the ground up. To

do that we'll go step by step using a recommended way for

dealing with more advanced challenges.

Back at the beginning of the course, I told you a little bit about

the first Python script I ever wrote. It all started with a problem,

my teams on call person was getting paged too much. Being on

call is drawing the ultimate short straw. Whenever an issue

springs up the person on call needs to be there to put out the

fire.

It's an exhausting challenge. So to help alleviate some of the

stress we wanted to build a better monitoring dashboard. Getting

it done took a lot of refactoring, debugging, and testing. It wasn't

easy, but thankfully I didn't have to start from scratch.

I had the help of my teammates and many thousands of people

who posted similar struggles on the Internet. When the dashboard

was finally up and running, the on-call person wasn't the only one

breathing a sigh of relief.

To start solving our problem, we'll first look at the problem

statement where we'll get an understanding of what we need to

do and the inputs and outputs for the script we'll need to write.

Then we'll do some research.

We'll think about how we can tackle the problem with the tools

already baked into Python. Remember that we always want to

avoid reinventing the wheel. No matter how tricky and intricate

the challenge appears, chances are that others have solved a

similar one before.

So it's valuable to spend some time tapping into the resources

that exist to help us solve our problem. Once we know what we

need to write and what we can use it to do, we'll do some

planning. We'll think about what data types will be useful for our

solution and how we're going to operate on them.

Finally, we'll do the actual writing of the script and then we'll

check that the code does what it's supposed to do. Sound good?

When we take the structured approach to tackling problems there

really isn't a challenge too complex to solve. So let's get started!

22.2. Problem Statement

Video 48 (3:14 Problem Statement

Imagine that you're an IT specialist working in a medium-sized

company. Your manager wants to create a daily report that tracks

the use of machines. Specifically, she wants to know which users

are currently connected to which machines. It's your job to create

the report.

In your company, there's a system that collects every event that

happens on the machines on the network. Among the many

events collected it records each time a user logs in or out of a

computer. With this information, we want to write a script that

generates a report of which users are logged in to which

machines at that time.

Before we jump into solving that problem, we need to know what

information we will use as input and what information we will

have as output. We can work this out by looking at the rest of

the system where our script will live.

In our report scenario, the input is a list of each event is an

instance of the event class. An event class contains the date when

the event happened, the name of the machine where it happened,

the user involved, and the event type.

In this scenario, we care about the login and logout event type.

All right, that's good to know. But we need to know exact names

of the attributes, otherwise, we won't be able to access them. The

attributes are called and

The event types are strings and the ones we care about are login

and logout. With that we should have enough information about

the input of our script. Our script will receive a list of event

objects and we'll access the events attributes. We'll then use that

information to know if a user is currently logged into a machine

or not.

Let's talk about the output. We want to generate a report that

lists all the machine names and for each machine, lists of the

users that are currently logged in. We then want this information

printed on the screen. We've been tasked with generating a report

and we can decide exactly how we want that report to look.

One option would be to print the name of the machine at the

beginning of the line and then list the current users on separate

lines, and indent it to the right. Alternatively, we could print the

machine name followed by a colon and then the usernames

separated by commas all in the same line. We can probably come

up with something even more fancy.

When formatting a report, it's easy to get caught up in the

making-it-look-good part. I've fallen into that trap but what really

matters is how well the script solves the problem. So it's better

to first focus on making the program work. You can always spend

time making the report look nice later.

Let's keep it simple for now. We will go with the approach of

printing the machine name followed by all the current users

separated by commas.

Okay, we now have a pretty good idea of what we need to do.

We've identified our problem which is, we need to process a list

of event objects using their date, type, machine, and user

attributes to generate a report that lists all users currently logged

into the machines. We're off to a great start. The next step we're

going to do is some research to work out how to best actually

do this.

22.3. Research

Video 49 (4:26 Research

Now we have our problem statement which helps us understand

the problem and focus our approach. We know we have to input

a list of event objects and evaluate these objects attributes to

output a report of all the users currently logged into a machine.

Now it's time for step 2, the research. We're going to consider all

the tools we have available to help us solve the problem. To find

out which users are currently logged into machines, we need to

check when they logged in and when they logged out.

If a user logged into a machine and then logged out, they're no

longer logged into it. But if they didn't logout out yet, they're still

logged in. I know. We're stating the obvious here, but in

programming, it is super important to be clear on the parameters.

Also, knowing this tells us that to solve this correctly, it's vital

that we process the events in chronological order. If they're not,

we can get the logout event before the corresponding login event

and our code may do unpredictable things, and no one likes

unpredictable code!

So how do we sort lists in Python? We'll need to do some

research. Type “sort lists in Python” into your favorite search

engine and you'll get a bunch of results that mentioned the list

sort method and the sorted function.

The difference between these two options is that the sort method

modifies the list it's executed on, while the sorted function returns

a new list that's been Apart from that, they work the exact same

way. Let's check out this difference in action.

First, will create a list of numbers and call the sort method to

sort the list.

numbers = [4, 6, 2, 7, 1]

numbers.sort()

print(numbers)

[1, 2, 4, 6, 7]

You can see here that the elements of the list have been sorted.

Let's try a different example now using the sorted function. We'll

create a list of names.

names = [“Carlos”, “Ray”, “Alex”, “Kelly”]

print(names)

[‘Carlos’, ‘Ray’, ‘Alex’, ‘Kelly’]

Then we'll print the output of the sorted function.

print(sorted(names))

[‘Alex’, ‘Carlos’, ‘Kelly’, ‘Ray’]

Let's print the original list again to check that it didn't change.

print(names)

[‘Carlos’, ‘Ray’, ‘Alex’, ‘Kelly’]

So you can see that the original list was not modified. The sorted

function returned a new sorted list, but the original was left

untouched. Nice. We now know how to sort things in Python. For

this problem, it's fine to modify the original list. So we will use

the sort method.

But wait. See how both these options sorted the list alphabetically:

[1, 2, 4, 6, 7]

[‘Alex’, ‘Carlos’, ‘Kelly’, ‘Ray’]

That's the default approach Python takes. But what if we wanted

to organize our lists by different criteria?

Again, if we take a look at the documentation we found online,

we'll see that the sort method can take a couple of parameters.

One of these parameters is called and it lets us use a function

as the sorting key. Let's try this out on our list of names. Instead

of sorting alphabetically, we could sort by the length of each

string.

Do you remember which function we can use to do that? Yes, we

can pass the len() function as the key.

All right. We now know how to order elements of a list based on

the return value of a function. In our report scenario, we know

that our elements will be instances of the event class and we

want to order by date, which is an attribute of the event class.

One way we could do this is to write a function called

get_event_date which returns the date stored in the event object.

We could also create this as a method in the event class if we

had access to modifying the class.

But since we're working with a bigger system that generates these

events, we will assume that we can't just add a method to the

class. So we'll create our own function instead. How does that

sound? Is it all making sense?

Remember that there are various paths we could take to solve

this problem. But some are better than others. So it's important

to understand why we chose the options we did.

Feel free to take some time on your own to explore the

possibilities and understand what we're doing. In the next section,

we will dive into our plan to build our script.

22.4. Planning

You're doing great with this so far. We've already defined our

problem statement and then we researched options to figure out

what tools we have available and which are best for the job. Now

it's time to plan our approach.

Video 50 (2:35 Planning

We know that our input will be a list of events and we'll sort

them by time. Each event in that list will include a machine

name, a username, and tell us whether the event is a login or a

logout. We want our script to keep track of users as they log in

and out of machines. So how can we do this?

Let's think about what we'll do for each event and see if we can

figure out the best strategy. When we process an event, we'll see

that someone interacted with a machine.

If it's a we want to add it to the group of users logged into that

If it's a we want to remove it from the group of users logged

into the

In this scenario, it makes sense to use a set to store the current

users. Adding new users at login time and removing them at

logout time. Great. But if the current users of a given machine

are stored in a set, how do we know which set corresponds to

the machine we're looking for?

The easiest way to know this is to store this information in a

dictionary. We'll use the name of the machine as the key and the

current users of that machine as the So for each event we

process, we'll first check in the dictionary to see if the machine is

already there.

We need to check this because it could be the first time we're

processing an event for that machine. If it's not there, we'll create

a new entry. If it is, we'll update the existing entry with the action

corresponding to the event. This means we either add the user if

the event is a login or remove the user if it's a logout.

Once we're done processing the events, we'll want to print a

report of the information we generated. This is a completely

separate task. So it should be a separate function. This function

will receive the dictionary regenerated and print the report.

It's important to have separate functions to process the data and

to print the data to the screen. This is because if we want to

modify how the report is printed, we know we only need to

change the function in charge of printing.

Or, if we find a bug in our processing the data, we only need to

change the processing function. It would also allow us to use the

same data processing function to generate a different kind of

report, like generating a PDF file, for example.

Now, we know what we need to do, how we need to do it, and

how we'll structure our code. Now we can get into the meaty

stuff, that is, actually writing the code!

22.5. Writing the Script

We've come a long way to get here, so let's quickly rattle off what

we know so far. We know that we need to process the events to

generate a report. We know how to sort the list of events

chronologically. We know that we'll store the data in a dictionary

of sets, which we'll use to keep track of who's logged in where,

and that we'll have a function that generates the dictionary and a

separate one that prints the dictionary.

I think that's everything. Know what that means? We are finally

ready to write our code. A copy of the completed code is inside

your Challenge Labs folder. Its file name is You can open it later

in an editor such as Pycharm.

Let's start by defining the helper function that we'll use to sort

the list.

Video 51 (5:44 Writing the Script

def get_event_date(event):

 return event.date

We will use this simple function as the parameter to the sort

function to sort the list. Now, we're ready to start coding are

processing function, which we will call The first step is to define

the function.

def current_users(events):

Inside the function, we'll first sort our events by using the sort

method, and passing the function we just created as the key.

Also, before we start iterating through our list of events, we need

to create the dictionary where we will store the names end users

of a machine.

events.sort(key=get_event_date)

machines = {}

Now, we're ready to iterate through our list of events. Next, we

want to check if the machine affected by this event is in the

dictionary. If it's not, we'll add it with an empty set as the value.

for event in events:

if event.machine not in machines:

machines[event.machine] = set()

Now, for the login events, we want to add the user to the list,

and for the logout events, we want to remove users from the list.

To do this, we're going to use the add and remove methods,

which add and remove elements from a set.

if event.type == "login":

machines[event.machine].add(event.user)

elif event.type == "logout" and event.user in

machines[event.machine]:

machines[event.machine].remove(event.user)

return machines

Once we are done iterating through the list of events, the

dictionary will contain all machines we've seen as keys. With a set

containing the current users of the machines as the values, this

function returns the dictionary. We will handle printing in a

different function.

We now have the dictionary ready, and we need to print it. For

that, we'll create a new function called as shown in the first line

of this block which I will explain below.

1 def generate_report(machines):

2 for machine, users in machines.items():

3 if len(users) > 0:

4 user_list = ", ".join(users)

5 print("{}: {}".format(machine, user_list))

In our report, we want to iterate over the keys and values in the

dictionary. To do that, we'll use the method items (line 2) that

returns both the key and the value for each pair in the dictionary.

Now, before we print anything, we want to ensure that we don't

print any machines where nobody is currently logged in. This

could happen if a user logged in and then logged out. To avoid

that, we tell the computer only to print when the set of users has

more than zero elements (line 3).

Now, we said earlier that we want to print the machine name,

followed by the users logged into the machine, separated by

commas. We generate the string of logged in users for that

machine using the method join (line 4). Finally, we can generate

the string we want using the format method (line 5).

Now. we've written all the functions we need to tackle our

problem. Did everything makes sense? This is a great moment to

pause and review the sections (or videos) for each step in our

approach, from problem statement to writing the code.Make sure

it's clear, not just which function we're using, but why we're using

it.

If anything is a little fuzzy, remember you can contact me or use

the discussion forums to ask for help. It's about to get exciting in

the next section. We're going to execute this code and see if it

works. I'm feeling good about it. Let's put our code to the test!

22.6. Putting It All Together

Video 52 (2:24 Putting it All Together

We're almost done solving our problem. We've written the code

that solves our problem statement after following our research and

plan. We're now going to put all of our code in a Jupyter

notebook, execute it and see what happens. Open your own copy

of the code now in your Jupyter Notebook now. Alternatively, you

can use your Pycharm.

To check that our code is doing everything it's supposed to do,

we need an Event For this scenario, we'll use the very simple

event class (already included in your code). Here it is:

class Event:

 def __init__(self, event_date, event_type, machine_name, user):

 self.date = event_date

 self.type = event_type

 self.machine = machine_name

 self.user = user

Now, we have an event class that has a Constructor and sets the

necessary attributes. Using this Constructor, we'll create some

sample events (already included in your code) and add them to a

list by running the follwing cell. Click the run button on your

Jupyter Notebook or Pycharm. Here are the sample events to

check that the code runs correctly.

events = [

 Event('2020-01-21 12:45:56', 'login', 'myworkstation.local',

'jordan'),

 Event('2020-01-22 15:53:42', 'logout', 'webserver.local', 'jordan'),

 Event('2020-01-21 18:53:21', 'login', 'webserver.local', 'lane'),

 Event('2020-01-22 10:25:34', 'logout', 'myworkstation.local',

'jordan'),

 Event('2020-01-21 08:20:01', 'login', 'webserver.local', 'jordan'),

]

Now, we've got a bunch of events. They're currently unsorted, they

affect a few machines and include some users. We'll feed these

events into our function and see what happens. Everything is now

ready to go. Now let's call the code an verify it generates the

dictionary.

users = current_users(events)

print(users)

{'webserver.local': {'lane'}, 'myworkstation.local': set()}

Now we will generate the report by running the next cell:

print(generate_report(users))

webserver.local: lane

Great! Only one user (lane) is currently logged in.

So our code correctly created a dictionary with the machine

names as keys. There's one empty set and two sets with one

value. Our report correctly skipped the one machine that had an

empty set. That's great.

In the world of IT, there's a bunch of other things that could

happen. What happens if we come across an event for a user

logging out that had never logged in? What do you think we

should do then? We're going to try and figure this out in the next

Challenge Lab.

22.7. Challenge Lab 4: Putting It All Together

I want you do this lab in your Jupyter Notebooks. Open your

Challenge Labs folder and look for two files with the same title

The exact name of each file is Your Challenge Labs folder is

inside the course resources folder you downloaded earlier.

You should open only one of the two files. Open

C1M6L1_Putting_It_All_Together.ipynb if you want to use your

Jupyter Notebook which I recommend, or

C1M6L1_Putting_It_All_Together.py if you prefer to use your Pycharm

or other editors.

The copy of the code is below. It is similar to what we wrote in

the last section. Go ahead and run the following cell that defines

our current_users and generate_report methods.

def get_event_date(event):

 return event.date

def current_users(events):

 events.sort(key=get_event_date)

 machines = {}

 for event in events:

 if event.machine not in machines:

 machines[event.machine] = set()

 if event.type == "login":

 machines[event.machine].add(event.user)

 elif event.type == "logout" and event.user in

machines[event.machine]:

 machines[event.machine].remove(event.user)

 return machines

def generate_report(machines):

 for machine, users in machines.items():

 if len(users) > 0:

 user_list = ", ".join(users)

 print("{}: {}".format(machine, user_list))

No output should be generated from running the custom function

definitions above. To check that our code is doing everything it's

supposed to do, we need an Event The code in the next cell

below initializes our Event class. Go ahead and run this cell next.

class Event:

 def __init__(self, event_date, event_type, machine_name, user):

 self.date = event_date

 self.type = event_type

 self.machine = machine_name

 self.user = user

Now, we have an Event class that has a constructor and sets the

necessary attributes. Next let's create some events and add them

to a list by running the following cell.

events = [

 Event('2020-01-21 12:45:56', 'login', 'myworkstation.local',

'jordan'),

 Event('2020-01-22 15:53:42', 'logout', 'webserver.local', 'jordan'),

 Event('2020-01-21 18:53:21', 'login', 'webserver.local', 'lane'),

 Event('2020-01-22 10:25:34', 'logout', 'myworkstation.local',

'jordan'),

 Event('2020-01-21 08:20:01', 'login', 'webserver.local', 'jordan'),

 Event('2020-01-23 11:24:35', 'logout', 'mailserver.local', 'chris'),

]

Now we've got a bunch of events. Let's feed these events into

our custom_users function and see what happens.

users = current_users(events)

print(users)

{'webserver.local': {'lane'}, 'myworkstation.local': set(),

'mailserver.local': set()}

Uh oh! The code in the previous cell produces an error message.

This is because we have a user in our events list that was logged

out of a machine he was not logged Do you see which user this

is? It’s Chris!

Make edits to the first cell containing our custom function

definitions to see if you can fix this error message. There may be

more than one way to do so.

Remember when you have finished making your edits, rerun that

cell as well as the cell that feeds the events list into our

custom_users function to see whether the error message has been

fixed. Once the error message has been cleared and you have

correctly outputted a dictionary with machine names as keys, your

custom functions are properly finished. Great!

Now try generating the report by running the next cell:

print(generate_report(users))

webserver.local: lane

Whoop whoop! Success! The error message has been cleared and

the desired output is produced. You are all done with this practice

notebook. Way to go!

23. Final Project

23.1. Final Project Overview

Video 53 (3:21 Final Project Overview

Wow, first off, a huge congrats! You're about to start the final

project of the course. Amazing job making it all the way here. I

hope you've been having as much fun as I have on this journey.

You're going to be working on your final project using only

Jupyter Notebooks. You might be starting to feel pretty confident

using them. But remember if you have any issues you can always

ask me or ask for help in the discussion forums.

Before we dive in, I’m going to explain a little bit about what

you'll be doing for the project. It's going to be really fun. The

goal of the project is to create a word A word cloud is an image

that's made up of different sized words. An example is shown in

Fig. 23.1.1.

Fig. 23.1.1: A word cloud

Usually the sizes of the words are determined by how many times

each word appears in a specific text. To create the image itself,

we're going to use an external Python module called creatively

Word

Your project is to create a script that would go through the text

and count how many times each word appears. We've done this a

few times already. Do you have any ideas how we should tackle

this one?

If you're thinking of using a dictionary to count how many times

each word appears, then you have a good answer! You're going to

prepare a dictionary and use that as a parameter for the word

cloud module. Not too tricky, right? I think you can handle a little

more, so two things you have to watch out for.

First: punctuation Before counting the frequency of the words, you

need to make sure that there are no punctuation marks in the

text. If you don't, a string example with a comma at the end

would be different from a string example with a dot at the end.

So before you put words into the dictionary, you have to clean up

the text to remove any punctuation marks.

The second thing is we want to keep our word cloud Certain

words in our language crop up a lot and if we include all of

these we're going to get a pretty dull word cloud. Think about

words like “a”, “the”, “too”, “if” and so on. They usually appear a

whole lot in text but aren't too relevant to the text's overall

message.

We want our Cloud to show words that are relevant to the text

we're using for the input. So you need to find a way to exclude

irrelevant or uninteresting words when processing the text. For the

input, you're going to upload a text file. You can choose any text

file you like for your input.

It could be the contents of a website, a full novel or even

everything that one author has ever written. You just need to

make sure that it's one text so that it can be processed by the

code. Okay, before jumping into the project, remember you can

revise this section or re-watch the video if something is not clear.

I know I'm starting to sound like a broken record, but this time

it's very important. This final project is the real test of how much

you've gotten your head around in this course. It can highlight

areas you need to brush up on. So we want you to be super

clear on what you need to do on that point.

You'll find an overview of what you have to do in the next

section. Can you guess the best way of tackling this problem? Use

our step-by-step approach that we outlined earlier. Understand the

problem statement, research available options, plan your approach,

write your code and finally execute.

Okay, feeling good? Ready to go? Remember, you know this stuff

and you've totally got it!

23.2. Final Project Help

23.2.1 Project goal

Create a dictionary with words and word frequencies that can be

passed to the generate_from_frequencies function of the WordCloud

class. Once you have the dictionary, use this code to generate the

word cloud image:

cloud = wordcloud.WordCloud()

cloud.generate_from_frequencies(frequencies)

cloud.to_file("myfile.jpg")

Things to remember

Before processing any text, you need to remove all the

punctuation marks. To do this, you can go through each line of

text, character-by-character, using the isalpha() method. This will

check whether or not the character is a letter.

To split a line of text into words, you can use the split() method.

Before storing words in the frequency dictionary, check if they’re

part of the "uninteresting" set of words (for example: "a", "the",

"to", "if"). Make this set a parameter to your function so that you

can change it if necessary.

Input file

For the input file, you need to provide a file that contains text

only. For the text itself, you can copy and paste the contents of a

website you like. Or you can use a site like Project Gutenberg to

find books that are available online. You could see what word

clouds you can get from famous books, like a Shakespeare play or

a novel by Jane Austen.

Jupyter Notebooks Help

Remember that if you need help with Jupyter Notebooks, you can

check out this help

23.3. Final Project (Challenge Lab 5)

23.3.1. Instructions

Again, for this project, you’ll create a “word cloud” from a text by

writing a script. This script needs to process the text, remove

punctuation, count the frequencies, and ignore uninteresting or

irrelevant words. Good luck!

23.4. Final Project Grading

I (or any member of my team) is available to help you grade

your final project. You can use my help link (email) at the end of

chapter 25 to send your project work for grading. We will get back

to you in 12 to 24 hours with your result.

However, if you cannot wait, you can open the “Challenge Labs”

folder you downloaded earlier. It contains the the solution to this

project. You can use it to grade your project by yourself. Just be

honest as you grade. Here’s the file name to search:

Final Project Solution File Name: C1M6L2_Final_Project_V3.ipynb

The text used in the project is as follows:

Text Begins

I am a Control Systems engineer, Systems Integrator and a Content

Creator. I have worked with over a thousand clients across business

sectors, mostly the PLC automation industry. I have written numerous

books, articles, and leadership classes for higher education institutions.

I have over 15 years of experience in Control Systems Engineering. I

have had the opportunity to work within world class organizations

such as Kraft Heinz, Procter & Gamble, and Post Holdings.

As a Control Systems Engineer, I have worked on several PLC-based

systems such as the Allen-Bradley’s RSLogix 5, 500, 5000, Studio 5000

and PACs. I have mastered other great technologies such as Cognex

In-Sight Vision Systems & so much more.

Now I live and breathe PLCs (Programmable Logic Controllers). I've

invested a lot of money and time into equipping myself with many of

the latest PLC hardware in the world. This is because I truly believe

that an investment in myself will pay dividends down the road and

that the automation industry will only keep growing.

I believe in excellence and I'm highly driven by successful people. I

am dedicated to seeing my clients succeed and achieve their goals. I

love to create PLC programs and help manufacturing companies grow.

I've successfully coached over a thousand business owners and leaders.

I'm proud to boast of extensive experience and a successful company

which has been in business for over 15 years.

Text Ends

Feel free to use my own text if you like. Otherwise, you can copy

and paste the contents of a website you like. Feel free to share

your word cloud in the discussion forums!

24. Course Wrap up

24.1. Congratulations!

Congratulations! You've made it through the entire course. These

were not easy concepts to learn. I want you to think all the way

back to when you were just starting this journey. You remember

what you were feeling when you watched those first videos. Maybe

a little nervous, terrified, excited, or probably all these emotions at

once.

You tuned in with me, studied the whole course, watched all my

videos, and kept going when it got complex. You should be proud

of yourself! Take a moment to reflect on where you are now.

You've gone from having little or no knowledge of programming,

to being able to write all kinds of complex functions.

You're using conditionals, loops, strings, lists, and even

dictionaries. You even created your own objects. You put it all

together to write your very own program, applying a process

which you might use in your day-to-day IT role, and hopefully you

had as much fun doing it as I did teaching you.

It's impressive that you've mastered all the stuff, and I hope it's

just the beginning of your Python journey. Building a successful

career in IT calls for perseverance, curiosity, and grit - three

qualities you've proven to have heaps of by making it this far.

It also requires skills and knowledge, and this basic Python is

definitely a powerful tool in your IT toolbox. Knowing how to write

scripts will set you apart from others as you look to advance in

your career. I bet you're now seeing tasks all around you which

are sparking ideas on how you could automate them with a

script. The possibilities are endless, and it's just the start.

Remember what I said in one of my first videos: a journey of a

thousand miles begins with a single step. There's still a lot of

exciting things you can learn. I hope soon you will order my book

for the next course (Part 2) where you will be learning all about

how Python interacts with the computer's operating

But for now, I want to wish you best of luck. I look forward to

seeing you and your code out there.

24.2. Discussion Forums: Share Your Learner Journey

Thinking back on the whole course: What’s been the most

interesting thing you learned? What’s been the most difficult

thing? Share your learner journey with the learner

24.3. Sneak Peek of the Next Course (Part 2)

You've made it through this Python course, which is part one. But

your journey with Python is just heating up. In the next part, you

will learn how Python interacts with the operating You'll build on

all the skills you learned here and your programming is going to

get a little more sophisticated.

Here is what you can expect from the next course. We're going to

cover how to set up your own developer environment in Python,

and in no time, you'll start feeling comfortable using codes to

interact with the operating system (OS).

We'll also manipulate files and processes running on the OS, and

dive into RegEx which is a super powerful tool for processing text

files. You're even going to write a script that might be similar to

a task you'd be assigned at your job.

But personally, my favorite part of the whole course is definitely

where we talk about the Linux OS, but it's not because it's the

primary OS I use in my job. Linux opens up a whole world of

customization and configuration, and I find it really interesting.

I've got a lot of powerful and fun concepts coming up. So don't

miss out. I'll see you over in the next course! Thank you for

ordering my course. Bye for now!

25. How to Download the Course Resources

To download all the resources you need to study this course, use

this short link:

If you experience any trouble downloading or accessing any of the

resource, please contact me through my email address at the end

of section 25.1.

25.1. How to Get Further Help

Dear reader, I hope you find this book and the accompanying

videos very helpful in learning basic Python programming. You

may find some of the concepts I covered in this book confusing

at first. However, with time and a little more effort, you should be

able to write very useful Python codes.

I am available for further help. Contact me through my support

email below or visit my Author page if you need further help, or

if you have questions or requests.

Regards,

mwillyd@gmail.com

A. J. Wright

(Author page:

25.2. More Helpful Resources

Below is a list of a few books from that I believe you will also

find very helpful.

1. PLC Programming from Beginner to Paid Professional - Part

Learn RSLogix Software & Hardware with Demo Videos -

2. PLC Programming from Beginner to Paid Professional - Part

Learn How to Setup, Integrate & Program the Most Used Allen

Bradley PowerFlex 525 Drive with Demo Videos -

3. PLC Programming from Beginner to Paid Professional - Part

Learn How to Develop & Embed Machine Vision System in PLC

with Demo Videos -

4. Simple PLC & HMI Programming A Batching Tank Ladder Logic

and HMI Tutorial for Learning PLCs -

5a. Practical Electronic A Strong Foundation for Creating Electronic

Projects – Print book -

5b. Practical Electronic A Strong Foundation for Creating Electronic

Projects – Ebook -

6. Cloud Computing Learn the Latest Cloud Technology and

Architecture with Real-World Examples and Applications -

7. Artificial Intelligence The Foundations & History of Intelligent

Machines -

8. Fundamentals of Satellite Navigation How to Design GPS/GNSS

Receivers Book 1 - The Principles, Applications & Markets -

9. Excel Pivot Tables & A Step By Step Visual Guide -

10. How to Sell Used Books on Learn How to Generate Over

$10K Monthly Sourcing Cheap Used Books Online & Selling to

Amazon without Marketing -

11. How to Study in USA on For Getting Financial Aids College

Admissions & Visa Approval -

12. How to Study in Germany Tuition Get Free Education,

Admission & Visa Approval. Get Prepared for Studies at German

Universities -

13. Google Cloud Certified Associate Cloud Engineer Certification

Guide 1: Learn with challenge labs, assessment tests and practice

exams to build innovations and real-life experiences -

	Start

