


Algorithms
Practical Guide to Learn Algorithms

for Beginners



© Copyright 2021 - All rights reserved.
The contents of this book may not be reproduced, duplicated or transmitted without direct written
permission from the author.

Under no circumstances will any legal responsibility or blame be held against the publisher for any
reparation, damages, or monetary loss due to the information herein, either directly or indirectly.

Legal Notice:

This book is copyright protected. This is only for personal use. You cannot amend, distribute, sell,
use, quote or paraphrase any part or the content within this book without the consent of the author.

Disclaimer Notice:

Please note the information contained within this document is for educational and entertainment
purposes only. Every attempt has been made to provide accurate, up to date and reliable complete
information. No warranties of any kind are expressed or implied. Readers acknowledge that the
author is not engaging in the rendering of legal, financial, medical or professional advice. The
content of this book has been derived from various sources. Please consult a licensed professional
before attempting any techniques outlined in this book.

By reading this document, the reader agrees that under no circumstances is the author responsible for
any losses, direct or indirect, which are incurred as a result of the use of information contained within
this document, including, but not limited to, —errors, omissions, or inaccuracies.



Table of Contents
Introduction

Chapter One: Introduction to Algorithms
Association between Algorithms and Computer Science
Characteristics of an Algorithm
Designing an Algorithm
How to Identify the Best Algorithm
Understanding the Basic Algorithm that Digitally Powers Life
Benefits of Algorithmic Thinking
Pros and Cons

Chapter Two: Types of Algorithms
Backtracking Algorithm
Brute Force Algorithm
Divide and Conquer Algorithm
Dynamic Programming Algorithm
Greedy Algorithm
Randomized Algorithm
Simple Recursive Algorithm

Chapter Three: Describing Algorithms

Chapter Four: Error Handling
Checking for Exceptions
Defining Exceptions
Special Case Patterns
Nulls
Common Error Messages
Dealing with errors

Chapter Five: Analysis of Algorithms
Importance of Analysis
Analysis Methods



Space Complexities
Understanding Recursion

Chapter Six: An Introduction to Writing Programs
Principles of Programming
Objects and Classes
Data Types
Operations

Chapter Seven: Types of Programming Languages
Definition
Types of Programming Languages
Programming Languages

Chapter Eight: Important Programming Techniques
Arrays
Building Big Programs
Bitwise Logic
Boolean Logic
Closures
Concurrency
Decision or Selection
Disk Access
Immutability
Interacting with the Command Line
Interacting with the OS
Lambdas
Loops and Repetitions
Linked Lists
Modular Arithmetic
Pointers
Safe Calls



Scaling and Random Numbers
Strings
Structures
Text Manipulation
Trigonometry
Variables

Chapter Nine: Testing the Program
Laws of TTD
Keeping the Tests Clean
Testing the Abilities of the Code
Clean Tests
Characteristics of Tests

Chapter Ten: Sorting and Searching Algorithms
Searching Algorithms
Sorting Algorithms

Chapter Eleven: Loop Control and Decision Making
Decision Making
Loop Statements
Loop Control Statements

Chapter Twelve: Introduction to Data Structures
The Struct Statement
Accessing Structure Members
Using Structures as Arguments
Using Pointers in Structures
Typedef Keyword

Chapter Thirteen: Comments and Formatting
Comments
Formatting

Chapter Fourteen: Debugging



Conclusion

Resources



Introduction
If you want to step into the world of programming and coding, you must
understand the basics. You cannot develop complex programs or products
with limited knowledge of programming. At the base of every computer
program is an algorithm. If you want to write efficient and effective code,
you must write algorithms first, and to do this, you must understand what an
algorithm is. This is the only way you can develop the right program.

If you are unsure of what an algorithm is or want to learn the basics again,
you are in the right place. This book has all the information you need to
understand algorithms and how they can be used to develop good code or
programs. You must develop the right algorithm, especially if you want to
write the perfect code. An algorithm is a set of rules or instructions, which
indicate to a machine or computer the process it should follow to achieve
the result.
Throughout the book, you will learn about the different types of algorithms
and how they can be used to solve a variety of problems. The book also
introduces you to some programming concepts, and you need to understand
these concepts to ensure you develop the right code once you have an
algorithm in place. Since algorithms form the base for any code you write,
it is also important to include certain statements to handle different types of
errors. You will learn how to do this and what lines of code to include to
handle errors in the code.

The book covers some of the most common algorithms, including search,
sort, loops, decision-making statements, and more. It also includes some
examples and programs which will make it easier for you to convert an
algorithm into a program when you need to. It is important to understand
that you cannot become an expert at coding if you do not understand the
basics. Therefore, use the information in the book to help you improve your
understanding of coding and practice as often as you can so you master
writing algorithms and programs.
Thank you for purchasing the book. I hope the book covers all the
information you are looking for.



Chapter One: Introduction to Algorithms
A programmer needs to know what an algorithm is, so they know how to
use it to write code. An algorithm is a set of rules, instructions, or processes
any machine or system should follow to solve a problem. It can include the
type of operations to use and the variables one should declare. In simple
words, an algorithm is a set of rules defining the steps to complete to obtain
the desired results.

Any recipe you follow is an algorithm. If you want to try a new dish, you
read the instructions or steps given. Only when you do this can you make
the perfect dish. It is also important to follow the instructions to the tee. An
algorithm ensures a system performs a task, so the user obtains the expected
output. Algorithms are very simple instructions, and you can implement one
in any programming language as long as you understand the syntax. The
output will be the same.

Association between Algorithms and Computer Science
If you want the computer to complete any task, you must write a program.
Using this program, you can tell the computer exactly what it needs to do,
so you receive the required output. Ensure the steps are defined clearly. The
computer will follow these steps and will accomplish the end result. Ensure
you choose the right input variables and information to feed the computer
so you obtain the right output. Algorithms are the best way to get a task
done.

Characteristics of an Algorithm
Let us continue with the example of a recipe. If you want to prepare
something new, you need to follow numerous instructions. You will do your
best to stick to the recipe, but you may improvise if you do not have a
specific ingredient. In the same way, you cannot convert a program into an
algorithm since not every statement is a part of an algorithm. Regardless of
how you write an algorithm, it will have the following characteristics:

Feasible
Algorithms should be simple, generic, and practical. Ensure any
programming language can execute this algorithm based on the resources



the programming language has available. Do not write an algorithm without
knowing how to use a programming language to code it. Instead, it must be
written based on the relevant information about its use.
Finite

Any algorithm you write should be finite. If you use loops or any other
function, ensure the algorithm ends. Do not have an infinite or circular
reference that can leave the algorithm running continuously.
No Dependence on Language

No algorithm should have a dependency on a programming language. The
instructions should be precise and simple. Ensure you can use any
programming language to write your algorithm. As mentioned earlier, the
output will be the same.
Unambiguity
Every algorithm you write should be clear and unambiguous. Every step
should be clear and should only mean one thing. The compiler should never
be given a chance to think of two or three different ways to perform a
certain step. Every instruction must be clear in every aspect.

Well-Defined Inputs
When you make a new dish, you should look at the relevant ingredients and
ensure they are exactly what you need to make the dish. This is the same for
the inputs you enter when writing an algorithm.

Well-Defined Outputs
If you follow the instructions given in a recipe to the tee, your dish will be
exactly what you decided to make. Ensure that the algorithm you write will
clearly define the type of output you want to obtain. This means you must
define the output clearly, as well.

Designing an Algorithm
Before you write any algorithm, ask yourself the following questions:

▪        What inputs do you want to use for the algorithm?



▪        What constraints must you bear in mind when you try to solve this
problem?

▪        What is the desired or expected output?

▪        What problem are you trying to solve by writing this algorithm?
▪        What is the solution to the problem based on the constraints?

These questions make it easier for you to generate the correct output. It
helps you think clearly, so you write an effective algorithm. Let us look at
an example now where we are trying to multiply three numbers and print
the product of those numbers.
Step One: Identifying the Problem Statement
It is important to answer the questions above before writing an algorithm.
Let us assume we want to write an algorithm to multiply three numbers and
calculate the output. Therefore, the problem statement here is to calculate
the product of three numbers.

Once you do this, you must identify the desired output, constraints, desired
inputs, and the solution to the problem. One of the constraints you must add
is to ensure the user enters only numbers to calculate the product. This
means your input needs to be three numbers, and its output should be the
product of those three numbers. The solution is to use the multiplication
operator ‘*’ to calculate the product of the numbers entered as the input.
Step Two: Designing the Algorithm

The next thing to do is to design the algorithm using the information you
identified in the above step.

1. Begin the algorithm
2. Declare and initialize the variables as y and z

3. Now, assign values to these variables. Ensure you assign the first
value to x, second value to y, and third value to z

4. Declare and initialize the output variable to store the product of the
input variables



5. Now, multiply the variables and store the product in the output
variable declared in the previous step

6. Print the output value

7. End the algorithm
Step Three: Test the Algorithm

Now, use any programming language to write this algorithm and test the
function of the algorithm.

How to Identify the Best Algorithm
You can choose an algorithm based on the following criteria:

Accuracy of the algorithm to ensure that you obtain the expected
result regardless of the number of times you use the algorithm. An
incorrect algorithm will either give you an incorrect output or may not
use all input instances
Identify the different constraints you need to consider when
developing the algorithm

Define the efficiency of the algorithm based on the order of inputs
you will use to obtain the expected output
Assess and understand the computer architecture and the devices used
to run the algorithm

Understanding the Basic Algorithm that Digitally Powers Life
Algorithms instruct the machine to perform a set of instructions to obtain
the solution. These algorithms are the basis of all technology. The algorithm
can be used to solve any type of problem, including compressing a file,
determining the pages on the internet that have the most relevance to your
search or sorting a list. An algorithm can be used to determine the way a
traffic signal should work, how the postal services or any other courier
service can deliver mail, and more.
In this day and age, a child needs to learn more than just how to use
technology. They must explore different algorithms that power the
television at home or their phones. They should also learn more about the



algorithms used on different social media websites. This will help them
improve their programming skills and work on creating new technology.

Benefits of Algorithmic Thinking
It is extremely important to learn more about algorithms, especially when
writing code to solve difficult mathematical and scientific problems. You
can solve any scientific or mathematical problem if you think clearly. This
type of thinking is known as algorithmic thinking. You may have used
algorithmic thinking to solve many problems. For example, when you try to
add two numbers, you think about the first number's value and the second
number's value. You then think about where to store the sum of the two
numbers and how to add those numbers. This is a very simple example of
algorithmic thinking.
Another example can be to solve a long division problem. You apply the
algorithm to divide every digit in the number with a divisor. For every digit
in the number being divided, you should multiply, subtract and divide. It
becomes easier to break a problem into smaller problems through
algorithmic thinking. You also look for solutions based on the type of
problem you are looking at.

Coding is an art, and it is important to learn how to do this since it improves
your thinking capabilities. Look at different exercises and puzzles that can
help to improve your way of thinking. Choose those exercises and puzzles
that give you a better understanding of conditional logic, sequencing, and
repetition.
You Can Write Your Own Algorithm
If you have long morning routines, you can choose to create a simpler task
for yourself. Set small targets for yourself in the algorithm and forget about
any overhead tasks you may have to perform. You will soon learn about
some important concepts of algorithms, such as repetition (brush the bottom
row of teeth four times), sequencing (putting the cereal in a bowl and then
pouring milk), and conditional logic (do not eat if the bowl is empty).

If you want to improve in writing algorithms, add a few more challenges to
yourself. A computer does not understand the intentions behind your
instructions unless you explicitly mention them. For example, you will



teach your child to add milk to the bowl of cereal only after placing the
bowl of milk in front of him. If you do not do this, the milk will be all over
the table. The same is the case with machines – if your instructions are not
clear, you will never get the required result.
In your arithmetic class, you will have learned about prime numbers and
how to determine if a number is prime. Can you do this with a number like
123459734? You cannot unless you perform multiple calculations. It does
become easier to run a program to do this for you, but the code will only
work if your algorithm is right.

Pros and Cons
Most programmers use algorithms to design their approach to any problem
before writing the code. An algorithm does have its advantages, but there
are many disadvantages to using algorithms. This section will look at some
of the pros and cons of algorithms.

Pros
1. Algorithms allow you to divide or break the problem into a smaller

segment, and this makes it easier for a developer or programmer to
write this algorithm in the form of a program depending on the type
of programming language you want to use

2. The procedure is precise and definite

3. An algorithm is a step-by-step representation of the solution for any
problem. This means that it is easy for anybody to understand an
algorithm

4. It is easy to understand an algorithm, and therefore, it becomes easier
for you to identify any errors in the code based on the algorithm you
have written

5. As mentioned earlier, algorithms are not dependent on the type of
programming language used. This means that they are easy for
anybody to understand even if they have no knowledge of
programming.

Cons



1. You cannot use an algorithm to explain or depict a large program
2. Since algorithms are not computer programs, you need to put in extra

effort to develop a computer program

3. It will take a long time to write complex algorithms





Chapter Two: Types of Algorithms
This chapter will look at some types of algorithms and how they can be
used while you write code. The types of algorithms include:

1. Backtracking algorithm

2. Brute Force algorithm
3. Divide and conquer algorithm

4. Dynamic programming algorithm
5. Greedy algorithm
6. Randomized algorithm

7. Simple recursive algorithm

Backtracking Algorithm
A backtracking algorithm is not very easy to use, but you can write a
program easily if you understand the concept. Let us understand this
algorithm using the following example. Consider we have one problem.
Now, you divide this problem into six smaller problems. Try solving the
smaller problems first. It may seem like these smaller solutions will not
solve the larger problem. So, what should I do in this case?
Look at the subproblems to identify which subproblem the main problem
depends on. Once you do this, you can identify the solution to the larger
problem. The objective behind this algorithm is to look at the problem from
the start if you cannot solve the main problem. When you start off with the
first subproblem and cannot find a solution, backtrack and go to the
beginning. Try to find a solution to the problem.
A classic example of this algorithm is the N Queens problem. In this
problem, you should find a way to add the maximum number of queens on
a chessboard and ensure no queen can attack the other on this board. If you
want to understand this easier, let us look at this example using four queens.

If you use four queens, your output will be a binary matrix. It will represent
the queen’s position on the chessboard. Let us represent the position using
1s. The output matrix could be as follows for 4 queens:



{ 0,  0,  0,  1}
{ 0,  0,  1,  0}

{ 0,  1,  0,  0}
{ 1,  0,  0,  0}

The objective of this problem is to place a queen in different columns.
Based on the output, you know that you should start with the leftmost
column on the chessboard. When you place the queen in a column, you
must check if the position will clash with other queens on the board. If you
find a position that does not clash with the position of the other queens, you
can mark that row and column as the solution. If you cannot find the right
position, you should go back to the start and begin again.
You can write the algorithm in the following manner:

1. Place the queen on the leftmost column of your chessboard

2. If you can place queens on the chessboard in such a way that no two
queens can attack each other, return the value as true

3. You must check and try every row in the chessboard and perform the
following activities:

a. If you place a queen in one row and ensure there are no clashes
between the queens on the board, write the row and column
number in a solution matrix. Using this matrix, see if you can
find a solution

b. If you place a queen in the position where you receive a
solution, you can return the algorithm as true

c. Else, you should remove the row and column number from the
solution matrix and find a new combination

4. If you have tried all the rows and nothing works, then return false and
move back to the first step.

Brute Force Algorithm
If you use this algorithm, you must look at every possible solution until you
find the optimal solution to any problem. This type of algorithm will be



used to find the best solution once it checks all the optimal solutions for a
problem. If you find a solution to the problem, you can stop the algorithm at
that moment and find the solution to this problem. A classic example of this
algorithm is the exact string-matching algorithm, where you try to match a
string in a text.

Divide and Conquer Algorithm
As the name suggests, the divide and conquer algorithm divides the
problem into numerous segments. You then need to use a recursive function
to solve these subproblems and combine the solutions obtained to form the
solution of the main problem. Merge and quick sort algorithms are
examples of this divide and conquer algorithm. We will look at these
examples in detail later in the book.
Using the divide and conquer algorithmic approach gives you a chance to
solve multiple subproblems at the same time using parallelism. You can do
this since the subproblems are independent. This means any algorithm you
develop using the divide and conquer technique can run on different
processes and machines at once. These algorithms use recursion, and it is
for this reason that memory management is of utmost importance.

Dynamic Programming Algorithm
The dynamic programming algorithm, also called a dynamic optimization
algorithm, uses the past information to define the new solution. Using this
algorithm makes it easier to break a complex problem into smaller
subproblems. It is easier to solve the smaller problems using the algorithm.
You can use these results to solve the actual problem. The results of the
subproblems are stored in other variables. This reduces the runtime of the
algorithm. Consider the following example of a pseudocode used to give
the Fibonacci series as the output.

Fibonacci (x)

If x = 0
Return 0

Else



Previous_Fibonacci =0, Current_Fibonacci = 1
Repeat n-1 times

Next_Fibonacci = Previous_Fibonacci + Current_Fibonacci
Previous_Fibonacci = Current_Fibonacci

Current_Fibonacci = New_Fibonacci
Return Current_Fibonacci

In the example above, the base value in the code is set to zero. This problem
is divided into different subproblems, and you can store the values or the
results of these subproblems into other variables. To do this, use the
following approach:

1. Identify the solution to the problem and define the structure of the
solution you want to design

2. Use recursion to define the solution

3. Solve for the value of the solution using the bottom-up fashion.
4. Using the results or information from the computation, develop the

optimal solution

Greedy Algorithm
Using the greedy algorithm, it becomes easier to divide the problem into
smaller problems and find the right solution to these subproblems. It will
then try to find the optimal solution for the main problem. Having said that,
do not expect to find the optimal solution to a problem using this algorithm.
Some examples of this algorithm are the Huffman coding problem and
counting money.
Let us consider the former example. In the Huffman coding problem, you
try to compress data without losing any information from the set you have.
This means you must first assign values to different input characters. If you
use a programming language to replicate this algorithm, the length of the
code will vary depending on how often you use the input characters to solve
the problem. Every character you use will have a smaller code, but the



code's length depends on how often you use the variable or character. When
it comes to solving this problem, you need to consider two parts:

1. Developing and creating the Huffman tree

2. Traversing the tree to find the solution
Consider the string “YYYZXXYYZ.” If you count the number of
characters in this string, the highest frequency is “Y,” and the character with
the least frequency is “Z.” When you write the code using any
programming language, the code will be the smallest for Y and the largest
for Z. The complexity of assigning code for these characters is dependent
on the frequency of that character.

Let us now look at the input and output variables.
Input : For this example, let us look at a string that has different characters,
say “BCCBEBFFFFADCEFLLKLKKEEBFF”
Output : Let us now assign the code for each of these characters:

Data: F, Frequency: 7, Code: 01
Data: L, Frequency: 3, Code: 0001

Data: K, Frequency: 3, Code: 0000
Data: C, Frequency: 3, Code: 101
Data: B, Frequency: 4, Code: 100

Data: D, Frequency: 1, Code: 110
Data: E, Frequency: 4, Code: 001
Let us now look at how you can write the algorithm to build the tree:

1. Declare and initialize a string that has different characters.
2. Assign codes to each of the characters in the string.

3. Build the Huffman tree.
a. Define each node in the tree based on the node's character,

frequency, and right and left child.



b. Create the frequency list and store the frequency of every
character in that list. The frequency should be assigned to zero
for the characters.

c. For every character in the string, increase the frequency in the
list if it is present.

d. End the loop.
e. If the frequency is non-zero, then add the character to the node

of the tree and assign a priority to the node as Q.
4. If the priority list, Q, is not empty, remove the item from the list and

assign it to the left node. Else assign it to the right node.

5. Move across the node to find the code assigned to the character.
6. End the algorithm.

If you want to traverse or move across the tree, use the following input:
1. The Huffman tree and the node
2. The code assigned to the node

The output will leave you with the character and the code assigned to that
character.

1. If the left child of the node is a null value, then traverse through the
right child and assign the code 1

2. If the left child of the node is not a null value, then traverse through
that child and assign the code zero

3. Display the characters with their current code

Randomized Algorithm
If you use a randomized algorithm, you use a random number to make
decisions. These decisions are used to solve some algorithms. A quick sort
algorithm is an example of this type of algorithm, and we will look at this
later in the book.

Simple Recursive Algorithm



Using a simple recursive algorithm, you can solve different problems easily.
This algorithm is often used along with other algorithms. A simple
recursive algorithm recurs using a smaller input value every time it begins.
In this type of algorithm, you need to set a base value that will indicate to
the system that the algorithm needs to terminate. A simple recursive
algorithm is often used to solve any problem as long as it can be divided
into smaller pieces or segments. Bear in mind these segments should also be
of the same type. Let us look at how you can use this algorithm to calculate
the factorial of a number. Consider the following pseudocode:

Factorial(number)

If number is 0
Return 1

Else
Return (number*Factorial(number – 1)

The base value used in the above code is zero. This indicates the algorithm
will not continue to work if the output value is zero. If you look at the last
section of the algorithm, you will notice the problem is broken down into
smaller segments to solve it.



Chapter Three: Describing Algorithms
It is important to describe algorithms effectively since this is the only way
you can solve the problem. In the previous chapter, we looked at different
algorithms you should consider and how to use them to solve problems.
Most of the types we discussed in the previous chapter broke the problem
into smaller segments making it easier to solve the actual problem. Ensure
you use the algorithm that works best for you. This algorithm should also
require minimal or no changes to the data structures for the program. For
example, if you use the bubble sort algorithm, ensure you store the
information you need to use in an array or another data structure. You
should then use the comparison and exchange operations to update the data.
We will look at the bubble sort algorithm in further detail later in the book.

If you want to use data structures, describe the structure well, making it
easier to build it. For example, using the merge sort algorithm makes it
easier to compare information in the data set faster than the quick sort
algorithm. The merge sort algorithm only has some errors when compared
to the quick sort algorithm. You will, however, need to use a linked list data
structure if you want to sort this information easily. This data structure will
improve the performance of the algorithm.
Ensure you include all the necessary information when you use a merge sort
algorithm. These instructions should include error checking, error handling,
and pointer manipulation. When you describe any algorithm, you need to
pay attention to how abstract you want the algorithm to be. It is impossible
to describe everything in the algorithm in detail, but you must do this when
writing code. You also cannot leave the algorithm in a black box. If you are
a good programmer or know someone who will build the right code for you,
you can simply say, “Use bubble sort.” It is, however, good to explain your
algorithm in as much detail as possible.
You must consider the following when you add details about the algorithm
you want to use:

What is the purpose of the algorithm? Is it to perform any functions
on the code or information in the data?



Are there specific data structures you must use to manipulate the
information used in the algorithm?
Mention the steps and add details wherever possible, so anybody
reading the algorithm knows what must be done

Justify the correctness of the algorithm
Analyze the speed, cost, space, etc. used by the algorithm

It is also important to describe the algorithm depending on the audience and
the purpose. If you want to use a new algorithm to solve a well-known
problem, emphasize the technique you use, the justification of the
correctness, and the analysis of that algorithm. You must show how your
algorithm is better than the one used earlier. If you present or use a new
data structure, mention why you want to use them and how you plan to
analyze the problem using that structure.
Some tools that you use to prove the correctness of the algorithm will
enable you to describe the algorithm in a better manner. You should not
ignore this entirely.



Chapter Four: Error Handling
As mentioned earlier, it is important to look at how to handle errors in any
algorithm and code. It is simple to understand this concept. All you must do
is identify lines of code you should write to ensure errors and exceptions are
handled. One of the easiest things to do is to use certain keywords, like null,
to handle errors and exceptions in your code. It is important to understand
that programming languages use the keyword differently. Ensure you have
the right error handling code in place, but if the code obscures the logic,
then do not include the error handling code in your main code. Here are
some tips you must bear in mind:

●      You can include the catch keyword in the code to identify errors, but
it is important to use the keyword in the right location. You must also
use the ‘try’ keyword to identify the error in the code. Ensure that you
start the error handling code with a try-catch-finally statement while
you write the code

●      If you add an exception to the code, you must provide the compiler
with enough information to allow you to determine the position of the
error in the code. Create an informative error message and pass that
message to the exception. It is also important to ensure the operation
you are performing in the code did not work the way it is expected to
work

●       Instead of pointing the compiler to a block of error code in the
program, it is best to throw an exception. If you do not point the
compiler to an error code in the program, you must indicate to the
compiler to look for the issue in the code and debug it. If you do write
the code, make sure you know where you have added this code.
Throw exceptions when there is an error in the code to avoid issues
with the debugging of the code

Checking for Exceptions
Unfortunately, programming languages do not list different exception and
error handling techniques, but you should do your best to see how to use
these techniques to handle errors in the code. You must also include these
error-handling techniques when you write the algorithm. A checked



exception will allow you to ensure that the signature of every function or
method used in the code will have the list of every exception that will pass
to the caller.
It is important to understand that the compiler will not execute the code if
the signature does not match it. In the example below, we will look at how
to use exception and error handling codes in Java.

public void ioOperation(boolean isResourceAvailable) throws
IOException {
  if (!isResourceAvailable) {

    throw new IOException();
  }
}

An issue with this form of exception is it may violate some rules of
programming languages. If you can throw any checked exception using a
method in the code and the catch is three lines above the code, declare an
exception in the method’s signature. This means some blocks of code will
change because of the exception handling or error handling blocks of code.

Defining Exceptions
It is of utmost importance to define the exceptions in the code based on the
needs of the function. So, how is it that you will classify errors? Will you
classify them based on their type so you know whether it is because of a
network failure, programming error, or device failure? Will you classify
them based on their source so you know where these errors come from? Or
will you classify the errors based on how the compiler identifies these
errors?
Some programming languages allow you to convert blocks of existing code
into exception or error handling code. In the example below, we will see
how this can be done:

class LocalPort {

  private let innerPort: ACMEPort  func open() throws {



    do {
      try innerPort.open()

    } catch let error as DeviceResponseError {
      throw PortDeviceFailure.portDeviceFailure(error: error)

    } catch let error as ATM1212UnlockedError {
      throw PortDeviceFailure.portDeviceFailure(error: error)
    } catch let error as GMXError {

      throw PortDeviceFailure.portDeviceFailure(error: error)
    }

  }
}

Special Case Patterns
Programming languages also allow you to create or configure an object, so
it handles certain types of errors in the code. The client or main code will
not deal with any exceptional behavior.
Now that we have looked at the different ways to handle code let us look at
the use of the null keyword to handle errors.

Nulls
If you add a null keyword into a method, the code you have written will
become impossible to debug. It is important that you avoid doing this.
Adding null values to the error handling code increases work for you. If the
output is a null value, you must struggle to identify where the null value
came up in your code.

// Un-swifty, but matches code in book

func register(item: Item?) {
  if item != nil {
    let registry: ItemRegistry? = persitentStore.getItemRegistry()



    if registry != nil {
      let existingItem = registry.getItem(item.getId())

      if existingItem.getBillingPeriod().hasRetailOwner()) {
        existingItem.register(item)

      }
    }
  }

}// More Swifty using guard statements.
func register(item: Item?) {

  guard let item = item,
        let registry = persistentStore.getItemRegistry() else {
    return

  }
  let existingItem = registry.getItem(item.getId())
  guard existingItem.getBillingPeriod().hasRetailOwner() else {

    return
  }

  existingItem.register(item)
}

Common Error Messages
Simple programs are easy to compile. You may not have errors in the code
if you have stuck to the algorithm and used the right variable to code. This
should not make you overconfident since this is usually not the case. As a
programmer, you will spend most of your time dealing with certain flaws in
the program you have written. The process of fixing the errors is called
debugging. ]This section will look at different ways to handle errors in any
program you have written.



Editing and Recompiling
You may have spelling issues in your code. This may not seem like a big
issue, but the compiler will throw an error if you have the wrong words in
the code. This indicates you must go through the code to fix the error. Do
not worry about dealing with too many errors since this is the only way you
learn. You will need to go through the following steps to overcome any
errors in your code. You must follow the steps given below to re-run the
code.

●      Reedit the source code and save the file to the disk
●      Recompile the code

●      Run the program
You may still have many errors while re-editing your code. Do not worry
since you will get to step 3 once you identify how to work with and edit the
errors in programs.
Reedit the source code

The source code file you create can be changed as often as possible. More
often than not, these changes are necessary to overcome any error messages
that come up during compiling. At times, you may want to change the code
by changing the message that comes up on the screen or by adding a
feature.
Recompile

In this step, you must run the program one more time and compile it once
you have made changes to the code. Link the program to the compiler.
Since the code is different, you must send the code to the compiler only
after you link the code. If the compiler throws an error again, you must
repeat the first step again. To recompile the program one more time, enter
the following code in the command prompt to trigger the compiler:
gcc hello.c -0 hello
If no error message pops up, pat yourself on the back. You no longer have
errors in your code.

Dealing with errors



When you write code, it is important to understand errors will pop up in the
code. Do not worry about these errors, but learn from them to avoid making
the same mistakes again. The compiler helps you identify the exact line in
the code where there is an error, thereby helping you get rid of it easily.
Consider the example below:

#include <stdio.h>

int main()
{

printf("This program will err.\n")
return(0);
}

You can save this code in your system and use it when you write any
program. Now, try to compile the code and see what happens. The output
will be an error. Here is a sample of the error message the compiler will
throw on your screen:

error.c: In function `main':

error.c:6: parse error before "return"
The error message will tell you where the issue is in your code. The
message is difficult to understand, but it does have all the information you
need. Let us break the output down into smaller pieces to understand the
error message:

●      Where the error has occurred. In this instance, the error has occurred
before the word return.

●      The error occurs in line 5 of the code
●      The code with the error is saved using the file name error.c
●      The type of error that has occurred

You may not have identified the issue in the code, but the compiler does
give you enough evidence to help you identify the error in the code. The
error is in the fifth line of the code, but unfortunately, the compiler does not
identify it until it moves to the sixth line. It is also important to understand



the type of error made. If there is a parse or syntax error, this means that
some language punctuation is missing, and two lines of code that cannot run
together are running together. The issue here is that a semicolon is not
present at the end of the fifth line.
Edit the source code file and fix the issue. When you look at line number 6,
you will see nothing wrong with the code and would probably wonder
where the error was. Once you get the hang of it, you can identify the errors
easily and make changes whenever necessary. Make necessary changes to
the code to fix issues and save this file down as the source code file on your
system.

When you start working on a program, there are bound to be errors. You
may not be able to identify the errors initially, but with practice, you can
identify the errors and debug the program within a few minutes.



Chapter Five: Analysis of Algorithms
It is important to assess the complexity of the algorithm. When it comes to
analyzing an algorithm, use the asymptotic aspect to assess the algorithm.
This means that you will look at how the functions in the algorithm work
with large volumes of data. Donald Knuth coined the phrase “analysis of
algorithms.”

Computational complexity theory is based on the analysis of algorithms.
You obtain a theoretical estimation of the resources required to perform an
algorithm. From the previous chapters, you may have learned the input
defined in any algorithm must be of an arbitrary length. If you analyze any
algorithm, you must look at the time and space in the memory you need for
its execution.
The running time or efficiency of an algorithm is stated as a variable of the
time complexity function, and the memory used is stated as a variable of the
space complexity function.

Importance of Analysis
You may be wondering why you must analyze an algorithm. We will do this
using an example of a problem that can be solved in multiple ways. When
you consider an algorithm to solve a specific problem, you can develop a
pattern that will allow you to recognize similar problems that you can solve
using this algorithm.
It is important to understand the difference between these algorithms since
the objective of each is the same. The time and memory used by each
algorithm will be different. For example, if you want to sort a list of
numbers, you know you can use a sort algorithm. You can choose from
different sort and search algorithms, and the time taken for comparison will
be different for each algorithm. This means the time complexity of the
algorithm can differ. You must also consider the space the algorithm will
occupy in the memory.

It is important to analyze the algorithm to understand how effectively it can
solve problems. You must consider the size of the memory the algorithm
uses to solve a problem. However, the main concern of any algorithm is the



performance and time required to run the algorithm. Perform the tests and
analyses listed below to assess the performance of an algorithm:

●      Worst-case : You should use the maximum number of steps to obtain
the expected output for a given input

●      Amortized : You can apply a sequence of operations to the input
over a period of time

●      Average case : You should use an average of the minimum and
maximum number of steps to obtain the desired output for a given
input

●      Best-case : You should use a minimum number of steps to obtain the
expected output for a given input

To solve any problem, you must consider the space and time complexity.
The program will be executed in a system with limited memory, but there is
enough space to store the data. Bear in mind that the opposite will also hold
true regarding algorithms. When you compare a bubble sort and merge sort
algorithm, you will see the former will need more space to store a variable.
Having said that, a bubble sort algorithm will take more time than the
merge sort algorithm. This means you can use the merge sort algorithm to
perform a sorting function in an environment where you do not have
enough time and the bubble sort algorithm if you do not have enough
memory.

Analysis Methods
To assess how an algorithm is used to measure the consumption of
resources, use the strategies listed below.
Asymptotic Analysis

This type of analysis assesses how the algorithm will behave if the input
size constantly changes. We ignore any small value of the input variable
and only focus on the larger value when we perform this analysis. The
algorithm is usually better if the asymptotic growth rate is very slow. This
does not necessarily hold true in all cases. Comparison of a linear algorithm
and a quadratic algorithm tells you that the linear algorithm is



asymptotically better since it does not use too many variables to meet the
objective.
Using Recurrence Equations

Different recurrence equations can be used to describe how an algorithm
will function with smaller input values. This form of analysis is performed
to analyze and test divide and conquer algorithms.
Let us assume the following:

●      Function T(n): used to define the running time on any problem
●      N: Input size of the problem

If the value of n is small and consistent across all subproblems, the solution
will take a constant time that is written as θ  (1).

Let us also assume you have numerous subproblems in your algorithm, and
the input size of those problems is n/b. If we want to solve the problem, the
algorithm will take the time T(n/b) * a.
To calculate the time taken, use the following equation:

T(n)= { θ  (1)aT(nb)+D(n)+C(n)if n ⩽  cotherwiseT(n)= { θ  (1)if n ⩽
caT(nb)+D(n)+C(n)
You can also solve a recurrence relation using the following methods:

●      Recursion Tree Method : Using a decision tree, you can view the
cost of each method used

●      Substitution Method : When you use this method, assume a bound
or range and use mathematical induction to determine if your
assumption is accurate

●      Master’s Theorem : This technique will enable you to identify the
complexity of any recurrence relation

Amortized Analysis

This type of analysis is often performed on those algorithms with similar
option sequences. You can obtain a bound or range of the cost of running
the entire algorithm through amortized analysis. You do not specify a range
or bound on the operations performed separately. This is a very different



type of analysis, but this method is often used to analyze the efficiency of
an algorithm and design the algorithm itself.
Aggregate Method

In this method, you consider the problem and look at it holistically. Let us
assume that you have n operations that run when you execute an algorithm,
and the time taken by these n operations is T(n). The amortized cost is
T(n)/n for each operation in the algorithm, and the variable represents the
worst-case scenario.
Accounting Method

In the accounting method, you must only assign a certain cost or charge to
any operation performed depending on the actual cost of doing those
operations. If the actual cost of the operation is lower than the amortized
cost, the difference is the credit. You can then use this credit later to pay for
other operations whose actual cost is greater than the amortized cost. You
can calculate the cost using the following formula:
∑i=1ncl ^ ⩾  ∑i=1nci∑i=1ncl ^ ⩾  ∑i=1nci
Potential Method

This method represents the work the algorithm has completed in the form of
potential energy. This method is like the accounting method, but here we
look at the total cost of the algorithm in the form of its energy.
Let us assume the following:

●      D 0 : indicates the data structure used in the algorithm

●      N: indicates the number of operations performed in an algorithm
If the cost of the operation is x and the data structure for the ith operation is
represented as D i , the amortized cost for the ith operation can be
represented as:

cl^=ci+Φ(Di)−Φ(Di−1)cl^=ci+Φ(Di)−Φ(Di−1)
Therefore, the total amortized cost is:
∑i=1ncl^=∑i=1n(ci+Φ(Di)−Φ(Di−1))=∑i=1nci+Φ(Dn)
−Φ(D0)∑i=1ncl^=∑i=1n(ci+Φ(Di)−Φ(Di−1))=∑i=1nci+Φ(Dn)−Φ(D0)



Dynamic Table
If you run an algorithm on a system, it may not have enough memory to
store the input and output variables. In such cases, you may need to remove
some data from the algorithm and move it into a large table. You can also
remove the information from this table or replace data whenever necessary.
You can reallocate the data to move to a smaller table. You can calculate the
cost of constant insertion and deletion of records from a table and determine
if it exceeds a certain threshold you have in mind through amortized
analysis.

Space Complexities
As mentioned earlier, every algorithm will occupy some space in the
memory, especially during the execution. This section will look at how you
can deal with the complex calculations that will help you assess the space
that any algorithm requires. Space complexity is like time complexity and
allows you to solve different classification problems of algorithms based on
the computational difficulties.

It is important to look at the space complexity function when you analyze
an algorithm. This function determines the space being used by the
algorithm when it runs. This space may be occupied by the input,
temporary, or output variable used in the algorithm. When you design
algorithms, you should think about the extra memory you need to store the
output and the input. Most programmers forget about the latter.
Use fixed-length variables to measure these input variables. You can either
use a definite number of integers or bytes to describe the memory. Any
function you define to do this is going to be independent of the actual
memory space. People often ignore the space complexity, but they forget
that this is as important as the time complexity since the program will not
function well if there is no space in your memory.

Understanding Recursion
We looked at a simple recursive algorithm earlier in the book, but what do
you know about recursion? This section will look at a recursive algorithm
and give you some information to help you easily identify such algorithms.



Any recursive function is a black box. You only know what the function
does but not exactly what happens. This means you only see what is
expected of you to see. For instance, if you want to use a function where
you sort the elements in an array, you can describe it in the following
manner: ‘Use the merge sort algorithm to sort the elements in one array in
the ascending order using another array.’
It is also good to break this algorithm down into smaller problems and solve
them before you look at the bigger problem. For example, you can say the
machine has to sort the elements in one array independently and then move
them into another array. Or you can break the array down and sort the
elements in the array before you combine all of them into one array.

You can use the same description and apply it to any sorting algorithm,
including merge sort and quick sort. The only difference between these
algorithms is the way the data is divided and sorted. Quick sort uses
complex partitioning methods and simple merging techniques, while merge
sort is the opposite.
It is also important to describe boundary conditions when you use a
recursive algorithm to stop recursion. Continuing with the example above,
when you break the array into sequences, you may have some smaller
arrays with only one or two elements in them. You do not have to sort such
an array. When you use the insertion sort algorithm, you use the divide and
conquer algorithm to break the sequence into smaller sequences and then
sort the elements in those sequences before you combine the entire list.

You must remember to explain the algorithm when you talk about its
overview. This is the only way to determine the functions and methods to
use. Regardless of which algorithmic strategy you want to use, you must
provide some description. Also, explain why you chose to use this method
over the other methods.



Chapter Six: An Introduction to Writing
Programs
As someone new to programming, you need to keep some points in mind
before converting an algorithm into a program. This chapter introduces you
to these concepts and explains to you how one can work with different
operators and data types to perform functions.

Principles of Programming
Programmers often write code for specific projects or tasks. So, they tend to
write code they or someone who knows how to code will understand. There
may be times when the programmer does not understand what he has
written because of a change in his writing style. So, when you revisit the
code, wouldn’t it be easier to read something easy to understand?

The following are some principles to consider when it comes to writing
programs. It is best to keep these points in mind to ensure you write high-
quality code.
Naming Conventions
It is very important to stick to this principle when you write code. You must
name functions, methods, and variables correctly to ensure there are no
errors in the code.

Let us assume that a new programmer is checking your code. The person
should find the variables and understand their function by looking at your
code. Name the variables based on the domain and functionality of the
method or project. It is also important to use the word ‘is’ as a prefix to a
Boolean variable.
For example, if you are working on an application for a bank to deal with
payments, you can use the following variables:

double totalBalance;        // Represents the user account balance
double amountToDebit;      // Represents the amount to charge the
user
double amountToCredit;    // Represents the amount to give to the user



boolean isUserActive;
Stick to the following naming conventions:

●      You must use the camel case to label data structures and variables.
For example,

int  integerArray[] = new int[10];

String  merchantName = "Perry Mason";
●      Using the screaming snake case to label constants. For example,

final long int ACCOUNT_NUMBER = 123456;

File Structure
The coder must maintain the structure of the project. It will be easy to
understand the code when you stick to the structure. The structure is very
different for different kinds of applications. The idea will, however, remain
the same. For example,

Looking at Functions and Methods
If you use the right methods and functions in your code, you will be an
expert at programming. Stick to the following rules when you name
functions:

●      Use camel case to name a function or method

●      The method name should be on the same line as the opening bracket
of the method

●      Name functions using a non-verb sound
●      Ensure that the functions only use one or two arguments at the most

For example,
double getUserBalance(long int accountNumber) {

// Method Definition
}

Indentation



If you want to use abstract classes or write some lines outside of a method,
it indicates you want to nest the code. If you have not written the code, it
becomes tricky to understand what goes where. It is difficult to work with
such code because you never know where something ends unless you use
indentation. Therefore, you should stick to the indentation. All this means is
that you use the brackets in the right place.
Avoid Self-Explanation

As a programmer, you are expected to write comments against your code.
You must explain what a method or function is expected to do. Do not write
self-explanatory comments because that is useless and does not add any
value to the code. It is important to write code that everybody understands.
For example,

final double PI = 3.14; // This is pi value //

Do you think the above statement needs a comment? It does not because it
says the variable holds the value of Pi, and this is self-explanatory.
KISS
KISS is an acronym for Keep It Simple Silly. The US Navy coined this
principle in 1960. This principle states that any system that you develop
should always be kept as simple as possible. Avoid adding unnecessary
complexities to the code. The question you must ask yourself while writing
code is – “Can this code be written in a better and easier way?” This is the
only way the code will be readable and easy for anybody to understand.

DRY
DRY is an acronym for Don’t Repeat Yourself, and this is like the previous
principle. Ensure the code you write is unambiguous. The compiler should
not spend too much time trying to decipher. This is the only way you can
avoid repeating your lines of code to help the compiler understand what you
want it to do.

YAGNI
According to the YAGNI (You Aren’t Gonna Need It) principle, any
functions and operations should be added to the code only if it is necessary.
This is a part of the extreme programming methodology where you can



choose to improve the code you write by sticking to only what is most
necessary. Use this principle in conjunction with unit testing, integration,
and refactoring.
Logging

When you write code, it does not mean the code will be written well or that
it will compile successfully. You will need to debug the code and test it to
ensure it runs smoothly. If you have large programs, it will take longer to
debug. So, you need to break the code and then test it. When you test a
piece of code, create a log. When you write a log statement, you can use
those statements to help you debug the code. It is a good idea to write a log
statement in a function. Since most of the processing is done only through a
function or method, it is best to write the log statement to understand
whether the function is a success or failure.

Objects and Classes
Classes
A class is a blueprint, and you can create an object from the class. A class
has one of these variable types:

●      Class – These are declared in a class and outside a method using the
static keyword.

●      Class variables − Class variables are declared in classes, not inside
any method, using the static keyword.

●      Local variables– These variables are defined inside a block, method,
or constructor and hence are called local variables. You should
declare this variable in the class and initialize it in the method. Once
the method runs fully, it will be removed from the computer memory

●      Instance – This is a variable that has been defined inside a class but
outside a method. They are initialized at the time of class
instantiation, and they can be accessed from within a method, block,
or constructor of the class.

Classes can have multiple methods for accessing the values of different
methods. In the case of a person, eating() is a method.



Objects
Objects are present around you. These include dogs, humans, buildings,
houses, etc. Every object has its own characteristics, behavior, and state.
For instance, consider a dog. Some of its characteristics and states include
name, color, breed, etc., while its behaviors include running, barking, and
tail wagging. Look at a software object in a similar manner. You will see
there is not too much of a difference between the two. Every software
object also has its own state and behavior. The state is stored in a field, and
a method indicates the behavior.

Creating Objects
As mentioned earlier, an object comes from the class, and you can use the
new keyword to describe the object in the class. Follow the steps below to
create an object:

●      Declaration : Declare a variable with a name and define the object
type in the code

●      Instantiation: We use the new keyword to create an object
●      Initialization : A call to a constructor follows the new keyword, and

this will initialize the object

If you want to access an instance method or variable, you must create an
object. Use the following path for the instance variable:

/* First create the object */

ObjectReference = new Constructor();
/* Now call the variable like this */
ObjectReference.variableName;

/* Now you may call the class method like this */
ObjectReference.MethodName();

Constructors

A constructor is a very important part of a class. Every class has one, and if
we don’t write one for our class, Java will provide a default constructor.
When you create a new object in a class, the compiler automatically



invokes the constructor. The primary rule for a constructor is that it must
have an identical name to the class, and a class may have more than one
constructor.
Every programming language allows you to use a singleton class, and you
can use these to create only one instance of a class.

How to Declare Source Files
It is important to understand the rules of source files, especially when you
declare a class in the code. An import statement and a package statement in
a source file are important to assess.

●      A source file may have as many non-public classes as you want
●      In a class that has been defined in a package, the first statement in the

source file must be the package statement
●      You may only have one public class in any source file

●      If included, import statements should be written between the class
declaration and the package statement. If there is no package
statement, the import statement will be the first line of the source file

●      The source file and the public class must have the same name, with
the file name appended with the extension of the programming
language

●      Package and import statements imply to every class that is present in
the source file. You cannot declare different ones or different classes

A package is a categorization of the class and interface – this must be done
when you are programming, just to make life easier for yourself.
The import statement provides the right location for the compiler to find a
specific class.

Data Types
Data is a representation of various instructions, concepts, and facts. This
information is in a specific format and can be used for interpretation,
communication, or processing by the machine. Special characters and
groups of other characters are used to represent this data.



Any classified or organized data is known as information. Information is
processed data, and every decision or action is based on this information.
This information will have some meaning to it, which is what the receiver is
looking for. If the decision being made should be meaningful, the processed
data should meet the following criteria:

●      Completeness: The information should have all the parameters and
data

●      Accuracy: The information should always be accurate
●       Timely: The information should always be available whenever

required

Data Processing Cycle
The data processing involves the re-ordering or the restructuring of the data
by the machine. This will help increase the use of the data and add value to
the purpose. There are three steps that constitute the data processing cycle:
Input

In this step, the data is fed into the machine, and you need to prepare the
input data and change it to a form the machine can read easily. The structure
that you will need to use depends on the type of machine being used. For
instance, when you use electronic computers, you can record the input data
using different types of media like magnetic disks, pen drives, tapes, and
more.
Processing

In this step, the data from the previous step is re-structured to produce
information or data that can be more useful. For instance, a paycheck is
calculated based on the time cards or the number of hours that people spend
at work. Similarly, the summary of sales can be calculated based on the
sales orders.
Output
This is the final step of the processing cycle, and the data from the previous
step is collected in this step. You can decide what the format of the data
should be depending on the use of the data.



A variable is a reserved location in memory used for storing values. When
you create a new variable, you automatically reserve that space in the
memory. The amount of memory is determined by the type of the variable –
the operating system allocates the memory and determines what may be
stored in it. You can store decimals, integers, or characters by assigning a
different type to a variable. Every programming language has two main data
types:

●      Primitive

●      Reference or object
Primitive

Most high-level programming languages contain eight primitive data types.
These are predefined by the language and are named with a keyword. The
eight types are:
int
The int has a default of zero, a maximum value of 2,147,483,647, while the
minimum is -2147,483,647. It is normally used as the default type for
integral values unless memory is short.

long
The long has a default of 0L, with a maximum value of 9,
223,372,036,854,775,808 and minimum of -9,223,372,036,854,775,807. It
is used when you need a longer range than the int provides.

float
The float has a default of 0.0f and is generally used to save some memory
when you have large arrays containing floating-point numbers. It is never
used when you need a precise value, such as for currency.
double

The double has a default value of 0.0d. It is used normally as the decimal
value type and should never be used for any values that are precise, like
currency.
byte



A byte is a data type with a default value of 0. The minimum value is -128,
while the maximum is 127.  It is used for saving space in the larger arrays,
usually instead of an integer, because an integer is four times larger than the
byte.
short

A short is a data type with a default value of 0. The minimum value is
-32,768, while the maximum is 32,767. It may also be used for saving
memory as a byte data type. The integer is two times bigger than the short.
boolean

The boolean is used to represent a single piece of information and has just
two values – true or false. It is used when you need to track either true or
false conditions.  Its default value is false.
char
The char data type may be used for the storage of any character

Reference Data Types
We use constructors to create reference variables. The reference variable is
used to access an object and is declared as specific types known as
immutable. This means they cannot be changed once declared. Reference
objects include class objects and a variety of array variables. The default
value of any reference variable is null, and it can be used to refer to other
objects.

Literals
Literals are a source code representation of fixed values represented in the
code directly without the need for any computation. You can assign a literal
as the primitive data type in the following way:

byte a = 67;

char a = 'A'
You can also express int, byte, short, and long in octal, decimal, or
hexadecimal number systems. We must include ‘o’ before the number to



indicate the octal system and ‘0x’ to indicate the hexadecimal system. For
example:

int decimal = 100;

int octal = 0144;
int hexa =  0x64;

String literals are specified in the code, similar to how they are specified in
other languages. It is a sequence of characters enclosed in a set of double
quotes. Some programming languages allow you to use char and string
literals with escape sequences. The following are some to use:

Escape Sequence Representation
\n Newline
\r Carriage return
\f Form Feed
\b Backspace
\s Space
\t tab
\" Double quote
\' Single quote
\\ backslash
\ddd Octal character
\uxxxx  

Operations
Different operators can be used to manipulate data and variables in any
code. In this section, we will look at different operators and their functions.
Logical

Operator Description
&& (logical and) evaluates true if both operands are non-zero values
|| (logical or) evaluates true if either operand is non-zero



! (logical not) evaluates false if a condition is true because it
reverses the logical state of the operand

Arithmetic

These are used for mathematical expressions in much the same way you
used the same symbols at school:

Operator Description
+ Addition for adding values on the left or right of the

operator
- Subtraction for subtracting the right operand from

the left
* Multiplication for multiplying values on the left or

right of the operator
/ Division for dividing the left operand by the right

operand
% Modulus, the remainder of the division of the left

operand by the right operand
++ Increment, for increasing an operand value by 1
-- Decrement, for decreasing an operand value by 1

Assignment

Operator Description
= assigns the value from the right operand to the left
+= adds the value of the right operand to the left and

assigns the result to the left
-= subtracts the right from the left operand and assigns

the result to the left
*= multiplies the right with the left operand and

assigns the result to the left
/= divides the left operand with the right and assigns



the result to the left
%= takes the modulus of two operands and assigns the

result to the left
<<= left shift and assignment
>>= right shift and assignment

Relational
There are several relational operators in a programming language:

Operator Description

== (equal to) checks if the values of the operands are equal;
evaluates true if they are

!= (not equal to) checks if the values of the operands are equal;
evaluates true if not

> (greater than) checks if the left operand is greater than the right;
evaluates true if it is

< (less than) checks if the left operand is less than the right;
evaluates true if it is

>= (greater than
or equal to)

checks if the left operand is greater than or the same
as the right; evaluates true if it is

<= (less than or
equal to)

checks if the left operand is less than or the same as
the right; evaluates true if it is

Operator Precedence

Every programming language has operator precedence to determine how
expressions are evaluated by looking at their variables. Some operators
have higher precedence than others, such as multiplication over addition.
For instance:

x = 6 + 2 * 3

Here, if you calculate the value of x, you may say 24. Since multiplication
is higher in the precedence order, the processor or compiler will calculate



this as 2*3 and then add the 6. Here, the operators are in order of their
precedence from highest to lowest.
In any expression those operators with the highest precedence will be the
first ones evaluated:

Category Operator Associativity
Postfix >() [] . (dot operator) Left to right

Unary >++ - - ! ~ Right to left
Multiplicative >* / Left to right
Additive >+ - Left to right

Shift >>> >>> << Left to right
Relational >> >= < <= Left to right

Equality >== != Left to right
Logical AND >&& Left to right
Logical OR >|| Left to right

Conditional ?: Right to left
Assignment >= += -= *= /= %= >>= <<= &= ^= |= Right to left



Chapter Seven: Types of Programming Languages
Many programming languages exist, and many are being developed to serve
different purposes. Some examples include R and Python. These languages
are being developed for the purpose of data analytics. Since different
programming languages are now available for use, it is important to
understand the pros and cons of the language and its characteristics. You
can classify programming languages into different types based on the style
of programming you want to use. Multiple programming languages are
implemented every year, but only some of these are popular now.
Professional programmers are using them in their careers.

You can use programming languages to control the performance of the
machine and computer. As mentioned earlier, each programming language
is different, and we will look at the different types of programming
languages in this chapter. Based on the information in this chapter, you can
determine the type of programming language you can use.

Definition
Before we look at different types of programming languages, let us
understand what a programming language is. A programming language is
one used to instruct a machine or computer to perform specific functions.
Some programmers call these languages notations. These languages are
used to express algorithms and control the performance of a machine.
It is for this reason you can write an algorithm using different programming
languages. There are close to a thousand programming languages
developed, and some are used more often than others. These languages
could either have an imperative or declarative form, depending on how you
would use the language. You can also divide the program into two forms –
syntax and semantics.

Types of Programming Languages
In this section, we will look at different types of programming languages.
Every programming language will fall under one of these categories.
Procedural Programming Language



This type of programming language is often used by programmers who use
an algorithm and define the sequence of instructions or statements that they
use to instruct the machine. This type of language uses heavy loops,
multiple variables, and a few other elements. For this reason, this language
is different from the next type of programming language - functional
programming language. A procedural programming language can be used
to control variables dependent on the values returned by a method or
function. For instance, syntaxes and statements in this type of language can
be used to print information.
Functional Programming Language

A functional programming language is dependent on any stored data or
information in the computer, and it uses recursive functions instead of
loops. The objective of this type of programming language is to only use
the return values of any method or function.
Logic Programming Language

This type of programming language allows any programmer or developer to
use declarative statements. A logic programming language gives the
machine a chance to understand and compile the instructions to perform
necessary functions. If you use this type of programming language, you do
not have to instruct the computer on how to perform a certain function. The
language uses efficient algorithms, making it easy for the computer to use
less space. All you must do is employ some restrictions on how the machine
should think.

Programming Languages
Pascal Language

Pascal is a programming language most students learn during school, and
not many industries still use this programming language. The Pascal
language, unlike most languages, does not use braces and symbols but uses
key phrases and words. This is why it is easy for beginners to learn this
language compared to other languages, such as C and C++. Pascal also
supports object-oriented programming through Delphi. Borland, a software
company, only uses this language.



Fortran Language
Fortran is a language most scientists use since it is easier to use to crunch
numbers. This language allows you to store variables easily regardless of
the memory size of the variable. Data scientists or engineers use this
language to calculate values or make predictions with high accuracy. It is
difficult to write programs in this language, and the core written is
sometimes hard to understand. So, you would need to learn and understand
the language if you want to code using it.

Java Language
Java is a multi-platform language and is used to perform different
networking functions. This application is used on Java-based web
applications. Since this language has a format and syntax that is like C++,
developers can use this language to develop applications on cross platforms.
If you have mastered C++ programming, Java will come naturally to you.
Java is also an object-oriented programming language, and therefore, can be
used to develop different products and applications. The older versions of
Java do not allow you to write heavy code, but the latest versions have
some features that make it easier to write effective and shorter programs.

Perl Language
Perl is a language often used in the Unix operating system. It is often used
to manage files and directories. This language is more popular for its
Common Gateway Interface or CGI programming feature. CGI is used to
define the programs used by web servers to provide additional capabilities
to different websites and pages. It is also used to look for text and monitor
databases and server functions. It is a simple language, and you can easily
pick up the language's fundamentals. Since the language is CGI, most web
hosting services prefer to use the Perl language instead of C++ since a Perl
script file can host numerous websites.
PHP Language

This language, primarily a scripting language, is used to design web
applications and pages. Since this language is used to develop web pages or
applications, it comprises features to link the websites to different
databases, recreate or restructure a website or generate HTTP headers. PHP



also includes a set of components since it is a scripting language, and the
components permit the developer to use some object-oriented features.
These features make it easier to develop websites.
LISP Language

Many programmers use this language since this language allows you to
store different types of data structures, such as lists and arrays. The syntax
of the data structures being used is easy to understand and simple. This is
why it can be used to create new data structures and perform functions you
cannot perform using other programming languages.
Scheme Language

The Scheme programming language is an alternative or substitute to LISP,
and it has simple features. The syntax used in the language is easy to learn.
If you want to develop programs or products using this language, you can
also re-implement it in other languages, especially LISP. This is a basic
programming language and is often used only to solve simple problems,
especially those where you do not have to worry about the syntax of the
language.
C++ Language
The C++ language is an object-oriented programming language, and it is for
this reason that programmers use this language when they have to build
large applications. A programmer can break a complex program into
smaller sections making it easier for them to work on smaller programs.
Since this is an object-oriented programming language, you can use one
block of code multiple times. Some say that this language is efficient, but
there are others who will not agree.

C Language
C is a very common programming language, and almost anybody can easily
learn and code in this language. Most programmers prefer to use this
language since programs run faster. The language uses different features,
and these features allow programmers to develop efficient programs using
the right algorithms. This language is used only because it allows people to
use some features from C++.



In this chapter, we looked at different programming languages, such as
Pascal, Fortran, C, C++, Scheme, and others, and learned how they can be
used. We also looked at the differences between these languages. Many
languages have also been developed that are similar to the languages listed
above. You need to know which language works best for the program or
product you are developing.



Chapter Eight: Important Programming
Techniques
Since numerous programming languages are being developed, it becomes
difficult to determine which language is the best to use. Every programming
language can be used for different reasons. This, however, should not
matter since the syntax used in any language is more important. It is also
important to determine how you work on solving the problem. It is always
about algorithmic thinking. Learn to break the problem into different steps
and see how you can solve these problems.

While it is important to understand the syntax, it is very important to
understand how any programming language is structured. You must know
what different terms mean and how they can be used.

Arrays
Arrays are collections of variables with the same data type. Every element
is assigned an index, and it is best to use these indices to look up the
elements in the array. For example, you can create random numbers, so if
you want any random item like the day of the week, you can use the index
to pull out the random number.
Some programming languages do not support the use of data structures like
arrays. You can, however, replicate the functionalities of an array using lists
or tuples. You can use binary trees in an array if the array is sparsely
populated. It is messy to do this, but it is easier to do this if you want to use
different types of data. JavaScript allows you to use the array index as a
Boolean operator, and this means you can use various binary expressions to
evaluate the condition. This makes it easier to select the values without
using any conditional statements.
An array is also known as a multivariable since it allows you to store
different variables of the same data type together. You can declare arrays in
your program the same way you declare other variables in the program:

float array1[10];



In the example above, we assign an array with the length 10, indicating it
can hold 10 values. You can define or add values to the array using the
following line:

Float array1[] = {53.0, 88.0, 96.7, 93.1, 89.5};

This array contains five values that are of the float data type.
●      You can refer to every element in the array as an independent variable

when you use it in a function or module. The items in the array are
known as elements

●      Every element is given a specific position, and this position is known
as the index. The index of the first element in the array is zero, and in
the example above, the first number 53.0 is at position zero

●      You can assign the values to the array the same way you assign
values to regular variables

●      Every program has a fixed array size, and when you determine the
dimension of an array, by assigning the array a length

Building Big Programs
You can write small or big programs. While there is no harm with writing
big programs, you should understand the computer would take some time to
compile the code. It will take longer to identify the errors and edit the code.
This would mean the program is going to have errors, and you should
accept it.

If you want to write big programs, see if you can break it down into smaller
segments. You can use pointers to connect the smaller segments and create
a program flow. For example, a module may declare variables, while
another may initialize them, while another could be used to perform some
functions on the variables and display the results. This is why it becomes
easier to debug the program and identify errors if required. Another
advantage of doing this is that you can use these smaller modules in the
future, which will help you save time.
If the compiler runs the source code file, it may create an object code that
will be linked to various libraries in the programming language. It will then



produce a file it can easily execute. This is how the linking works between
the compiler and the linker. Variables can be shared across different
modules or source codes, and a number of functions can be performed on
those variables.

Bitwise Logic
If you use bitwise logic to write code, you can either set or unset bits. Some
programming languages also allow you to mask some bits in your code.
This is a programming staple that everyone must know. You can combine
numerous values into binary flags and save these flags in the machine’s
memory. This means code does not require large chunks of memory to save
data. This is a great method to combine values that you can pass between
methods and functions as only one argument.
Bitwise logic can also be used to pass different values between web pages
and other programs using cookies or query strings. You can also use this
method as a simple and quick way to convert the variables from the denary
to the binary system. Bitwise logic can be used to encipher text, as well.

Boolean Logic
If you wish to combine different values, it is important for one to learn
about AND, OR, NOT, etc. These operators will make it easier to create and
develop truth tables. A Boolean operator is often used all of the time by
programmers. One of the most important things to consider is that every
expression must be evaluated as true or false. You need to determine the
syntax to use based on the language that you choose to write in.

Closures
Closures are anonymous functions that can also be used as code blocks.
These blocks can be passed outside any method or function. This code will
capture all the variables from the function or inner block. This might sound
a little complicated, but it is definitely easy to understand using an example.
In the example below, we will see how to use closures in programming:

func makeIncrementer(forIncrement amount: Int) -> () -> Int {

    var runningTotal = 0



    func incrementer() -> Int {
        runningTotal += amount

        return runningTotal
    }

    return incrementer
}
let incrementByTen = makeIncrementer(forIncrement: 10)

print("\(incrementByTen())")
print("\(incrementByTen())")

print("\(incrementByTen())")
The output of the above code is 10, 20, and 30. The output changes since
the function makeIncrementer() uses the value 10 as the base. This value is
then added to the total using the function incrementbyTen(). You can also
create another incrementer function if you want to increase the value by 5.

let incrementByFive = makeIncrementer(forIncrement: 5)

If you run this function thrice, the compiler will throw 5, 10, and 15 as the
output. The makeIncrementer() function works behind the scenes and
creates the instance of a class by passing the values to add. The benefit of
using closures is to build code that is easier to understand. Reduce the
cognitive load making the code easier to compile and implement.

Concurrency
The concept of concurrency is very different from parallel computing. The
concepts are similar, but the difference is in parallel computing, the code
runs on different processes at the same time. If you use concurrency, the
program can be split into different segments, and each segment is executed
separately. You can do this even if the program is running and functioning
correctly.

Many programming languages use the concept of multithreading, but it is
better to use the concept of concurrency to write code. Concurrency ensures
fewer errors in the code. For example, if you were to code in C#, use the



Task Parallel Library or TPL to add some elements of concurrency to the
code. This method uses the CLR thread pool to run multiple processes
allowing you to run the program without having to create threads, which is
a very costly operation. You can chain various tasks together and run them
together to obtain the results.
It is best to use asynchronous code if you want since it allows you to run
programs at the same time without hampering the functioning of other code.
When you use asynchronous code to make some web service calls, the code
runs without blocking the thread. The thread can continue to respond to any
other requests while it waits for the first few requests to complete. In the
example below, we will see how to use asynchronous code and concurrency
to perform functions.

public async Task MethodAsync()
{

    Task longRunningTask = LongRunningTaskAsync();
    ... any code here
 

    int result = await longRunningTask;
    DoSomething(result);

}
 
public async Task LongRunningTaskAsync() { // returns an int

    await Task.Delay(1000);
    return 1;
}

At times, a programmer may choose to use different pages to access
information at the same time. While the compiler fetches a page, it will
process it. It is impossible to determine how the pages are processed, and
the order in which the compiler performs this function since every language
uses the process of concurrency to perform this activity.



Decision or Selection
Never write a program that only performs one action. It is important to
ensure the code you write is flexible and can be updated to suit other needs
if needed. So, you must write code that will accept user inputs and perform
the functions based on that input. Use different statements, such as selection
or if-else statements, to use any input and perform a function or action
based on the condition. You can use lists and arrays, as well.

Disk Access
Most people use computers to store data and information and work on that
information in the future. Every programming language has a number of
functions that can be used to read and write information to and from the
disk. Any program you write is saved on your computer’s disk, but this will
only happen if you have used the file save command to write the code.

Immutability
If you declare some variables as immutable in your code, you cannot
change them. Some programming languages allow you to determine the
immutability of a variable using specific prefixes. You should, however,
ensure you do not have any dependencies to the variable. You can always
change the declaration if you need to. In the example below, we will look at
how to declare variables with immutable properties. We will also declare
some fields as immutable.

class Person {

 
    let firstName: String

    let lastName: String
 
    init(first: String, last: String) {

         firstName = first
         lastName = last
    }



 
   public func toString() -> String {

       return "\(self.firstName) \(self.lastName)";
   }

}
 
var man = Person(first:"David", last:"Bolton")

print( man.toString() )
The output of the code is “David Bolton.”

If you want to change the first or last name in the code, the compiler will
throw an error. It is important to use immutable variables in the code. Using
these variables, the compiler optimizes the output. The immutable data type
will never change if you use a multi-threaded programming language. The
value of the variable is shared between different modules and threads. If
you want to copy the value of an immutable object, you must only copy the
reference to that variable and not the variable itself.

Interacting with the Command Line
The main function or method in the code works very differently in the code.
It is what the compiler relies on when going through the entire code. Every
function in the code will communicate with the command line, and this is
the only way the code you write communicates with the computer. Another
way the program can communicate is by reading the instructions from the
command line.

Interacting with the OS
Every programming allows you to work with the operating system to
perform some functions. Through these languages, you can create new
directories, change directories, rename files, create files, delete files, and
perform other handy tasks on the operating system.
You can also run other programs using one single program. The easiest way
to do this is to use pointers. You can locate the right program in the memory



using pointers. You can also use the program to examine the results of a
function performed by the operating system. It is an easy-to-use program
that interacts with other programs and examines the efficiency of your
computer. If you know how to add code, you can easily perform all these
functions.

Lambdas
This expression is the best way to call on an anonymous function in the
code while the program is running. A lambda is a useful method to use with
languages that will allow you to support different kinds of first-class
functions. It is easy to pass the function or any other module as a parameter
in a different function. This indicates you can easily pass functions and
return them as functions if needed. A lambda originated with different
functional languages like C# and Lisp. The following syntax is used to
create a lambda function:

()-> {code...}

Many languages, including PHP, Swift, Java, JavaScript, Python, and
VB.NET, support lambda functions. It is important to understand how
lambda functions can be used. A lambda function can make the code shorter
and extremely easy to understand. Consider the following example where
we are trying to build a list of the odd numbers:

    List list = new List() { 1, 2, 3, 4, 5, 6, 7, 8 }; 
    List oddNumbers = list.FindAll(x => (x % 2) != 0); 

The oddNumbers will contain the numbers 1, 3, 5 and 7

Loops and Repetitions
This is another important technique that you should consider when writing
code. The for loop is the most common type of loop or repetition that
people write in their programs. Some coders also choose to use the while
loop when they code. The while loop does complicate the solution. In most
programming languages, the for loop will use the idea of counting the
number of iterations. How the iterations occur and the variables that are
considered are dependent on the programming language.



Linked Lists
Most programmers worry about using linked lists since they are slightly
difficult to understand. A linked list is a strange concept since the user must
know how a pointer can be used in a linked list and how this pointer works.
Linked lists combine the functions of an array with pointers and structures.
One can say that a linked list is like an array of structures. Unlike a data
structure, such as an array or list, the user can easily remove the linked list
elements.

Modular Arithmetic
In modular arithmetic, you divide the number and use different operations
to obtain results. This is the best way to limit the output you obtain from a
method or function. Different modular arithmetic functions can also be used
to wrap things around, and it is for this reason this technique is useful. You
must understand this technique well, especially if you want to use it the
right way in your code.

Pointers
Most programming languages use pointers, which are used to manipulate
different variables stored in a computer’s memory. You may be wondering
why you would want to use a pointer to navigate to a certain part in your
memory, but using a pointer allows you to change the value of any variable
using an operator or function. Pointers give programming languages more
power when compared to other programming languages. It does take some
time to understand how to use pointers and what you can do to variables
using pointers. You can declare pointers using an asterisk. You must ensure
the compiler does not confuse this asterisk with the multiplication
operation. Assign a pointer before you use it.

Safe Calls
Sir Tony Hoare, a computer scientist, once said you should never introduce
a null reference to your code since this will only lead to errors in the output.
If you access a variable using a null reference, it will lead to an exception
unless you have the right handler in place. The program or system will
otherwise crash. It is best to use programming languages with exception



handlers to avoid recurring errors in your code. Some high-level
programming languages, like C, cannot identify null pointers in the code,
and this can lead to errors in the output.
Numerous programming languages include safety checks that will prevent
any null reference errors. For example, in C#, you can avoid blocks of code
if you have the right exception handler in place. You must use a condition to
tell the compiler which lines of code to avoid. This reduces the number of
lines the compiler should run in the code.

Consider the following example:
int? count = customers?[0]?.Orders?.Count();

The symbol ‘?’ indicates to the compiler to set the value to zero if the
customer variable defined in the code has a null value. Otherwise, the
compiler will call upon the Count() function. If you use the function, you
must declare the variable to hold a null value so you do not have an error
when the code is run.

Scaling and Random Numbers
Most high-level programming languages use different types of libraries.
Using these libraries, you can generate random numbers. If you use a
programming language without this feature, it is best to use integers to
perform different methods and functions. This will, however, not serve the
purpose. Therefore, it is important to learn how to obtain random numbers
and use the necessary functions to scale them. You can ensure shapes on a
screen will always either increase or decrease in the same size through
scaling.

Random numbers can also be used just because you want to, especially
when you use different data structures. When you add a degree of
randomness to these numbers, you can make the numbers look natural. For
instance, if you want to draw a tree or any other object on the screen, you
can use the recursion concept to do this. If you do not add some randomness
to the code, the object you draw will not look like it.
Many functions in different programming languages allow you to create
pseudorandom numbers. These numbers can be distributed uniformly



within a range. Bear in mind this is not something you are required to do.

Strings
Strings are a common data type most programmers work with, and this is
often used in any text manipulation program. We will look at what text
manipulation is later in this chapter. You can define a string using an array
or any other data structure but define it as a structure of characters. For
instance,

Char name1[] = "Emma";

Using the above line, you can create a string variable called name1, and this
variable holds the value, Emma. Since you have defined the variable as an
array, the value will be saved as ‘E,’ ‘m,’ ‘m’, and ‘a.’ Alternatively, you
can write the value using this format:

Char name1[] = { ‘E', ‘m', ‘m', ‘a'};
It is important to keep the following points in mind regarding strings:

●      Different functions can be used to manipulate strings.
●      Strings end with the null character that is defined in the library class

stdio.h. `

●      You can read strings using scanf() or get(). String values can be
displayed using the printf() function.

●      Strings are character arrays and end with the null character.

Structures
Every programming language uses a combination of different variables, and
you can convert variables into different data structures. A structure is like a
record in a database since it can be used to describe numerous entities at the
same time. As a programmer, you can determine how to declare and
initialize a data structure. Consider this example:

struct example
{

int a;



char b;
float c;

}
In the above structure, we see three variables. Each variable is assigned a
specific data type. Using this function, you can create a structure with three
variables, but you do not necessarily have to declare these variables. If you
would like to declare the variables, you will need to increase the number of
lines in your code. A structure can also be used to work on different
databases based on the type of programming language on which you are
working. You should learn everything about different programming
languages and structures, especially how you should usethem to write code. 

Text Manipulation
Text manipulation is a key concept, and most people writing code want to
learn how to manipulate characters and strings. You must understand these
concepts well. If you know how to code, you know the text is stored in the
number format based on the ASCII code. Therefore, you must learn how to
convert any character into its ASCII code and vice versa. You can also use
this number to check if the characters are upper or lower case. Using the
ASCII code, you can create ciphers using bitwise EOR.
You can also break or divide strings using the left() and right() functions,
and this allows you to perform different types of tasks. You can create
anagrams or display the required texts on the screen. The text manipulation
functions in any programming language allow you to change the case of
any letter and format text so it looks a certain way when you build the code
or program. You can do this to improve how your program appears.

Trigonometry
You need to understand some concepts when it comes to programming, and
understanding trigonometry is one of the most important concepts of all.
These topics are often used when you develop code or programs that use
animation. Trigonometry is one of the most important concepts that
programmers use while they develop code. The use of sine and cosine
functions makes it easier to create a circular motion, draw patterns and



circles, find the perfect layout for objects on a website or even identify the
right angles and directions in which the objects must turn. It is difficult to
compute various trigonometric functions, but they improve the efficiency of
programs.

Variables
The objective of any method or function written is to obtain a result or
output. If you do not use the right variables in the code, you will not get the
right output. The programs you develop may be of no use to you, as well.
For example, how would it feel if you developed a program to obtain the
output of a mathematical function but did not receive the output because
you missed a variable in the code? For this reason, you need to include
variables in the code. These are the most important aspects of any
programming language. The variables you use in the code, their type, the
method used to declare and initialize the variable will differ between
programming languages.



 





Chapter Nine: Testing the Program
Like how we analyze algorithms to see if they are effective, it is important
to test any code you write. Different tests and parameters can be used to
perform these tests. It is important to stick to the TBB or test-driven
development approach if you want to assess the code.

Laws of TTD
The following rules must be kept in mind if you choose to perform a TTD
test on the code you write:

1. You should create a prototype of the code and write the test code. Run
this code and compile it to see if it works well. You must do this
before you write the production code

2. Ensure you do not write a very big code because the test may fail. Use
smaller segments of code as test code, so it becomes easier to correct
the code

3. Rewrite the test code if there are failures, compile the code and then
write the production code

When you perform tests on the code, write the production code at the same
time to ensure the code you write is accurate.

Keeping the Tests Clean
Ensure the tests you run are clean of any errors. If you have a test code
filled with bugs, do not run that test since it is of no use to you. Bear in
mind the test code should change as often as the production code changes.
If the tests are dirty, it will be hard to change them. You need to design the
test in the right manner. You need to be careful and think through the
process. Ensure the test code is clean and a replica of the production code.

Testing the Abilities of the Code
●      No matter how flexible the architecture or code is, if you do not run

all the tests and ensure the code functions well, you cannot change the
code. It is important to do this if you want to avoid any errors in the
production code



●      The unit test ensures the code is maintainable, reusable, and flexible.
Only make changes to the code if you have some tests you can run to
assess the changes. If you do not have any tests, debug the code every
time you make a change to it

Clean Tests
Ensure any test you perform has the following attributes:
Readability

This is an important aspect to consider when you write test code. Ensure the
code has all the relevant attributes and is easy for anybody to read. The
code should also use simple variables and functions and define everything
one must test in the code.
Testing Language
It is important to assess the functions and utilities in specialized APIs used
by the test code. They make it easier to understand the test code and the
purpose behind each line of code.

Dual Standard
You must consider a few things when you write the test or production code.
You may not want to try these in the production code but you will try them
out in the test code. This ensures the production code you write is usable.

Assertions
Any test code you write must have an assertion. This may cause some
duplication in the code, but you can set the template method and leave that
as the base class. You also need to use the assertions on different tests.
Therefore, you must include at least one assertion when you run a test.

Characteristics of Tests
This section will look at the different aspects you must consider when you
perform a test on the code.
Self-Validating
Every test should have a Boolean output to help you determine if the test
works the way it should. Ensure a user does not have to go through the log



to verify your written code.
Independent

None of the tests you run should have a dependence on each other. Run the
tests in different orders to ensure the code works regardless of the type of
environment it is in.
Timely

Ensure the tests you write can compile in a few seconds. Write the test code
before you write the production code. That way, you can tweak the
production code and run it without errors. If you start writing tests after you
begin writing the production code, you cannot update the production code,
so it does not have any errors.
Repeatable
You should try to repeat every test you perform in any environment. In case
you write a test code, but it cannot perform well in other environments, you
must determine why they fail.

Fast
Ensure every test you perform is fast. If the test is slow, you may not want
to run it frequently because it will take up too much time. A slow test may
not help you with identifying issues in your code.

Remember, the code will rot if your tests rot.



Chapter Ten: Sorting and Searching Algorithms
This chapter will look at the different sorting and searching algorithms.
Since C is one of the simpler programming languages out there, we will
look at implementing these algorithms in this language.

Searching Algorithms
As the name suggests, a searching algorithm finds an element in any data
structure and retrieves the element and its location from that structure.
There are two types of searching algorithms:

Types of Searching AlgorithmsSequential Search
A sequential search is one where the algorithm traverses through the data
structure sequentially to look for the target element. It will search through
each element in the data set. An example of this algorithm is the linear
search algorithm.
Interval Search

An interval search algorithm searches for the element in a sorted data
structure. This means you must first use a sorting algorithm on the data
structure before you perform an interval search. This type of searching
algorithm is effective since it searches for the target at the center of the
structure. An example of this type of algorithm is the binary search
algorithm, and we will look at this in further detail later in the book.
Linear Search Versus Binary Search

A linear search does not require you to sort the array, and it scans every
item in the array to search for the element. It does not exclude any element
in the array, either. This means the time taken by the compiler to search for
an element is directly proportional to the number of elements in the data
structure. For example, the algorithm will take less time to search for the
element if there are only 5 elements in the array but will take longer if there
are 15 elements in the array. On the other hand, a binary search reduces the
time taken to search for the element in the array. We will look at these
algorithms in further detail in the next section of this chapter.
Important Differences



You should sort the array before using the binary search algorithm,
but this is not required for a linear search algorithm
Linear search follows the sequential process while the binary search
algorithm will look at the data randomly

The binary search algorithm performs comparisons based on the
segment, while the linear search will perform an equality comparison

Linear Search

Using the example below, we will understand how a linear search can be
performed on an array. In the problem, we will consider an array and use a
function to find the element in the array. Since the linear search algorithm
checks every element in the array, it will traverse through the entire data
structure. It is for this reason this search algorithm is not efficient.
For instance, to look for the element 16 in an array, the algorithm will go
through each element to find it.

Array1[] = {1, 4, 16, 5, 19, 10}

Output: 16
It will also return the index of the number.

Let us assume that the number is not present in the array. What do you think
will happen then? Let us look for the number 45.
Output: -1
To perform a linear search algorithm, use the steps given below:

Define the array and add numbers to it
Identify the element you want to search for
Begin with the leftmost element that is present in the array

Compare the target element with each of the elements in the array
If the target element matches the element in the array, return the index

If the target element is not present, return -1 Implementation
#include <stdio.h>



int search(int arr[], int n, int x)
{

    int i;
    for (i = 0; i < n; i++)

        if (arr[i] == x)
            return i;
    return -1;

}
 

int main(void)
{
    int arr[] = { 2, 3, 4, 10, 40 };

    int x = 10;
    int n = sizeof(arr) / sizeof(arr[0]);
    int result = search(arr, n, x);

    (result == -1) ? printf("Element is not present in array")
                   : printf("Element is present at index %d",

                            result);
    return 0;
}

Binary Search
The binary search algorithm does not work well with unsorted information.
This means you should first use the sorting algorithm to clean up the data
and store the information in an array. You should then write a function to
find the element you are looking for in the array. A binary search algorithm
breaks the array into segments and performs a linear search on the segment



to find the required element. It is easier to perform a linear search, but a
binary search is more efficient.
This algorithm will ignore the other elements in the array after it performs
one comparison. Follow the steps given below to perform a binary search
on the array elements:

1. Define the array and list the elements in the array. List the element
you want to search for

2. Sort the elements in the array. Now, compare the target element with
the middle element

3. If the element is the same, return the index or location of that element
4. If the target element is greater than the middle element, it will be

present in the section to the right of the middle element. If it is lesser
than the middle element, it will be present in the section to the left of
the middle element

5. Perform the steps from 2 – 4 with the left or right section of the array

6. Otherwise, check the other half
7. End the search

Implementation
#include <stdio.h>
// This program is an example of a recursive binary search function. It
will return the location of x in the given array arr[l..r] if the element is
present. Otherwise, it returns the value -1

int binarySearch(int arr[], int l, int r, int x)
{
    if (r >= l) {

        int mid = l + (r - l) / 2;
        // If the element is the same as the element in the middle of the
array, then it returns the index of the middle element

            if (arr[mid] == x)



            return mid;
 

        // If an element is smaller than the middle element, then the
element will only be present in the left section of the array. We will
now perform a search on that section
        if (arr[mid] > x)

            return binarySearch(arr, l, mid - 1, x);
 
        // Else the element can only be present in the right section of the
array

        return binarySearch(arr, mid + 1, r, x);
    }

 
    // We reach here when element is not present in the array itself
    return -1;

}
int main(void)
{

    int arr[] = { 2, 3, 4, 10, 40 };
    int n = sizeof(arr) / sizeof(arr[0]);

    int x = 10;
    int result = binarySearch(arr, 0, n - 1, x);
    (result == -1) ? printf("Element is not present in array")

                   : printf("Element is present at index %d",
                            result);

    return 0;
}



Let us now look at how we can implement the binary search algorithm
using the iterative and recursive methods. Before this, it is important to
understand the time complexity of any binary search algorithm, especially
to ensure you do not spend the machine’s time unnecessarily on compiling.
The formula to use is: T(n) = T(n/2) + c. To remove the recurrence in the
code, use a recurrence or master tree method.
Recursive implementation

// To implement recursive Binary Search using C++
#include <bits/stdc++.h>

using namespace std;
 
// In this code, we will use a recursive binary search function. It
returns the location of the variable x in a given array arr[l..r] is
present.

// otherwise it will return the value -1
int binarySearch(int arr[], int l, int r, int x)

{
    if (r >= l) {
        int mid = l + (r - l) / 2;

 
        // If the element is present in the middle of the array
        if (arr[mid] == x)

            return mid;
 

        // If element is smaller than mid, then it indicates the element is
present in the left subarray
        if (arr[mid] > x)
            return binarySearch(arr, l, mid - 1, x);



 
        // Else the element can only be present in the other section of the
array

        return binarySearch(arr, mid + 1, r, x);
    }

 
    // If the element is not present in the array, the compiler reaches this
point
    return -1;

}
 

int main(void)
{
    int arr[] = { 2, 3, 4, 10, 40 };

    int x = 10;
    int n = sizeof(arr) / sizeof(arr[0]);
    int result = binarySearch(arr, 0, n - 1, x);

    (result == -1) ? cout << "Element is not present in array"
                   : cout << "Element is present at index " << result;

    return 0;
}
The output of the code is: ‘Element is present at index 3’

Iterative implementation
// To implement recursive Binary Search using C++

#include <bits/stdc++.h>
using namespace std;



 
// In this code, we will use a recursive binary search function. It
returns the location of the variable x in a given array arr[l..r] is
present.

// otherwise it will return the value -1
int binarySearch(int arr[], int l, int r, int x)

{
    while (l <= r) {
        int m = l + (r - l) / 2;

 
        // Check if x is present at mid

        if (arr[m] == x)
            return m;
 

        // If x greater, ignore left half of the array
        if (arr[m] < x)
            l = m + 1;

 
        // If x is smaller, ignore right half of the array

        else
            r = m - 1;
    }

 
    // If the compiler does not find the element in the array, the
compiler reaches this stage

    return -1;
}



 
int main(void)

{
    int arr[] = { 2, 3, 4, 10, 40 };

    int x = 10;
    int n = sizeof(arr) / sizeof(arr[0]);
    int result = binarySearch(arr, 0, n - 1, x);

    (result == -1) ? cout << "Element is not present in array"
                   : cout << "Element is present at index " << result;

    return 0;
}
The output of the code is: ‘Element is present at index 3’

Jump Search
This algorithm is like the binary search algorithm. It looks for the element
you want to find in the array. Bear in mind that, like the binary search
algorithm, the jump search algorithm only works if the array is sorted. The
objective of this algorithm is to look for the element from a smaller section
of the array. This means the compiler skips some elements in the array to
jump to another section in the algorithm.
Let us look at an example to understand this concept better. Let us assume
you have created an array with ‘n’ elements in them. You can indicate to the
compiler to jump ahead by a few steps. If you want to look for the search
element in the array, you begin to look at the following indices a[0], a[m],
a[2m], ….. a[km]. The linear search will begin if the compiler finds the
interval where the element may be present.

Consider the following array: (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,
233, 377, 610). There are 16 elements in this array. Now, let us indicate to
the compiler to look for 55 in the array, and we will tell the compiler to
break the code down into four subsections. This indicates the compiler will
move by four elements every time.



Step 1: The compiler moves from the index 0 to 2.
Step 2: The compiler moves from 3 to 13.

Step 3: The compiler jumps from 21 to 89.
Step 4: The element in position 12 is larger than 55, so we go back to the
start of the block.

Step 5: The linear search algorithm kicks in and looks for the index of the
element.
Optimal Block Size
If you use the jump search algorithm, choose the right block size, so the
compiler does not come across too many issues in the algorithm. In some
cases, you may need to traverse through the entire list, but this is only
dependent on where the element is and how well you optimize the code.
Sometimes, you need to perform m-1 comparisons when the linear search
algorithm kicks in. This is the worst-case scenario, and it means the number
of jumps will be ((n/m) + m-1). The value of this function will be minimum
if the value of the element ‘m’ is square root n. Therefore, m = √n is the
number of steps the compiler must run.

// To implement Jump Search using C++
  #include <bits/stdc++.h>

using namespace std;
 
int jumpSearch(int arr[], int x, int n)

{
   // Finding block size to be jumped
    int step = sqrt(n);

 
    // Finding the block where element is

    // present (if it is present)



    int prev = 0;
    while (arr[min(step, n)-1] < x)

    {
        prev = step;

        step += sqrt(n);
        if (prev >= n)
            return -1;

    }
 

    // Doing a linear search for x in block
    // beginning with prev.
    while (arr[prev] < x)

    {
        prev++;
 

        // If we reached next block or end of
        // array, element is not present.

        if (prev == min(step, n))
            return -1;
    }

    // If element is found
    if (arr[prev] == x)

        return prev;
 
    return -1;

}



 
// Driver program to test function

int main()
{

    int arr[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21,
                34, 55, 89, 144, 233, 377, 610 };
    int x = 55;

    int n = sizeof(arr) / sizeof(arr[0]);
 

    // Find the index of 'x' using Jump Search
    int index = jumpSearch(arr, x, n);
 

    // Print the index where 'x' is located
    count << "\nNumber " << x << " is at index " << index;
    return 0;

}
The output of this code: Number 55 is at index 10

The following points are to be kept in mind when you write an algorithm:
●      You must sort the elements in the array before you use the algorithm
●       The optimal length the compiler must traverse through is √ n.

Therefore, the time complexity of this algorithm is O (√ n). This
indicates the binary search and linear search algorithms are performed
together to ensure the algorithm is not too complex

●       The jump search algorithm is not as good as the binary search
algorithm in terms of efficiency, but it is better than the binary search
algorithm since the compiler only moves once through the array. If
the binary search algorithm is too expensive in terms of memory and
time, use the jump search algorithm instead



Sorting Algorithms
You can use different sorting algorithms to arrange a given list of elements
or array based on the comparison operator used while defining the
algorithm. This comparison operator will decide the order of the elements
in the new data structure.

Sorting Terminology
Before we look at the different sorting algorithms you can use in
programming, we will define some terms you must understand before you
start using sorting algorithms.

External and Internal Sorting
The external sorting algorithm does not use a lot of space in the memory.
The elements in the array are not loaded into the memory, and therefore,
this sorting mechanism is often used to sort large volumes of data. Merge
sort is an example of an external sorting algorithm, and we will look at this
in further detail later in the book. Unlike the external sorting algorithm, an
internal sorting algorithm uses a lot of space in the memory.
In-Place Sorting

If you only want to change a given input or reorder the elements in the
input, you can use an in-place sorting algorithm. This algorithm will only
sort the list of elements in the array by changing the order of the elements
within the same list. For example, you can use the selection sort and
insertion sort algorithms to sort a list of elements. Merge sort, and other
sorting algorithms are not in-place sorting algorithms.
Stability

If you have multiple keys in the data set, you should consider the stability
of the algorithm you want to use. For instance, remove duplicates from your
list if you have some names in the algorithm you are using as keys.
Therefore, it makes sense for you to sort the information in the data
structure based on these keys.
What Is Stability?



When you have duplicate keys in a list, the sorting algorithm should ensure
that these keys appear in the same order when you sort the output. Only
when this happens is a sorting algorithm said to be stable. If you want to
define this mathematically:
Let the array of elements be defined as A. We will define the strict weak
ordering as ‘<’ on the elements in the array. The sorting algorithm will then
be stable if:

i<j and A(i) = A (j) implies C(i) < C(j)
Where C. denotes the sorting permutation, it means that the sorting
algorithm will move the element at A(i) to C(i). In simple words, you can
define the stability of a sorting algorithm based on the relative position of
the variables in the algorithm.

Looking at Simple Arrays
If you have a list of elements where a single element is the key, the
algorithm's stability will not be an issue. The stability of an algorithm will
not be an issue even if the keys are all different.
Let us consider the following data set where we have the names of students
against their sections.

(John, A)
(Betty, C)

(Jane, C)
(David, B)
(Erica, B)

If you instruct the algorithm to sort the data based on the name only, the
resulting output will have a list that is not completely sorted.

(Betty, C)
(Erica, B)

(David, B)
(Jane, C)



(John, A)
So, in this instance, you may also need to sort the algorithm based on the
section. If the sorting algorithm is not stable, you will get the following
result:

(John, A)
(David, B)

(Erica, B)
(Jane, C)
(Betty, C)

If you look at the output, you know that the data set is sorted based on the
sections and not on the names. If you look at the order of the elements, you
will see that the relativity in the sorting algorithm is lost. If you have a
stable sorting algorithm, your output will be as follows:

(John, A)

(David, B)
(Erica, B)
(Betty, C)

(Jane, C)
If you look at the above output, you can see that the relative order is
maintained between the tuples. It could be the case that the order is
maintained even in an unstable sorting algorithm, but this is very unlikely.
Stable Sorting Algorithms

Some stable algorithms are:
1. Count Sort

2. Merge Sort
3. Insertion Sort
4. Bubble Sort



Sorting algorithms like insertion and merge sort the data based on the
following parameters: The element A(i) will come before A(j) if A(i)<A(j)
where i and j denote the indices. The relative order of the elements in the
array is preserved since i<j. Like the count sort, other sorting algorithms
maintain stability in the algorithm by sorting the data set in reverse order, so
the elements have the same relative position. Radix sort, another stable
sorting algorithm, depends on another sort performed where the only
requirement is that the first sort should be stable.
Unstable Sorting Algorithms

Heapsort, quick sort, etc., are some unstable sort algorithms, but you can
make these stable by looking at the relative position of the elements. You
can make this change without compromising the performance of the
algorithm.
Common Algorithms

Quick Sort
This algorithm uses the concept of the divide and conquer algorithm. It
picks the elements in an array and divides them into segments. It then
chooses an element from the array as a pivot and splits the array into
segments based on the pivot. You can perform a quick sort using one of the
following methods:

1. Choose the median of the elements as the pivot

2. Choose the last element in the array as the pivot
3. Choose any random element as the pivot

4. Choose the first element in the array as the pivot
The important part of this process is the partition or utility function. The
objective of this function is used to sort the elements in an array based on a
pivot. So, it will take the pivot, place that pivot in the middle and order the
other elements around that pivot.
Implementation

#include<stdio.h>



// We will now introduce a utility function used to swap two elements
in the array
void swap(int* a, int* b)

{
    int t = *a;

    *a = *b;
    *b = t;
}

/* This utility function uses the last element as the pivot and places
the pivot element at its correct position in the sorted array. The
function then places all smaller (smaller than pivot) to left of pivot
and all the larger elements in the array to the right of pivot element */
int partition (int arr[], int low, int high)

{
    int pivot = arr[high];    // pivot
    int i = (low - 1);  // Index of smaller element

 
    for (int j = low; j <= high- 1; j++)
    {

        // If current element is smaller than the pivot
        if (arr[j] < pivot)

        {
            i++;    // increment index of smaller element
            swap(&arr[i], &arr[j]);

        }
    }

    swap(&arr[i + 1], &arr[high]);



    return (i + 1);
}

 
/* The main function that implements QuickSort

arr[] --> Array to be sorted,
  low  --> Starting index,
  high  --> Ending index */

void quickSort(int arr[], int low, int high)
{

    if (low < high)
    {
        /* pi is partitioning index, arr[p] is now

           at right place */
        int pi = partition(arr, low, high);
 

        // Separately sort elements before
        // partition and after partition

        quickSort(arr, low, pi - 1);
        quickSort(arr, pi + 1, high);
    }

}
 

/* Function to print an array */
void printArray(int arr[], int size)
{

    int i;



    for (i=0; i < size; i++)
        printf("%d ", arr[i]);

    printf("n");
}

 
// Driver program to test above functions
int main()

{
    int arr[] = {10, 7, 8, 9, 1, 5};

    int n = sizeof(arr)/sizeof(arr[0]);
    quickSort(arr, 0, n-1);
    printf("Sorted array: n");

    printArray(arr, n);
    return 0;
}

Understanding the Partition Algorithm
/* low  --> Starting index,  high  --> Ending index */

quickSort(arr[], low, high)
{
    if (low < high)

    {
        /* pi is partitioning index, arr[pi] is now

           at right place */
        pi = partition(arr, low, high);
 

        quickSort(arr, low, pi - 1);  // Before pi



        quickSort(arr, pi + 1, high); // After pi
    }

}
The pseudo code for the partition algorithm is:

/* low  --> Starting index,  high  --> Ending index */
quickSort(arr[], low, high)
{

    if (low < high)
    {

        /* pi is partitioning index, arr[pi] is now
           at right place */
        pi = partition(arr, low, high);

 
        quickSort(arr, low, pi - 1);  // Before pi
        quickSort(arr, pi + 1, high); // After pi

    }
}

/* This function takes last element as pivot, places
   the pivot element at its correct position in sorted
    array, and places all smaller (smaller than pivot)

   to left of pivot and all greater elements to right
   of pivot */

partition (arr[], low, high)
{
    // pivot (Element to be placed at right position)

    pivot = arr[high]; 



 
    i = (low - 1)  // Index of smaller element

 
    for (j = low; j <= high- 1; j++)

    {
        // If current element is smaller than the pivot
        if (arr[j] < pivot)

        {
            i++;    // increment index of smaller element

            swap arr[i] and arr[j]
        }
    }

    swap arr[i + 1] and arr[high])
    return (i + 1)
}

Let us look at the illustration of this function:
arr[] = {10, 80, 30, 90, 40, 50, 70}

Indexes:  0   1   2   3   4   5   6
 
low = 0, high =  6, pivot = arr[h] = 70

Initialize index of smaller element, i = -1
 

Traverse elements from j = low to high-1
j = 0 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])
i = 0

arr[] = {10, 80, 30, 90, 40, 50, 70} // No change as i and j



                                     // are same
 

j = 1 : Since arr[j] > pivot, do nothing
// No change in i and arr[]

 
j = 2 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])
i = 1

arr[] = {10, 30, 80, 90, 40, 50, 70} // We swap 80 and 30
 

j = 3 : Since arr[j] > pivot, do nothing
// No change in i and arr[]
 

j = 4 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])
i = 2
arr[] = {10, 30, 40, 90, 80, 50, 70} // 80 and 40 Swapped

j = 5 : Since arr[j] <= pivot, do i++ and swap arr[i] with arr[j]
i = 3

arr[] = {10, 30, 40, 50, 80, 90, 70} // 90 and 50 Swapped
 
We come out of the loop because j is now equal to high-1.

Finally we place pivot at correct position by swapping
arr[i+1] and arr[high] (or pivot)

arr[] = {10, 30, 40, 50, 70, 90, 80} // 80 and 70 Swapped
 
Now 70 is at its correct place. All elements smaller than

70 are before it, and all elements greater than 70 are after



it.
Let us look at how to implement this algorithm in C++:

/* C++ implementation of QuickSort */
#include <bits/stdc++.h>

using namespace std; 
 
// A utility function to swap two elements 

void swap(int* a, int* b) 
{ 

    int t = *a; 
    *a = *b; 
    *b = t; 

} 
 
/* This function takes last element as pivot, places 

the pivot element at its correct position in sorted 
array, and places all smaller (smaller than pivot) 

to left of pivot and all greater elements to right 
of pivot */
int partition (int arr[], int low, int high) 

{ 
    int pivot = arr[high]; // pivot 

    int i = (low - 1); // Index of smaller element 
 
    for (int j = low; j <= high - 1; j++) 

    { 



        // If current element is smaller than the pivot 
        if (arr[j] < pivot) 

        { 
            i++; // increment index of smaller element 

            swap(&arr[i], &arr[j]); 
        } 
    } 

    swap(&arr[i + 1], &arr[high]); 
    return (i + 1); 

} 
 
/* The main function that implements QuickSort 

arr[] --> Array to be sorted, 
low --> Starting index, 
high --> Ending index */

void quickSort(int arr[], int low, int high) 
{ 

    if (low < high) 
    { 
        /* pi is partitioning index, arr[p] is now 

        at right place */
        int pi = partition(arr, low, high); 

 
        // Separately sort elements before 
        // partition and after partition 

        quickSort(arr, low, pi - 1); 



        quickSort(arr, pi + 1, high); 
    } 

} 
 

/* Function to print an array */
void printArray(int arr[], int size) 
{ 

    int i; 
    for (i = 0; i < size; i++) 

        cout << arr[i] << " "; 
    cout << endl; 
} 

 
// Driver Code
int main() 

{ 
    int arr[] = {10, 7, 8, 9, 1, 5}; 

    int n = sizeof(arr) / sizeof(arr[0]); 
    quickSort(arr, 0, n - 1); 
    cout << "Sorted array: \n"; 

    printArray(arr, n); 
    return 0; 

}
Selection Sort
The selection sort algorithm breaks the array into segments and sorts each
segment by looking for the minimum element in the unsorted segment and



moving it to the front of the array. The algorithm maintains two segments:
1. The sorted segment

2. The remaining part of the array, the algorithm should sort
The algorithm moves the minimum element from the unsorted segment to
the sorted segment in each iteration.

Let us consider the following example:
We have an array array1[] = {10, 65, 40, 12, 22}. The objective is to find
the minimum element in the above array and move it to the beginning of the
array. Since the minimum element is at the start of the array, the array will
not change.

array1[] = {10, 65, 40, 12, 22}

Now, the algorithm will look for the minimum element between the second
and last element and move it to the smaller one to the beginning. The array
will now look as follows:

array1[] = {10, 12, 65, 40, 22}

The algorithm will continue to break the array into segments, and the output
will be:

array1[] = {10, 12, 22, 40, 65}
Implementation

#include<stdio.h>
int main(){
   /* Using this program, the variables i and j are loop counters. The
variable temp is used for swapping, and it holds the total number of
elements in the array.

    * The variable number[] is used to store all the input elements for
the array, and the size of this array will change based on the necessity.
*/
   int i, j, count, temp, number[25];

   printf("Number of elements: ");



   scanf("%d",&count);
   printf("Enter %d elements: ", count);

   // Loop to get the elements stored in array
   for(i=0;i<count;i++)

      scanf("%d",&number[i]);
   // Logic of selection sort algorithm
   for(i=0;i<count;i++){

      for(j=i+1;j<count;j++){
         if(number[i]>number[j]){

            temp=number[i];
            number[i]=number[j];
            number[j]=temp;

         }
      }
   }

   printf("Sorted elements: ");
   for(i=0;i<count;i++)

      printf(" %d",number[i]);
   return 0;
}

Bubble Sort
The bubble sort algorithm is a very simple and easy-to-use sorting
algorithm. It compares adjacent elements and sorts the elements based on
the ascending order. If the position of the elements does not need to change,
the elements are sorted. The process followed using this sorting algorithm is
stated below:

1. Define the array and its elements



2. Use a statement to calculate the length of the array and store the
number in the variable ‘n’

3. The following steps should be performed for the elements in the
array:

4. Use the loop covering the elements starting with the index (i) = 1 and
ending at n and another loop for every element starting with index (j)
= n and ending at i+1, perform the following steps:

a. If A[j] < A[j-1]
b. Move the element at the index Array [j] to the position Array [j-

1]

5. End the algorithm
Consider the following example:

First Pass :
( 5 1 4 2 8 ) –> ( 1 5 4 2 8 )

In this step, the algorithm will compare the elements in the array and swap
the numbers 1 and 5.

  ( 1 5 4 2 8 ) –>  ( 1 4 5 2 8 )
In this step, the numbers 4 and 5 are swapped since the number 5 is greater
than 4.

( 1 4 5 2 8 ) –>  ( 1 4 2 5 8 )
In this step, the numbers 5 and 2 are swapped.

( 1 4 2 5 8 ) –> ( 1 4 2 5 8 )

In the last step, the elements are ordered, so no more swapping is necessary.
Second Pass :

( 1 4 2 5 8 ) –> ( 1 4 2 5 8 )
( 1 4 2 5 8 ) –> ( 1 2 4 5 8 )

In this step, the numbers 4 and 2 are swapped since the number 4 is greater
than 2.



( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –>  ( 1 2 4 5 8 )

Since the compiler cannot determine the array is sorted, it will run the code
again.
Third Pass :

( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )

( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
Consider the following implementations of the bubble sort algorithm:

// Implementation of the algorithm on C++
#include <bits/stdc++.h>
using namespace std;

 
void swap(int *xp, int *yp) 
{ 

    int temp = *xp; 
    *xp = *yp; 

    *yp = temp; 
} 
 

// A function to implement bubble sort 
void bubbleSort(int arr[], int n) 

{ 
    int i, j; 
    for (i = 0; i < n-1; i++)     



 
    // Last i elements are already in place 

    for (j = 0; j < n-i-1; j++) 
        if (arr[j] > arr[j+1]) 

            swap(&arr[j], &arr[j+1]); 
} 
 

/* Function to print an array */
void printArray(int arr[], int size) 

{ 
    int i; 
    for (i = 0; i < size; i++) 

        cout << arr[i] << " "; 
    cout << endl; 
} 

 
// Driver code 

int main() 
{ 
    int arr[] = {64, 34, 25, 12, 22, 11, 90}; 

    int n = sizeof(arr)/sizeof(arr[0]); 
    bubbleSort(arr, n); 

    cout<<"Sorted array: \n"; 
    printArray(arr, n); 
    return 0; 

} 



The output of this code is:
Sorted array:

11 12 22 25 34 64 90
Insertion Sort

The insertion sort algorithm is very simple to use. The algorithm works the
same way as the process you use to sort playing cards. The algorithm
follows the process below:

1. Create an array with any number of elements, and define it using the
following method: array1 [n]

2. Use a loop function and run it from the first element in the array until
the end of the array. Now, choose the element and insert the element
into the sequence

3. Add a condition so the element is included in the array based on its
array size

4. End the algorithm

Let us consider the following example:
Define an array Array1[5] and add variables to that array: Array1[] = {12,
11, 13, 5, 6}. Now, add a loop to the array and begin the function from the
first element. The loop should move until the last element in the array.
Since the second number is less than the first number, the algorithm will
move it before 11.

Array1[] = {11, 12, 13, 5, 6}

The loop now moves to the third element in the array, but the array will
change since the elements before the third element are smaller than the third
element.

Array1[] = {11, 12, 13, 5, 6}
Now, the loop moves to the fourth element in the array. It compares the
other elements in the array with the previous numbers in the array. Since the
number is smaller than all the other numbers, it will move to the front.

Array1[] = {5, 11, 12, 13, 6}



The loop finally moves to the last number in the array, and since this
number is less than the three numbers before it but greater than the first
number, it will move to the second position.

Array1[] = {5, 6, 11, 12, 13}

Implementation
#include <math.h>

#include <stdio.h>
  /* Function to sort an array using insertion sort*/
void insertionSort(int arr[], int n)

{
    int i, key, j;

    for (i = 1; i < n; i++) {
        key = arr[i];
        j = i - 1;

          /* Move elements of arr[0..i-1], that are
         greater than key, to one position ahead
         of their current position */

        while (j >= 0 && arr[j] > key) {
            arr[j + 1] = arr[j];

            j = j - 1;
        }
        arr[j + 1] = key;

    }
}

  // A utility function to print an array of size n
void printArray(int arr[], int n)



{
    int i;

    for (i = 0; i < n; i++)
        printf("%d ", arr[i]);

    printf("\n");
}
  /* Driver program to test insertion sort */

int main()
{

    int arr[] = { 12, 11, 13, 5, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
      insertionSort(arr, n);

    printArray(arr, n);
      return 0;
}

Merge Sort
Like the quick sort algorithm, the merge sort algorithm works is also a
divide and conquer algorithm. In this sorting algorithm, the input array is
broken into two halves. The sorting algorithm will be called to sort the
elements in each of the halves and then merge the array into one array. You
can use the merge function to merge the two halves. You must enter the
following parameters when you perform a merge sort algorithm:

1. The input array, along with its elements
2. First sorted half
3. Second sorted half

Using the merge sort algorithm, you can merge the two arrays. Let us first
look at how the algorithm functions before we look at the implementation.



1. Define the array and add the elements to it
2. Divide the array into halves, and sort the elements in each half

3. Use the merge function to combine the sorted arrays
4. End the algorithm

Implementation
// Using this code, we will merge two subarrays of the array arr[]. The
first subarray is arr[l..m], and the second is arr[m+1..r]
void merge(int arr[], int l, int m, int r)

{
    int i, j, k;

    int n1 = m - l + 1;
    int n2 =  r - m;
 

    /* create temp arrays */
    int L[n1], R[n2];
 

    /* Copy data to temp arrays L[] and R[] */
    for (i = 0; i < n1; i++)

        L[i] = arr[l + i];
    for (j = 0; j < n2; j++)
        R[j] = arr[m + 1+ j];

 
    /* Merge the temp arrays back into arr[l..r]*/

    i = 0; // Initial index of first subarray
    j = 0; // Initial index of second subarray
    k = l; // Initial index of merged subarray



    while (i < n1 && j < n2)
    {

        if (L[i] <= R[j])
        {

            arr[k] = L[i];
            i++;
        }

        else
        {

            arr[k] = R[j];
            j++;
        }

        k++;
    }
 

    /* Copy the remaining elements of L[], if there
       are any */

    while (i < n1)
    {
        arr[k] = L[i];

        i++;
        k++;

    }
 
    /* Copy the remaining elements of R[], if there

       are any */



    while (j < n2)
    {

        arr[k] = R[j];
        j++;

        k++;
    }
}

 
/* l is for left index and r is right index of the

   sub-array of arr to be sorted */
void mergeSort(int arr[], int l, int r)
{

    if (l < r)
    {
        // Same as (l+r)/2, but avoids overflow for

        // large l and h
        int m = l+(r-l)/2;

 
        // Sort first and second halves
        mergeSort(arr, l, m);

        mergeSort(arr, m+1, r);
 

        merge(arr, l, m, r);
    }
}

 



/* UTILITY FUNCTIONS */
/* Function to print an array */

void printArray(int A[], int size)
{

    int i;
    for (i=0; i < size; i++)
        printf("%d ", A[i]);

    printf("\n");
}

 
/* Driver program to test above functions */
int main()

{
    int arr[] = {12, 11, 13, 5, 6, 7};
    int arr_size = sizeof(arr)/sizeof(arr[0]);

 
    printf("Given array is \n");

    printArray(arr, arr_size);
 
    mergeSort(arr, 0, arr_size - 1);

 
    printf("\nSorted array is \n");

    printArray(arr, arr_size);
    return 0;
}



Chapter Eleven: Loop Control and Decision
Making
As mentioned earlier, most algorithms use loops and decision-making
statements. Therefore, it is important to understand how to run these
algorithms in any programming language. Any programming language
sequentially executes code. This means the first statement is executed
before the compiler moves to the next one. You can, however, control this
using loops and conditional statements. These functions allow you to
perform complex operations on data.

Decision Making
This is a key piece of programming, and a programmer needs to know how
to use decision-making statements to perform certain functions. The
structures of decision-making statements include at least one condition that
needs evaluating and testing by the program. It also has one or more
statements the compiler must execute depending on the value of the
condition. You may also include other statements to execute if the condition
is false. The following are the decision-making statements in most
programming languages:

?: Operator
We already touched on this earlier. The?: is a conditional operator used
instead of an if…else statement, and its format looks something like:

State1? State2 : State3 ;

State1, State2, and State3 are all expressions – do note the use of the colon
and its placement.
To work out what the value of the entire expression is, State1 is evaluated
first:

If State1 has a value of True, the value of State2 will then be the value of
the entire expression
If State1 evaluates to false, then State3 will be evaluated, and the value of
State3 will be the value of the whole expression.



If Statement
The if statement is the most common decision-making statement used in
programming. The condition has a Boolean expression and one or more
statements in the body.

If Else Statement
This statement may be succeeded by an else statement, which is optional,
which will execute should the Boolean expression evaluate false

Nested if
If you want to test many conditions, use a nested if statement since you can
include multiple if statements and one else statement.
Switch Statement

The statement for use when you want to test a variable for equality against a
list of given values

Loop Statements
If you want to execute statements numerous times in some lines of code,
use loops. Most programming languages have three common loops:

1. For loop
2. While loop

3. Do While loop
For Loop
A for loop executes a statement numerous times depending on the condition
stated in the parameters. The loop variable controls the number of times the
loop runs. The syntax of this loop is:

for (initialization; condition; update)
{

Body;
}



In the for loop, the loop variable is initialized in the function's parameters,
and the value is either increased or decreased within the loop's body. The
condition in the function above will result in a Boolean output – either true
or false, and it determines the number of times the loop runs for. If the
condition returns false, the loop will break, and the statements after the loop
are executed. If the condition does not break, the loop continues to run
indefinitely.
Consider the following example of a for loop where we want to print
numbers 0 – 10:

for (int i = 0; i <= 10; i++)
{

Console.Write(i + " ");
}

You can use the loop to perform complicated functions. For example, you
can calculate the power (m) of a number (n).

Console.Write("n = ");
int n = int.Parse(Console.ReadLine());

Console.Write("m = ");
int m = int.Parse(Console.ReadLine());
decimal result = 1;

for (int i = 0; i < m; i++)
{
result *= n;

}
Console.WriteLine("n^m = " + result);

In the above code, we calculate the power of the number within the loop's
body. The condition we have set it against is the power (m). For loops can
also have two variables defined and initialized within the condition.



for (int small=1, large=10; small<large; small++, large--)
{

Console.WriteLine(small + " " + large);
}

While Loop
Using the while loop, you can repeat one or more statements in the body of
the loop depending on the condition. The condition is tested before the loop
body is executed.
The syntax of the loop is as follows:

while (condition)
{

Body;
}

Consider the example below where we want to print the numbers 0 – 9 on
the output window.

// Initializing the counter variable
int count = 0;
// Setting the loop with the required condition

while (count <= 9)
{

// Printing the variable on the output screen
Console.WriteLine("Number : " + count);
// Incremental operator

counter++;
}

The code will give out the following result:
Number: 0



Number: 1
Number: 2

Number: 3
Number: 4

Number: 5
Number: 6
Number: 7

Number: 8
Number: 9

Let us now look at how to calculate the sum of numbers 1 – 10.
int count = 0;
int sum = 0;

while (count <= 10)
{
sum=sum+count;

count++;
}

Console.WriteLine(“The sum is” + sum);
You can do this in different ways depending on whether you want to use
loops or not. We can also use the while loop to work on other mathematical
calculations. The program below checks whether a number entered is a
prime number or not.

Console.Write("Enter a positive number: ");

int num = int.Parse(Console.ReadLine());
int divider = 2; //stores the value of the potential divisor

int maxDivider = (int)Math.Sqrt(num);
bool prime = true;



while (prime && (divider <= maxDivider))
{

if (num % divider == 0)
{

prime = false;
}
divider++;

}
Console.WriteLine("Prime? " + prime);

Do While Loop
The do…while loop is like the while loop except the loop body is executed
before the condition is tested. This means the loop will execute once, even
if the condition you have entered is false. 
The syntax of the loop is as follows:

do
{
Body;

} while (condition);
Once the statements in the body are run, the condition is checked. If the
condition is true, then the loop runs again. This function is repeated till the
condition is false. The body of the loop is executed at least once since the
condition is checked only after the body is executed.

In the example below, we will calculate the factorial of a number.
using System;
using System.Numerics;

class Factorial
{



static void Main()
{

Console.Write("n = ");
int n = int.Parse(Console.ReadLine());

BigInteger factorial = 1;
do
{

factorial *= n;
n--;

} while (n > 0);
Console.WriteLine("n! = " + factorial);
}

}
If you run the program now, you can get the factorial of any number of your
choosing.

Loop Control Statements
Loop control statements are used to change the normal sequence of
execution. When the execution leaves its scope, i.e., it finishes what it set
out to do, all the objects that were automatically created in the scope are
then destroyed.
The following control statements are supported in most programming
languages:

Break Statement
This operator can be used to break out of a loop. There are times when we
may write an incorrect code, and the loop will run indefinitely. At such
times, the break operator comes in handy since it will automatically bring
you out of the loop. This statement can only be written inside the loop if
you wish to terminate the iteration from taking place. The code after the



break statement is not executed. The following example will show you the
code used to calculate the factorial of a number.

int n = int.Parse(Console.ReadLine());

// "decimal" is the biggest data type that can hold integer values
decimal factorial = 1;

// Perform an "infinite loop"
while (true)
{

if (n<=1)
{

break;
}
factorial *= n;

n--;
}
Console.WriteLine("n! = " + factorial);

We have initialized a variable called factorial to read variables from 1 – n in
the console. Since the condition is true, this creates an endless loop. Here
the break statement will stop the loop from functioning when the value of n
is less than or equal to 1. The loop will continue to run if the condition in
the if statement does not hold true.
foreach loop

The foreach loop is an extension of the for loop in some programming
languages, such as C, C++, and C#, but is a well-known loop. It is also used
by PHP and VB programmers. This loop iterates and performs operations
on all elements of an array or list. It will operate on all the variables even if
the list or array is not indexed. The syntax of the loop is as follows:

foreach (type variable in the collection)



{
Body;

}
A foreach loop is like the for loop, but most programmers prefer this type of
loop since it saves writing a code to go over all the elements in the list.
Consider the following example to see how a foreach loop works:

int[] numbers = { 2, 3, 5, 7, 11, 13, 17, 19 };
foreach (int i in numbers)
{

Console.Write(" " + i);
}

Console.WriteLine();
string[] towns = { "London", "Paris", "Milan", "New York" };
foreach (string town in towns)

{
Console.Write(" " + town);
}

In the example above, we created an array and then printed those numbers
on the output screen using a foreach loop. Similarly, an array of strings is
created, which are then printed onto the output window.
Nested Loops

As the name suggests, a nested loop has multiple loops within the main
loop. The syntax is as follows:

for (initialization, verification, update)
{

for (initialization, verification, update)
{



Body;
}

}
If the condition holds true in the main loop, the statements within the main
loop are executed. Before you write a code with nested loops, it is important
to write down the algorithm. You must determine how you want to organize
the loops. Let us assume you want to print the numbers in the following
format:

1
1 2
1 2 3

1 2 3 …… n
You need two loops. The outer loop looks at the number of lines being
executed and the inner loop looks at the elements within each line. The
code has been given in the last chapter.

Continue Statement
The continue statement makes the loop skip the rest of the loop body and
test the condition again before iterating over the sequence again. The
following example describes the function of the statement.

int n = int.Parse(Console.ReadLine());

int sum = 0;
for (int i = 1; i <= n; i += 2)
{

if (i % 8 == 0)
{

continue;
}
sum += i;



}
Console.WriteLine("sum = " + sum);

In the above program, we calculate the sum of the integers not divisible by
8. The loop will run until it reaches a number that cannot be divided by 8.



Chapter Twelve: Introduction to Data Structures
Most programming languages allow you to use data structures, such as lists
and arrays, and we have briefly looked at what these mean in the eighth
chapter. In this chapter, we will look at how you can look at different
methods you can use to define and use a data structure.

You will also learn how to use these data structures to define numerous
variables or combine different elements, either input or output variables,
across the entire program. A structure, however, allows you to combine
different variables and data types. You can use a structure to define or
represent records. Let us assume you want to arrange the bookshelf in your
library. We will see how you can use a data structure to track different
attributes of every book. For this example, we will look  at the following
attributes:

1. Book ID

2. Book title
3. Genre
4. Author

The Struct Statement
Before you define any data structure, it is important to use the struct
statement to create that structure in the program. Bear in mind the struct
statement works only in C and C++ languages. However, other
programming languages use a different statement. You can also define the
number of elements or members in the code.

Use the following syntax to define the structure in your code:
struct [structure tag] {
   member definition;

   member definition;
   ...
   member definition;



} [one or more structure variables]; 
There is no necessity to use the structure tag when you use the struct
statement. Use the variable definition method to describe every member
you want to use in the structure. If you are unsure how to describe the data,
learn how to avoid making mistakes. For instance, you can use the method
int i to define an integer variable. The section before the semicolon in the
struct syntax is also optional. It is best to keep this in the program since you
define the variables you want to use in the structure. Continuing with the
example above, we will define the book structure using the following lines
of code.

struct Books {
   int book_id;

   char book_title[50];
   char genre[50];
   char author[100];

} book; 

Accessing Structure Members
It is easy to access data structure members using a full stop. This full stop is
known as the member access operator. It is used as a break or period
between the data structure members and the names of variables. Ensure to
enter the variable name you want to access. You can define the variable of
the entire structure using the struct keyword. Consider the following lines
of code to understand how you can use structures. We will be continuing the
example mentioned at the start of the chapter.

#include <iostream>
#include <cstring>

using namespace std;
struct Books {
   int book_id;

   char book_title[60];



   char genre[60];
   char author[40];

};
int main() {

   struct Books Book1; // Using this statement, you can declare the
first variable called Book1 in the data structure.
   struct Books Book2; // Using this statement, you can declare the
first variable called Book2 in the data structure.
// The next lines of code will instruct the compiler on how to add
details to the first variable

   Book1.book_id = 1001;
   strcpy( Book1.book_title, "Eragon");

   strcpy( Book1.genre, " Fantasy");
   strcpy( Book1.author, "Christopher Paolini");
// The next lines add data to the second variable

   Book2.book_id = 1002;
   strcpy( Book2.book_title, "Eldest");
   strcpy( Book2.genre, "Fantasy");

   strcpy( Book2.author, "Christopher Paolini");
// We will use the next lines of code to print the details of the first and
second variables in the data structure

   cout << "Book 1 id: " << Book1.book_id <<endl;
   cout << "Book 1 title: " << Book1.book_title <<endl;
   cout << "Book 1 genre: " << Book1.genre <<endl;

   cout << "Book 1 author: " << Book1.author <<endl;
   cout << "Book 2 id: " << Book2.book_id <<endl;

   cout << "Book 2 title: " << Book2.book_title <<endl;



   cout << "Book 2 genre: " << Book2.genre <<endl;
   cout << "Book 2 author: " << Book2.author <<endl;

   return 0;
}

Output :
The code above will give you the following output:
Book 1 id: 1001

Book 1 title: Eragon
Book 1 genre: Fantasy

Book 1 author: Christopher Paolini
Book 2 id: 1002
Book 2 title: Eldest

Book 2 genre: Fantasy
Book 2 author: Christopher Paolini

Using Structures as Arguments
A data structure can also be called as an argument in a function. This works
in the same way you would pass any variable or pointer as a parameter in
the function. To do this, you must only access the variables the way we did
in the above example.

#include <iostream>

#include <cstring>
using namespace std;
struct Books {

   int book_id;
   char book_title[60];

   char genre[60];



   char author[40];
};

int main() {
   struct Books Book1; // Using this statement, you can declare the
first variable called Book1 in the data structure.

   struct Books Book2; // Using this statement, you can declare the
first variable called Book2 in the data structure.
// The next lines of code will instruct the compiler on how to add
details to the first variable
   Book1.book_id = 1001;

   strcpy( Book1.book_title, "Eragon");
   strcpy( Book1.genre, " Fantasy");

   strcpy( Book1.author, "Christopher Paolini");
// The next lines add data to the second variable
   Book2.book_id = 1002;

   strcpy( Book2.book_title, "Eldest");
   strcpy( Book2.genre, "Fantasy");
   strcpy( Book2.author, "Christopher Paolini");

// Let us now look at how you can specify the details of the second
variable
   Book2.book_id = 130000;

   strcpy( Book2.book_title, "Harry Potter and the Chamber of
Secrets");
   strcpy( Book2.genre, "Fiction");
   strcpy( Book2.author, "JK Rowling");

// The next statements are to print the details of the first and second
variables in the structure



   printBook( Book1 );
   printBook( Book2 );

   return 0;
}

void printBook(struct Books book ) {
   cout << "Book id: " << book.book_id <<endl;
   cout << "Book title: " << book.book_title <<endl;

   cout << "Book genre: " << book.genre <<endl;
   cout << "Book author: " << book.author<<endl;

}
Output :
When you compile the code written above, you receive the following
output:

Book 1 id: 120000
Book 1 title: Harry Potter and the Philosopher’s Stone
Book 1 genre: Fiction

Book 1 author: JK Rowling
Book 2 id: 130000

Book 2 title: Harry Potter and the Chamber of Secrets
Book 2 genre: Fiction
Book 2 author: JK Rowling

Using Pointers in Structures
You can also refer to structures using pointers, and you can use a pointer
similar to how you would define a pointer for regular variables.

struct Books *struct_pointer;



When you use the above statement, you can use the pointer variable defined
to store the address of the variables in the structure.

struct_pointer = &Book1;

You can also use a pointer to access one or members of the structure. To do
this, you need to use the -> operator:

struct_pointer->title;

Let us rewrite the example above to indicate a member or the entire
structure using a pointer.

#include <iostream>
#include <cstring>

using namespace std;
void printBook( struct Books *book );

struct Books {
   int book_id;
   char book_title[50];

   char genre[50];
   char author[100];
};

int main() {
  struct Books Book1; // This is where you declare the variable Book1
in the Book structure

   struct Books Book2; // This is where you declare the variable Book2
in the Book structure
// Let us now look at how you can specify the details of the first
variable
   Book1.book_id = 1001;

   strcpy( Book1.book_title, "Eragon");



   strcpy( Book1.genre, "Fantasy");
   strcpy( Book1.author, "Christopher Paolini");

// Let us now look at how you can specify the details of the second
variable
   Book2.book_id = 1002;

   strcpy( Book2.book_title, "Eldest");
   strcpy( Book2.genre, "Fantasy");
   strcpy( Book2.author, "Christopher Paolini");

// The next statements are to print the details of the first and second
variables in the structure
   printBook( Book1 );

   printBook( Book2 );
   return 0;
}

// We will now use a function to accept a structure pointer as its
parameter.
void printBook( struct Books *book ) {
   cout << "Book id: " << book->book_id <<endl;

   cout << "Book title: " << book->book_title <<endl;
   cout << "Book genre: " << book->genre<<endl;

   cout << "Book author: " << book->author <<endl;
}
When you write the above code, you obtain the following output:

Book id: 1001
Book title: Eragon

Book genre: Fantasy
Book author: Christopher Paolini



Book id: 1002
Book title: Eldest

Book genre: Fantasy
Book author: Christopher Paolini

Typedef Keyword
If you cannot define the data structure easily using the above methods, use
an alias structure to define the structure. Consider the following example:

typedef struct {

   int book_id;
   char book_title[50];

   char genre[50];
   char author[100];
} Books;

It is easier to use this process to define the structure since you define the
variables used in the structure without using the struct keyword.

Books Book1, Book2;
Bear in mind a typedef key is not required to define any data structure. You
can use it to define any regular variable, as well.

typedef long int *pint32;
pint32 x, y, z;

The above lines of code show the compiler points to the x, y, and z
variables.



Chapter Thirteen: Comments and Formatting
In this chapter, we will look at some points with respect to writing
comments and formatting code. While your algorithm is the base of the
code, it is important to describe every important step in the algorithm when
you write the code. This is the only way it becomes easier for people to read
and understand the code. Add comments to the code and determine how
you want to explain the comments. As a developer, you must read the code
regularly and ensure it is readable and understandable. So, stick to the
formatting and indentation of your code.

Comments
It is important to understand how to write comments effectively. Most
people wonder if they should add a lot of comments to explain every line of
code. The issue with comments is that you often forget to update them. You
may want to change the code, but it is possible you may ignore the
comments. This would mean the comments reflect the older code.

A difficult thing to do is educate a programmer on writing comments in the
code. The moment you change the code, you also need to change the
comments. You should never forget about updating comments since this
could lead to issues in the functioning of the code. You must look at the
comments as documentation. Maintain these comments since it is the only
way to explain what your code does. Ensure you add comments to express
exactly what is happening in the code.
Features of Good Comments
Some comments are useful since they will add some value to the code.

Clarification and Intention
Comments are the best way to explain your intent behind writing the code.
This does not mean you should use comments to explain every line of code.
Your code should do it. It is important to explain what it is that you wanted
to do in the code. In some situations, you cannot express the intention
behind writing the code. For this reason, you need to add some comments to
explain why you took a specific action. Some methods may have been used
to deal with external library issues, or maybe you had to incorporate odd



requests. It is important to explain these sections in better detail no matter
what it is.

// Code to check if the input variables are valid

function is_valid($first_name, $last_name, $age) {
    if (

        !ctype_alpha($_POST['first_name']) OR
        !ctype_alpha($_POST['last_name']) OR
        !ctype_digit($_POST['age'])

        ) {
        return false;

    }
    return true;
}

switch(animal) {
    case 1:
        cat();

       // falls through
    case 2:

        dog();
        break;
}

Informative and Legal
It is important to add comments to the code for many reasons. Some laws
also require comments to be written to explain what each line in the code
means. The code can always be written under specific license terms.
Therefore, it is important to specify the code. In such cases, it is important



to specify the code. Therefore, you need to add some comments to specify
the operation of the code.
You can use comments to point to specific URLs in the document if you
need to. This is the only way to explain how the code is written. Do not
have more than 200 lines of comments to explain this information. Some
comments may add value to the code, while others do not. For example,
you can give information about the method and the value that is returned by
the method. Be careful before you place a comment. You can also remove
the comments if needed, but it is important to ensure you explain exactly
what the code is supposed to do.

Features of Bad Comments
Adding Unnecessary Comments

Ensure you only add comments to the code when you should. Do not add
comments only because you are expected to. This will affect the look of the
code. If you add comments with no necessity, you end up having too much
unnecessary information in your code. You may end up with many
comments irrelevant to the actual code. This will make it hard for you to
read the code or even understand it. So, avoid adding unnecessary
comments.
Code Explanation
You may have some code that is hard for you to explain, and it is probably
because you cannot understand the code. This does not mean you should
use comments as a way to solve the issue. Ensure that you rewrite the code
and rename the elements in the code, like functions, variables, data
structures, and other objects, so the reader understands what action you are
performing. In most cases, you extract the method using mindful names.
These names make it easier for the reader to understand how the code uses
the method.

Redundant
If you name the method or field accurately, you do not have to comment
against that code line. You can describe the function, field, or method using
comments. You do not have to describe the scope of the variable. For



example, methods named “SendEmail” do not require any additional
comments. The name is self-explanatory. This is especially true when the
variable is called. The method will send the email as the output. Another
example can be “storeValueForCurrentOrder.” This variable means the
current order value is stored in the variable. Do not write a comment to
explain the same thing. The comment does not add any value to the code.
Position Markers

You mustn't use any position markers in the code. You cannot add ///// to the
code just so you can find a specific part of the code.
Journal

It is important to document why you change certain sections of the code.
You must journal these changes since this is the only way to give another
person an idea why the code is changing. It is also the only way for you to
determine why the code changed. Some programming languages allow you
to track the changes made to the code. Now, you no longer need comments
to track changes but can activate the tracking mechanism in the language.
Mandated, Noise and Misleading
Unfortunately, not many people explain what they plan on doing with the
code. It is only for this reason you may add comments against
inconsequential statements. Some programmers may add lines of code to
say they are printing a variable or sending an email. These comments are
useless since they do not explain what was done to perform those
operations. Sometimes you may have errors in your code, and if you have
such bad comments, you cannot identify where the issue actually is. You
may only identify the error once you read through the entire code, which
makes the comments written in the code useless.

Ugly Code
People often use comments in the code where the code is often hard to read
or understand, i.e. ugly code. The comments are often used to fix the lines
of code. Do not make the code beautiful by adding comments. If the code is
ugly, refactor the code and update it. Write it in a way to make it easier for
you to see what is exactly being done in the code.



Formatting
Formatting and Coding Style

Bear in mind to stick to one style of formatting only when you write code.
If you work with a team, ensure the team knows exactly what style to stick
to. Never waste precious time formatting the code. There are different ways
to format the code, and you will find some examples across the book. The
internet also has multiple formats you can stick to. Never change the
formatting styles in the middle of writing the code. If you have multiple
people in the team, understand how each of them likes to code and format
the text. This will help you remain open to newer coding standards and
allow you to accept those standards. Ensure you also write the code well.
Functions

Functions are dependent on each other, and they may inherit some
functionalities or values from other modules and functions in the code. You
must have the child functions in the parent function. It is easier to do this
only if you can easily read the code you have written. You will no longer
have to navigate through the code to find the child functions in the code.
Indentation
It is very important to indent any code you write. Stick to the same standard
when you write code. Do this even if you need to break the rules. When you
stick to the indentation rules, it becomes easier for you to identify the
variables and other important aspects of the code. With new tools and IDEs,
it is easy to follow the same indentation standards everywhere in the code.

Code Affinity
Ensure the code written for the same purpose, including the variables,
functions, and objects, are maintained in one section of the code. Do not
write the code in such a way that you must scroll through the entire file a
million times to find the required functionality.



Chapter Fourteen: Debugging
Do not spend too much time trying to debug the code and identify issues in
it. Be prepared for errors to exist in the code. Put in a lot of effort to debug
the code. Follow the steps given below to prepare yourself for the arduous
task. This will make it easier for you to assess the code and make changes
needed to ensure it compiles without errors.

Understand the Algorithm and Design
It is important to understand the algorithm fully before you write any code.
Otherwise, you will do something you never wanted to in the first place.
You cannot test the module if you do not understand the design since you
have no idea what the objective of the module is. If you are using another’s
code as a reference, review the algorithm, design, and comments to
understand the objective of the code. If you do not know how the algorithm
functions, you cannot develop effective test cases, and this is true when you
use data structures in your code. This means you cannot determine if the
algorithm works as expected.

Check the Correctness of the Code
Different methods can debug code and determine if the written information
is correct and the compiler runs without throwing errors.
Peer Reviews

It is best to have another person, someone well-versedin writing code, to
assess and examine the code you have written. If you want the review to be
effective, you must ensure the peer has the required information and
knowledge to check the code. It is important to give the peer the code with
the comments so he knows exactly what to expect in the code.
If you want to make it easier for the peer, you can explain the code to them
and tell them how the algorithm functions. If the reviewer disagrees or does
not understand some parts of the implementation, you need to discuss it
with him until you both reach an agreement. The objective of the peer
should be to detect the errors in the code. It becomes easier to correct them
if identified correctly.



You can identify these issues yourself when you proof the code. Having
said that, it is useful if you have someone from the outside looking at the
code and identifying some blind spots in the code. Peer reviews will take
time, so ensure you restrict the reviews to only those sections of code you
want to be assessed and not the entire code.
Code Tracing

You can detect errors in code easily by tracing the execution of different
functions and modules in the code. It is especially important to do this when
calls are made to the function or module in different parts of the program.
As the programmer, you must trace how the functions and modules work. If
you want this process to be effective, you should trace the modules and
functions by assuming that other functions and procedures in the code work
accurately. When performing code tracing, you must deal with different
layers or levels of inheritance and abstraction. Bear in mind that you cannot
find all errors through tracing. This process, however, improves your
understanding of the algorithm used.
Proof of Correctness

The best way to identify any error in the code is to examine the algorithm
used and use different methods to validate the correctness of the algorithm.
For example, if you know the preconditions, terminating conditions,
invariants, and postconditions in any loop statement used, you can perform
simple checks in the code. Ask the following questions to determine the
correctness of the code:

1. If the compiler has entered the loop without throwing any error, does
it mean the invariant used is accurate?

2. If the statements in the loop body do not throw an error, does it mean
the loop has worked well and will terminate without any error?

3. If the loop is nearing the end, does it mean the compiler will move
towards the postcondition?

These questions may not help you determine if there are errors in the code,
but it gives you an understanding of the algorithm being used better.

Anticipate Errors



It is not unfortunate to have errors in the code since there is a possibility
you may use incorrect pointers and variables in the code. You may also
forget to call or use certain functions and parameters in the code. We also
make mistakes when it comes to tracing the code, and peer reviews may not
catch all the errors in the code. You must be prepared for these errors in the
code and use the error handling techniques we discussed earlier in the book.



Conclusion
Thank you for purchasing the book.

If you have just started programming, it is important to learn how
algorithms work and use those algorithms to write code. This book has all
the information you need about structuring your programs. The book
introduces you to the concept of algorithms and how they can be used to
write high-performing code. It also introduces the concept of sorting and
searching algorithms.
Use the information and examples in the book to improve your
understanding of algorithms. Practice and learn to write code so it performs
better than any other code you have written before.

I hope you have gathered the information you are looking for.



Resources
Advantages and disadvantages of algorithm and flowchart - Computersciencementor | Hardware,
Software, Networking and programming. (n.d.). Computersciencementor.com.
https://computersciencementor.com/advantages-and-disadvantages-of-algorithm-and-flowchart/

Bubble sort in C | Programming Simplified. (2020). Programmingsimplified.com.
https://www.programmingsimplified.com/c/source-code/c-program-bubble-sort

DAA - Space Complexities - Tutorialspoint. (2019). Tutorialspoint.com.
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorith
ms_space_complexities.htm

Includehelp. (2017). Includehelp.com. https://www.includehelp.com/data-structure-
tutorial/algorithm-and-its-types.aspx

GeeksforGeeks | A computer science portal for geeks. (2019). GeeksforGeeks.
https://www.geeksforgeeks.org/

Selection Sort Program in C. (2015, February 11). Beginnersbook.com.
https://beginnersbook.com/2015/02/selection-sort-program-in-c/

Types of Algorithms | Learn The Top 6 Important Types of Algorithms. (2019, May 10). EDUCBA.
https://www.educba.com/types-of-algorithms/

What are the Advantages and Disadvantages of Algorithm. (2018, August 23). Vedantu.com.
https://www.vedantu.com/question-answer/what-are-the-advantages-and-disadvantages-of-algorithm-
5b7ea609e4b084fdbbfacd20 


	Introduction
	Chapter One: Introduction to Algorithms
	Association between Algorithms and Computer Science
	Characteristics of an Algorithm
	Designing an Algorithm
	How to Identify the Best Algorithm
	Understanding the Basic Algorithm that Digitally Powers Life
	Benefits of Algorithmic Thinking
	Pros and Cons

	Chapter Two: Types of Algorithms
	Backtracking Algorithm
	Brute Force Algorithm
	Divide and Conquer Algorithm
	Dynamic Programming Algorithm
	Greedy Algorithm
	Randomized Algorithm
	Simple Recursive Algorithm

	Chapter Three: Describing Algorithms
	Chapter Four: Error Handling
	Checking for Exceptions
	Defining Exceptions
	Special Case Patterns
	Nulls
	Common Error Messages
	Dealing with errors

	Chapter Five: Analysis of Algorithms
	Importance of Analysis
	Analysis Methods
	Space Complexities
	Understanding Recursion

	Chapter Six: An Introduction to Writing Programs
	Principles of Programming
	Objects and Classes
	Data Types
	Operations

	Chapter Seven: Types of Programming Languages
	Definition
	Types of Programming Languages
	Programming Languages

	Chapter Eight: Important Programming Techniques
	Arrays
	Building Big Programs
	Bitwise Logic
	Boolean Logic
	Closures
	Concurrency
	Decision or Selection
	Disk Access
	Immutability
	Interacting with the Command Line
	Interacting with the OS
	Lambdas
	Loops and Repetitions
	Linked Lists
	Modular Arithmetic
	Pointers
	Safe Calls
	Scaling and Random Numbers
	Strings
	Structures
	Text Manipulation
	Trigonometry
	Variables

	Chapter Nine: Testing the Program
	Laws of TTD
	Keeping the Tests Clean
	Testing the Abilities of the Code
	Clean Tests
	Characteristics of Tests

	Chapter Ten: Sorting and Searching Algorithms
	Searching Algorithms
	Sorting Algorithms

	Chapter Eleven: Loop Control and Decision Making
	Decision Making
	Loop Statements
	Loop Control Statements

	Chapter Twelve: Introduction to Data Structures
	The Struct Statement
	Accessing Structure Members
	Using Structures as Arguments
	Using Pointers in Structures
	Typedef Keyword

	Chapter Thirteen: Comments and Formatting
	Comments
	Formatting

	Chapter Fourteen: Debugging
	Conclusion
	Resources

