Essential SNMP, 2nd Edition
By Douglas Mauro, Kevin Schmidt

Publisher: O'Reilly

Pub Date: September 2005
ISBN: 0-596-00840-6
Pages: 460

Table of Contents | Index
Overview

Simple Network Management Protocol (SNMP) provides a "simple" set of operations that allows you to more easily monitor and
manage network devices like routers, switches, servers, printers, and more. The information you can monitor with SNMP is
wide-ranging--from standard items, like the amount of traffic flowing into an interface, to far more esoteric items, like the air
temperature inside a router. In spite of its name, though, SNMP is not especially simple to learn.

O'Reilly has answered the call for help with a practical introduction that shows how to install, configure, and manage SNMP.
Written for network and system administrators, the book introduces the basics of SNMP and then offers a technical background
on how to use it effectively. Essential SNMP explores both commercial and open source packages, and elements like OIDs,
MIBs, community strings, and traps are covered in depth. The book contains five new chapters and various updates
throughout. Other new topics include:

« Expanded coverage of SNMPv1, SNMPv2, and SNMPv3

¢ Expanded coverage of SNMPc

« The concepts behind network management and change management
* RRDTool and Cricket

¢ The use of scripts for a variety of tasks

« How Java can be used to create SNMP applications

+ Net-SNMP's Perl module

The bulk of the book is devoted to discussing, with real examples, how to use SNMP for system and network administration
tasks. Administrators will come away with ideas for writing scripts to help them manage their networks, create managed
objects, and extend the operation of SNMP agents.

Once demystified, SNMP is much more accessible. If you're looking for a way to more easily manage your network, look no
further than Essential SNMP, 2nd Edition.



Essential SNMP, 2nd Edition

By Douglas Mauro, Kevin Schmidt
Publisher: O'Reilly

Pub Date: September 2005
ISBN: 0-596-00840-6
Pages: 460

Table of Contents | Index

Copyright

Preface
Audience for This Book
Organization
What's New in This Edition
Example Programs
Using Code Examples
Conventions Used in This Book
Comments and Questions
Safari® Enabled
Acknowledgments for the Second Edition

Acknowledgments for the First Edition

Chapter 1. Introduction to SNMP and Network Management
Section 1.1. What Is SNMP?
Section 1.2. The Concept of Network Management

Section 1.3. Applying the Concepts of Network Management
Section 1.4. Change Management
Section 1.5. Getting More Information
Chapter2. SNMPv1and SNMPv2
Section 2.1. SNMP and UDP
Section2.2. SNMP Communities
Section 2.3. The Structure of Management Information

Section 2.4. Extensions to the SMI in Version 2
Section 2.5. A Closer Look at MIB-II

Section 2.6. SNMP Operations
Section2.7. Host Management Revisited

Section 2.8. Remote Monitoring Revisited

Section 2.9. Reverse Engineering SNMP
Chapter3. SNMPv3
Section 3.1. Changes in SNMPv3
Section 3.2. USM
Section 3.3. VACM
Section 3.4. SNMPv3 in the Real World
Chapter 4. NMS Architectures
Section4.1. Hardware Considerations
Section 4.2. NMS Architectures
Section 4.3. A Look Ahead
Chapter 5. Configuring Your NMS
Section5.1. HP's OpenView Network Node Manager
Section 5.2. Castle Rock's SNMPc Enterprise Edition
Chapter 6. Configuring SNMP Agents
Section 6.1. Parameter Settings
Section 6.2. Security Concerns

Section 6.3. Agent Configuration Walkthroughs

Chapter 7. Polling and Setting

Section 7.1. Retrieving a Single MIB Value
Section 7.2. Retrieving Multiple MIB Values
Section 7.3. Setting a MIB Value




Section 7.4. Error Responses

Chapter 8. Polling and Thresholds
Section 8.1. Internal Polling
Section 8.2. External Polling

Chapter9. Traps
Section9.1. Understanding Traps
Section 9.2. Receiving Traps
Section 9.3. Sending Traps

Chapter10. Extensible SNMP Agents
Section10.1. Net-SNMP
Section 10.2. SystemEDGE
Section 10.3. OpenView's Extensible Agent

Chapter 11. Adapting SNMP to Fit Your Environment
Section11.1. General Trap-Generation Program
Section 11.2. Who's Logging into My Machine? (I-Am-In)
Section 11.3. Throw Core
Section 11.4. Veritas Disk Check
Section 11.5. Disk-Space Checker
Section 11.6. Port Monitor

Section 11.7. Service Monitoring

Section 11.8. Pinging with Cisco
Section 11.9. Simple SNMP Agent
Section 11.10. Switch Port Control
Section 11.11. Wireless Networking
Section 11.12. SNMP: The Object-Oriented Way
Section 11.13. Final Words
Chapter12. MRTG
Section12.1. Using MRTG
Section 12.2. Viewing Graphs

Section 12.3. Graphing Other Objects

Section 12.4. Other Data-Gathering Applications
Section 12.5. Pitfalls

Section 12.6. Getting Help

Chapter 13. RRDtool and Cricket
Section13.1. RRDtool
Section 13.2. Cricket
Chapter 14. Java and SNMP
Section 14.1. SNMP4J
Section 14.2. SNMP getnext
Section 14.3. SNMP set
Section 14.4. Sending Traps and Informs
Section 14.5. Receiving Traps and Informs
Section 14.6. Resources
Appendix A. Using Input and Output Octets
Appendix B. More on OpenView's NNM

Section B.1. Using External Data
Section B.2. Adding a Menu to NNM
Section B.3. Profiles for Different Users

Section B.4. Using NNM for Communications
AppendixC. Net-SNMP Tools

Section C.1. Net-SNMP and MIB Files

Section C.2. Common Command-Line Arguments

Section C.3. Net-SNMP Command-Line Tools
Appendix D. SNMP RFCs

Section D.1. SMIv1 Data Definition Language

Section D.2. SMIv2 Data Definition Language

Section D.3. SNMPv3 Protocol

Section D.4. SNMP Agent Extensibility

Section D.5. SMivl MIB Modules

Section D.6. SMIv2 MIB Modules

Section D.7. IANA-Maintained MIB Modules




Section D.8. Related Documents
Appendix E. SNMP Support for Perl
SectionE.1. SNMP_Util
SectionE.2. Net-SNMP
Appendix F. Network Management Software
Section F.1. SNMP Agents
Section F.2. NMS Suites
Section F.3. Element Managers (Vendor-Specific Management

Section F.4. Trend Analysis
Section F.5. Supporting Software

Appendix G. Open Source Monitoring Software
Section G-1. Big Brother
Section G-2. Nagios
Section G-3. JFFNMS
Section G-4. OpenNMS
Section G-5. NINO
AppendixH. Network Troubleshooting Primer
Section H-1. ping
Section H-2. ipconfig and ifconfig

Section H-3. arp
Section H-4. netstat

Section H-5. traceroute and tracert
Section H-6. nslookup and dig
Section H-7._whois
Section H-8. Ethereal

Aboutthe Authors

Colophon
Index

e rrc |



e prcv |

Essential SNMP, Second Edition

by Douglas R. Mauro and Kevin J. Schmidt

Copyright © 2005 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most
titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Editors: Michael Loukides and Debra Cameron
Production Editor: Darren Kelly

Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Printing History:

July 2001: First Edition.

September 2005: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc. Essential
SNMP, the image of red deer, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the designations have been
printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for
errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 0-596-00840-6

[M]
e roc |



e prcv |

Preface

The Simple Network Management Protocol (SNMP) is an Internet-standard protocol for managing devices on IP networks. Many
kinds of devices support SNMP, including routers, switches, servers, workstations, printers, modem racks, and uninterruptible
power supplies (UPSs). The ways you can use SNMP range from the mundane to the exotic: it's fairly simple to use SNMP to
monitor the health of your routers, servers, and other pieces of network hardware, but you can also use it to control your
network devices, page someone, or take other automatic actions if problems arise. The information you can monitor ranges
from relatively simple and standardized items, like the amount of traffic flowing into or out of an interface, to more esoteric
hardware-and vendor-specific items, like the air temperature inside a router.

Given that there are already a number of books about SNMP in print, why write another one? Although there are many books
on SNMP, there's a lack of books aimed at the practicing network or system administrator. Many books cover how to implement
SNMP or discuss the protocol at a fairly abstract level, but none really answers the network administrator's most basic
questions: how can | best put SNMP to work on my network? How can | make managing my network easier?

We provide a brief overview of the SNMP protocol in Chapters 2 and 3 and then spend a few chapters discussing issues such as
hardware requirements and the sorts of tools that are available for use with SNMP. However, the bulk of this book is devoted to
discussing, with real examples, how to use SNMP for system and network administration tasks.

Most newcomers to SNMP ask some or all of the following questions:

» What exactly is SNMP?

« How can I, as a system or network administrator, benefit from SNMP?

* What is a MIB?

- What is an OID?

*« What is a community string?

¢ What is a trap?

« I've heard that SNMP is insecure. Is this true?

- Do any of my devices support SNMP? If so, how can | tell if they are configured properly?
« How do | go about gathering SNMP information from a device?

* | have a limited budget for purchasing network management software. What sort of free/open source software is available?
« Is there an SNMP Perl module that | can use to write cool scripts?

« Can | use Java™ to work with SNMP?

This book answers all these questions and more. Our goal is to demystify SNMP and make it more accessible to a wider range of
users.

e prcv |



e prcv |

Audience for This Book

This book is intended for system and network administrators who could benefit from using SNMP to manage their equipment but
who have little or no experience with SNMP or SNMP applications. In our experience, almost any network, no matter how small,
can benefit from using SNMP. If you're a Perl programmer, this book will give you some ideas about how to write scripts that
use SNMP to help manage your network. If you're not a Perl user, you can use many of the other tools we present, ranging

from Net-SNMP (an open source collection of command-line tools) to Hewlett-Packard's OpenView (a high-end, high-priced
network management platform).

e prc |



e prcv |

Organization

Chapter 1, Introduction to SNMP and Network Management, provides a nontechnical overview of network management with
SNMP. We introduce the different versions of SNMP, managers and agents, network management concepts, and change
management techniques.

Chapter 2, SNMPv1 and SNMPv2, discusses the technical details of SNMP versions 1 and 2. We look at the Structure of
Management Information (SMI) and the Management Information Base (MIB) and discuss how SNMP actually workshow
management information is sent and received over the network.

Chapter 3, SNMPv3, discusses SNMP version 3, which is now a full standard that provides robust security for SNMP.
Chapter 4, NMS Architectures, helps you to think through strategies for deploying SNMP.

Chapter 5, Configuring Your NMS, provides a basic understanding of what to expect when installing NMS software by looking at
two NMS packages, HP's OpenView and Castle Rock's SNMPc.

Chapter 6, Configuring SNMP Agents, describes how to configure several SNMP agents for Unix and Windows, including the Net-
SNMP agent. To round out the chapter, we discuss how to configure the embedded agents on two network devices: the Cisco
SNMP agent and the APC Symetra SNMP agent.

Chapter 7, Polling and Setting, shows how you can use command-line tools and Perl to gather (poll) SNMP information and
change (set) the state of a managed device.

Chapter 8, Polling and Thresholds, discusses how to configure OpenView and SNMPc to gather SNMP information via polling.
This chapter also discusses RMON configuration on a Cisco router.

Chapter 9, Traps, examines how to send and receive traps using command-line tools, Perl, OpenView, and other management
applications.

Chapter 10, Extensible SNMP Agents, shows how several popular SNMP agents can be extended. Extensible agents provide end
users with a means to extend the operation of an agent without having access to the agent's source code.

Chapter 11, Adapting SNMP to Fit Your Environment, is geared toward Perl-savvy system administrators. We provide Perl scripts
that demonstrate how to perform some common system administration tasks with SNMP.

Chapter 12, MRTG, introduces one of the most widely used open source SNMP applications, the Multi Router Traffic Grapher
(MRTG). MRTG provides network administrators with web-based usage graphs of router interfaces and can be configured to
graph many other kinds of data.

Chapter 13, RRDtool and Cricket, introduces RRDtool and Cricket. Used together, these tools provide graphing techniques like
those in MRTG, but with added flexibility.

Chapter 14, Java and SNMP, discusses how to use Java to build SNMP applications.
Appendix A, Using Input and Output Octets, discusses how to use OpenView to graph input and output octets.

Appendix B, More on OpenView's NNM, discusses how to graph external data with Network Node Manager (NNM), add menu
items to NNM, configure user profiles, and use NNM as a centralized communication interface.

Appendix C, Net-SNMP Tools, summarizes the usage of the Net-SNMP command-line tools.
Appendix D, SNMP RFCs, provides an authoritative list of the various RFC numbers that pertain to SNMP.

Appendix E, SNMP Support for Perl, is a good summary of the SNMP Perl module used throughout the book along with an
introduction to the Net-SNMP Perl module.

Appendix F, Network Management Software, presents an overview of network management software by category.

Appendix G, Open Source Monitoring Software, introduces some commonly used open source network management and
monitoring tools.

Appendix H, Network Troubleshooting Primer, provides a primer on tools that can aid in network troubleshooting.

e rrc |



e prcv |

What's New in This Edition

This

second edition has been thoroughly revised and expanded. It includes the following new features:

Chapter 1 includes coverage of the concepts behind network management and change management.
Chapter 2 provides packet traces of the various SNMP operations.

Chapter 3 provides coverage of SNMPv3. This chapter was an appendix in the first edition; it has been expanded to a full
chapter.

SNMPc coverage has been expanded in Chapters 5 and 9.

Chapter 11 explains the use of scripts for a variety of tasks. This chapter has doubled in size to include many new scripts.
You'll find scripts for service monitoring techniques for SMTP, POP3, HTTP, and DNS, a Perl-based SNMP agent, switch port
control, usage of the Cisco Ping MIB, and a section on wireless access point (WAP) monitoring.

Chapter 13, new in this edition, discusses RRDtool and Cricket.

Chapter 14, also new in this edition, is devoted to showing how Java can be used to create SNMP applications.

Appendix E provides a brief overview of Net-SNMP's Perl module.

Appendix G provides details on the most commonly used open source tools for network management and monitoring.

Appendix H introduces the most commonly used network troubleshooting tools.

e roc |



e prcv |

Example Programs

All the example programs in this book are available from this book's web page at http://www.oreilly.com/catalog/esnmp2/.

e prc |



http://www.oreilly.com/catalog/esnmp2/

e prcv |

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your programs and
documentation. You do not need to contact O'Reilly for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does not require permission. Selling or
distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example code from this book into your
product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For
example: "Essential SNMP, Second Edition, by Douglas R. Mauro and Kevin J. Schmidt. Copyright 2005 O'Reilly Media, Inc., O-
596-00840-6."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

e roc | et



e prcv |

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Used for object IDs, URLs, filenames, and directory names. It is also used for emphasis and for the first use of technical
terms.

Constant wi dth
Used for examples, object definitions, literal values, textual conventions, and datatypes. It is also used to show source
code, the contents of files, and the output of commands.

Constant width bold
Used in interactive examples to show commands or text that would be typed literally by the user. It is also used to
emphasize when something, usually in source code or file-contents examples, has been added to or changed from a
previous example.

Constant width italic

Used for replaceable parameter names in command syntax.

] Indicates a tip, suggestion, or general note.

i
gy
=
2Ty

Indicates a warning or caution.

e rrc |



e prcv |

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is a web page for this book, which lists errata, code examples, reviews, and any additional information. You can access
this page at:

http://www.oreilly.com/catalog/esnmp2/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers, and the O'Reilly Network, see the O'Reilly web site
at:

http://www.oreilly.com

e roc |



http://www.oreilly.com/catalog/esnmp2/
http://www.oreilly.com

e prcv |

Safari® Enabled

BOOKSE ONLINE
When you see a Safari® Enabled icon on the cover of your favorite technology book, it means the book is available
online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top technology

books, cut and paste code samples, download chapters, and find quick answers when you need the most accurate, current
information. Try it for free at http://safari.oreilly.com.

e prc |



http://safari.oreilly.com

e prcv |

Acknowledgments for the Second Edition

Deb Cameron deserves a big thank you for shepherding this second edition from beginning to end. Her diligence and effort
helped keep us on track. Dr. Robert Minch, professor at Boise State University, provided valuable suggestions for the second
edition. Bobby Krupczak, Ph.D., once again provided feedback on the Concord SystemEDGE agent. Frank Fock was kind enough
to provide comments on the Java and SNMP chapter. Max Baker provided the idea for the channel-setting algorithm presented
in Chapter 11. Jim Boney graciously volunteered the use of his Cisco routers. Castle Rock Computing was gracious enough to
provide us with a copy of SNMPc for the second edition of this book; special thanks go to Castle Rock's John Maytum for
coordinating our access to SNMPc.

We are grateful for input from Jason Briggs, Bill Horsfall, and Jason Weiss, who reviewed new material for this second edition
under a very tight schedule.

Douglas

For years | worked as a system and network administrator and often faced the question, "How are things running?" This is what
led me to SNMP and eventually to the idea for this book. Of course, | would like to thank Kevin for his hard work and
dedication. Special thanks go to three special people in my life: my wife, Amy, and our children, Kari and Matthew, for putting
up with my long absences while | was writing in the computer room. Thanks also go to my family and friends, who provided
support and encouragement.

Kevin

Working on the second edition has been a great joy. The first edition has been out for almost four years, and in this time | have
thought about what | wanted to add if someday O'Reilly wanted a second edition written. So, a thank you goes to O'Reilly for
giving me the chance to update this book. I would like to thank Douglas for allowing me to once again work on the book with
him. Finally, 1 would like to thank Danette, my loving and generous wife, for allowing me the time | needed to complete this
project. Without her support, | would not have made it through the process.

e prc |



e prcv |

Acknowledgments for the First Edition

It would be an understatement to say that this book was a long time in the making. It would never have been published without
the patience and support of Michael Loukides. Thanks Mike! We would also like to thank the individuals who provided us with
valuable technical review feedback and general help and guidance: Mike DeGraw-Bertsch at O'Reilly; Donald Cooley at Global
Crossing; Jacob Kirsch at Sun Microsystems, Inc.; Bobby Krupczak, Ph.D., at Concord Communications; John Reinhardt at Road
Runner; Patrick Bailey and Rob Sweet at Netrail; and Jirgen Schonwalder at the Technical University of Braunschweig. Rob
Romano, a talented graphic artist at O'Reilly, deserves a thank you for making the figures throughout the book look great.

Finally, thanks to Jim Sumser, who took the project over in its final stages, and to Rachel Wheeler, the production editor, for
putting this book together.

e rrcv |



e prcv |

Chapter 1. Introduction to SNMP and Network
Management

In today's complex network of routers, switches, and servers, it can seem like a daunting task to manage all the devices on your
network and make sure they're not only up and running but also performing optimally. This is where the Simple Network
Management Protocol (SNMP) can help. SNMP was introduced in 1988 to meet the growing need for a standard for managing
Internet Protocol (IP) devices. SNMP provides its users with a "simple" set of operations that allows these devices to be
managed remotely.

This book is aimed toward system administrators who would like to begin using SNMP to manage their servers or routers, but
who lack the knowledge or understanding to do so. We try to give you a basic understanding of what SNMP is and how it works;
beyond that, we show you how to put SNMP into practice, using a number of widely available tools. Above all, we want this to
be a practical booka book that helps you keep track of what your network is doing.

This chapter introduces SNMP, network management , and change management. Obviously, SNMP is the focus of this book, but
having an understanding of general network management concepts will make you better prepared to use SNMP to manage your
network.

e prc |



e prcv |

1.1. What Is SNMP?

The core of SNMP is a simple set of operations (and the information these operations gather) that gives administrators the
ability to change the state of some SNMP-based device. For example, you can use SNMP to shut down an interface on your
router or check the speed at which your Ethernet interface is operating. SNMP can even monitor the temperature on your

switch and warn you when it is too high.

SNMP usually is associated with managing routers, but it's important to understand that it can be used to manage many types
of devices. While SNMP's predecessor, the Simple Gateway Management Protocol (SGMP) , was developed to manage Internet
routers, SNMP can be used to manage Unix systems, Windows systems, printers, modem racks, power supplies, and more. Any
device running software that allows the retrieval of SNMP information can be managed. This includes not only physical devices
but also software, such as web servers and databases.

Another aspect of network management is network monitoring ; that is, monitoring an entire network as opposed to individual
routers, hosts, and other devices. Remote Network Monitoring (RMON ) was developed to help us understand how the network
itself is functioning, as well as how individual devices on the network are affecting the network as a whole. It can be used to
monitor not only LAN traffic, but WAN interfaces as well. We discuss RMON in more detail later in this chapter and in Chapter 2.

1.1.1. RFCs and SNMP Versions

The Internet Engineering Task Force (IETF) is responsible for defining the standard protocols that govern Internet traffic,
including SNMP. The IETF publishes Requests for Comments (RFCs), which are specifications for many protocols that exist in the
IP realm. Documents enter the standards track first as proposed standards, then move to draft status. When a final draft is
eventually approved, the RFC is given standard statusalthough there are fewer completely approved standards than you might
think. Two other standards-track designations, historical and experimental , define (respectively) a document that has been
replaced by a newer RFC and a document that is not yet ready to become a standard. The following list includes all the current
SNMP versions and the IETF status of each (see Appendix D for a full list of the SNMP RFCs):

¢ SNMP Version 1 (SNMPv1 ) is the initial version of the SNMP protocol. It's defined in RFC 1157 and is a historical IETF
standard. SNMPv1's security is based on communities, which are nothing more than passwords: plain-text strings that
allow any SNMP-based application that knows the strings to gain access to a device's management information. There are
typically three communities in SNMPv1: read-only, read-write, and trap. It should be noted that while SNMPv1 is historical,
it is still the primary SNMP implementation that many vendors support.

¢ SNMP version 2 (SNMPv2 ) is often referred to as community-string-based SNMPv2. This version of SNMP is technically
called SNMPv2c, but we will refer to it throughout this book simply as SNMPv2. It's defined in RFC 3416, RFC 3417, and
RFC 3418.

* SNMP version 3 (SNMPv3) is the latest version of SNMP. Its main contribution to network management is security. It adds
support for strong authentication and private communication between managed entities. In 2002, it finally made the
transition from draft standard to full standard. The following RFCs define the standard: RFC 3410, RFC 3411, RFC 3412,
RFC 3413, RFC 3414, RFC 3415, RFC 3416, RFC 3417, RFC 3418, and RFC 2576. Chapter 3 provides a thorough
treatment of SNMPv3 and Chapter 6 goes through the SNMPv3 agent configuration for Net-SNMP and Cisco. While it is
good news that SNMPv3 is a full standard, vendors are notoriously slow at adopting new versions of a protocol. While
SNMPV1 has been transitioned to historical, the vast majority of vendor implementations of SNMP are SNMPv1
implementations. Some large infrastructure vendors like Cisco have supported SNMPv3 for quite some time, and we wiill
undoubtedly begin to see more vendors move to SNMPv3 as customers insist on more secure means of managing
networks.

The official site for RFCs is http://www.ietf.org/rfc.html. One of the biggest problems with RFCs, however, is finding the one you
want. It is a little easier to navigate the RFC index at Ohio State University (http://www.cse.ohio-
state.edu/cs/Services/rfc/index.html).

1.1.2. Managers and Agents

In the previous sections, we've vaguely referred to SNMP-capable devices and network management stations. Now it's time to
describe what these two things really are. In the world of SNMP, there are two kind of entities: managers and agents . A
manager is a server running some kind of software system that can handle management tasks for a network. Managers are


http://www.ietf.org/rfc.html
http://www.cse.ohio-

often referred to as Network Management Stations (NMSs).[*1 An NMS is responsible for polling and receiving traps from agents
in the network. A poll, in the context of network management, is the act of querying an agent (router, switch, Unix server, etc.)
for some piece of information. This information can be used later to determine if some sort of catastrophic event has occurred. A
trap is a way for the agent to tell the NMS that something has happened. Traps are sent asynchronously, not in response to
queries from the NMS. The NMS is further responsible for performing an actionl 1 based upon the information it receives from
the agent. For example, when your T1 circuit to the Internet goes down, your router can send a trap to your NMS. In turn, the
NMS can take some action, perhaps paging you to let you know that something has happened.

[1 See Appendix F for a listing of some popular NMS applications.

[ INote that the NMS is preconfigured to perform this action.

The second entity, the agent, is a piece of software that runs on the network devices you are managing. It can be a separate
program (a daemon, in Unix language), or it can be incorporated into the operating system (for example, Cisco's 10S on a
router, or the low-level operating system that controls a UPS). Today, most IP devices come with some kind of SNMP agent built
in. The fact that vendors are willing to implement agents in many of their products makes the system administrator's or
network manager's job easier. The agent provides management information to the NMS by keeping track of various operational
aspects of the device. For example, the agent on a router is able to keep track of the state of each of its interfaces: which ones
are up, which ones are down, etc. The NMS can query the status of each interface and take appropriate action if any of them
are down. When the agent notices that something bad has happened, it can send a trap to the NMS. This trap originates from
the agent and is sent to the NMS, where it is handled appropriately. Some devices will send a corresponding "all clear" trap
when there is a transition from a bad state to a good state. This can be useful in determining when a problem situation has
been resolved. Figure 1-1 shows the relationship between the NMS and an agent.

Figure 1-1. Relationship between an NMS and an agent

Trap sent to NMS

NMS Query sent to agent > Agent

Response to query sent from the agent to the NMS

It's important to keep in mind that polls and traps can happen at the same time. There are no restrictions on when the NMS can
query the agent or when the agent can send a trap.

1.1.3. The Structure of Management Information and MIBs

The Structure of Management Information (SMI ) provides a way to define managed objects and their behavior. An agent has in
its possession a list of the objects that it tracks. One such object is the operational status of a router interface (for example, up,
down, or testing). This list collectively defines the information the NMS can use to determine the overall health of the device on
which the agent resides.

The Management Information Base (MIB) can be thought of as a database of managed objects that the agent tracks. Any sort of
status or statistical information that can be accessed by the NMS is defined in a MIB. The SMI provides a way to define managed
objects while the MIB is the definition (using the SMI syntax) of the objects themselves. Like a dictionary, which shows how to
spell a word and then gives its meaning or definition, a MIB defines a textual name for a managed object and explains its
meaning. Chapter 2 goes into more technical detail about MIBs and the SMI.

An agent may implement many MIBs, but all agents implement a particular MIB called MIB-11 X1 (RFC 1213). This standard
defines variables for things such as interface statistics (interface speeds, MTU, octets[*] sent, octets received, etc.) as well as
various other things pertaining to the system itself (system location, system contact, etc.). The main goal of MIB-II is to provide
general TCP/IP management information. It doesn't cover every possible item a vendor may want to manage within its
particular device.

1 MIB-I is the original version of this MIB, but it is no longer referred to since MIB-Il enhances it.

[ An octet is an 8-bit quantity, which is the fundamental unit of transfer in TCP/IP networks.

What other kinds of information might be useful to collect? First, many draft and proposed standards have been developed to
help manage things such as frame relay, ATM, FDDI, and services (mail, Domairﬂ'Name System (DNS), etc.). A sampling of
these MIBs and their RFC numbers includes:



« ATM MIB (RFC 2515)

¢ Frame Relay DTE Interface Type MIB (RFC 2115)

« BGP Version 4 MIB (RFC 1657)

« RDBMS MIB (RFC 1697)

« RADIUS Authentication Server MIB (RFC 2619)

¢ Mail Monitoring MIB (RFC 2789)

- DNS Server MIB (RFC 1611)
But that's far from the entire story, which is why vendors, and individuals, are allowed to define MIB variables for their own
usel 1 For example, consider a vendor that is bringing a new router to market. The agent built into the router will respond to
NMS requests (or send traps to the NMS) for the variables defined by the MIB-I11 standard; it probably also implements MIBs for
the interface types it provides (e.g., RFC 2515 for ATM and RFC 2115 for Frame Relay). In addition, the router may have some
significant new features that are worth monitoring but are not covered by any standard MIB. So, the vendor defines its own MIB
(sometimes referred to as a proprietary MIB) that implements managed objects for the status and statistical information of its

new router.

[ 1This topic is discussed further in the next chapter.

- Simply loading a new MIB into your NMS does not necessarily allow you to retrieve the
as data/values/objects, etc., defined within that MIB. You need to load only those MIBs supported by the
‘*. 4= agents from which you're requesting queries (e.g., snmpget, snmpwalk). Feel free to load additional

MIBs for future device support, but don't panic when your device doesn't answer (and possibly returns
errors for) these unsupported MIBs.

1.1.4. Host Management

Managing host resources (disk space, memory usage, etc.) is an important part of network management. The distinction
between traditional system administration and network management has been disappearing over the last decade and is now all
but gone. As Sun Microsystems puts it, "The network is the computer.” If your web server or mail server is down, it doesn't
matter whether your routers are running correctlyyou're still going to get calls. The Host Resources MIB (RFC 2790) defines a
set of objects to help manage critical aspects of Unix and Windows systems.[*1

[1 Any operating system running an SNMP agent can implement Host Resources; it's not confined to agents running on Unix and Windows systems.

Some of the objects supported by the Host Resources MIB include disk capacity, number of system users, number of running
processes, and software currently installed. Today, more and more people are relying on service-oriented web sites. Making
sure your backend servers are functioning properly is as important as monitoring your routers and other communications
devices.

Unfortunately, some agent implementations for these platforms do not implement this MIB since it's not required.

1.1.5. A Brief Introduction to Remote Monitoring (RMON)

Remote Monitoring Version 1 (RMONv1, or RMON) is defined in RFC 2819; an enhanced version of the standard, called RMON
Version 2 (RMONvV2), is defined in RFC 2021. RMONv1 provides the NMS with packet-level statistics about an entire LAN or
WAN. RMONvV2 builds on RMONvV1 by providing network- and application-level statistics. These statistics can be gathered in
several ways. One way is to place an RMON probe on every network segment you want to monitor. Some Cisco routers have
limited RMON capabilities built in, so you can use their functionality to perform minor RMON duties. Likewise, some 3Com
switches implement the full RMON specification and can be used as full-blown RMON probes.

The RMON MIB was designed to allow an actual RMON probe to run in an offline mode that allows the probe to gather statistics
about the network it's watching without requiring an NMS to query it constantly. At some later time, the NMS can query the
probe for the statistics it has been gathering. Another feature that most probes implement is the ability to set thresholds for
various error conditions and, when a threshold is crossed, alert the NMS with an SNMP trap. You can find a little more technical
detail about RMON in the next chapter.

e prc |



e prcv |

1.2. The Concept of Network Management

SNMP is really about network management. Network management is a discipline of its own, but before learning about the
details of SNMP in Chapter 2, it's helpful to have an overview of network management itself.

What is network management? Network management is a general concept that employs the use of various tools, techniques,
and systems to aid human beings in managing various devices, systems, or networks. Let's take SNMP out of the picture right
now and look at a model for network management called FCAPS, or Fault Management, Configuration Management, Accounting
Management, Performance Management, and Security Management. These conceptual areas were created by the International

Organization for Standardization (1SO) to aid in the understanding of the major functions of network management systems.
Let's briefly look at each of these now.

1.2.1. Fault Management

The goal of fault management is to detect, log, and notify users of systems or networks of problems. In many environments,
downtime of any kind is not acceptable.

Fault management dictates that these steps for fault resolution be followed:

1. Isolate the problem by using tools to determine symptoms.
2. Resolve the problem.
3. Record the process that was used to detect and resolve the problem.

While step 3 is important, it is often not used. Neglecting step 3 has the unwanted effect of causing new engineers to follow
steps 1 and 2 in the dark when they could have consulted a database of troubleshooting tips.

1.2.2. Configuration Management

The goal of configuration management is to monitor network and system configuration information so that the effects on
network operation of various versions of hardware and software elements can be tracked and managed.

Any system may have a number of interesting and pertinent configuration parameters that engineers may be interested in
capturing, including:

Version of operating system, firmware, etc.

Number of network interfaces and speeds, etc.

Number of hard disks

Number of CPUs

Amount of RAM

This information generally is stored in a database of some kind. As configuration parameters change for systems, this database
is updated. An added benefit to having this data store is that it can aid in problem resolution.

1.2.3. Accounting Management

The goal of accounting management is to ensure that computing and network resources are used fairly by all groups or
individuals who access them. Through this form of regulation, network problems can be minimized since resources are divided
based on capacities.



1.2.4. Performance Management

The goal of performance management is to measure and report on various aspects of network or system performance.

Let's look at the steps involved in performance management:

1. Performance data is gathered.
2. Baseline levels are established based on analysis of the data gathered.

3. Performance thresholds are established. When these thresholds are exceeded, it is indicative of a problem that requires
attention.

One example of performance management is service monitoring. For example, an Internet service provider (ISP) may be
interested in monitoring its email service response time. This includes sending emails via SMTP and getting email via POP3. See
Chapter 11 for examples of how to do this.

1.2.5. Security Management

The goal of security management is twofold. First, we wish to control access to some resource, such as a network and its hosts.
Second, we wish to help detect and prevent attacks that can compromise networks and hosts. Attacks against networks and
hosts can lead to denial of service and, even worse, allow hackers to gain access to vital systems that contain accounting,
payroll, and source code data.

Security management encompasses not only network security systems but also physical security. Physical security includes card
access and video surveillance systems. The goal here is to ensure that only authorized individuals have physical access to
vulnerable systems.
Today, network security management is accomplished through the use of various tools and systems designed specifically for this
purpose. These include:

- Firewalls

« Intrusion Detection Systems (IDSs)

e Intrusion Prevention Systems (IPSs)

« Antivirus systems

« Policy management and enforcement systems

Most if not all of today's network security systems can integrate with network management systems via SNMP.

e prc |



e prcv |

1.3. Applying the Concepts of Network Management

Being able to apply the concepts of network management is as important as learning how to use SNMP. This section of the
chapter provides insights into some of the issues surrounding network management.

1.3.1. Business Case Requirements

The endeavor of network management involves solving a business problem through an implementation of some sort. A business
case is developed to understand the impact of implementing some sort of task or function. It looks at how, for example, network
administrators do their day-to-day jobs. The basic idea is to reduce costs and increase effectiveness. If the implementation
doesn't save a company any money while providing more effective services, there is almost no need to implement a given
solution.

1.3.2. Levels of Activity

Before applying management to a specific service or device, you must understand the four possible levels of activity and decide
what is appropriate for that service or device:

Inactive

No monitoring is being done, and, if you did receive an alarm in this area, you would ignore it.

Reactive

No monitoring is being done; you react to a problem if it occurs.

Interactive

You monitor components but must interactively troubleshoot them to eliminate side-effect alarms and isolate a root
cause.

Proactive

You monitor components, and the system provides a root-cause alarm for the problem at hand and initiates predefined
automatic restoral processes where possible to minimize downtime.

1.3.3. Reporting of Trend Analysis

The ability to monitor a service or system proactively begins with trend analysis and reporting . Chapters 12 and 13 describe
two tools that are capable of aiding in trend reporting. In general, the goal of trend analysis is to identify when systems,
services, or networks are beginning to reach their maximum capacity, with enough lead time to do something about it before it
becomes a real problem for end users. For example, you may discover a need to add more memory to your database server or
upgrade to a newer version of some application server software that adds a performance boost. Doing so before it becomes a
real problem can help your users avoid frustration and possibly keep you employed.

1.3.4. Response Time Reporting

If you are responsible for managing any sort of server (HTTP, SMTP, etc.), you know how frustrating it can be when users come
knocking on your door to say that the web server is slow or that surfing the Internet is slow. Response time reporting measures
how various aspects of your network (including systems) are performing with respect to responsiveness. Chapter 11 shows how
to monitor services with SNMP.



1.3.5. Alarm Correlation

Alarm correlation deals with narrowing down many alerts and events into a single alert or several events that depict the real
problem. Another name for this is root-cause analysis. The idea is simple, but it tends to be difficult in practice. For example,
when a web server on your network goes down, and you are managing all devices between you and the server (including the
switch the server is on and the router), you may get any number of alerts including ones for the server being down, the switch
being down, or the router being down, depending on where the real failure is.

Let's say the router is the real issue (for example, an interface card died). You really only need to know that the router is down.
Network management systems can often detect when some device or network is unreachable due to varying reasons. The key in
this situation is to correlate the server, switch, and router down events into a single high-level event detailing that the router is
down. This high-level event can be made up of all the entities and their alarms that are affected by the router being down, but
you want to shield an operator from all of these until he is interested in looking at them. The real problem that needs to be
addressed is the router's failure. Keeping this storm of alerts and alarms away from the operator helps with overall efficiency
and improves the trouble resolution capabilities of the staff.

Clearing alarms is also important. For example, once the router is back up and running, presumably it's going to send an SNMP
message that it has come back to life, or maybe a network management system will discover that it's back up and create an
alarm to this effect. This notion of state transition, from bad to good, is common. It helps operators know that something is
indeed up and operational. It also helps with trending. If you see that a certain device is constantly unreliable, you may want to
investigate why.

1.3.6. Trouble Resolution

The key to trouble resolution is knowing that what you are looking at is valuable and can help you resolve the problem. As
such, alarms and alerts should aid an operator in resolving the problem. For example, when your router goes down, a cryptic
message like "router down" is not helpful. If possible, alerts and alarms should provide the operator with enough detail so that
she can effectively troubleshoot and resolve the problem.

e prc |



e prcv |

1.4. Change Management

Change management deals with, well, managing change. In other words, you need to plan for both scheduled and emergency
changes to your network. Not doing so can cause networks and systems to be unreliable at best and can upset the very people
you work for at worst. The following sections provide a high-level overview of change management techniques. The following
techniques are recommended by Cisco. See the end of this section for the URL to this paper and others on the topic of network
management.

1.4.1. Planning for Change

Change planning is a process that identifies the risk level of a change and builds change planning requirements to ensure that
the change is successful. The key steps for change planning are as follows:
* Assign all potential changes a risk level prior to scheduling the change.
« Document at least three risk levels with corresponding change planning requirements. Identify risk levels for software and
hardware upgrades, topology changes, routing changes, configuration changes, and new deployments. Assign higher risk

levels to nonstandard add, move, or change types of activity.

« The high-risk change process you document needs to include lab validation, vendor review, peer review, and detailed
configuration and design documentation.

« Create solution templates for deployments affecting multiple sites. Include information about physical layout, logical
design, configuration, software versions, acceptable hardware chassis and modules, and deployment guidelines.

- Document your network standards for configuration, software version, supported hardware, and DNS. Additionally, you

may need to document things like device naming conventions, network design details, and services supported throughout
the network.

1.4.2. Managing Change

Change management is a process that approves and schedules the change to ensure the correct level of notification with
minimal user impact. The key steps for change management are as follows:

« Assign a change controller who can run change management review meetings, receive and review change requests,
manage change process improvements, and act as a liaison for user groups.

* Hold periodic change review meetings with system administration, application development, network operations, and
facilities groups as well as general users.

« Document change input requirements, including change owner, business impact, risk level, reason for change, success
factors, backout plan, and testing requirements.

« Document change output requirements, including updates to DNS, network map, template, IP addressing, circuit
management, and network management.

« Define a change approval process that verifies validation steps for higher-risk change.
« Hold postmortem meetings for unsuccessful changes to determine the root cause of change failure.

- Develop an emergency change procedure that ensures that an optimal solution is maintained or quickly restored.

1.4.3. High-Level Process Flow for Planned Change Management

The steps you'll need to follow during a network change are represented in Figure 1-2.I*1 The following sections briefly discuss
each box in the flow.

[1 Reprinted by permission from Cisco's "Change Management: Best Practices White Paper," Document ID 22852, http://www.cisco.com/warp/public/126/chmgmt.shtml.



http://www.cisco.com/warp/public/126/chmgmt.shtml

1.4.3.1.Scope

Scope is the who, what, where, and how for the change. In other words, you need to detail every possible impact point for the
change, especially its impact on people.

1.4.3.2.Risk assessment

Everything you do to or on a network, when it comes to change, has an associated risk. The person requesting the change
needs to establish the risk level for the change. It is best to experiment in a lab setting if you can before you go live with a
change. This can help identify problems and aid in risk evaluation.

Figure 1-2. Process flow for planned change management

Risk Testand Cha

ﬂl_" Scope i_’ assessment |+ validation £ plan?fg

v
(hange i
Change . . Implementation
controller - I'Il!ﬂimlll!!li —» (ommunication team

feam

Test Network
evaluationof =—= management =—— Documentation = Post change
change update _J

1.4.3.3. Test and validation

With any proposed change, you want to make sure you have all of your bases covered. Rigorous testing and validation can help
with this. Depending upon the associated risk, various levels of validation may need to be performed. For example, if the
change has the potential to impact a great many systems, you may wish to test the change in a lab setting. If the change
doesn't work, you may also need to document backout procedures.

1.4.3.4. Change planning

For a change to be successful, you must plan for it. This includes requirements gathering, ordering software or hardware,
creating documentation, and coordinating human resources.

1.4.3.5. Change controller

Basically, a change controller is a person who is responsible for coordinating all details of the change process.

1.4.3.6. Change management team

You should create a change management team that includes representation from network operations, server operations,
application support, and user groups within your organization. The team should review all change requests and approve or deny
each request based on completeness, readiness, business impact, business need, and any other conflicts.

- The change management team does not investigate the technical accuracy of the change; technical
s experts who better understand the scope and technical details should complete this phase of the change
W
- &3 process.




1.4.3.7.Communication

Many organizations, even small ones, fail to communicate their intentions. Make sure you keep people who may be affected up-
to-date on the status of the changes.

1.4.3.8. Implementation team

You should create an implementation team consisting of individuals with the technical expertise to expedite a change. The
implementation team should also be involved in the planning phase to contribute to the development of the project checkpoints,
testing, backout criteria, and backout time constraints. This team should guarantee adherence to organizational standards,
update DNS and network management tools, and maintain and enhance the tool set used to test and validate the change.

1.4.3.9. Test evaluation of change

Once the change has been made, you should begin testing it. Hopefully you already have a set of tests documented that can be
used to validate the change. Make sure you allow yourself enough time to perform the tests. If you must back out the change,
make sure you test this scenario, too.

1.4.3.10. Network management update

Be sure to update any systems like network management tools, device configurations, network configurations, DNS entries,
etc., to reflect the change. This may include removing devices from the management systems that no longer exist, changing the
SNMP trap destination your routers use, and so forth.

1.4.3.11. Documentation

Always update documentation that becomes obsolete or incorrect when a change occurs. Documentation may end up being used
by a network administrator to solve a problem. If it isn't up-to-date, he cannot be effective in his duties.

1.4.4. High-Level Process Flow for Emergency Change Management

In the real world, change often comes at 2 a.m. when some critical system is down. But with some effort, your on-the-fly
change doesn't have to cause heartburn for you and others in the company. Documentation means a lot more during
emergency changes than it does in planned changes. In the heat of the moment, things can get lost or forgotten. Accurately
recording the steps and procedures taken will ensure that troubles can be resolved in the future. If you have to, take short
notes while the process is unfolding. Later, write it up formally; the important thing is to remember to do it.

Figure 1-3 shows the process flow for emergency changes.[*1

[1 Reprinted by permission from Cisco's "Change Management: Best Practices White Paper," Document ID 22852, http://iwww.cisco.com/warp/public/126/chmgmt.shtml.

Figure 1-3. Emergency change process

Issue Limited risk G
Start J * determination | * assessment " (ummumcatmrll

Documentation == Implementation &= ﬁﬁ:ﬁ:ﬂ == Postchange '

1.4.4.1.1ssue determination


http://www.cisco.com/warp/public/126/chmgmt.shtml

Knowing what needs to change is generally not difficult to determine in an emergency. The key is to take one step at a time and
not rush things. Yes, time is critical, but rushing can cause mistakes to be made or even bring about a resolution that doesn't fix
the real issue. In some cases, the outage can be unnecessarily prolonged.

1.4.4.2. Limited risk assessment

Risk assessment is performed by the network administrator on duty, with advice from other support personnel. Her experience
will guide her in how the change is classified from a risk perspective. For example, changing the version of software on a router
has much greater impact than changing a device's IP address.

1.4.4.3. Communication and documentation

If at all possible, users should be notified of the change. In an emergency situation, it isn't always possible. Also, be sure to
communicate any changes with the change manager. The manager will wish to add to any metrics he keeps on changes.
Ensuring that documentation is up-to-date cannot be stressed enough. Having out-of-date documentation means that the staff
cannot accurately troubleshoot network and systems problems in the future.

1.4.4.4. Implementation

If the process of assigning risk and documentation occurs prior to the implementation, the actual implementation should be
straightforward. Beware of the potential for change coming from multiple support personnel without their knowing about each
other's changes. This scenario can lead to increased potential downtime and misinterpretation of the problem.

1.4.4.5. Test and evaluation

Be sure to test the change. Generally, the person who implemented the change also tests and evaluates it. The primary goal is
to determine whether the change had the desired effect. If it did not, the emergency change process must be restarted.

1.4.5. Before and After SNMP

Now that you have an idea about what SNMP and network management are, we should look at the before and after pictures for
implementing these concepts and technologies. Let's say that you have a network of 100 machines running various operating
systems. Several machines are fileservers, a few others are print servers, another is running software that verifies credit card
transactions (presumably from a web-based ordering system), and the rest are personal workstations. In addition, various
switches and routers help keep the network going. A T1 circuit connects the company to the Internet, and a private connection
runs to the credit card verification system.

What happens when one of the fileservers crashes? If it happens in the middle of the workweek, the people using it will notice
and the appropriate administrator will be called to fix it. But what if it happens after everyone has gone home, including the
administrators, or over the weekend?

What if the private connection to the credit card verification system goes down at 10 p.m. on Friday and isn't restored until
Monday morning? If the problem was faulty hardware and it could have been fixed by swapping out a card or replacing a router,
thousands of dollars in web site sales could have been lost for no reason. Likewise, if the T1 circuit to the Internet goes down, it
could adversely affect the amount of sales generated by individuals accessing your web site and placing orders.

These are obviously serious problemsproblems that can conceivably affect the survival of your business. This is where SNMP
comes in. Instead of waiting for someone to notice that something is wrong and locate the person responsible for fixing the
problem (which may not happen until Monday morning, if the problem occurs over the weekend), SNMP allows you to monitor
your network constantly, even when you're not there. For example, it will notice if the number of bad packets coming through
one of your router's interfaces is gradually increasing, suggesting that the router is about to fail. You can arrange to be notified
automatically when failure seems imminent so that you can fix the router before it actually breaks. You can also arrange to be
notified if the credit card processor appears to get hungyou may even be able to fix it from home. And if nothing goes wrong,
you can return to the office on Monday morning knowing there won't be any surprises.

There might not be quite as much glory in fixing problems before they occur, but you and your management will rest more
easily. We can't tell you how to translate that into a higher salarysometimes it's better to be the guy who rushes in and fixes
things in the middle of a crisis, rather than the guy who makes sure the crisis never occurs. But SNMP does enable you to keep
logs that prove your network is running reliably and show when you took action to avert an impending crisis.



1.4.6. Staffing Considerations

Implementing a network management system can mean adding more staff to handle the increased load of maintaining and
operating such an environment. At the same time, adding this type of monitoring should, in most cases, reduce the workload of
your system administration staff. You will need:

« Staff to maintain the management station. This includes ensuring the management station is configured to properly handle
events from SNMP-capable devices.

« Staff to maintain the SNMP-capable devices. This includes making sure that workstations and servers can communicate
with the management station.

« Staff to watch and fix the network. This group is usually called a Network Operations Center (NOC) and is staffed 24/7. An
alternative to 24/7 staffing is to implement rotating pager duty, where one person is on call at all times, but not
necessarily present in the office. Pager duty works only in smaller networked environments in which a network outage can
wait for someone to drive into the office and fix the problem.

There is no way to predetermine how many staff members you will need to maintain a management system. The size of the

staff will vary depending on the size and complexity of the network you're managing. Some of the larger Internet backbone
providers have 70 or more people in their NOCs and others have only one.

e prc |



e prcv |

1.5. Getting More Information

Getting a handle on SNMP may seem like a daunting task. The RFCs provide the official definition of the protocol, but they were
written for software developers, not network administrators, so it can be difficult to extract the information you need from
them. Fortunately, many online resources are available. A good place to look is the SimpleWeb (http://www.simpleweb.orq).
SNMP Link (http://www.SNMPLink.orq) is another good site for information. The Simple Times, an online publication devoted to
SNMP and network management, is also useful. You can find all the issues ever published*1 at http://www.simple-times.org.
SNMP Research is a commercial SNMP vendor. Aside from selling advanced SNMP solutions, its web site contains a good amount
of free information about SNMP. The company's web site is http://www.snmp.com.

[1 At this writing, the current issue is quite old, published in December 2002.

Another great resource is Usenet news. The newsgroup most people frequent is comp.dcom.net-management. Another good
newsgroup is comp.protocols.snmp. Groups such as these promote a community of information sharing, allowing seasoned
professionals to interact with individuals who are not as knowledgeable about SNMP or network management. Google has a
great interface for searching Usenet news group at http://groups.google.com.

There is an SNMP FAQ, available in two parts at http://www.fags.org/fags/snmp-fag/partl/ and http://www.fags.org/fags/snmp-
fag/part2/.

Cisco has some very good papers on network management, including "Network Management Basics"
(http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito _doc/nmbasics.htm) and "Change Management,” from which Figure 1-2
and Figure 1-3 were drawn. Also, Douglas W. Stevenson's article, "Network Management: What It Is and What It Isn't,"
available at http://www.itmweb.com/essay516.htm, provides important background material for all students of network
management.

With that background in mind, Chapter 2 delves much deeper into the details of SNMP.

e prc |


http://www.simpleweb.org
http://www.SNMPLink.org
http://www.simple-times.org
http://www.snmp.com
http://groups.google.com
http://www.faqs.org/faqs/snmp-faq/part1/
http://www.faqs.org/faqs/snmp-
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/nmbasics.htm
http://www.itmweb.com/essay516.htm

e prcv |

Chapter 2. SNMPv1 and SNMPv2

In this chapter, we start to look at SNMP in detail, specifically covering features found in SNMPv1 and SNMPv2 (we'll allude to

SNMPV3 occasionally but we describe its features in detail in Chapter 3). By the time you finish this chapter, you should
understand how SNMP sends and receives information, what SNMP communities are, and how to read MIB files. We'll also look

in more detail at the three MIBs that were introduced in Chapter 1, namely MIB-I11l, Host Resources, and RMON.

e prc |



e prcv |

2.1. SNMP and UDP

SNMP uses the User Datagram Protocol (UDP) as the transport protocol for passing data between managers and agents. UDP,
defined in RFC 768, was chosen over the Transmission Control Protocol (TCP) because it is connectionless; that is, no end-to-
end connection is made between the agent and the NMS when datagrams (packets) are sent back and forth. This aspect of UDP
makes it unreliable since there is no acknowledgment of lost datagrams at the protocol level. It's up to the SNMP application to
determine if datagrams are lost and retransmit them if it so desires. This is typically accomplished with a simple timeout. The
NMS sends a UDP request to an agent and waits for a response. The length of time the NMS waits depends on how it's
configured. If the timeout is reached and the NMS has not heard back from the agent, it assumes the packet was lost and
retransmits the request. The number of times the NMS retransmits packets is also configurable.

At least as far as regular information requests are concerned, the unreliable nature of UDP isn't a real problem. At worst, the
management station issues a request and never receives a response. For traps, the situation is somewhat different. If an agent
sends a trap and the trap never arrives, the NMS has no way of knowing that it was ever sent. The agent doesn't even know
that it needs to resend the trap because the NMS is not required to send a response back to the agent acknowledging receipt of
the trap.

The upside to the unreliable nature of UDP is that it requires low overhead , so the impact on your network's performance is
reduced. SNMP has been implemented over TCP, but this is more for special-case situations in which someone is developing an
agent for a proprietary piece of equipment. In a heavily congested and managed network, SNMP over TCP is a bad idea. It's also
worth realizing that TCP isn't magic and that SNMP is designed for working with networks that are in troubleif your network
never failed, you wouldn't need to monitor it. When a network is failing, a protocol that tries to get the data through but gives
up if it can't is almost certainly a better design choice than a protocol that floods the network with retransmissions in its
attempt to achieve reliability.

SNMP uses UDP port 161 for sending and receiving requests and port 162 for receiving traps from managed devices. Every
device that implements SNMP must use these port numbers as the defaults, but some vendors allow you to change the default
ports in the agent's configuration. If you change these defaults, the NMS must be made aware of the changes so that it can
query the device on the correct ports.

Figure 2-1 shows the TCP/IP protocol suite , which is the basis for all TCP/IP communication. Today, any device that wishes to
communicate on the Internet (e.g., Windows systems, Unix servers, Cisco routers, etc.) must use this protocol suite. This model
is often referred to as a protocol stack since each layer uses the information from the layer directly below it and provides a
service to the layer directly above it.

Figure 2-1. TCP/IP communication model and SNMP



NMS Agent

Application Application

Upp UDP

IP

Network Access Protoco Network Access Protocol

Internetwork connecting NMS to agent
KEY

Trap sent to port 162 on the NMS
- SNMP request sent from the NMS to the agent on port 161
Response to SNMP request sent from the agent to port 167 on the NMS

When either an NMS or an agent wishes to perform an SNMP function (e.g., a request or trap), the following events occur in the
protocol stack :

Application

First, the actual SNMP application (NMS or agent) decides what it's going to do. For example, it can send an SNMP request
to an agent, send a response to an SNMP request (this would be sent from the agent), or send a trap to an NMS. The
application layer provides services to an end user, such as an operator requesting status information for a port on an
Ethernet switch.

UDP

The next layer, UDP, allows two hosts to communicate with one another. The UDP header contains, among other things,
the destination port of the device to which it's sending the request or trap. The destination port will either be 161 (query)
or 162 (trap).

The IP layer tries to deliver the SNMP packet to its intended destination, as specified by its IP address.

Media Access Control (MAC)

The final event that must occur for an SNMP packet to reach its destination is for it to be handed off to the physical
network, where it can be routed to its final destination. The MAC layer is composed of the actual hardware and device
drivers that put your data onto a physical piece of wire, such as an Ethernet card. The MAC layer is also responsible for
receiving packets from the physical network and sending them back up the protocol stack so that they can be processed
by the application layer (SNMP, in this case).

This interaction between SNMP applications and the network is not unlike that between two pen pals. Both have messages that
need to be sent back and forth to one another. Let's say you decide to write your pen pal a letter asking if she would like to visit
you over the summer. By deciding to send the invitation, you've acted as the SNMP application. Filling out the envelope with
your pen pal's address is equivalent to the function of the UDP layer, which records the packet's destination port in the UDP
header; in this case, it's your pen pal's address. Placing a stamp on the envelope and putting it in the mailbox for the mailman
to pick up is equivalent to the IP layer's function. The final act occurs when the mailman comes to your house and picks up the
letter. From here, the letter will be routed to its final destination, your pen pal's mailbox. The MAC layer of a computer network
is equivalent to the mail trucks and airplanes that carry your letter on its way. When your pen pal receives the letter, she will
go through the same process to send you a reply.






e prcv |

2.2. SNMP Communities

SNMPv1 and SNMPv2 use the notion of communities to establish trust between managers and agents. An agent is configured
with three community names : read-only, read-write, and trap. The community names are essentially passwords; there's no
real difference between a community string and the password you use to access your account on the computer. The three
community strings control different kinds of activities. As its name implies, the read-only community string lets you read data
values but doesn't let you modify the data. For example, it allows you to read the number of packets that have been transferred
through the ports on your router but doesn't let you reset the counters. The read-write community string is allowed to read and
modify data values; with the read-write community string, you can read the counters, reset their values, and even reset the
interfaces or do other things that change the router's configuration. Finally, the trap community string allows you to receive
traps (asynchronous notifications) from the agent.

Most vendors ship their equipment with default community strings , typically public for the read-only community string and
private for the read-write community string. It's important to change these defaults before your device goes live on the
network. (You may get tired of hearing this because we say it many times, but it's absolutely essential.) When setting up an
SNMP agent, you will want to configure its trap destination, which is the address to which it will send any traps it generates. In
addition, since SNMP community strings are sent in clear text, you can configure an agent to send an SNMP authentication-
failure trap when someone attempts to query your device with an incorrect community string. Among other things,
authentication-failure traps can be very useful in determining when an intruder might be trying to gain access to your network.

Because community strings are essentially passwords, you should use the same rules for selecting them as you use for Unix or
Windows user passwords: no dictionary words, spouse names, etc. An alphanumeric string with mixed upper- and lowercase
letters is generally a good idea. As mentioned earlier, the problem with SNMP's authentication is that community strings are
sent in plain text, which makes it easy for people to intercept them and use them against you. SNMPv3 addresses this by
allowing, among other things, secure authentication and communication between SNMP devices.

There are ways to reduce your risk of attack. IP firewalls or filters minimize the chance that someone can harm any managed
device on your network by attacking it through SNMP. You can configure your firewall to allow UDP traffic from only a list of
known hosts. For example, you can allow UDP traffic on port 161 (SNMP requests) into your network only if it comes from one
of your NMSs. The same goes for traps; you can configure your router so that it allows UDP traffic on port 162 to your NMS only
if it originates from one of the hosts you are monitoring. Firewalls aren't 100% effective, but simple precautions such as these
do a lot to reduce your risk.

It is important to realize that if someone has read-write access to any of your SNMP devices, he can
H@ gain control of those devices by using SNMP (for example, he can set router interfaces, switch ports
down, or even modify your routing tables). One way to protect your community strings is to use a
Virtual Private Network (VPN) to make sure your network traffic is encrypted. Another way is to change
your community strings often. Changing community strings isn't difficult for a small network, but for a
network that spans city blocks or more and has dozens (or hundreds or thousands) of managed hosts,
changing community strings can be a problem. An easy solution is to write a simple Perl script that uses
SNMP to change the community strings on your devices.

e rrc |



e prcv |

2.3. The Structure of Management Information

So far, we have used the term marTigement information to refer to the operational parameters of SNMP-capable devices.
However, we've said very little about what management information actually contains or how it is represented. The first step
toward understanding what kind of information a device can provide is to understand how this data is represented within the
context of SNMP. The Structure of Management Information Version 1 (SMIvl , RFC 1155) does exactly that: it defines
precisely how managed objects [*1 are named and specifies their associated datatypes. The Structure of Management
Inforr.lation Version 2 (SMIv2 , RFC 2578) provides enhancements for SNMPv2. We'll start by discussing SMIv1, and we will
discuss SMIv2 in the next section. 1

[1 For the remainder of this book, managementinformation will be referred to as managed objects. Similarly, a single piece of management information (such as the
operational status of a router interface) will be known as a managed object.

[ 1it's worth noting that the version of SMI being used does not relate to the version of SNMP being used.

The definition of managed objects can be broken down into three attributes:

Name

The name, or object identifier (OID), uniquely defines a managed object. Names commonly appear in two forms: numeric
and "human readable.” In either case, the names are long and inconvenient. In SNMP applications, a lot of work goes into
helping you navigate through the namespace conveniently.

Type and syntax

A managed object's datatype is defined using a subset of Abstract Syntax Notation One (ASN.1 ). ASN.1 is a way of
specifying how data is represented and transmitted between managers and agents, within the context of SNMP. The nice
thing about ASN.1 is that the notation is machine independent. This means that a PC running Windows 2000 can
communicate with a Sun SPARC machine and not have to worry about things such as byte ordering.

Encoding

A single instance of a managed object is encoded into a string of octets using the Basic Encoding Rules (BER ). BER
defines how the objects are encoded and decoded so that they can be transmitted over a transport medium such as
Ethernet.

2.3.1. Naming OIDs

Managed objects are organized into a treelike hierarchy . This structure is the basis for SNMP's naming scheme. An object ID is
made up of a series of integers based on the nodes in the tree, separated by dots (.). Although there's a human-readable form
that's friendlier than a string of numbers, this form is nothing more than a series of names separated by dots, each representing
a node of the tree. You can use the numbers themselves, or you can use a sequence of names that represent the numbers.
Figure 2-2 shows the top few levels of this tree. (We have intentionally left out some branches of the tree that don't concern us
here.)

Figure 2-2. SMI object tree



|_fosthode |

| ccitt{0) i I joint(2) k

| directory(1) il magmt(2) ilexpe{imentalmi | private(4) i

In the object tree, the node at the top of the tree is called the root, anything with children is called a subtree,[*1 and anything
without children is called a leaf node. For example, Figure 2-2's root, the starting point for the tree, is called Root-Node. Its
subtree is made up of ccitt(0), iso(1), and joint(2). In this illustration, iso(1) is the only node that contains a subtree; the other
two nodes are both leaf nodes. ccitt(0) and joint(2) do not pertain to SNMP, so they will not be discussed in this book.[*1

[1 Note that the term branch is sometimes used interchangeably with subtree.

[1The ccitt subtree is administered by the International Telegraph and Telephone Consultative Committee (CCITT) ; the joint subtree is administered jointly by the ISO and
CCITT. As we said, neither branch has anything to do with SNMP.

For the remainder of this book, we will focus on the iso(1).org(3).dod(6).internet(1) subtree, which is represented in OID form
as 1.3.6.1 or as iso.org.dod.internet. Each managed object has a numerical OID and an associated textual name. The dotted-
decimal notation is how a managed object is represented internally within an agent; the textual name, like an IP domain name,
saves humans from having to remember long, tedious strings of integers.

The directory branch currently is not used. The management branch, or mgmt, defines a standard set of Internet management
objects. The experimental branch is reserved for testing and research purposes. Objects under the private branch are defined
unilaterally, which means that individuals and organizations are responsible for defining the objects under this branch. Here is
the definition of the internet subtree, as well as all four of its subtrees:

i nternet OBJECT IDENTIFIER ::= { iso org(3) dod(6) 1}

directory OBJECT IDENTIFIER ::= { internet 1}

ngnt OBJECT IDENTIFIER ::= { internet 2}

experinmental OBJECT IDENTIFIER ::={ internet 3}

private OBJECT IDENTIFIER ::= { internet 4}

The first line declares internet as the OID 1.3.6.1, which is defined (the :: = is a definition operator) as a subtree of iso.org.dod,

or 1.3.6. The last four declarations are similar, but they define the other branches that belong to internet. For the directory
branch, the notation { internet 1 } tells us that it is part of the internet subtree and that its OID is 1.3.6.1.1. The OID for
mgmt is 1.3.6.1.2, and so on.

There is currently one branch under the private subtree. It's used to give hardware and software vendors the ability to define
their own private objects for any type of hardware or software they want managed by SNMP. Its SMI definition is:

enterprises OBJECT I DENTIFIER ::= { private 1}

The Internet Assigned Numbers Authority (IANA) currently manages all the private enterprise number assignments for
individuals, institutions, organizations, companies, etc.L 1 A list of all the current private enterprise numbers can be obtained



from http://www.iana.org/assignments/enterprise-numbers. As an example, Cisco Systems's private enterprise number is 9, so
the base OID for its private object space is defined as iso.org.dod.internet.private.enterprises.cisco, or 1.3.6.1.4.1.9. Cisco is
free to do as it wishes with this private branch. It's typical for companies such as Cisco that manufacture networking equipment
to define their own private enterprise objects. This allows for a richer set of management information than can be gathered
from the standard set of managed objects defined under the mgmt branch.

[ 1The term private enterprise will be used throughout this book to refer to the enterprises branch.

Companies aren't the only ones who can register their own private enterprise numbers . Anyone can do so, and it's free. The
web-based form for registering private enterprise numbers can be found at http://www.isi.edu/cgi-bin/iana/enterprise.pl. After
you fill in the form, which asks for information such as your organization's name and contact information, your request should
be approved in about a week. Why would you want to register your own number? When you become more conversant in SNMP,
you'll find things you want to monitor that aren't covered by any MIB, public or private. With your own enterprise number, you
can create your own private MIB that allows you to monitor exactly what you want. You'll need to be somewhat clever in
extending your agents so that they can look up the information you want, but it's very doable.

2.3.2. Defining OIDs

The SYNTAX attribute provides for definitions of managed objects through a subset of ASN.1. SMIv1 defines several datatypes
that are paramount to the management of networks and network devices. It's important to keep in mind that these datatypes
are simply a way to define what kind of information a managed object can hold. The types we'll be discussing are similar to
those that you'd find in a computer programming language like C. Table 2-1 lists the supported datatypes for SMIv1.

Table 2-1. SMIv1 datatypes

Datatype Description

A 32-bit number often used to specify enumerated types within the context of a single managed object.

I NTEGER For example, the operational status of a router interface can be up, down, or testing. With enumerated
types, 1 would represent up, 2 down, and 3 testing. The value zero (0) must not be used as an
enumerated type, according to RFC 1155.

A string of zero or more octets (more commonly known as bytes) generally used to represent text
COCTET STRING strings, but also sometimes used to represent physical addresses.

A 32-bit number with minimum value 0 and maximum value 232 - 1 (4,294,967,295). When the

Count er maximum value is reached, it wraps back to zero and starts over. It's primarily used to track
information such as the number of octets sent and received on an interface or the number of errors and
discards seen on an interface. A Count er is monotonically increasing, in that its values should never
decrease during normal operation. When an agent is rebooted, all Count er values should be set to zero.
Deltas are used to determine if anything useful can be said for successive queries of Count er values. A
delta is computed by querying a Count er at least twice in a row and taking the difference between the
query results over some time interval.

A dotted-decimal string that represents a managed object within the object tree. For example,
OBJECT I DENTIFIER 1.3.6.1.4.1.9 represents Cisco Systems' private enterprise OID.

Not currently used in SNMP.

NULL
Defines lists that contain zero or more other ASN.1 datatypes.
SEQUENCE
Defines a managed object that is made up of a SEQUENCE of ASN.1 types.
SEQUENCE OF
Represents a 32-bit IPv4 address. Neither SMIv1l nor SMIv2 discusses 128-bit IPv6 addresses .
| pAddr ess

Same as the | pAddr ess type, but can represent different network address types.
Net wor kAddr ess


http://www.iana.org/assignments/enterprise-numbers
http://www.isi.edu/cgi-bin/iana/enterprise.pl

Datatype Description

A 32-bit number with minimum value 0 and maximum value 232 - 1 (4,294,967,295). Unlike a Counter,
Gauge a Gauge can increase and decrease at will, but it can never exceed its maximum value. The interface
speed on a router is measured with a Gauge.

) ) A 32-bit number with minimum value 0 and maximum value 232 - 1 (4,294,967,295). Ti neTi cks
Ti meTi cks measures time in hundredths of a second. Uptime on a device is measured using this datatype.

Allows any other ASN.1 encoding to be stuffed into an OCTET STRI NG.
Opaque

The goal of all these object types is to define managed objects. In Chapter 1, we said that a MIB is a logical grouping of
managed objects as they pertain to a specific management task, vendor, etc. The MIB can be thought of as a specification that
defines the managed objects a vendor or device supports. Cisco, for instance, has literally hundreds of MIBs defined for its vast
product line. For example, its Catalyst device has a separate MIB from its 7000 series router. Both devices have different
characteristics that require different management capabilities. Vendor-specific MIBs are typically distributed as human-readable
text files that can be inspected (or even modified) with a standard text editor such as vi.

- Most modern NMS products maintain a compact form of all the MIBs that define the set of managed
as objects for all the different types of devices they're responsible for managing. NMS administrators
. 4 typically compile a vendor's MIB into a format the NMS can use. Once a MIB has been loaded or

compiled, administrators can refer to managed objects using either the numeric or human-readable
object ID.

It's important to know how to read and understand MIB files . The following example is a stripped-down version of MIB-II
(anything preceded by is a comment):

RFC1213-M B DEFINITIONS ::= BEG N

| MPORTS
mgnt, Net wor kAddr ess, | pAddress, Counter, Gauge,
Ti meTi cks
FROM RFC1155- SM
OBJECT- TYPE
FROM RFC 1212;

m b- 2 OBJECT IDENTIFIER ::= { mynt 1 }

-- groups in MB-I1

system OBJECT IDENTIFIER ::={ mb-2 1}
interfaces OBJECT IDENTIFIER ::= { nmib-2 2}
at OBJECT IDENTIFIER ::= { nmib-2 3}
ip OBJECT IDENTIFIER ::= { nib-2 4}
icnp OBJECT IDENTIFIER ::={ mb-2 5}
tep OBJECT IDENTIFIER ::= { nmib-2 6 }
udp OBJECT IDENTIFIER ::= { mb-2 7 }
egp OBJECT IDENTIFIER ::={ mb-2 8}
transm ssion OBJECT IDENTIFIER ::= { mb-2 10 }
snnp OBJECT IDENTIFIER ::= { mb-2 11 }

-- the Interfaces table

-- The Interfaces table contains information on the entity's
-- interfaces. Each interface is thought of as being

-- attached to a 'subnetwork.' Note that this term shoul d

-- not be confused with 'subnet,' which refers to an

-- addressing-partitioning schenme used in the Internet

-- suite of protocols.

i f Tabl e OBJECT- TYPE
SYNTAX SEQUENCE OF IfEntry
ACCESS not -accessi bl e



STATUS nandatory

DESCRI PTI ON
"Alist of interface entries. The nunber of entries is
given by the value of ifNunber."

o= { interfaces 2 }

i fEntry OBJECT- TYPE

SYNTAX |fEntry

ACCESS not -accessi bl e

STATUS nandatory

DESCRI PTI ON

"An interface entry containing objects at the subnetwork
| ayer and below for a particular interface.”
INDEX { iflndex }
= { ifTable 1}

IfEntry ::=
SEQUENCE {
i f1ndex
| NTEGER,
i f Descr
Di spl ayString,
i f Type
| NTEGER,
ifMu
| NTEGER,
i f Speed
CGauge,
i f PhysAddr ess
PhysAddr ess,
i f Adm nSt at us
| NTEGER,
i f Oper St atus
| NTEGER,
i f Last Change
Ti meTi cks,
ifInCctets
Count er,
i flnUcast Pkts
Count er,
i fI nNUcast Pkt s
Count er,
i fInDi scards
Count er,
iflnErrors
Count er,
i f I nUnknownPr ot os
Count er,
ifQutCctets
Count er,
i f Qut Ucast Pkts
Count er,
i f Qut NUcast Pkt s
Count er,
i fQut Di scards
Count er,
ifQutErrors
Count er,
i fQut Qlen
Gauge,
i fSpecific
OBJECT | DENTI FI ER
}

i fI ndex OBJECT- TYPE
SYNTAX | NTEGER
ACCESS read-only
STATUS nmandat ory
DESCRI PTI ON



"A unique value for each interface. Its value ranges
between 1 and the value of ifNunber. The value for
each interface nmust remain constant at |east from one
reinitialization of the entity's network managenent
systemto the next reinitialization."

o= { ifEntry 1}

i f Descr OBJECT- TYPE

SYNTAX DisplayString (SIZE (0..255))

ACCESS read-only

STATUS nmandat ory

DESCRI PTI ON
"A textual string containing information about the
interface. This string should include the nanme of
the manufacturer, the product name, and the version
of the hardware interface."

ci={ ifEntry 2}

END

The first line of this file defines the name of the MIBin this case, RFC1213- M B. (RFC 1213 is the RFC that defines MIB-I1; many
of the MIBs we refer to are defined by RFCs.) The format of this definition is always the same. The | MPORTS section of the MIB is
sometimes referred to as the linkage section. It allows you to import datatypes and OIDs from other MIB files using the | MPORTS
clause. This MIB imports the following items from RFC1155- SM (RFC 1155 defines SMIv1, which we discussed earlier in this
chapter):

e mgnt
* Net wor kAddr ess
e | pAddress

e Counter

* Gauge

e TinmeTicks

It also imports OBJECT- TYPE from RFC 1212, the Concise MIB Definition , which defines how MIB files are written. Each group of
items imported using the | MPORTS clause uses a FROM clause to define the MIB file from which the objects are taken.

The OIDs that will be used throughout the remainder of the MIB follow the linkage section. This group of lines sets up the top
level of the mib-2 subtree. mib-2 is defined as mgmt followed by .1. We saw earlier that mgmt was equivalent to 1.3.6.1.2.
Therefore, mib-2 is equivalent to 1.3.6.1.2.1. Likewise, the interfaces group under mib-2 is defined as{ nib-2 2 }, or
1.3.6.1.2.1.2.

After the OIDs are defined, we get to the actual object definitions. Every object definition has the following format:

<name> OBJECT- TYPE
SYNTAX <dat at ype>
ACCESS <either read-only, read-wite, wite-only, or not-accessible>
STATUS <ei ther mandatory, optional, or obsolete>
DESCRI PTI ON
"Textual description describing this particular nmanaged object."
::={ <Unique O D that defines this object>}

The first managed object in our subset of the MIB-11 definition is ifTable , which represents a table of network interfaces on a
managed device (note that object names are defined using mixed case, with the first letter in lowercase). Here is its definition
using ASN.1 notation:

i f Tabl e
OBJECT- TYPE
SYNTAX SEQUENCE COF |fEntry



ACCESS not-accessible

STATUS nmandat ory

DESCRI PTI ON
"Alist of interface entries. The nunber of entries is given by
the val ue of ifNunber."

:={ interfaces 2}

The SYNTAX of ifTable is SEQUENCE OF | fEntry. This means that ifTable is a table containing the columns defined in IfEntry. The
object is not - accessi bl e, which means that there is no way to query an agent for this object's value. Its status is nandatory,
which means an agent must implement this object in order to comply with the MIB-I1 specification. The DESCRI PTI ON describes
exactly what this object is. The unique OID is 1.3.6.1.2.1.2.2, or iso.org.dod.internet.mgmt.mib-2.interfaces.2.

Let's now look at the SEQUENCE definition from the MIB file earlier in this section, which is used with the SEQUENCE OF type in the
ifTable definition:

IfEntry ::=
SEQUENCE {
i f1ndex
| NTEGER,
i f Descr
Di spl ayString,
i fType
| NTEGER,
ifMu
| NTEGER,

i fSpecific
OBJECT | DENTI FI ER

Note that the name of the sequence (IfEntry) is mixed case, but the first letter is capitalized, unlike the object definition for
ifTable. This is how a sequence name is defined. A sequence is simply a list of columnar objects and their SMI datatypes, which
defines a conceptual table. In this case, we expect to find variables defined by iflndex, ifDescr, ifType, etc. This table can contain
any number of rows; it's up to the agent to manage the rows that reside in the table. It is possible for an NMS to add rows to a
table. This operation is covered in "The set Operation,” later in this chapter.

Now that we have IfEntry to specify what we'll find in any row of the table, we can look back to the definition of ifEntry (the
actual rows of the table) itself:

i fEntry OBJECT- TYPE

SYNTAX [|fEntry

ACCESS not-accessi bl e

STATUS nandatory

DESCRI PTI ON
"An interface entry containing objects at the subnetwork |ayer
and below for a particular interface."

INDEX { iflndex }

o= { ifTable 1}

ifEntry defines a particular row in the ifTable. Its definition is almost identical to that of ifTable, except we have introduced a
new clause, | NDEX. The index is a unique key used to define a single row in the ifTable. It's up to the agent to make sure the
index is unique within the context of the table. If a router has six interfaces, the ifTable will have six rows in it. ifEntry's OID is
1.3.6.1.2.1.2.2.1, or iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry. The index for ifEntry is iflndex, which is defined
as:

i f1 ndex OBJECT- TYPE
SYNTAX | NTEGER
ACCESS read-only
STATUS nandatory



DESCRI PTI ON
"A uni que value for each interface. Its value ranges between

1 and the value of ifNunber. The value for each interface

must remain constant at |least fromone reinitialization of the

entity's network nmanagenent systemto the next reinitialization."
= { ifEntry 1}

The ifIndex object is r ead- onl y, which means we can see its value, but we cannot change it. The final object our MIB defines is
ifDescr, which is a textual description for the interface represented by that particular row in the ifTable. Our MIB example ends
with the END clause, which marks the end of the MIB. In the actual MIB-II files, each object listed in the IfEntry sequence has its
own object definition. In this version of the MIB we list only two of them, in the interest of conserving space.

e prc |



e prcv |

2.4. Extensions to the SMI in Version 2

SMIv2 extends the SMI object tree by adding the snmpV2 branch to the internet subtree, adding several new datatypes and
making a number of other changes. Figure 2-3 shows how the snmpV2 objects fit into the bigger picture; the OID for this new
branch is 1.3.6.1.6.3.1.1, or iso.org.dod.internet.snmpV2.snmpModules.snmpMIB.snmpMIBObjects. SMIv2 also defines some
new datatypes, which are summarized in Table 2-2.

Figure 2-3. SMIv2 registration tree for SNMPv2

| citt{0) i | joint(2) i

internet(1)

snmpMIB[1)

Table 2-2. New datatypes for SMIv2

Datatype Description

Same as an | NTEGER.
I nt eger 32

Same as a Count er.
Count er 32

Same as a Gauge.
Gauge32



Datatype Description

Represents decimal values in the range of 0 to 232 - 1, inclusive.
Unsi gned32

Similar to Count er 32, but its maximum value is 18,446,744,073,709,551,615. Count er 64 is ideal for situations in
Counter64  \hich a Count er 32 may wrap back to 0 in a short amount of time.

An enumeration of nonnegative named bits.
BI TS

The definition of an object in SMIv2 has changed slightly from SMIv1. There are some new optional fields, giving you more
control over how an object is accessed, allowing you to augment a table by adding more columns, and letting you give better
descriptions. Here's the syntax of an object definition for SMIv2 . The changed parts are in bold:

<name> OBJECT- TYPE
SYNTAX <dat at ype>
UnitsParts <Optional, see bel ow>
MAX- ACCESS <See bel ow>
STATUS <See bel ow>
DESCRI PTI ON
"Textual description describing this particular managed object."
AUGMVENTS { <nane of table> }
= { <Unique O D that defines this object> }

Table 2-3 briefly describes the object definition enhancements made in SMIv2.

Table 2-3. SMIv2 object definition enhancements

Object definition
enhancement Description

A textual description of the units (i.e., seconds, milliseconds, etc.) used to represent the object.

UnitsParts

An OBJECT- TYPE's ACCESS can be MAX- ACCESS in SNMPv2 . The valid options for MAX- ACCESS are r ead-onl y,
MAX- ACCESS read-wite, read-create, not-accessibl e, and accessi bl e-for-notify.

This clause has been extended to allow the current, obsol et e, and deprecat ed keywords. current in
STATUS SNMPV2 is the same as nandat ory in an SNMPv1 MIB.

In some cases, it is useful to add a column to an existing table. The AUGVENTS clause allows you to
AUGMENTS extend a table by adding one or more columns, represented by some other object. This clause requires
the name of the table the object will augment.

SMIv2 defines a new trap type called NOTI FI CATI ON- TYPE, which we will discuss in "SNMP_Notification" later in this chapter.
SMIv2 also introduces new textual conventions that allow managed objects to be created in more abstract ways. RFC 2579
defines the textual conventions used by SNMPv2, which are listed in Table 2-4.

Table 2-4. Textual conventions for SMI1v2



Textual
convention

Di splayString

PhysAddr ess

MacAddr ess

Trut hval ue

Test Andl ncr

Aut ononousType

Var i abl ePoi nt er

RowPoi nt er

RowSt at us

Ti meSt anp

Ti el nt er val

Dat eAndTi me

St or ageType

TDormei n

TAddr ess

Description

A string of NVT ASCII characters. A Di spl ayString can be no more than 255 characters in length.

A media- or physical-level address, represented as an OCTET STRI NG.

Defines the media-access address for IEEE 802 (the standard for LANs) in canonicall*1 order. (In everyday
language, this means the Ethernet address.) This address is represented as six octets.

Defines both true and f al se Boolean values.

Used to keep two management stations from modifying the same managed object at the same time.

An OID used to define a subtree with additional MIB-related definitions.

A pointer to a particular object instance, such as ifDescr for interface 3. In this case, the Vari abl ePoi nt er
would be the OID ifDescr.3.

A pointer to a row in a table. For example, iflndex.3 points to the third row in ifTable.

Used to manage the creation and deletion of rows in a table, since SNMP has no way of doing this via the
protocol itself. RowSt at us can keep track of the state of a row in a table as well as receive commands for
creation and deletion of rows. This textual convention is designed to promote table integrity when more
than one manager is updating rows. The following enumerated types define the commands and state
variables: active(1), notlnService(2), notReady(3), createAndGo(4), createAndWiit(5), and
anddestroy(6) .

Measures the amount of time elapsed between the device's system uptime and some event or occurrence.

Measures a period of time in hundredths of a second. Ti el nt erval can take any integer value from O-
2147483647.

An OCTET STRI NG used to represent date and time information.
Defines the type of memory an agent uses. The possible values are ot her (1), vol atile(2),
nonVol ati |l e(3), permanent (4), and readOnl y(5) .

Denotes a kind of transport service.

Denotes the transport service address. TAddr ess is defined to be from 1-255 octets in length.

[1 Canonical order means that the address should be represented with the least-significant bit first.



e prcv |

2.5. A Closer Look at MIB-II

MIB-11 is a very important management group because every device that supports SNMP must also support MIB-I11. Therefore,
we will use objects from MIB-I11 in our examples throughout this book. We won't go into detail about every object in the MIB;
we'll simply define the subtrees. The section of RFC1213-MIB that defines the base OIDs for the mib-2 subtree looks like this:

m b-2 OBJECT IDENTIFIER ::={ mgnt 1 }

system OBJECT IDENTIFIER ::= { mb-2 1}
interfaces OBJECT IDENTIFIER ::= { mb-2 2}
at OBJECT IDENTIFIER ::={ mb-2 3}
ip OBJECT IDENTIFIER ::= { mib-2 4}
i cmp OBJECT IDENTIFIER ::={ mb-2 5}
tcp OBJECT IDENTIFIER ::= { mb-2 6 }
udp OBJECT IDENTIFIER ::={ mb-2 7}
egp OBJECT IDENTIFIER ::={ mb-2 8}
transm ssion OBJECT IDENTIFIER ::= { mb-2 10 }
snnp OBJECT IDENTIFIER ::={ mb-2 11}

mib-2 is defined as iso.org.dod.internet.mgmt.1, or 1.3.6.1.2.1. From here, we can see that the system group is nmi b-2 1, or
1.3.6.1.2.1.1, and so on. Figure 2-4 shows the MIB-I11 subtree of the mgmt branch.

Figure 2-4. MIB-11 subtree

l ecitt(0) i . | joint(2) i

| directory(1) i

mamit(2)

|expe|imentalt3]-i| private{d) i

|1cmp{5)i Iicpﬂil udp(7) i |Iﬁnsmissfont10:lh

Table 2-5 briefly describes each management group defined in MIB-11. We don‘t go into great detail about each group since you
can pull down RFC 1213 and read the MIB yourself.



Subtree
name
system

interfaces

at

ip
icmp
tcp
udp
egp

transmission

snmp

OolID

1.3.6.1.2.1.1

1.3.6.1.2.1.2

1.3.6.1.2.1.3

1.3.6.1.2.1.4
1.3.6.1.2.1.5
1.3.6.1.2.1.6
1.3.6.1.2.1.7
1.3.6.1.2.1.8

1.3.6.1.2.1.10

1.3.6.1.2.1.11

Table 2-5. Brief description of the MIB-11 groups

Description

Defines a list of objects that pertain to system operation, such as the system uptime, system
contact, and system name.

Keeps track of the status of each interface on a managed entity. The interfaces group monitors
which interfaces are up or down and tracks such things as octets sent and received, errors and
discards, etc.

The address translation (at) group is deprecated and is provided only for backward
compatibility.

Keeps track of many aspects of IP, including IP routing.

Tracks things such as ICMP errors, discards, etc.

Tracks, among other things, the state of the TCP connection (e.g., closed, listen, synSent, etc.).
Tracks UDP statistics, datagrams in and out, etc.

Tracks various statistics about the Exterior Gateway Protocol (EGP) and keeps an EGP neighbor
table.

No objects are currently defined for this group, but other media-specific MIBs are defined using
this subtree.

Measures the performance of the underlying SNMP implementation on the managed entity and
tracks things such as the number of SNMP packets sent and received.

NEXT B



e prcv |

2.6. SNMP Operations

We've discussed how SNMP organizes information, but we've left out how we actually go about gathering management
information. Now we're going to take a look under the hood to see how SNMP does its thing.

The Protocol Data Unit (PDU) is the message format that managers and agents use to send and receive information. Each of the
following SNMP operations has a standard PDU format:

- get

- getnext

* getbulk (SNMPv2 and SNMPv3)

« set

« getresponse

« trap

¢ notification (SNMPv2 and SNMPv3)

¢ inform (SNMPv2 and SNMPv3)

- report (SNMPv2 and SNMPv3)
In addition to running actual command-line tools, we will also provide packet dumps of the SNMP operations. For those of you
who like looking at packet dumps, this will give you an inside look at what the packet structure is for each command. The

packet dumps themselves were taken using the command-line version of Ethereal (http://www.ethereal.com). Let's take a look
at each operation now. All of the get and set operations were captured with the following command:

$ /usr/shin/tethereal -i lo -x -V -F libpcap -f "port 161"

Traps and notifications were captured with this command:

$ /usr/sbin/tethereal -i lo -x -V -F libpcap -f "port 162"

2.6.1. The get Operation

The get request is initiated by the NMS, which sends the request to the agent. The agent receives the request and processes it
to the best of its ability. Some devices that are under heavy load, such as routers, may not be able to respond to the request
and will have to drop it. If the agent is successful in gathering the requested information, it sends a getresponse back to the
NMS, where it is processed. This process is illustrated in Figure 2-5.

Figure 2-5. get request sequence


http://www.ethereal.com

The NMS sends a ge request for the router’s
system name.

NMS Agent Router

The agent responds with a gef response. The
response PDU contains the router’s

system name, “dsco.”

How did the agent know what the NMS was looking for? One of the items in the get request is a variable binding. A variable
binding, or varbind, is a list of MIB objects that allows a request's recipient to see what the originator wants to know. Variable
bindings can be thought of as OlD=value pairs that make it easy for the originator (the NMS, in this case) to pick out the
information it needs when the recipient fills the request and sends back a response. Let's look at this operation in action:

$ snnpget cisco.ora.compublic .1.3.6.1.2.1.1.6.0
system sysLocation.0 = ""

] All the Unix commands presented in this chapter come from the Net-SNMP agent package (formerly the
as UCD-SNMP project), a freely available Unix and Windows agent. You can download the package from
. 4 http://net-snmp.sourceforge.net. Appendix C summarizes the commands in this package.

Several things are going on in this example. First, we're running a command on a Unix host. The command is called snmpget.
Its main job is to facilitate the gathering of management data using a get request. We've given it three arguments on the
command line: the name of the device we would like to query (cisco.ora.com), the read-only community string (public), and the
OID we would like gathered (.1.3.6.1.2.1.1.6.0). If we look back at Table 2-5, we see that 1.3.6.1.2.1.1 is the system group,
but there are two more integers at the end of the OID: .6 and .0. The .6 is actually the MIB variable that we wish to query; its
human-readable name is sysLocation. In this case, we would like to see what the system location is set to on the Cisco router.
As you can see by the response (system sysLocation.0 = ""), the system location on this router currently is not set to
anything. Also note that the response from snmpget is in variable binding format, OlD=value.

There is one more thing to look at. Why does the MIB variable have a .0 tacked on the end? In SNMP, MIB objects are defined
by the convention x.y, where X is the actual OID of the managed object (in our example, 1.3.6.1.2.1.1.6 ) and y is the instance
identifier. For scalar objects (that is, objects that aren't defined as a row in a table), y is always 0. In the case of a table, the
instance identifier lets you select a specific row of the table; 1 is the first row, 2 is the second row, etc. For example, consider
the ifTable object we looked at earlier in this chapter. When looking up values in ifTable, we would use a nonzero instance
identifier to select a particular row in the table (in this case, a particular network interface).

- Graphical NMS applications , which include most commercial packages, do not use command-line
as programs to retrieve management information. We use these commands to give you a feel for how the
‘. #s retrieval commands work and what they typically return. The information a graphical NMS retrieves and

its retrieval process are identical to these command-line programs; the NMS just lets you formulate
queries and displays the results using a more convenient GUI.

The get command is useful for retrieving a single MIB object at a time. Trying to manage anything in this manner can be a
waste of time, though. This is where the getnext command comes in. It allows you to retrieve more than one object from a
device, over a period of time.

Now let's look at an SNMP packet as seen with Ethereal's command-line tool tethereal. Given the following command:

$ snnpget -v 1 -c public 127.0.0.1 sysContact.O

we get the following two datagram traces from tethereal:

Frame 1 (85 bytes on wire, 85 bytes captured)
Arrival Time: Sep 20, 2004 13:46:15.041115000
Tinme delta from previous packet: 0.000000000 seconds


http://net-snmp.sourceforge.net

Time since reference or first frame: 0.000000000 seconds
Frame Nunber: 1
Packet Length: 85 bytes
Capture Length: 85 bytes
Et hernet 11, Src: 00:00:00: 00: 00: 00, Dst: 00:00:00: 00: 00: 00
Destination: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Source: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 127.0.0.1 (127.0.0.1), Dst Addr: 127.0.0.1 (127.0.0.1)
Version: 4
Header |ength: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN. 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN- Capable Transport (ECT): O
0 = ECN-CE: O

Total Length: 71
Identification: 0x0000 (0)
Fl ags: 0x04
.1.. = Don't fragment: Set
..0. = More fragnents: Not set
Fragment offset: O
Time to live: 0
Protocol : UDP (0x11)
Header checksum O0x7ca4 (correct)
Source: 127.0.0.1 (127.0.0.1)
Destination: 127.0.0.1 (127.0.0.1)
User Datagram Protocol, Src Port: 34066 (34066), Dst Port: snnp (161)
Source port: 34066 (34066)
Destination port: snnp (161)
Length: 51
Checksum Oxfe46 (incorrect, should be Oxbbea)
Si npl e Networ k Managenent Protocol
Version: 1 (0)
Comuni ty: public
PDU type: GET (0)
Request 1d: 0x20a71b4c
Error Status: NO ERROR (0)
Error Index: O
Object identifier 1: 1.3.6.1.2.1.1.4.0 (SNWPv2-M B: : sysContact . 0)
Val ue: NULL

0000 00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 00  .............. E
0010 00 47 00 00 40 00 00 11 7c a4 7f 00 00 01 7f 00 .G.@..|.......
0020 00 01 85 12 00 al 00 33 fe 46 30 29 02 01 00 04 ....... 3.F0). ..

0030 06 70 75 62 6¢c 69 63 a0 1c 02 04 20 a7 1b 4c 02 .public.... ..L
0040 01 00 02 01 00 30 Oe 30 Oc 06 08 2b 06 01 02 01  ..... 0.0...+. ..

0050 01 04 00 0500

Frame 2 (144 bytes on wire, 144 bytes captured)
Arrival Time: Sep 20, 2004 13:46:15. 071891000
Time delta from previ ous packet: 0.030776000 seconds
Tine since reference or first frame: 0.030776000 seconds
Frame Nunber: 2
Packet Length: 144 bytes
Capture Length: 144 bytes
Ethernet II, Src: 00:00:00: 00: 00: 00, Dst: 00:00:00: 00: 00: 00
Destination: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Sour ce: 00: 00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 127.0.0.1 (127.0.0.1), Dst Addr: 127.0.0.1 (127.0.0.1)
Version: 4
Header |ength: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN:. 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN- Capable Transport (ECT): 0O
0 = ECN-CE: O

Total Length: 130
Identification: 0x031d (797)
Fl ags: 0x04



.1.. = Don't fragnent: Set
..0. = More fragnents: Not set
Fragment offset: O
Tine to live: 0
Protocol : UDP (0x11)
Header checksum O0x794c (correct)
Source: 127.0.0.1 (127.0.0.1)
Destination: 127.0.0.1 (127.0.0.1)
User Datagram Protocol, Src Port: snnmp (161), Dst Port: 34066 (34066)
Source port: snnp (161)
Destination port: 34066 (34066)
Length: 110
Checksum Oxfe81 (incorrect, should be Oxdf61)
Si npl e Networ k Managenent Protocol
Version: 1 (0)
Communi ty: public
PDU type: RESPONSE (2)
Request 1d: 0x20a71lb4c
Error Status: NO ERROR (0)
Error Index: O
Object identifier 1: 1.3.6.1.2.1.1.4.0 (SNWv2-M B:: sysCont act. 0)
Val ue: STRING Root <root@ocal host> (configure /etc/snnp/snnp.|ocal.conf)

0000 00 00 00 0O 00 OO 00 OO OO0 OO OO OO 08 00 45 00  .............. E.
0010 00 82 03 1d 40 00 00 11 79 4c 7f 00 00 01 7f 00 @yl
0020 00 01 00 al 85 12 00 6e fe 81 30 64 02 01 00 04 ....... n..od....
0030 06 70 75 62 6¢ 69 63 a2 57 02 04 20 a7 1b 4c 02 .public.W. ..L.
0040 01 00 02 01 00 30 49 30 47 06 08 2b 06 01 02 01  ..... 010G . +....
0050 01 04 00 04 3b 52 6f 6f 74 20 3c 72 6f 6f 74 40 ....;Root <root@

0060 6¢c 6f 63 61 6C 68 6f 73 74 3e 20 28 63 6f 6€ 66 | ocal host > (conf
0070 69 67 75 72 65 20 2f 65 74 63 2f 73 6e 6d 70 2f igure /etc/snnmp/
0080 73 6e 6d 70 2e 6¢ 6f 63 61 6C 2¢ 63 6f 66 66 29 snnp. | ocal . conf)

There are two frames, each labeled appropriately. Frame 1 is initiated by the client. Frame 2 is the agent's response. Ethereal is
nice in that it tells us the version of SNMP in use, and the error code (defined later in this chapter in Table 2-6 and Table 2-7).
Giving the following command:

$ snnpget -v 2c -c public 127.0.0.1 sysContact.O

we see the following output from tethereal:

Frame 1 (85 bytes on wire, 85 bytes captured)
Arrival Tine: Sep 20, 2004 13:46:26.129733000
Tinme delta from previous packet: 0.000000000 seconds
Time since reference or first frame: 0.000000000 seconds
Frame Nunber: 1
Packet Length: 85 bytes
Capture Length: 85 bytes
Et hernet 11, Src: 00:00:00:00: 00: 00, Dst: 00:00:00:00:00: 00
Destination: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Source: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 127.0.0.1 (127.0.0.1), Dst Addr: 127.0.0.1 (127.0.0.1)
Version: 4
Header |ength: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN. 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN- Capable Transport (ECT): O
0 = ECN-CE: O

Total Length: 71
Identification: 0x0000 (0)
Fl ags: 0x04

.1.. = Don't fragnent: Set



..0. = More fragnents: Not set

Fragnment offset: 0

Time to live: 0

Protocol : UDP (0x11)

Header checksum O0x7ca4 (correct)

Source: 127.0.0.1 (127.0.0.1)

Destination: 127.0.0.1 (127.0.0.1)
User Datagram Protocol, Src Port: 34066 (34066), Dst Port: snnp (161)

Source port: 34066 (34066)

Destination port: snnp (161)

Length: 51

Checksum Oxfe46 (incorrect, should be Oxbb8f)
Si npl e Networ k Managenent Protocol

Version: 2C (1)

Comuni ty: public

PDU type: GET (0)

Request 1d: Ox175f7f93

Error Status: NO ERROR (0)

Error Index: O

Object identifier 1: 1.3.6.1.2.1.1.4.0 (SNWPv2-M B: : sysCont act . 0)

Val ue: NULL

0000 00 00 00 00 00 00 00 00 00 00 OO 00 08 00 45 00  .............. E
0010 00 47 00 00 40 00 00 11 7c a4 7f 00 00 01 7f 00 .G.@..|.......
0020 00 01 85 12 00 al 00 33 fe 46 30 29 02 01 01 04 ....... 3.F0). ..
0030 06 70 75 62 6¢c 69 63 a0 1c 02 04 17 5f 7f 93 02 .public..... ..
0040 01 00 02 01 00 30 0Oe 30 Oc 06 08 2b 06 01 02 01  ..... 0.0...+. ..
0050 01 04 00 0500

Frane 2 (144 bytes on wire, 144 bytes captured)
Arrival Tine: Sep 20, 2004 13:46:26.129926000
Tinme delta from previous packet: 0.000193000 seconds
Time since reference or first frame: 0.000193000 seconds
Frame Nunber: 2
Packet Length: 144 bytes
Capture Length: 144 bytes
Ethernet II, Src: 00:00:00: 00: 00: 00, Dst: 00:00:00: 00: 00: 00
Destinati on: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Source: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 127.0.0.1 (127.0.0.1), Dst Addr: 127.0.0.1 (127.0.0.1)
Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN 0x00)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN- Capabl e Transport (ECT): 0O
... ...0 = ECN-CE: O
Total Length: 130
Identification: 0x03le (798)
Fl ags: 0x04
.1.. = Don't fragnent: Set
..0. = More fragnents: Not set
Fragment offset: O
Time to live: 0
Protocol : UDP (0x11)
Header checksum O0x794b (correct)
Source: 127.0.0.1 (127.0.0.1)
Destination: 127.0.0.1 (127.0.0.1)
User Datagram Protocol, Src Port: snnp (161), Dst Port: 34066 (34066)
Source port: snnmp (161)
Destination port: 34066 (34066)
Length: 110
Checksum Oxfe81 (incorrect, should be 0xdf06)
Si npl e Networ k Managenent Protocol
Version: 2C (1)
Communi ty: public
PDU type: RESPONSE (2)
Request 1d: Ox175f7f93
Error Status: NO ERROR (0)



Error Index: O
Object identifier 1: 1.3.6.1.2.1.1.4.0 (SNWPv2-M B: : sysCont act. 0)
Val ue: STRING Root <root @ocal host> (configure /etc/snnp/snnp.|ocal.conf)

0000 00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 00  .............. E.
0010 00 82 03 1e 40 00 00 11 79 4b 7f 00 00 01 7f 00 L@ yK
0020 00 01 00 al 85 12 00 6e fe 81 30 64 02 01 01 04 ....... n..od....
0030 06 70 75 62 6c 69 63 a2 57 02 04 17 5f 7f 93 02 .public.W.._...
0040 01 00 02 01 00 30 49 30 47 06 08 2b 06 01 02 01  ..... 010G . +. ...
0050 01 04 00 04 3b 52 6f 6f 74 20 3c 72 6f 6f 74 40 ....;Root <root@

0060 6¢c 6f 63 61 6C 68 6f 73 74 3e 20 28 63 6f 6e€ 66 | ocal host > (conf
0070 69 67 75 72 65 20 2f 65 74 63 2f 73 6e 6d 70 2f igure /etc/snnp/
0080 73 6e 6d 70 2e 6¢c 6f 63 61 6C 2e 63 6f 6e 66 29 snnp. | ocal . conf)

The datagram traces look similar to the SNMPv1 traces. Again, we see the version of SNMP in use, namely 2C.

2.6.2. The getnext Operation

The getnext operation lets you issue a sequence of commands to retrieve a group of values from a MIB. In other words, for each
MIB object we want to retrieve, a separate getnext request and getresponse are generated. The getnext command traverses a
subtree in lexicographic order. Since an OID is a sequence of integers, it's easy for an agent to start at the root of its SMI object
tree and work its way down until it finds the OID it is looking for. This form of searching is called depth-first. When the NMS
receives a response from the agent for the getnext command it just issued, it issues another getnext command. It keeps doing
this until the agent returns an error, signifying that the end of the MIB has been reached and there are no more objects left to
get.

If we look at another example, we can see this behavior in action. This time we'll use a command called snmpwalk. This
command simply facilitates the getnext procedure for us. It's invoked just like the snmpget command, except this time we
specify which branch to start at (in this case, the system group):

$ snnpwal k ci sco.ora.com public system

system sysDescr.0 = "Cisco |0OS Software, C2600 Software (C2600-|PBASE-M,
Version 12.3(8) T3, RELEASE SOFTWARE (fcl)

Techni cal Support: http://ww. ci sco.conitechsupport

Copyright (c) 1986-2004 by Cisco Systens, Inc.

Conpi | ed Tue 20-Jul -04 17: 03 by eaarnmas"

system sysObjectID.O = OD: enterprises.9.1.19

system sysUpTine. 0 = Tineticks: (27210723) 3 days, 3:35:07.23
system sysContact.0 = ""

system sysNane. 0 = "cisco. ora. cont

system sysLocation.0 = ""

system sysServices.0 = 6

The getnext sequence returns seven MIB variables. Each object is part of the system group as it's defined in RFC 1213. We see
a system object ID, the amount of time the system has been up, the contact person, etc.

Given that you've just looked up some object, how does getnext figure out which object to look up next? getnext is based on
the concept of the lexicographic ordering of the MIB's object tree. This order is made much simpler because every node in the
tree is assigned a number. To understand what this means, let's start at the root of the tree and walk down to the system node.

To get to the system group (OID 1.3.6.1.2.1.1), we start at the root of the object tree and work our way down. Figure 2-6
shows the logical progression from the root of the tree all the way to the system group. At each node in the tree, we visit the
lowest numbered branch. Thus, when we're at the root node, we start by visiting ccitt. This node has no nodes underneath it, so
we move to the iso node. Since iso does have a child, we move to that node, org. The process continues until we reach the
system node. Since each branch is made up of ascending integers (ccitt(0) iso(1) join(2), for example), the agent has no
problem traversing this tree structure all the way down to the system(1) group. If we were to continue this walk, we'd proceed
to system.1 (system.sysLocation), system.2, and the other objects in the system group. Next, we'd go to interfaces(2), and so
on.

Now let's look at what Ethereal sees. Given the following command:



$ snnpwal k -v 1 -c public 127.0.0.1 system

we get the following output from tethereal:

Figure 2-6. Walking the MIB tree

Root-Node

joint{Z)

internet(1)

directory(1) mamt(2) experimental{3) private{d)

mib-2(1)
Found the system group ! AR

-

srst&nﬂ] interfaces(2) atl3) ip(4) kmp(5) teplb)  wdpl?)  egp{8)  transmission{10) snmp(11)

Frane 1 (82 bytes on wire, 82 bytes captured)
Arrival Time: Sep 20, 2004 13:46:53. 598461000
Tinme delta from previous packet: 0.000000000 seconds
Time since reference or first frame: 0.000000000 seconds
Frane Nunber: 1
Packet Length: 82 bytes
Capture Length: 82 bytes
Et hernet 11, Src: 00:00:00: 00: 00: 00, Dst: 00:00:00: 00: 00: 00
Destination: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Source: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 10.0.1.253 (10.0.1.253), Dst Addr: 10.0.1.253
(10.0.1.253)
Version: 4
Header |ength: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN. 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN- Capable Transport (ECT): O
0 = ECN-CE: O

Total Length: 68
Identification: 0x0000 (0)
Fl ags: 0x04
.1.. = Don't fragnent: Set
..0. = More fragnents: Not set
Fragment offset: O
Tine to live: O



Protocol : UDP (0x11)
Header checksum 0x62b0 (correct)
Sour ce: 10.0.1.253 (10.0.1.253)
Destination: 10.0.1.253 (10.0.1.253)
User Datagram Protocol, Src Port: 34069 (34069), Dst Port: snnp (161)
Source port: 34069 (34069)
Destination port: snnp (161)
Length: 48
Checksum 0x183b (incorrect, should be Oxa7f4)
Si npl e Networ k Managenent Protocol
Version: 1 (0)
Comuni ty: public
PDU type: CET-NEXT (1)
Request 1d: 0x00ec4809
Error Status: NO ERROR (0)
Error Index: O
Object identifier 1: 1.3.6.1.2.1 (SNWPv2-SM::m b-2)
Val ue: NULL

0000 00 00 00 00 00 00 00 00 OO 00 00 00 08 00 45 00  .............. E
0010 00 44 00 00 40 00 00 11 62 b0 0Oa 00 01 fd Oa 00 .D..@..b.......
0020 01 fd 85 15 00 al 00 30 18 3b 30 26 02 01 00 04 ....... 0.;0& ..
0030 06 70 75 62 6¢c 69 63 al 19 02 04 00 ec 48 09 02 .public...... H.
0040 01 00 02 01 00 30 Ob 30 09 06 05 2b 06 01 02 01  ..... 0.0...+. ..
0050 05 00

Frame 2 (160 bytes on wire, 160 bytes captured)
Arrival Time: Sep 20, 2004 13:46:53. 598662000
Tinme delta from previous packet: 0.000201000 seconds
Time since reference or first frame: 0.000201000 seconds
Frame Nunber: 2
Packet Length: 160 bytes
Capture Length: 160 bytes
Ethernet II, Src: 00:00:00: 00: 00: 00, Dst: 00:00:00: 00: 00: 00
Destination: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Sour ce: 00: 00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 10.0.1.253 (10.0.1.253), Dst Addr: 10.0.1.253 (10
0.1.253)
Version: 4
Header |ength: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN. 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN- Capable Transport (ECT): O
0 = ECN-CE: O

Total Length: 146

Identification: 0x031f (799)

Fl ags: 0x04

.1.. = Don't fragment: Set
..0. = More fragnents: Not set

Fragnent offset: 0

Tine to live: O

Protocol : UDP (0x11)

Header checksum O0x5f43 (correct)

Source: 10.0.1.253 (10.0.1.253)

Destination: 10.0.1.253 (10.0.1.253)
User Datagram Protocol, Src Port: snnmp (161), Dst Port: 34069 (34069)

Source port: snnp (161)

Destination port: 34069 (34069)

Length: 126

Checksum 0x1889 (incorrect, should be 0x3f0a)
Si mpl e Networ k Managenent Protocol

Version: 1 (0)

Communi ty: public

PDU type: RESPONSE (2)

Request 1d: 0x00ec4809

Error Status: NO ERROR (0)

Error Index: O

oject identifier 1: 1.3.6.1.2.1.1.1.0 (SNWv2-M B: : sysDescr. 0)



Val ue: STRING Linux mailworks. guarded. net 2.4.21-4.EL #1 Fri Oct 3 18:13:58 EDT 2003
i 686

0000 00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 00  .............. E
0010 00 92 03 1f 40 00 00 11 5f 43 0Oa 00 01 fd Oa 00 ...@.._C.....
0020 01 fd 00 al 85 15 00 7e 18 89 30 74 02 01 00 04 ....... ~. .0t...
0030 06 70 75 62 6¢C 69 63 a2 67 02 04 00 ec 48 09 02 .public.g....H.
0040 01 00 02 01 00 30 59 30 57 06 08 2b 06 01 02 01  ..... OYOW . +. ..
0050 01 01 00 04 4b 4c 69 6e 75 78 20 6d 61 69 6¢C 77 ... KLinux mailw
0060 6f 72 6b 73 2e 67 75 61 72 64 65 64 2e 6e 65 74 or ks. guar ded. net
0070 20 32 2e 34 2e 32 31 2d 34 2e 45 4c 20 23 31 20 2.4.21-4. EL #1
0080 46 72 69 20 4f 63 74 20 33 20 31 38 3a 31 33 3a Fri Oct 3 18:13
0090 35 38 20 45 44 54 20 32 30 30 33 20 69 36 38 36 58 EDT 2003 i 686

Frame 3 (85 bytes on wire, 85 bytes captured)
Arrival Tine: Sep 20, 2004 13:46:53. 682655000
Tine delta from previous packet: 0.083993000 seconds
Tine since reference or first frame: 0.084194000 seconds
Frame Nunber: 3
Packet Length: 85 bytes
Capture Length: 85 bytes
Ethernet II, Src: 00:00:00: 00: 00: 00, Dst: 00:00:00: 00: 00: 00
Destination: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Sour ce: 00: 00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 10.0.1.253 (10.0.1.253), Dst Addr: 10.0.1.253 (10.0
1. 253)
Version: 4
Header |ength: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN. 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN- Capable Transport (ECT): O
0 = ECN-CE: O

Total Length: 71

Identification: 0x0001 (1)

Fl ags: 0x04

.1.. = Don't fragment: Set
..0. = More fragnents: Not set

Fragnent offset: 0

Tine to live: O

Protocol : UDP (0x11)

Header checksum O0x62ac (correct)

Sour ce: 10.0.1.253 (10.0.1.253)

Destination: 10.0.1.253 (10.0.1.253)
User Datagram Protocol, Src Port: 34069 (34069), Dst Port: snnp (161)

Source port: 34069 (34069)

Destination port: snnp (161)

Length: 51

Checksum 0x183e (incorrect, should be 0x9ee5)
Si mpl e Networ k Managenent Protocol

Version: 1 (0)

Communi ty: public

PDU type: CET-NEXT (1)

Request 1d: 0x00ec480a

Error Status: NO ERROR (0)

Error Index: O

oject identifier 1: 1.3.6.1.2.1.1.1.0 (SNWPv2-M B: : sysDescr. 0)

Val ue: NULL

0000 00 00 00 00 00 00 OO0 00 OO 00 OO 00 08 00 45 00 .............. E
0010 00 47 00 01 40 00 00 11 62 ac Oa 00 01 fd Oa 00 .G.@..b.......
0020 01 fd 85 15 00 al 00 33 18 3e 30 29 02 01 00 04 ....... 3.>0)...
0030 06 70 75 62 6¢c 69 63 al 1c 02 04 00 ec 48 Oa 02 .public...... H.
0040 01 00 02 01 00 30 Oe 30 Oc 06 08 2b 06 01 02 01  ..... 0.0...+. ..
0050 01 01 00 0500

Frame 4 (95 bytes on wire, 95 bytes captured)
Arrival Tine: Sep 20, 2004 13:46:53. 682855000
Tinme delta from previous packet: 0.000200000 seconds



Time since reference or first frame: 0.084394000 seconds
Frame Nunber: 4
Packet Length: 95 bytes
Capture Length: 95 bytes
Ethernet II, Src: 00:00:00: 00: 00: 00, Dst: 00:00:00: 00: 00: 00
Destination: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Source: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 10.0.1.253 (10.0.1.253), Dst Addr: 10.0.1.253 (10.0.
1. 253)
Version: 4
Header |ength: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN:. 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN- Capable Transport (ECT): O
0 = ECN-CE: O

Total Length: 81

Identification: 0x0320 (800)

Fl ags: 0x04

.1.. = Don't fragnment: Set
..0. = More fragnents: Not set

Fragment offset: O

Time to live: 0

Protocol : UDP (0x11)

Header checksum O0x5f83 (correct)

Source: 10.0.1.253 (10.0.1.253)

Destination: 10.0.1.253 (10.0.1.253)
User Datagram Protocol, Src Port: snnp (161), Dst Port: 34069 (34069)

Source port: snnp (161)

Destination port: 34069 (34069)

Length: 61

Checksum 0x1848 (incorrect, should be 0xa08c)
Si npl e Networ k Managenent Protocol

Version: 1 (0)

Conmmuni ty: public

PDU type: RESPONSE (2)

Request 1d: 0x00ec480a

Error Status: NO ERROR (0)

Error Index: O

Object identifier 1: 1.3.6.1.2.1.1.2.0 (SNWPv2-M B:: sysbj ect|D. 0)

Value: O D SNWPv2-SM ::enterprises.8072.3.2.10

0000 00 00 00 0O 00 OO 00 OO OO0 OO OO OO 08 00 45 00  .............. E.
0010 00 51 03 20 40 00 00 11 5f 83 0Oa 00 01 fd Oa 00 Q @.._.......
0020 01 fd 00 al 85 15 00 3d 18 48 30 33 02 01 00 04 ....... = HO3. ...
0030 06 70 75 62 6¢Cc 69 63 a2 26 02 04 00 ec 48 Oa 02 .public. & ...H.
0040 01 00 02 01 00 30 18 30 16 06 08 2b 06 01 02 01  ..... 0.0...+....
0050 01 02 00 06 Oa 2b 06 01 04 01 bf 08 03 02 0a ..... to

To save space, we included only the first four frames, which are the first two getnext operations. As before, frames 1 and 3 are
client requests and frames 2 and 4 are the agent's responses. Now let's look at SNMPv2's datagram traces (again we kept it
short):

Frame 1 (82 bytes on wire, 82 bytes captured)
Arrival Tinme: Sep 20, 2004 13:47:06.413352000
Tine delta from previous packet: 0.000000000 seconds
Tine since reference or first frame: 0.000000000 seconds
Frame Nunber: 1
Packet Length: 82 bytes
Capture Length: 82 bytes
Ethernet II, Src: 00:00:00:00: 00: 00, Dst: 00:00:00: 00: 00: 00
Destination: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Sour ce: 00: 00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 10.0.1.253 (10.0.1.253), Dst Addr: 10.0.1.253 (10.0.
1. 253)



Version: 4

Header |ength: 20 bytes

Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN. 0x00)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
.... ..0. = ECN Capabl e Transport (ECT): O
... ...0 = ECN-CE: O

Total Length: 68

Identification: 0x0000 (0)

Fl ags: 0x04
.1.. = Don't fragnent: Set
..0. = More fragnents: Not set

Fragment offset: O

Time to live: 0

Protocol : UDP (0x11)

Header checksum 0x62b0 (correct)

Source: 10.0.1.253 (10.0.1.253)

Destination: 10.0.1.253 (10.0.1.253)

User Datagram Protocol, Src Port: 34069 (34069), Dst Port: snnp (161)

Source port: 34069 (34069)

Destination port: snnp (161)

Length: 48

Checksum 0x183b (incorrect, should be Oxalaf)

Si npl e Networ k Managenent Protocol

Version: 2C (1)

Communi ty: public

PDU type: GET-NEXT (1)

Request 1d: 0x75ch182f

Error Status: NO ERROR (0)

Error Index: O

bject identifier 1: 1.3.6.1.2.1 (SNWPv2-SM:: i b-2)

Val ue: NULL

0000 00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 00  .............. E
0010 00 44 00 00 40 00 00 11 62 b0 Oa 00 01 fd Oa 00 .D..@..b.......
0020 01 fd 85 15 00 al 00 30 18 3b 30 26 02 01 01 04 ....... 0.;0& ..
0030 06 70 75 62 6¢c 69 63 al 19 02 04 75 cb 18 2f 02 .public....u../.
0040 01 00 02 01 00 30 Ob 30 09 06 05 2b 06 01 02 01  ..... 0.0...+. ..
0050 05 00

Frame 2 (160 bytes on wire, 160 bytes captured)
Arrival Tine: Sep 20, 2004 13:47:06.413554000
Time delta from previ ous packet: 0.000202000 seconds
Tine since reference or first frame: 0.000202000 seconds
Frame Nunber: 2
Packet Length: 160 bytes
Capture Length: 160 bytes
Ethernet II, Src: 00:00:00:00: 00: 00, Dst: 00:00:00: 00: 00: 00
Destination: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Sour ce: 00: 00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 10.0.1.253 (10.0.1.253), Dst Addr: 10.0.1.253 (10.0
1. 253)
Version: 4
Header |ength: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN. 0x00)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN- Capable Transport (ECT): O
.... ...0 = ECN-CE: O
Total Length: 146
Identification: 0x0342 (834)
Fl ags: 0x04
.1.. = Don't fragment: Set
..0. = More fragnents: Not set
Fragnent offset: 0
Tine to live: O
Protocol : UDP (0x11)
Header checksum O0x5f20 (correct)
Source: 10.0.1.253 (10.0.1.253)
Destination: 10.0.1.253 (10.0.1.253)



User Datagram Protocol, Src Port: snnp (161), Dst Port: 34069 (34069)
Source port: snnp (161)
Destination port: 34069 (34069)
Length: 126
Checksum 0x1889 (incorrect, should be 0x38c5)
Si mpl e Networ k Managenent Protocol
Version: 2C (1)
Communi ty: public
PDU type: RESPONSE (2)
Request |d: 0x75cbh182f
Error Status: NO ERROR (0)
Error Index: O
Cbject identifier 1: 1.3.6.1.2.1.1.1.0 (SNWv2-M B: : sysDescr. 0)
Val ue: STRING Linux mailworks. guarded. net 2.4.21-4.EL #1 Fri Oct 3 18:13:58 EDT 2003

i 686
0000 00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 00  .............. E.
0010 00 92 03 42 40 00 00 11 5f 20 0Oa 00 01 fd Oa 00 ...B@.._ ... ..
0020 01 fd 00 al 85 15 00 7e 18 89 30 74 02 01 01 04 ....... ~..0t....
0030 06 70 75 62 6¢c 69 63 a2 67 02 04 75 cb 18 2f 02 .public.g..u../.
0040 01 00 02 01 00 30 59 30 57 06 08 2b 06 01 02 01  ..... OYOW . +. ...
0050 01 01 00 04 4b 4c 69 6e 75 78 20 6d 61 69 6C 77 ... KLinux mailw

0060 6f 72 6b 73 2e 67 75 61 72 64 65 64 2e 6e 65 74  orks. guarded. net
0070 20 32 2e 34 2e 32 31 2d 34 2e 45 4c 20 23 31 20 2.4.21-4. EL #1
0080 46 72 69 20 4f 63 74 20 33 20 31 38 3a 31 33 3a Fri Cct 3 18:13:
0090 35 38 20 45 44 54 20 32 30 30 33 20 69 36 38 36 58 EDT 2003 i686

Frame 3 (85 bytes on wire, 85 bytes captured)
Arrival Tinme: Sep 20, 2004 13:47:06.495596000
Time delta from previ ous packet: 0.082042000 seconds
Tine since reference or first frame: 0.082244000 seconds
Frame Nunber: 3
Packet Length: 85 bytes
Capture Length: 85 bytes
Ethernet II, Src: 00:00:00:00: 00: 00, Dst: 00:00:00: 00: 00: 00
Destination: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Sour ce: 00: 00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 10.0.1.253 (10.0.1.253), Dst Addr: 10.0.1.253 (10.0.
1. 253)
Version: 4
Header |ength: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN. 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN- Capable Transport (ECT): O
0 = ECN-CE: O

Total Length: 71

Identification: 0x0001 (1)

Fl ags: 0x04

.1.. = Don't fragment: Set
..0. = More fragnents: Not set

Fragment offset: 0

Time to live: 0

Protocol : UDP (0x11)

Header checksum O0x62ac (correct)

Sour ce: 10.0.1.253 (10.0.1.253)

Destination: 10.0.1.253 (10.0.1.253)
User Datagram Protocol, Src Port: 34069 (34069), Dst Port: snnp (161)

Source port: 34069 (34069)

Destination port: snnp (161)

Length: 51

Checksum 0x183e (incorrect, should be 0x98a0)
Si npl e Networ k Managenent Protocol

Version: 2C (1)

Comuni ty: public

PDU type: CET-NEXT (1)

Request 1d: 0x75cb1830

Error Status: NO ERROR (0)

Error Index: O



Object identifier 1: 1.3.6.1.2.1.1.1.0 (SNWPv2-M B: : sysDescr . 0)

Val ue: NULL
0000 00 00 00 OO0 00 OO 00 OO 00 OO0 OO0 00 08 00 45 00  .............. E
0010 00 47 00 01 40 00 00 11 62 ac Oa 00 01 fd Oa 00 .G.@..b.......
0020 01 fd 85 15 00 al 00 33 18 3e 30 29 02 01 01 04 ....... 3.>0)...
0030 06 70 75 62 6¢c 69 63 al 1c 02 04 75 cb 18 30 02 .public....u..0
0040 01 00 02 01 00 30 Oe 30 Oc 06 08 2b 06 01 02 01  ..... 0.0...+. ..

0050 01 01 00 0500

Frame 4 (95 bytes on wire, 95 bytes captured)
Arrival Time: Sep 20, 2004 13:47:06. 495794000
Tinme delta from previous packet: 0.000198000 seconds
Time since reference or first frame: 0.082442000 seconds
Frame Nunber: 4
Packet Length: 95 bytes
Capture Length: 95 bytes
Ethernet II, Src: 00:00:00: 00: 00: 00, Dst: 00:00:00: 00: 00: 00
Destination: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Sour ce: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 10.0.1.253 (10.0.1.253), Dst Addr: 10.0.1.253 (10.0
1. 253)
Version: 4
Header |ength: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN. 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN- Capabl e Transport (ECT): O
0 = ECN-CE: O

Total Length: 81

Identification: 0x0343 (835)

Fl ags: 0x04

.1.. = Don't fragment: Set
..0. = More fragnents: Not set

Fragment offset: O

Time to live: 0

Protocol : UDP (0x11)

Header checksum Ox5f60 (correct)

Source: 10.0.1.253 (10.0.1.253)

Destination: 10.0.1.253 (10.0.1.253)
User Datagram Protocol, Src Port: snnp (161), Dst Port: 34069 (34069)

Source port: snnp (161)

Destination port: 34069 (34069)

Length: 61

Checksum 0x1848 (incorrect, should be 0x9a47)
Si mpl e Networ k Managenent Protocol

Version: 2C (1)

Communi ty: public

PDU type: RESPONSE (2)

Request 1d: 0x75cbh1830

Error Status: NO ERROR (0)

Error Index: O

oj ect identifier 1: 1.3.6.1.2.1.1.2.0 (SNWv2
-M B::sysObj ect | D. 0)

Value: O D: SNWPv2-SM::enterprises.8072.3.2.10

0000 00 00 00 00 00 00 OO0 00 OO 00 OO 00 08 00 45 00 .............. E
0010 00 51 03 43 40 00 00 11 5f 60 Oa 00 01 fd Oa 00 .QC@.._"......
0020 01 fd 00 al 85 15 00 3d 18 48 30 33 02 01 01 04 ....... =. HO3. ..
0030 06 70 75 62 6¢c 69 63 a2 26 02 04 75 cb 18 30 02 .public.& .u..0
0040 01 00 02 01 00 30 18 30 16 06 08 2b 06 01 02 01  ..... 0.0...+. ..
0050 01 02 00 06 Oa 2b 06 01 04 01 bf 08 03 02 0a ..... oo

2.6.3. The getbulk Operation



SNMPv2 defines the getbulk operation, which allows a management application to retrieve a large section of a table at once.
The standard get operation can attempt to retrieve more than one MIB object at once, but message sizes are limited by the
agent's capabilities. If the agent can't return all the requested responses, it returns an error message with no data. The getbulk
operation, on the other hand, tells the agent to send back as much of the response as it can. This means that incomplete
responses are possible. Two fields must be set when issuing a getbulk command: nonrepeaters and max-repetitions.
Nonrepeaters tell the getbulk command that the first N objects can be retrieved with a simple getnext operation. max-
repetitions tells the getbulk command to attempt up to M getnext operations to retrieve the remaining objects. Figure 2-7
shows the getbulk command sequence.

In Figure 2-7, we're requesting three bindings: sysDescr, ifInOctets, and ifOutOctets. The total number of variable bindings that

we've requested is given by the formula N + (M * R), where N is the number of nonrepeaters (i.e., scalar objects in the
requestin this case, 1 because sysDescr is the only scalar object), M is max-repetitions (in this

Figure 2-7. getbulk request sequence

The NMS sends a get bulk request with the
following variable bindings: sysDescr,
NMS ifinOctets, and ifurdcters.

Agent Router

The agent respands with a get response POU

case, we've set it arbitrarily to 3), and R is the number of nonscalar objects in the request (in this case, 2 because ifInOctets
and ifOutOctets are both nonscalar). Plugging in the numbers from this example, we get 1 + (3 * 2) = 7, which is the total
number of variable bindings that can be returned by this getbulk request.

The Net-SNMP package comes with a command for issuing getbulk queries . If we execute this command using all the
parameters previously discussed, it will look like the following:

$ snnpbul kget -v2c -c public -Cnl -Cr3 linux.ora.comsysDescr iflnCctets ifQutCctets
system sysDescr.0 = " Linux snort 2.4.7-10 #1 Thu Sep 6 17:27:27 EDT 2001

i 686 unknown "

interfaces.ifTable.ifEntry.iflnCctets.1 = 70840
interfaces.ifTable.ifEntry.ifQutCctets.1 = 70840
interfaces.ifTable.ifEntry.iflnCctets.2 = 143548020
interfaces.ifTable.ifEntry.ifQutCctets.2 = 111725152
interfaces.ifTable.ifEntry.iflnCctets.3 = 0

interfaces.ifTable.ifEntry.ifQutQctets.3 = 0

Since getbulk is an SNMPv2 command, you have to tell snmpbulkget to use an SNMPv2 PDU with the -v2c option. nonrepeaters
and max-repetitions are set with the -Cnl and -Cr3 options. This sets nonrepeaters to 1 and max-repetitions to 3. Notice that
the command returned seven variable bindings: one for sysDescr and three each for ifInOctets and ifOutOctets.

Now let's look at a trace. If we use the following command:

$ ./snnpbul kget -v2c -Cnl -Cr2 127.0.0.1 -c public sysDescr sysContact

we get the following trace:

Frame 1 (97 bytes on wire, 97 bytes captured)
Arrival Time: Sep 20, 2004 20:24:19. 106374000
Tine delta from previous packet: 0.000000000 seconds
Time since reference or first frame: 0.000000000 seconds
Frame Nunber: 1
Packet Length: 97 bytes
Capture Length: 97 bytes



Et hernet 11, Src: 00:00:00: 00: 00: 00, Dst: 00:00:00: 00: 00: 00
Destination: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Sour ce: 00: 00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 127.0.0.1 (127.0.0.1), Dst Addr: 127.0.0.1 (127.0.0.1)
Version: 4
Header |ength: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN. 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN Capabl e Transport (ECT): O
0 = ECN-CE: O

Total Length: 83
Identification: 0x0000 (0)
Fl ags: 0x04
.1.. = Don't fragment: Set
..0. = More fragnents: Not set

Fragnent offset: 0
Time to live: 0
Protocol : UDP (0x11)
Header checksum 0x7c98 (correct)
Source: 127.0.0.1 (127.0.0.1)
Destination: 127.0.0.1 (127.0.0.1)

User Datagram Protocol, Src Port: 34193 (34193), Dst Port: snnp (161)
Source port: 34193 (34193)
Destination port: snnp (161)
Length: 63
Checksum Oxfe52 (incorrect, should be 0x0c90)

Si mpl e Networ k Managenent Protocol
Version: 2C (1)
Communi ty: public
PDU type: CETBULK (5)
Request 1d: OxOf 15¢607
Non-repeaters: 1
Max repetitions: 2
oject identifier 1: 1.3.6.1.2.1.1.1 (SNWPv2-M B: : sysDescr)
Val ue: NULL
oject identifier 2: 1.3.6.1.2.1.1.4 (SNWv2-M B: :sysContact)
Val ue: NULL

0000 00 00 00 0O 00 OO 00 OO OO0 OO OO OO 08 00 45 00  .............. E
0010 00 53 00 00 40 00 00 11 7c 98 7f 00 00 01 7f 00 LS. @.
0020 00 01 85 91 00 al 00 3f fe 52 30 35 02 01 01 04 ....... ?.RO5. ..
0030 06 70 75 62 6¢c 69 63 a5 28 02 04 Of 15 c6 07 02 .public.(.......
0040 01 01 02 01 02 30 1a 30 Ob 06 07 2b 06 01 02 01  ..... 0.0...+. ..
0050 01 01 05 00 30 Ob 06 07 2b 06 01 02 01 01 04 05 O ST
0060 00

Frame 2 (211 bytes on wire, 211 bytes captured)
Arrival Time: Sep 20, 2004 20:24:19.151924000
Tinme delta from previous packet: 0.045550000 seconds
Time since reference or first frame: 0.045550000 seconds
Frame Nunber: 2
Packet Length: 211 bytes
Capture Length: 211 bytes
Et hernet 11, Src: 00:00:00: 00: 00: 00, Dst: 00:00:00: 00: 00: 00
Destination: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Source: 00: 00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 127.0.0.1 (127.0.0.1), Dst Addr: 127.0.0.1 (127.0.0.1)
Version: 4
Header |ength: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN. 0x00)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
..0. = ECN- Capable Transport (ECT): 0
.... ...0 = ECN-CE: O
Total Length: 197
Identification: 0x0052 (82)
Fl ags: 0x04
.1.. = Don't fragment: Set



..0. = More fragnents: Not set
Fragnment offset: 0
Time to live: 0
Protocol : UDP (0x11)
Header checksum O0x7bd4 (correct)
Source: 127.0.0.1 (127.0.0.1)
Destination: 127.0.0.1 (127.0.0.1)
User Datagram Protocol, Src Port: snnp (161), Dst Port: 34193 (34193)
Source port: snnp (161)
Destination port: 34193 (34193)
Length: 177
Checksum Oxfec4 (incorrect, should be 0x47bb)
Si npl e Networ k Managenent Protocol
Version: 2C (1)
Comuni ty: public
PDU type: RESPONSE (2)
Request 1d: OxOf 15c607
Error Status: NO ERROR (0)
Error Index: O
Object identifier 1: 1.3.6.1.2.1.1.1.0 (SNWPv2-M B: : sysDescr. 0)
Val ue: STRING Linux nailworks. guarded. net 2.4.21-4.EL #1 Fri Oct 3 18:13:58 EDT 2003
i 686
Object identifier 2: 1.3.6.1.2.1.1.4.0 (SNWPv2-M B: : sysCont act . 0)
Val ue: STRING "kjs@uarded. net"
oject identifier 3: 1.3.6.1.2.1.1.5.0 (SNWv2-M B: : sysNane. 0)
Val ue: STRING box

0000 00 00 00 OO 00 OO 00 OO OO0 OO OO OO 08 00 45 00  .............. E.
0010 00 c5 00 52 40 00 00 11 7b d4 7f 00 00 01 7f 00 ..R@..{.......
0020 00 01 00 al 85 91 00 bl fe c4 30 81 a6 02 01 01  .......... 0.....
0030 04 06 70 75 62 6¢c 69 63 a2 81 98 02 04 Of 15 c6 ..public........
0040 07 02 01 00 02 01 00 30 81 89 30 57 06 08 2b 06  ....... 0..0W. +.
0050 01 02 01 01 01 00 04 4b 4c 69 6e 75 78 20 6d 61  ....... KLi nux nma
0060 69 6¢ 77 6f 72 6b 73 2e 67 75 61 72 64 65 64 2e i I works. guar ded.

0070 6e 65 74 20 32 2e 34 2e 32 31 2d 34 2e 45 4c 20 net 2.4.21-4.EL
0080 23 31 20 46 72 69 20 4f 63 74 20 33 20 31 38 3a  #1 Fri COct 3 18:
0090 31 33 3a 35 38 20 45 44 54 20 32 30 30 33 20 69 13: 58 EDT 2003 i
00a0 36 38 36 30 1d 06 08 2b 06 01 02 01 01 04 00 04 6860...+. .......

00b0 11 22 6b 6a 73 40 67 75 61 72 64 65 64 2e 6e 65 . "kj s@uar ded. ne
00cO 74 22 30 Of 06 08 2b 06 01 02 01 01 05 00 04 03 t"0. A
00d0 62 6f 78 box

2.6.4. The set Operation

The set command is used to change the value of a managed object or to create a new row in a table. Objects that are defined in
the MIB as read-write or read-only can be altered or created using this command. It is possible for an NMS to set more than one
object at a time.

Figure 2-8 shows the set request sequence. It's similar to the other commands we've seen so far, but it actually changes
something in the device's configuration as opposed to just retrieving a response to a query. Let's look at the set command in
action. The following example queries the sysLocation variable and sets it to a value:

$ snnpget cisco.ora.com public system syslLocation.O
system sysLocation.0 = ""

$ snnpset
cisco.ora.com private systemsysLocation.0 s "Atlanta, GA"
system sysLocation.0 = "Atlanta, GA"
$ snnpget cisco.ora.com public system sysLocation.0
system sysLocation.0 = "Atlanta, GA"

Figure 2-8. set request sequence



The NMS sends a sef request to the agent. It >
requests that the agent set syslocation to

“Atlanta, GA
NMS o Bgent Router

The agent receives the request and determines
if the NMS is allowed to modify this abject. It
performs other checks and, if any of them fail,
returns a get response with the appropriate
error code in the PDU. If the request passes all
checks, the agent performs the sef and
returns a nokmor response 1o the NMS.

The first command is the familiar get command, which displays the current value of sysLocation. In one of the previous
examples, we saw that it was undefined; this is still the case. The second command is snmpset. For this command, we supply
the hostname, the read-write community string (private), and the variable we want to set (system.syslLocation.0), together with
its new value (s "Atlanta, GA"). The s tells snmpset that we want to set the value of sysLocation to a string, and "Atl anta, GA"
is the new value itself. How do we know that sysLocation requires a string value? The definition of sysLocation in RFC 1213
looks like this:

sysLocati on OBJECT- TYPE

SYNTAX DisplayString (SIZE (0..255))

ACCESS read-wite

STATUS nmandat ory

DESCRI PTI ON
"The physical location of this node (e.g., 'telephone closet,
3rd floor')."

:={ system6 }

The SYNTAX for sysLocation is Di spl ayString (Sl ZE (0..255)), which means that it's a string with a maximum length of 255
characters. The snmpset command succeeds and reports the new value of sysLocation. But just to confirm, we run a final
snmpget, which tells us that the set actually took effect. It is possible to set more than one object at a time, but if any of the
sets fail, they all fail (i.e., no values are changed). This behavior is intended.

It's time for more tethereal output. With the following set command:

$ snnpset -v 1 -c private 127.0.0.1 sysContact.Os \ snnp@agrant.org

we get the following output:

Frame 1 (89 bytes on wire, 89 bytes captured)
Arrival Time: Sep 20, 2004 14:25:01.895097000
Tinme delta from previous packet: 0.000000000 seconds
Time since reference or first frame: 0.000000000 seconds
Frame Nunber: 1
Packet Length: 89 bytes
Capture Length: 89 bytes
Ethernet II, Src: 00:00:00: 00: 00: 00, Dst: 00:00:00: 00: 00: 00
Destinati on: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Source: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 127.0.0.1 (127.0.0.1), Dst Addr: 127.0.0.1 (127.0.0.1)
Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN. 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN- Capable Transport (ECT): 0O
0 = ECN-CE: O

Total Length: 75
Identification: 0x0000 (0)



Fl ags: 0x04
.1.. = Don't fragnment: Set
..0. = More fragnents: Not set
Fragnment offset: 0
Time to live: 0
Protocol : UDP (0x11)
Header checksum O0x7caO (correct)
Source: 127.0.0.1 (127.0.0.1)
Destination: 127.0.0.1 (127.0.0.1)
User Datagram Protocol, Src Port: 34102 (34102), Dst Port: snnp (161)
Source port: 34102 (34102)
Destination port: snnp (161)
Length: 55
Checksum Oxfeda (incorrect, should be 0xc029)
Si mpl e Networ k Managenent Protocol
Version: 1 (0)
Communi ty: private
PDU type: SET (3)
Request 1d: Ox1df8e7e6
Error Status: NO ERROR (0)
Error Index: O
oject identifier 1: 1.3.6.1.2.1.1.5.0 (SNWv2-M B:: sysNane. 0)
Val ue: STRING box

0000 00 00 00 OO 00 OO 00 OO OO0 OO OO OO 08 00 45 00  .............. E
0010 00 4b 00 00 40 00 00 11 7c a0 7f 00 00 01 7f 00 K.@..].......
0020 00 01 85 36 00 al 00 37 fe 4a 30 2d 02 01 00 04 ...6...7.30-.. ..
0030 07 70 72 69 76 61 74 65 a3 1f 02 04 1d f8 e7 e6 .private........
0040 02 01 00 02 01 00 30 11 30 Of 06 08 2b 06 01 02 ...... 0.0...+..
0050 01 01 05 0O 04 03 62 6f 78 ..., box

Frame 2 (89 bytes on wire, 89 bytes captured)
Arrival Time: Sep 20, 2004 14:25:01.902787000
Tinme delta from previous packet: 0.007690000 seconds
Tine since reference or first frame: 0.007690000 seconds
Frane Nunber: 2
Packet Length: 89 bytes
Capture Length: 89 bytes
Et hernet 11, Src: 00:00:00: 00: 00: 00, Dst: 00:00:00: 00: 00: 00
Destination: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Source: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 127.0.0.1 (127.0.0.1), Dst Addr: 127.0.0.1 (127.0.0.1)
Version: 4
Header |ength: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN. 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN- Capable Transport (ECT): O
0 = ECN-CE: O

Total Length: 75
Identification: 0x0004 (4)
Fl ags: 0x04
.1.. = Don't fragment: Set
..0. = More fragnents: Not set
Fragnent offset: 0
Time to live: 0
Protocol : UDP (0x11)
Header checksum O0x7c9c (correct)
Source: 127.0.0.1 (127.0.0.1)
Destination: 127.0.0.1 (127.0.0.1)
User Datagram Protocol, Src Port: snnp (161), Dst Port: 34102 (34102)
Source port: snnp (161)
Destination port: 34102 (34102)
Length: 55
Checksum Oxfeda (incorrect, should be 0xcl29)
Si mpl e Networ k Managenent Protocol
Version: 1 (0)
Communi ty: private
PDU type: RESPONSE (2)



Request 1d: Ox1df8e7e6

Error Status: NO ERROR (0)

Error Index: O

oject identifier 1: 1.3.6.1.2.1.1.5.0 (SNWPv2-M B: : sysNane. 0)
Val ue: STRING box

0000 00 00 00 00 00 00 OO0 00 OO 00 OO 00 08 00 45 00  .............. E.
0010 00 4b 00 04 40 00 00 11 7c 9c 7f 00 00 01 7f 00 K.@..].......
0020 00 01 00 al 85 36 00 37 fe 4a 30 2d 02 01 00 04 ..... 6.7.J0-....
0030 07 70 72 69 76 61 74 65 a2 1f 02 04 1d f8 e7 e6 .private........
0040 02 01 00 02 01 00 30 11 30 Of 06 08 2b 06 01 02 ...... 0.0...+. ..
0050 01 01 05 0O 04 03 62 6f 78 ..., box

The SNMPv2 set traces are as follows:

Frame 1 (89 bytes on wire, 89 bytes captured)
Arrival Time: Sep 20, 2004 14:25:12. 926493000
Tinme delta from previous packet: 0.000000000 seconds
Time since reference or first frame: 0.000000000 seconds
Frame Nunber: 1
Packet Length: 89 bytes
Capture Length: 89 bytes
Ethernet II, Src: 00:00:00: 00: 00: 00, Dst: 00:00:00: 00: 00: 00
Destinati on: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Sour ce: 00: 00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 127.0.0.1 (127.0.0.1), Dst Addr: 127.0.0.1 (127.0.0.1)
Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN- Capable Transport (ECT): 0O
0 = ECN-CE: O

Total Length: 75
Identification: 0x0000 (0)
Fl ags: 0x04
.1.. = Don't fragnment: Set
..0. = More fragnents: Not set
Fragment offset: O
Time to live: 0
Protocol : UDP (0x11)
Header checksum O0x7caO (correct)
Source: 127.0.0.1 (127.0.0.1)
Destination: 127.0.0.1 (127.0.0.1)
User Datagram Protocol, Src Port: 34102 (34102), Dst Port: snnp (161)
Source port: 34102 (34102)
Destination port: snnp (161)
Length: 55
Checksum Oxfeda (incorrect, should be 0x726b)
Si npl e Networ k Managenent Protocol
Version: 2C (1)
Communi ty: private
PDU type: SET (3)
Request 1d: 0x34df 1dbe
Error Status: NO ERROR (0)
Error Index: O
bject identifier 1: 1.3.6.1.2.1.1.5.0 (SNWPv2-M B:: sysNane. 0)
Val ue: STRING box

0000 00 00 00 0O 00 OO 00 OO OO0 OO OO OO 08 00 45 00  .............. E.
0010 00 4b 00 00 40 00 00 11 7c a0 7f 00 00 01 7f 00 K.@..|.......
0020 00 01 85 36 00 al 00 37 fe 4a 30 2d 02 01 01 04 L..6...7.J0-. ...
0030 07 70 72 69 76 61 74 65 a3 1f 02 04 34 df 1d be .private....4...
0040 02 01 00 02 01 00 30 11 30 Of 06 08 2b 06 01 02 ...... 0.0...+. ..

0050 01 01 05 00 04 03 62 6f 78 ... box



Frame 2 (89 bytes on wire, 89 bytes captured)
Arrival Time: Sep 20, 2004 14:25:12.989438000
Tinme delta from previous packet: 0.062945000 seconds
Time since reference or first frame: 0.062945000 seconds
Frane Nunber: 2
Packet Length: 89 bytes
Capture Length: 89 bytes
Et hernet 11, Src: 00:00:00: 00: 00: 00, Dst: 00:00:00: 00: 00: 00
Destination: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Sour ce: 00: 00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 127.0.0.1 (127.0.0.1), Dst Addr: 127.0.0.1 (127.0.0.1)
Version: 4
Header |ength: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN. 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN-Capable Transport (ECT): O
0 = ECN-CE: O

Total Length: 75
Identification: 0x0005 (5)
Fl ags: 0x04
.1.. = Don't fragment: Set
..0. = More fragnents: Not set
Fragment offset: 0
Time to live: 0
Protocol : UDP (0x11)
Header checksum O0x7c9b (correct)
Source: 127.0.0.1 (127.0.0.1)
Destination: 127.0.0.1 (127.0.0.1)
User Datagram Protocol, Src Port: snnp (161), Dst Port: 34102 (34102)
Source port: snnp (161)
Destination port: 34102 (34102)
Length: 55
Checksum Oxfeda (incorrect, should be 0x736b)
Si npl e Networ k Managenent Protocol
Version: 2C (1)
Community: private

PDU type:
Request

Error

Erro
oj e

r
ct

Val ue:

RESPONSE ( 2)
I d: 0x34df 1dbe
NO ERRCR (0)

St at us:
I ndex:
identifier

0

STRI NG box

1:

1.3.6.1.

2.1.1.

5.0 (SNWPv2-M B: : sysNane. 0)

0000 00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 00  .............. E.
0010 00 4b 00 05 40 00 00 11 7c 9b 7f 00 00 01 7f 00 K.@..|.......
0020 00 01 00 al 85 36 00 37 fe 4a 30 2d 02 01 01 04 ..... 6.7.J0-....
0030 07 70 72 69 76 61 74 65 a2 1f 02 04 34 df 1d be .private....4. ..
0040 02 01 00 02 01 00 30 11 30 Of 06 08 2b 06 01 02 ...... 0.0...+. ..
0050 01 01 05 00 04 03 62 6f 78 ..., box

2.6.5. get, getnext, getbulk, and set Error Responses

Error responses help you determine whether your get or set request was processed correctly by the agent. The get, getnext,
getbulk, and set operations can return the error responses shown in Table 2-6. The error status for each error is shown in
parentheses.

Table 2-6. SNMPv1 error messages



SNMPvV1 error

message Description

There was no problem performing the request.

noError (0)

The response to your request was too big to fit into one response.

t ooBi g( 1)

An agent was asked to get or set an OID that it can't find; i.e., the OID doesn't exist.

noSuchNarne( 2)

A read-write or write-only object was set to an inconsistent value.

badVal ue( 3)

This error is generally not used. The noSuchName error is equivalent to this one.

readOnl y(4)

This is a catchall error. If an error occurs for which none of the previous messages is appropriate, a
genErr(5) genErr is issued.

The SNMPv1 error messages are not very robust. In an attempt to fix this problem, SNMPv2 defines additional error responses
that are valid for get, set, getnext, and getbulk operations, provided that both the agent and the NMS support SNMPv2. These
responses are listed in Table 2-7.

SNMPV2 error message

noAccess( 6)

wrongType(7)

wr ongLengt h( 8)

wr ongEncodi ng( 9)

wr ongVal ue( 10)

noCreation(11)

i nconsi st ent Val ue

resour ceUnavai | abl e(13)

conmi t Fai | ed(14)

Table 2-7. SNMPVv2 error messages
Description
A set to an inaccessible variable was attempted. This typically occurs when the variable has an

ACCESS type of not - accessi bl e.

An object was set to a type that is different from its definition. This error will occur if you try to
set an object that is of type | NTECGER to a string, for example.

An object's value was set to something other than what it calls for. For instance, a string can be
defined to have a maximum character size. This error occurs if you try to set a string object to a
value that exceeds its maximum length.

A set operation was attempted using the wrong encoding for the object being set.

A variable was set to a value it doesn't understand. This can occur when a read-write is defined
as an enumeration, and you try to set it to a value that is not one of the enumerated types.
You tried to set a nonexistent variable or create a variable that doesn't exist in the MIB.

A MIB variable is in an inconsistent state and is not accepting any set requests.

No system resources are available to perform a set.

This error is a catchall for set failures.



SNMPV2 error message Description

A set failed and the agent was unable to roll back all the previous sets up until the point of
undoFai | ed( 15) failure.

) ) An SNMP command could not be authenticated; in other words, someone has supplied an
aut hori zati onError (16) incorrect community string.

A variable will not accept a set, even though it is supposed to.
not Witabl e(17)

) ) You attempted to set a variable, but that attempt failed because the variable was in some kind of
i nconsi st ent Name( 18) inconsistent state.

2.6.6. SNMP Traps

A trap is a way for an agent to tell the NMS that something bad has happened. In "Managers and Agents" in Chapter 1, we
explored the notion of traps at a general level; now we'll look at them in a bit more detail. Figure 2-9 shows the trap-
generation sequence .

Figure 2-9. Trap-generation sequence

NMS The agent perceives that something has happened Agent Router
{for example, that one of the interfaces has entered a
down state) and sends a trap POU to the NMS.
The NMS uses the information in the PDU
to determine which interface went down. In this
example, a linkDown trap was generated;
the first variable binding in the trap PDU is the
interface that went down.

The trap originates from the agent and is sent to the trap destination, as configured within the agent itself. The trap destination
is typically the IP address of the NMS. No acknowledgment is sent from the NMS to the agent, so the agent has no way of
knowing if the trap makes it to the NMS. Since SNMP uses UDP, and since traps are designed to report problems with your
network, traps are especially prone to getting lost and not making it to their destinations. However, the fact that traps can get
lost doesn't make them any less useful; in a well-planned environment, they are an integral part of network management. It's
better for your equipment to try to tell you that something is wrong, even if the message may never reach you, than simply to
give up and let you guess what happened. Here are a few situations that a trap might report:

- A network interface on the device (where the agent is running) has gone down.

- A network interface on the device (where the agent is running) has come back up.

¢ An incoming call to a modem rack was unable to establish a connection to a modem.
« The fan on a switch or router has failed.

When an NMS receives a trap, it needs to know how to interpret it; that is, it needs to know what the trap means and how to
interpret the information it carries. A trap is first identified by its generic trap number. There are seven generic trap humbers
(0-6), shown in Table 2-8. Generic trap 6 is a special catchall category for "enterprise-specific " traps, which are traps defined
by vendors or users that fall outside of the six generic trap categories. Enterprise-specific traps are further identified by an
enterprise ID (i.e., an object ID somewhere in the enterprises branch of the MIB tree, iso.org.dod.internet.private.enterprises)
and a specific trap number chosen by the enterprise that defined the trap. Thus, the object ID of an enterprise-specific trap is
enterprise-id.specific-trap-number. For example, when Cisco defines special traps for its private MIBs, it places them all in its
enterprise-specific MIB tree (iso.org.dod.internet.private.enterprises.cisco). As we'll see in Chapter 9, you are free to define your
own enterprise-specific traps ; the only requirement is that you register your own enterprise number with IANA.



A trap is usually packed with information. As you'd expect, this information is in the form of MIB objects and their values; as
mentioned earlier, these object-value pairs are known as variable bindings . For the generic traps O through 5, knowledge of
what the trap contains is generally built into the NMS software or trap receiver. The variable bindings contained by an
enterprise-specific trap are determined by whomever defined the trap. For example, if a modem in a modem rack fails, the
rack's agent may send a trap to the NMS informing it of the failure. The trap will most likely be an enterprise-specific trap
defined by the rack's manufacturer; the trap's contents are up to the manufacturer, but it will probably contain enough
information to let you determine exactly what failed (for example, the position of the modem card in the rack and the channel
on the modem card).

Table 2-8. Generic traps

Generic trap name and
number Definition

Indicates that the agent has rebooted. All management variables will be reset; specifically,

coldStart (0) Count er s and Gauges will be reset to zero (0). One nice thing about the col dStart trap is that
it can be used to determine when new hardware is added to the network. When a device is
powered on, it sends this trap to its trap destination. If the trap destination is set correctly
(i.e., to the IP address of your NMS), the NMS can receive the trap and determine whether it
needs to manage the device.

Indicates that the agent has reinitialized itself. None of the management variables will be
warnStart (1) reset.

) Sent when an interface on a device goes down. The first variable binding identifies the index
I'i nkDown (2) in the interfaces table for the interface that went down.

) Sent when an interface on a device comes back up. The first variable binding identifies which
linkUp (3) interface came back up.

) ) ) Indicates that someone has tried to query your agent with an incorrect community string;
authenticationFailure (4) yseful in determining if someone is trying to gain unauthorized access to one of your devices.

Indicates that an EGP neighbor has gone down.
egpNei ghbor Loss (5)

) o Indicates that the trap is enterprise-specific. SNMP vendors and users define their own traps
enterpriseSpecific (6) under the private-enterprise branch of the SMI object tree. To process this trap properly, the
NMS has to decode the specific trap number that is part of the SNMP message.

In Chapter 1, we mentioned that RFC 1697 is the RDBMS MIB. One of the traps defined by this MIB is rdbmsOutOfSpace:

rdbmsQut Of Space TRAP- TYPE

ENTERPRI SE rdbnsTraps

VARI ABLES  { rdbmsSrvl nf oD skQut Of Spaces }

DESCRI PTI ON
"An rdbmsQut Of Space trap signifies that one of the database
servers managed by this agent has been unable to allocate
space for one of the databases managed by this agent. Care
shoul d be taken to avoid flooding the network with these traps."

1= 2

The enterprise is rdbmsTraps and the specific trap number is 2. This trap has one variable binding,
rdbmsSrvinfoDiskOutOfSpaces. If we look elsewhere in the MIB, we will find that this variable is a scalar object. Its definition is:

rdbnmsSr vl nf oDi skQut OF Spaces OBJECT- TYPE
SYNTAX Counter
ACCESS read-only
STATUS nmandat ory
DESCRI PTI ON



"The total nunber of tines the server has been unable to obtain

di sk space that it wanted, since server startup. This would be

inspected by an agent on receipt of an rdbnmsCQut Of Space trap."
= { rdbnsSrvinfoEntry 9 }

The DESCRI PTI ON for this object indicates why the note about taking care to avoid flooding the network (in the DESCRI PTI ON text
for the tr AP- TYPE) is so important. Every time the RDBMS is unable to allocate space for the database, the agent will send a
trap. A busy (and full) database could end up sending this trap thousands of times a day.

Some commercial RDBMS vendors, such as Oracle, provide an SNMP agent with their database engines. Agents such as these
typically have functionality above and beyond that found in the RDBMS MIB.

Now let's look at an Ethereal trace of an SNMPv1 trap. Given the following command:[*1

[T Don't worry about the details; they will be explained in Chapter 9.

$ snnptrap -v 1 -c public .1.3.6.1.4.1.2789.2005 127.0.0.1 6\ 2476317 '' .1.3.6.1.4.
1.2789.2005.1 s "WMWV Server Has Been\ Restarted"

Ethereal gives us the following trace:

Frame 1 (135 bytes on wire, 135 bytes captured)
Arrival Tine: Sep 20, 2004 14:38:40.191174000
Tine delta from previous packet: 0.000000000 seconds
Time since reference or first frame: 0.000000000 seconds
Frame Nunber: 1
Packet Length: 135 bytes
Capture Length: 135 bytes
Et hernet 11, Src: 00:00:00:00: 00: 00, Dst: 00:00:00:00:00:00
Destination: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Source: 00: 00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)
Internet Protocol, Src Addr: 127.0.0.1 (127.0.0.1), Dst Addr: 127.0.0.1 (127.0.0.1)
Version: 4
Header |ength: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN. 0x00)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN- Capable Transport (ECT): O
... ...0 = ECN-CE: O
Total Length: 121
Identification: 0x0000 (0)
Fl ags: 0x04
.1.. = Don't fragment: Set
..0. = More fragnents: Not set
Fragment offset: 0
Tine to live: O
Protocol : UDP (0x11)
Header checksum 0x7c72 (correct)
Source: 127.0.0.1 (127.0.0.1)
Destination: 127.0.0.1 (127.0.0.1)
User Datagram Protocol, Src Port: 34108 (34108), Dst Port: snnptrap (162)
Source port: 34108 (34108)
Destination port: snnptrap (162)
Length: 101
Checksum Oxfe78 (incorrect, should be Oxf82d)
Si nmpl e Networ k Managenent Protocol
Version: 1 (0)
Communi ty: public
PDU type: TRAP-V1 (4)
Enterprise: 1.3.6.1.4.1.2789.2005 (SNWPv2-SM ::enterprises.2789. 2005)
Agent address: 127.0.0.1 (127.0.0.1)
Trap type: ENTERPRI SE SPECI FI C (6)
Specific trap type: 2476317
Ti nest anp: 181730327



Object identifier 1: 1.3.6.1.4.1.2789.2005.1 (SNVMPv2-SM ::enterprises.2789.2005.1)
Val ue: STRING "WAN Server Has Been Restarted"

0000 00 00 00 00 00 00 OO0 00 OO 00 OO 00 08 00 45 00 .............. E.
0010 00 79 00 00 40 00 00 11 7c 72 7f 00 00 01 7f 00 Y@
0020 00 01 85 3c 00 a2 00 65 fe 78 30 5b 02 01 00 04 Lo.<o..e.x0[. ...
0030 06 70 75 62 6¢c 69 63 a4 4e 06 09 2b 06 01 04 01 .public.N..+. ...
0040 95 65 8f 55 40 04 7f 00 00 01 02 01 06 02 03 25 e U@......... %
0050 9 1d 43 04 Oa d4 fc 17 30 2d 30 2b 06 Oa 2b 06 LColl 0- 0+. . +.
0060 01 04 01 95 65 8f 55 01 04 1d 57 57 57 20 53 65 co.o.e U WAV Se
0070 72 76 65 72 20 48 61 73 20 42 65 65 6e 20 52 65 rver Has Been Re
0080 73 74 61 72 74 65 64 started

We have only one frame since the agent initiated the trap. An SNMPv1 trap is sent from the agent and is not acknowledged by
the receiver in any way, so the agent sends it and forgets about it. This is why we see just the single trace.

2.6.7. SNMP Notification

In an effort to standardize the PDU format of SNMPv1 traps (recall that SNMPv1 traps have a different PDU format from get and
set), SNMPv2 defines a NOTI FI CATI ON- TYPE. The PDU format for NOTI FI CATI ON- TYPE is identical to that for get and set. RFC 2863
redefines the linkDown generic notification type like so:

| i nkDown NOTI FI CATI ON- TYPE

OBJECTS { iflndex, ifAdm nStatus, ifOperStatus }

STATUS current

DESCRI PTI ON
"A linkDown trap signifies that the SNMPv2 entity, acting in an
agent role, has detected that the ifQperStatus object for one
of its communication links left the down state and transitioned
into sone other state (but not into the notPresent state). This
other state is indicated by the included value of ifOperStatus."

::={ snnpTraps 3 }

The list of bindings is called OBJECTS rather than VARI ABLES, but little else has changed. The first object is the specific interface
(ifindex) that transitioned from the linkDown condition to some other condition. The OID for this trap is 1.3.6.1.6.3.1.1.5.3, or
iso.org.dod.internet.snmpV2.snmpModules.snmpMIB.snmpMIBObjects.snmpTraps.linkDown.

Let's look at how to create an SNMP notification:

$ snnptrap -v2c -c public 127.0.0.1 '' .1.3.6.1.6.3.1.1.5.3 iflndex i 2 ifAdni nStatus
i 1 ifOperStatus i 1

The datagram trace is as follows:

Frame 1 (162 bytes on wire, 162 bytes captured)
Arrival Tinme: Sep 20, 2004 14:38:53.846768000
Tinme delta from previous packet: 0.000000000 seconds
Tine since reference or first frame: 0.000000000 seconds
Frame Nunber: 1
Packet Length: 162 bytes
Capture Length: 162 bytes

Ethernet II, Src: 00:00:00: 00: 00: 00, Dst: 00:00:00: 00: 00: 00
Destination: 00:00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Sour ce: 00: 00: 00: 00: 00: 00 (00: 00: 00_00: 00: 00)
Type: | P (0x0800)

Internet Protocol, Src Addr: 127.0.0.1 (127.0.0.1), Dst Addr: 127.0.0.1 (127.0.0.1)
Version: 4
Header |ength: 20 bytes



Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN. 0x00)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
.0. = ECN- Capable Transport (ECT): O
... ...0 = ECN-CE: O
Total Length: 148
Identification: 0x0000 (0)
Fl ags: 0x04
.1.. = Don't fragment: Set
..0. = More fragnents: Not set
Fragment offset: O
Time to live: 0
Protocol : UDP (0x11)
Header checksum O0x7c57 (correct)
Source: 127.0.0.1 (127.0.0.1)
Destination: 127.0.0.1 (127.0.0.1)
User Datagram Protocol, Src Port: 34108 (34108), Dst Port: snnptrap (162)
Source port: 34108 (34108)
Destination port: snnptrap (162)
Length: 128
Checksum O0xfe93 (incorrect, should be 0x76ba)
Si mpl e Networ k Managenent Protocol
Version: 2C (1)
Communi ty: public
PDU type: TRAP-V2 (7)
Request 1d: 0x6737908a
Error Status: NO ERROR (0)
Error Index: O
Object identifier 1: 1.3.6.1.2.1.1.3.0 (SNWPv2-M B::sysUpTi ne. 0)
Val ue: Tineticks: (181731693) 21 days, 0:48:36.93
Object identifier 2: 1.3.6.1.6.3.1.1.4.1.0 (SNWPv2-M B: : snnpTr apQ D. 0)
Value: A D: IF-MB::1inkDown
oject identifier 3: 1.3.6.1.2.1.2.2.1.1 (IF-MB::iflndex)
Val ue: | NTEGER 2
Object identifier 4: 1.3.6.1.2.1.2.2.1.7 (IF-MB::ifAdm nStatus)
Val ue: | NTEGER: up(1)
bject identifier 5: 1.3.6.1.2.1.2.2.1.8 (IF-MB::ifOperStatus)
Val ue: | NTEGER: up(1)

0000 00 00 00 00 00 00 00 00 00 00 OO 00 08 00 45 00  .............. E
0010 00 94 00 00 40 00 00 11 7c 57 7f 00 00 01 7f 00 L@ WL
0020 00 01 85 3c 00 a2 00 80 fe 93 30 76 02 01 01 04 R S Ov....
0030 06 70 75 62 6¢C 69 63 a7 69 02 04 67 37 90 8a 02 .public.i..g7..

0040 01 00 02 01 00 30 5b 30 10 06 08 2b 06 01 02 01  ..... 0[0...+. ..

0050 01 03 00 43 04 0Oa d5 01 6d 30 17 06 Oa 2b 06 01 ..CoooonDl L

0060 06 03 01 01 04 01 00 06 09 2b 06 01 06 03 01 01  ......... +oo.
0070 05 03 30 Oe 06 09 2b 06 01 02 01 02 02 01 01 02 0l
0080 01 02 30 Oe 06 09 2b 06 01 02 01 02 02 01 07 02 0l
0090 01 01 30 Oe 06 09 2b 06 01 02 01 02 02 01 08 02 0l
00a0 01 01

2.6.8. SNMP inform

SNMPV2 provides an inform mechanism , which allows for acknowledged sending of traps. This operation can be useful when the
need arises for more than one NMS in the network. When an inform is sent, the receiver sends a response to the sender
acknowledging receipt of the event. This behavior is similar to that of the get and set requests. Note that an SNMP inform can
be used to send SNMPV2 traps to an NMS. If you use an inform for this purpose, the agent will be notified when the NMS
receives the trap.

2.6.9. SNMP report

The report operation was defined in the draft version of SNMPv2 but was never implemented. It is now part of the SNMPv3
standard and is intended to allow SNMP engines to communicate with each other (mainly to report problems with processing
SNMP messages).






e prcv |

2.7. Host Management Revisited

Managing your hosts is an important part of network management. You would think that the Host Resources MIB would be part
of every host-based SNMP agent, but this isn't the case. Some SNMP agents implement this MIB, but many don't. A few agents
go further and implement proprietary extensions based upon this MIB. This is mainly due to the fact that this MIB was intended
to serve as a basic, watered-down framework for host management , designed mainly to foster wide deployment.

The Host Resources MIB defines the following seven groups:

host OBJECT IDENTIFIER ::={ mb-2 25}
hr Syst em OBJECT IDENTIFIER ::= { host 1}
hr St or age OBJECT IDENTIFIER ::= { host 2}
hr Devi ce OBJECT IDENTIFIER ::= { host 3}
hr SWRun OBJECT IDENTIFIER ::= { host 4}
hr SWRunPer f OBJECT IDENTIFIER ::= { host 5 }
hr SWnstal | ed OBJECT IDENTIFIER ::= { host 6 }

The host OID is 1.3.6.1.2.1.25 (iso.org.dod.internet.mgmt.mib-2.host). The remaining six groups define various objects that
provide information about the system.

The hrSystem (1.3.6.1.2.1.25.1) group defines objects that pertain to the system itself. These objects include uptime, system
date, system users, and system processes.

The hrDevice (1.3.6.1.2.1.25.3) and hrStorage (1.3.6.1.2.1.25.2) groups define objects pertaining to filesystems and system
storage, such as total system memory, disk utilization, and CPU nonidle percentage. They are particularly helpful since they can
be used to manage the disk partitions on your host. You can even use them to check for errors on a given disk device.

The hrSWRun (1.3.6.1.2.1.25.4), hrSWRunPerf (1.3.6.1.2.1.25.5), and hrSWinstalled (1.3.6.1.2.1.25.6 ) groups define objects
that represent various aspects of software running or installed on the system. From these groups, you can determine what
operating system is running on the host, as well as what programs the host is currently running. The hrSWinstalled group can
be used to track which software packages are installed.

As you can see, the Host Resources MIB provides some necessary system-management objects that can be utilized by almost
anyone who needs to manage critical systems.

e prc |



e prcv |

2.8. Remote Monitoring Revisited

A thorough treatment of RMON is beyond the scope of this book, but it's worth discussing the groups that make up RMONv1.
RMON probes are typically standalone devices that watch traffic on the network segments to which they are attached. Some
vendors implement at least some kind of RMON probe in their routers, hubs, or switches. Chapter 8 provides an example of how
to configure RMON on a Cisco router.

The RMON MIB defines the following 10 groups:

rnon OBJECT IDENTIFIER ::= { mb-2 16 }
statistics OBJECT IDENTIFIER ::= { rmon 1 }
hi story OBJECT IDENTIFIER ::={ rnon 2 }
al arm OBJECT IDENTIFIER ::={ rnon 3 }
host s OBJECT IDENTIFIER ::= { rnon 4 }
host TopN OBJECT IDENTIFIER ::= { rrmon 5 }
matrix OBJECT IDENTIFIER ::={ rnon 6 }
filter OBJECT IDENTIFIER ::= { rnmon 7 }
capture OBJECT IDENTIFIER ::= { rnmon 8 }
event OBJECT IDENTIFIER ::={ rnon 9 }

RMONvV1 provides packet-level statistics about an entire LAN or WAN. The rmon OID is 1.3.6.1.2.1.16
(iso.org.dod.internet. mgmt.mib-2.rmon). RMONv1 is made up of nine groups:

statistics (1.3.6.1.2.1.16.1)

Contains statistics about all the Ethernet interfaces monitored by the probe.

history (1.3.6.1.2.1.16.2)

Records periodic statistical samples from the statistics group.

alarm (1.3.6.1.2.1.16.3)

Allows a user to configure a polling interval and a threshold for any object the RMON probe records.

hosts (1.3.6.1.2.1.16.4)

Records traffic statistics for each host on the network.

hostTopN (1.3.6.1.2.1.16.5)

Contains host statistics used to generate reports on hosts that top a list ordered by a parameter in the host table.

matrix (1.3.6.1.2.1.16.6 )
Stores error and utilization information for sets of two addresses.
filter (1.3.6.1.2.1.16.7)
Matches packets based on a filter equation; when a packet matches the filter, it may be captured or an event may be

generated.

capture (1.3.6.1.2.1.16.8)



Allows packets to be captured if they match a filter in the filter group.

event (1.3.6.1.2.1.16.9)
Controls the definition of RMON events.
RMONv2 enhances RMONv1 by providing network- and application-level statistical gathering. Since the only example of RMON

in this book uses RMONv1, we will stop here and not go into RMONv2. However, we encourage you to read RFC 2021 to get a
feel for what enhancements this version of RMON brings to network monitoring.

e prc |



e prcv |

2.9. Reverse Engineering SNMP

You might be wondering why something like this is even a topic for SNMP. Isn't SNMP a standard, you may ask? Well, it is, but
that doesn't prevent vendors from doing things in nonstandard, and downright oblique, ways. In some cases, vendors either do
not publish their SNMP MIB, or they use SNMP as a means of updating a network device from a GUI. For example, the Netgear
WAG302 access point comes with Windows-based management software. This software uses SNMP to gather information from
the WAP. The Netgear device supports several standard SNMP MIBs, but it also has support for two additional private MIBs:
Netgear's MIB and that of a third-party provider. Netgear doesn't make its private MIB available. Using Ethereal (yes, it is
available for Windows, too), you can capture the traffic as you work with a management application, such as the one that comes
with the Netgear device, and see what SNMP requests and responses flow over the network.

As we mentioned already, Ethereal does a nice job of telling you things like the SNMP version, error codes, OIDs, and actual
data in the PDU. We even get to see the OIDs and their values. For example, the following is an excerpt from the notification
trace:

Object identifier 3: 1.3.6.1.2.1.2.2.1.1 (IF-MB::iflndex)

Val ue: | NTEGER 2

Object identifier 4: 1.3.6.1.2.1.2.2.1.7 (IF-MB::ifAdm nStatus)
Val ue: | NTEGER up(1)

oject identifier 5: 1.3.6.1.2.1.2.2.1.8 (IF-MB::ifQperStatus)
Val ue: | NTEGER: up(1)

We see that ifIndex is set to INTEGER 2, ifAdminStatus is set to INTEGER 1 (which Ethereal has translated to up for us), and
ifOperStatus is set to up as well.

We suggest that you add Ethereal to your arsenal of network tools. It can help you greatly, not only in reverse engineering
SNMP, but also in terms of learning about datagram structures and the like.

e rrcv |



e prcv |

Chapter 3. SNMPv3

Security has been the biggest weakness of SNMP since the beginning. Authentication in SNMP versions 1 and 2 amounts to
nothing more than a password (community string) sent in clear text between a manager and agent. Any security-conscious
network or system administrator knows that clear-text passwords provide no real security at all. It is trivial for someone to
intercept the community string, and once he has it, he can use it to retrieve information from devices on your network, modify
their configuration, and even shut them down.

The Simple Network Management Protocol Version 3 (SNMPv3) addresses the security problems that have plagued both
SNMPv1 and SNMPv2. For all practical purposes, security is the only issue SNMPv3 addresses; there are no other changes to
the protocol. There are no new operations; SNMPv3 supports all the operations defined by versions 1 and 2. There are several
new textual conventions, but these are really just more precise ways of interpreting the datatypes that were defined in earlier
versions.

This chapter provides an introduction to SNMPv3. SNMPv3 agent configurations can be found in Chapter 6. Until recently,
SNMPVv3 was a draft standard. It is now a full standard. Vendors are notoriously slow to change, but hopefully we will see even
more of them begin to support SNMPv3.

e roc |



3.1. Changes in SNMPv3

Although SNMPv3 makes no changes to the protocol aside from the addition of cryptographic security, its developers have

managed to make things look much different by introducing new textual conventions, concepts, and terminology. The changes
to the terminology are so radical that it's hard to believe the new terms essentially describe the same software as the old ones,
but they do. However, they do differ in how they relate to each other, and they specify much more precisely the pieces that an
SNMP implementation needs.

The most important change is that Version 3 abandons the notion of managers and agents. Both managers and agents are now
called SNMP entities . Each entity consists of an SNMP engine and one or more SNMP applications, which are discussed in the
following sections. These new concepts are important because they define an architecture rather than simply a set of messages;
the architecture helps to separate different pieces of the SNMP system in a way that makes a secure implementation possible.

Let's look at what these concepts mean, starting with the RFCs that define them (Table 3-1).

Number
RFC 3411
RFC 3412
RFC 3413
RFC 3414
RFC 3415
RFC 3416
RFC 3417
RFC 3418
RFC 2576
RFC 2570
RFC 2786

Note that USM and VACM are discussed in a little more detail later in this chapter.

Table 3-1. RFCs for SNMPv3

Name

Architecture for SNMP Frameworks
Message Processing and Dispatching
SNMP Applications

User-based Security Model (USM)
View-based Access Control Model (VACM)
Protocol Operations for SNMPv2
Transport Mappings for SNMPv2

MIB for SNMPv2

Coexistence Between SNMP Versions
Introduction to SNMPv3
Diffie-Hellman USM Key Management

3.1.1. The SNMPv3 Engine

The engine is composed of four pieces: the Dispatcher, the Message Processing Subsystem , the Security Subsystem , and the
Access Control Subsystem. The Dispatcher's job is to send and receive messages. It tries to determine the version of each
received message (i.e., v1, v2, or v3) and, if the version is supported, hands the message off to the Message Processing

Subsystem. The Dispatcher also sends SNMP messages to other entities.

The Message Processing Subsystem prepares messages to be sent and extracts data from received messages. A Message
Processing Subsystem can contain multiple message processing modules. For example, a subsystem can have modules for
processing SNMPv1, SNMPv2, and SNMPv3 requests. It may also contain a module for other processing models that are yet to

be defined.

The Security Subsystem provides authentication and privacy services. Authentication uses either community strings (SNMP v1
and v2) or SNMPv3 user-based authentication. User-based authentication uses the MD5 or SHA algorithms to authenticate
users without sending a password in the clear. The privacy service uses the DES algorithm to encrypt and decrypt SNMP

messages. Currently, DES is the only algorithm used, though others may be added in the future.

The Access Control Subsystem is responsible for controlling access to MIB objects. You can control what objects a user can
access as well what operations she is allowed to perform on those objects. For example, you might want to limit a user's read-

write access to certain parts of the mib-2 tree while allowing read-only access to the entire tree.



3.1.2. SNMPv3 Applications

Version 3 divides most of what we have come to think of as SNMP into a number of applications :

Command generator
Generates get, getnext, getbulk, and set requests and processes the responses. This application is implemented by an
NMS, so it can issue queries and set requests against entities on routers, switches, Unix hosts, etc.

Command responder
Responds to get, getnext, getbulk, and set requests. This application is implemented by an entity on a Cisco router or
Unix host. (For versions 1 and 2, the command responder is implemented by the SNMP agent.)

Notification originator
Generates SNMP traps and notifications. This application is implemented by an entity on a router or Unix host. (For
versions 1 and 2, the notification originator is part of an SNMP agent. Freestanding utilities for generating traps are also
available.)

Notification receiver

Receives traps and inform messages . This application is implemented by an NMS.

Proxy forwarder
Facilitates message passing between entities.

RFC 3411 allows additional applications to be defined over time. This ability to extend the SNMPv3 framework is a significant
advantage over the older SNMP versions.

3.1.3. What Does an Entity Look Like?

Thus far, we've talked about the SNMPv3 entity in terms of abstract definitions. Figure 3-1 (taken from RFC 3411) shows how
the components that make up an entity fit together.

Figure 3-1. SNMPv3 entity

SHAMP entity K

SNMP engine (identified by SnmpEnginelD)
Message y Access
Dispatcher Processing S:Eﬁusntgn Control
Subsystem ¥ Subsystem
i Applicationfs)
: | Command generator | | Notification receiver I ] Prony forwarder I
| Command responder | |Hu[iﬁ|:atiun urigina!ull I (ther I

3.1.4. SNMPv3 Textual Conventions



SNMPv3 defines a number of additional textual conventions , outlined in Table 3-2.

Textual convention

snnpEngi nel D

snnpSecuri t yModel

snnpMessagePr ocessi nghbdel

snnpSecuritylLevel

snmpAdmi nStri ng

snnpTagVal ue

snnpTagLi st

KeyChange

Table 3-2. SNMPv3 textual conventions

Description

An administratively unique identifier for an SNMP engine. Objects of this type are for
identification, not for addressing, even though an address can be used in the generation of a
specific value. RFC 3411 provides a detailed discussion of how snnpEngi nel Ds are created.

An SNMP securityMdel (SNMPv1l, SNMPv2, or USM ). USM stands for User-based Security
Model, which is the security method used in SNMPv3.

A message processing model used by the Message Processing Subsystem.

The level of security at which SNMP messages can be sent, or the level of security at which
operations are being processed. Possible values are noAut hNoPri v (without authentication and
without privacy ), aut hNoPri v (with authentication but without privacy), and aut hPriv (with
authentication and with privacy). These three values are ordered such that noAut hNoPri v is
less than aut hNoPri v and aut hNoPri v is less than aut hPriv.

An octet string containing administrative information, preferably in human-readable form.
The string can be up to 255 bytes long.

An octet string containing a tag value. Tag values are preferably in human-readable form.
According to RFC 3413, valid example tags include acne, rout er, and host .

An octet string containing a list of tag values. Tag values are preferably in human-readable
form. According to RFC 3413, valid examples of a tag list are the empty string, acne router,
and host nanager St ati on.

An object used to change authentication and privacy keys .

The next two sections will look at the USM and VACM in a little more detail.



e prcv |

3.2. USM

The User-based Security Model (USM ) and the View Access Control Model (VACM) together detail the security enhancements
added with SNMPv3 . Let's start with the USM.

3.2.1. The Basics

We need to get some terminology out of the way before we can look at the USM in any detail:

snnpEngi nel D
This is an unambiguous identifier for an SNMP engine as well as the SNMP entity that corresponds to the engine. The
syntax for this identifier is Cctet String and it cannot be zero length. Most SNMPv3 applications allow for the user to input

a value for snnpEngi nel D. If one is not specified, the value is computed using a combination of enterprise ID and IP or
MAC address.

snnpEngi neBoot s

A count of the number of times an SNMP engine has rebooted.

snnpEngi neTi e

The number of seconds since the snnpEngi neBoot s counter was last incremented.

snnmpSecuritylevel
There are three security levels. The first is no authentication or privacy (noAuthNoPriv). Note that if this mode is used, a
securityNane is still required. The second is authentication and no privacy (authNoPriv). The third and final one is
authentication and privacy (authPriv). While you can have authentication without privacy, you cannot have privacy
without authentication.

Authoritative SNMP engine
A nonauthoritative engine must discover the snnpEngi nel d of the authoritative engine with which it communicates. The
rules for designating the authoritative engine are as follows: if the SNMP message requires a response (get, getnext,
getbulk, set, or inform), the receiver of these messages is authoritative. If the message does not require a response (trap
or report), the sender of the message is authoritative. Generally, an SNMP agent is authoritative and an NMS is
nonauthoritative.

An SNMPv3 message (packet) format has the following fields:
nsgVer si on
The SNMP version of the message, set to 3.

nmsgl D

The nsgl D is used between a manager and agent to coordinate request and response messages.

nsgMaxSi ze

The nsgMaxSi ze is the maximum message size supported by a sender of an SNMP message.



nsgFl ags
nsgFl ags is an 8-bit value that specifies whether a report PDU is to be generated, whether privacy is used, and whether
authentication is used.

nsgSecuri t yModel
Specifies which security model was used by the sender of the message. Current values are 1, 2, and 3 for SNMPv1,
SNMPv2c, and SNMPV3, respectively.

nsgSecurityParanmeters

nsgSecurit yParanmet ers contains security-specific information.

cont ext Engi nel D
Uniquely identifies an SNMP entity. An SNMP entity is the combination of an SNMP engine and SNMP applications. This is
discussed in the section on VACM.

cont ext Nane

cont ext Name identifies a particular context within an SNMP engine.

scopedPDU
A block of data made up of a cont ext Engi nel D, cont ext Nane, and SNMP PDU.

The nsgSecurityParanmeters in an SNMPv3 message are as follows:

nsgAut hori tati veEngi nel D

The snnpEngi nel D of the authoritative engine.

nsgAut hori t ati veEngi neBoot s

The snnpEngi neBoot s of the authoritative engine.

nsgAut horitativeEngi neTi me

The snnpEngi neTi me of the authoritative engine.

nmsgUser Nane

The user who may be authenticating and encrypting the message.

nsgAut henti cati onPar anet er s
This value is null if no authentication is used. Otherwise, the field contains the computer HMAC message digest for the
message. Currently the RFC specifies that MD5 and SHA must be used.

nsgPri vacyPar anet er s

This value is null if no encryption is used. Otherwise, this field is used to form the initial value of the Cipher Block
Chaining mode of the Data Encryption Standard (CBC-DES) algorithm.

Figure 3-2[*1 shows the entire SNMPv3 message.

[1This image is reprinted from the paper "SNMPv3: A Security Enhancement for SNMP" by William Stallings, which can be found online at
http://www.comsoc.org/livepubs/surveys/public/4q98issue/stallings.html.



http://www.comsoc.org/livepubs/surveys/public/4q98issue/stallings.html

Figure 3-2. SNMPv3 message format

. msgVersion

msglD

. Generated/processed by
msgMaxSize Message Processing Model

msgFlags

msgSecurityModel

msgAuthoritativeEnginelD

msgAuthoritativeEngineBoots

msgAuthoritativeEngineTime Generated/processed by USH

msgUserName

msgAuthenticationParameters

scope of authentication

msgPrivacyParameters

>
|

contextEnginelD

contexthame

Seaped POU (plaintext or
encrypted)

scope of encryption

w v

3.2.2. Discovery

The USM requires that the msgSecuri t yParanet ers contain the snnpEngi nel D, snnpEngi neBoot s, and snnpEngi neTi ne of the
authoritative engine. Before any get, getnext, or set operation can be used, the nonauthoritative engine must obtain these
values from the authoritative engine. A discovery process is used to obtain this information.

3.2.3. USM Timeliness

Once a nonauthoritative engine has learned the value of snnpEngi neBoot s and snnpEngi neTi ne, it must maintain its own local
notion of what these values are supposed to be. The nonauthoritative engine increments the learned snnpEngi neTi ne every
second so that it stays up-to-date with the authoritative engine's own notion of snnpEngi neTi ne. If snnpEngi neTi ne rolls over,
snmpEngi neBoot s must be incremented. The USM Timeliness Module is intended to help thwart message delay or replay.

3.2.4. Authentication

MD5, or Message Digest 5, and SHAL, or Secure Hash Algorithm 1, are used for authenticating SNMPv3 messages. MD5 creates
a digest of 128 bits and SHA1 creates a digest of 160 bits. Both digests are fixed in size and cannot be used solely for
authentication . The keyed Hashing for Message Authentication (HMAC) algorithm is used in conjunction with MD5 and SHA1 to
compute message digests. An authentication passphrase or secret key is appended to the data before the digests are computed.
The secret key must be known by both the sender and the receiver. The RFCs specify that this passphrase must be at least eight
characters long.

3.2.5. Privacy

Encryption of SNMP data is accomplished by using the CBC-DES algorithm. As with authentication, a secret key or passphrase



must be known by the sender and receiver and used in the encryption process. A USM User Table is used to store the
passphrase and other details transmitted with the packet in the nsgPri vacyPar anmeters.

3.2.6. USM User Table

Every entity maintains a User Table that stores all the users who have access to the system via SNMP. The User Table includes
the following elements :

Username

A textual username. Sometimes referred to as a security name.

Authentication protocol

Details what, if any, authentication protocol is to be used. Valid values include usmNoAut hPr ot ocol ,
us mHVACVD5 Aut hPr ot ocol , and usmHVACSHAAuUt hPr ot ocol .

Authentication key

The passphrase used for authentication. Must be at least eight characters long.

Privacy protocol

Details what, if any, privacy protocol is to be used. Valid values include usmNoPri vPr ot ocol and usnDESPri vProt ocol .

Privacy key

The passphrase used for privacy. Must be at least eight characters long.

usniJser Spi nLock

The usnser Spi nLock is an advisory lock that allows for the coordination of multiple attempts to modify the User Table.

3.2.7. Localized Keys and Changing Keys
A localized key allows for the same passphrase to be used by a single user on many different engines. It keeps an operator from

having to remember a different passphrase for each SNMP engine he must interact with. The KeyChange type allows for users to
change their keys securely.

e rrcv |



e prcv |

3.3. VACM

VACM is used to control access to managed objects in a MIB or MIBs. This is where the Access Control Subsystem comes into
play.
3.3.1. The Basics

The nmsgFl ags, msgSecurit yMdel , and scopedPDU fields are used by VACM for message access. Each parameter is used to
determine access to managed objects. An error is returned to the sender if access is not allowed for the request type. VACM
makes use of four tables for different aspects of access control. We will discuss these tables next.

3.3.2. Context Table
The vacnCont ext Tabl e is a collection of managed objects that have access constraints which are associated with a context name.

The vacnCont ext Tabl e stores all available contexts. The table is indexed by a cont ext Name, and each row in this table contains:

vacmCont ext Name

A textual name for the context

3.3.3. Security to Group Table

The vacnSecurityToG oupTabl e is used to store group information. A group is made up of zero or more securityMdel and
securityName combinations. This combination defines what managed objects can be accessed. The table itself is indexed by a
securityModel and securityNanme. The table contains rows made up of the following columns:

vacnSecurit yModel
The security model in usee.g., USM.

vacnBecurityNane

In the case of the USM, securityNane and user Nane are identical.

vacn oupName

A textual name for the group to which this table entry belongs.

3.3.4. Access Table

The vacmAccessTabl e is used to store the access rights defined for groups. This table is indexed by a gr oupName, cont ext Prefi x,
securityMdel , and securityLevel . Each row in this table contains:

vacnG oupName

A name of a group with access rights.

vacmAccessCont ext Mat ch



A simple form of wildcarding. A value of exact dictates that the index cont ext Name must exactly match the value in
vacmAccessCont ext Prefi x. If set to prefix, the index cont ext Nane can simply match the first few characters of the value in
vacmAccessCont ext Prefi x.

vacmAccessCont ext Prefi x

An index cont ext Nane must match either exactly or partially the value of vacmAccessCont ext Prefi x.

vacmAccessSecuri t yhModel

The securityMdel that must be used to gain access.

vacmAccessSecuritylevel

Defines the minimum securitylLevel that must be used to gain access.

vacmAccessReadVi ewNane

The authorized MIB vi ewNanme used for read access.

vacmAccessWi t eVi ewNane

The authorized MIB vi ewNane used for write access.

vacmAccessNot i fyVi ewNane

The authorized MIB vi ewNane used for notify access.

3.3.5. View Tree Family Table

The vacnVi ewTr eeFani | yTabl e is used to store MIB views. A MIB view is defined as a family of view subtrees that pair an OID
subtree value with a mask value. The mask indicates which subidentifiers of the associated subtree OID are significant to the
MIB view's definition.

All the MIB views are stored in the vacnVi ewTr eeFani | yTabl e. It is indexed by a vi ewNane and an OID of a MIB subtree. The

VACM MIB defines the vacnVi ewSpi nLock advisory lock that is used to allow several SNMP engines to coordinate modifications to
this table. Each row in the vacnVi ewTr eeFani | yTabl e contains:

vacnVi ewTr eeFani | yVi ewNane

A textual name for the MIB view.

vacnVi ewTr eeFam | ySubtree

The OID subtree that, when combined with the mask, defines one or more MIB view subtrees.

vacnVi ewTr eeFamni | yMask

A bit mask that, in combination with the corresponding OID subtree, defines one or more MIB view subtrees.

vacnVi ewlr eeFami | yType

Indicates whether the corresponding MIB view subtrees defined by the OID subtree and mask are included or excluded
from the MIB view.

Figure 3-3[*1 shows the logic flow for VACM.

[1This image is reprinted from the paper "SNMPV3 : A Security Enhancement for SNMP" by William Stallings, which can be found online at
http://www.comsoc.org/livepubs/surveys/public/4q98issue/stallings.html.



http://www.comsoc.org/livepubs/surveys/public/4q98issue/stallings.html

Figure 3-3. VACM logic flow

Who Where How Why
E
contextame
securityModel Jr securityModel
vacmContextTable :
} securityNaine securityLevel
'
vacmSecurityToGroupTable '

groupName 17 viewType{read/write/notify)
vacmiceessTable 'q—

viewName
vacmViewFamilyTable '

What

object-type

variableN

Which

abject-instance

ame{0ID)




e prcv |

3.4. SNMPv3 in the Real World

Let's briefly outline the common configuration options you should expect when you have to configure an SNMPv3 device or
network management platform:

Username

This is the textual description of the person responsible for the SNMP entity that is to be managed. Sometimes referred to
as security name.

Security level
Some applications require you to explicitly set the security level and others determine it based on the combination of
authentication and privacy protocol in use. The specified values are noAut hNoPri v, which is no authentication and no
privacy, aut hNoPri v, which is authentication and no privacy, and aut hPri v, which is authentication and privacy. Note that
you cannot have privacy without authentication, but you can have authentication without privacy.

Authentication protocol
The protocol used for authenticationthat is, to prove that you are who you say you are. Currently, MD5 and SHA1 are
specified in the RFCs.

Authentication passphrase
The passphrase used in conjunction with the authentication protocol. It must be at least eight characters long. You may
also see it referred to as a password.

Privacy protocol
The protocol used for privacy, that is, to encrypt the data portion of the SNMP packet. Currently, DES is specified in the
RFCs.

Privacy passphrase

The passphrase used in conjunction with the privacy protocol. It must be at least eight characters long. You may also see
it referred to as a password.

Here are the logical steps you take when using SNMPv3-enabled devices and entities:

1. Create a USM entry on a device with proper USM attributes: username, authentication protocol, etc.

2. Configure the management station (if it supports SNMPv3) with the proper USM attributes for the managed device. Note
that the username and passphrases created in step 1 will need to be entered manually in this step.

3. Begin managing the device.
After all the gory technical details, isn't it nice to see that the basics of SNMPv3 really aren't all that scary?
SNMPV3 provides some much-needed security for SNMP. Many vendors already support SNMPv3, but many others, of course, do
not. Vendors are often slow to change, mainly because SNMP support is generally an afterthought during the development life

cycle of a switch, router, or software system. In fact, SNMP is often a bolt-on feature that isn't heavily tested and is rarely
updated. But we in the network management field can only hope that more vendors embrace not only SNMP but also SNMPv3.

e rrc |



e prcv |

Chapter 4. NMS Architectures

Now that you understand the basic concepts behind how network management stations (NMSs) and agents communicate, it's
time to introduce the concept of a network management architecture . Before rushing out to deploy SNMP management, you
owe it to yourself to put some effort into developing a coherent plan. If you simply drop NMS software on a few of your favorite
desktop machines, you're likely to end up with something that doesn't work very well. By NMS architecture, we mean a plan
that helps you use NMSs effectively to manage your network. A key component of network management is selecting the proper
hardware (i.e., an appropriate platform on which to run your NMS) and making sure that your management stations are located
in such a way that they can observe the devices on your network effectively.

e roc | et



e prcv |

4.1. Hardware Considerations

Managing a reasonably large network requires an NMS with substantial computing power. In today's complex networked
environments, networks can range in size from a few nodes to thousands of nodes. The process of polling and receiving traps
from hundreds or thousands of managed entities can be taxing on the best of hardware. Your NMS vendor will be able to help
you determine what kind of hardware is appropriate for managing your network. Most vendors have formulas for determining
how much RAM you will need to achieve the level of performance you want, given the requirements of your network. It usually
boils down to the number of devices you want to poll, the amount of information you will request from each device, and the
interval at which you want to poll them. The software you want to run is also a consideration. NMS products such as OpenView
are large, heavyweight applications; if you want to run your own scripts with Perl, you can get away with a much smaller
management platform.

Is it possible to say something more helpful than "ask your vendor"? Yes. First, although we've become accustomed to thinking
of NMS software as requiring a midrange workstation or high-end PC, desktop hardware has advanced so much in the past year
or two that running this software is within the range of any modern PC. Specifically, surveying the recommendations of a
number of vendors, we have found that they suggest a PC with at least a 2 or 3 GHz CPU, 512 MB to 1 GB of memory, and 1-2
GB of disk space. Requirements for Sun SPARC and HP workstations are similar.

Let's look at each of these requirements:

2 or 3 GHz CPU

This is well within the range of any modern desktop system, but you probably can't bring your older equipment out of
retirement to use as a management station.

512 MB to 1 GB of memory

You'll probably have to add memory to any off-the-shelf PC; Sun and HP workstations come with more generous memory
configurations. Frankly, vendors tend to underestimate memory requirements anyway, so it won't hurt to upgrade to 2
GB. Fortunately, RAM is usually cheap these days, though memory prices fluctuate from day to day.

1-2 GB of disk space

This recommendation is probably based on the amount of space you'll need to store the software, and not on the space
you'll need for lodfiles, long-term trend data, etc. But again, disk space is cheap these days, and skimping is
counterproductive.

Let's think a bit more about how long-term data collection affects your disk requirements. First, you should recognize that some
products have only minimal data-collection facilities, while others exist purely for the purpose of collecting data (for example,
MRTG). Whether you can do data collection effectively depends to some extent on the NMS product you've selected. Therefore,
before deciding on a software product, you should think about your data-collection requirements. Do you want to do long-term
trend analysis? If so, that will affect both the software you choose and the hardware on which you run it.

For a starting point, let's say that you have 1,000 nodes, you want to collect data every minute, and you're collecting 1 KB of
data per node. That's 1 MB per minute, 1.4 GB per dayyou'll fill a 40GB disk in about a month. That's bordering on extravagant.
But let's look at the assumptions:

« Collecting data every minute is certainly excessive; every 10 minutes should do. Now your 40GB disk will store almost a
year's worth of data.

« A network with 1,000 nodes isn't that big. But do you really want to store trend data for all your users' PCs? Much of this
book is devoted to showing you how to control the amount of data you collect. Instead of 1,000 nodes, let's first count
interfaces. And let's forget about desktop systemswe really care about trend data for our network backbone: key servers,
routers, switches, etc. Even on a midsize network, we're probably talking about 100 or 200 interfaces.

« The amount of data you collect per interface depends on many factors, not the least of which is the format of the data. An
interface's status may be up or downthat's a single bit. If it's being stored in a binary data structure, it may be represented
by a single bit. But if you're using syslog to store your log data and writing Perl scripts to do trend analysis, your syslog
records are going to be 80 bytes or so, even if you are storing only 1 bit of information. Data-storage mechanisms range
from syslog to fancy database schemesyou obviously need to understand what you're using, and how it will affect your



storage requirements. Furthermore, you need to understand how much information you really want to keep per interface.
If you want to track only the number of octets going in and out of each interface and you're storing this data efficiently,
your 40GB disk could easily last the better part of a century.

Seriously, it's hard to estimate your storage requirements when they vary over two or three orders of magnitude. But the
lesson is that no vendor can tell you what your storage requirements will be. A gigabyte should be plenty for log data on a
moderately large network, if you're storing data only for a reasonable subset of that network, not polling too often, and not
saving too much data. But that's a lot of variables, and you're the only one in control of them. Keep in mind, though, that the
more data you collect, the more time and CPU power will be required to grind through all that data and produce meaningful
results. It doesn't matter whether you're using expensive trend-analysis software or some homegrown scriptsprocessing lots of

data is expensive. At least in terms of long-term data collection, it's probably better to err by keeping too little data around than
by keeping too much.

e rrc |



e prcv |

4.2. NMS Architectures

Before going out and buying all your equipment, it's worth spending some time coming up with an architecture for your network
that will make it more manageable. The simplest architecture has a single management station that is responsible for the entire
network, as shown in Figure 4-1.

The network depicted in Figure 4-1 has three sites: New York, Atlanta, and San Jose. The NMS in New York is responsible for
managing not only the portion of the network in New York, but also those in Atlanta and San Jose. Traps sent from any device
in Atlanta or San Jose must travel over the Internet to get to the NMS in New York. The same thing goes for polling devices in
San Jose and Atlanta: the NMS in New York must send its requests over the Internet to reach these remote sites. For small
networks, an architecture like this can work well. However, when the network grows to the point that a single NMS can no
longer manage everything, this architecture becomes a real problem. The NMS in New York can get behind in its polling of the
remote sites, mainly because it has so much to manage. The result is that when problems arise at a remote site, they may not
get noticed for some time. In the worst case, they might not get noticed at all.

Figure 4-1. Single NMS architecture

New FG."B Ni’

MUIN[—E

Internet

It's also worth thinking about staffing. With a single NMS, your primary operations staff would be in New York, watching the
health of the network. But problems frequently require somebody on-site to intervene. This requires someone in Atlanta and
San Jose, plus the coordination that entails. You may not need a full-time network administrator, but you will need someone
who knows what to do when a router fails.

When your network grows to a point where one NMS can no longer manage everything, it's time to move to a distributed NMS
architecture. The idea behind this architecture is simple: use two or more management stations and locate them as close as
possible to the nodes they are managing. In the case of our three-site network, we would have an NMS at each site. Figure 4-2
shows the addition of two NMSs to the network.

This architecture has several advantages, not the least of which is flexibility. With the new architecture, the NMSs in Atlanta
and San Jose can act as standalone management stations, each with a fully self-sufficient staff, or they can forward events to
the NMS in New York. If the remote NMSs forward all events to the NMS in New York, there is no need to put additional
operations staff in Atlanta and San Jose. At first glance, this looks like we've returned to the situation of Figure 4-1, but that
isn't quite true. Most NMS products provide some kind of client interface for viewing the events currently in the NMS (traps
received, responses to polls, etc.). Since the NMS that forwards events to New York has already discovered the problem, we're
simply letting the NMS in New York know about it so that it can be dealt with appropri-

Figure 4-2. Distributed NMS architecture



New York, NY

Intemet = o

ately. The New York NMS didn't have to use valuable resources to poll the remote network to discover that there was a
problem.

The other advantage is that, if the need arises, you can put operations staff in Atlanta and San Jose to manage each of these
remote locations. If New York loses connectivity to the Internet, events forwarded from Atlanta or San Jose will not make it to
New York. With operations staff in Atlanta and San Jose, and the NMSs at these locations acting in standalone mode, a network
outage in New York won't matter. The remote-location staff will continue as if nothing has happened.

Another possibility with this architecture is a hybrid mode: you staff the operations center in New York 24 hours a day, 7 days a
week, but you staff Atlanta and San Jose only during business hours. During off-hours, they rely on the NMS and operations
staff in New York to notice and handle problems that arise. But during the critical (and busiest) hours of the day, Atlanta and
San Jose don't have to burden the New York operators.

Both of the architectures we have discussed use the Internet to send and receive management traffic. This poses several
problems, mainly dealing with security and overall reliability. A better solution is to use private links to perform all your
network management functions. Figure 4-3 shows how the distributed NMS architecture can be extended to make use of such
links.

Figure 4-3. Using private links for network management



New York, NY

San Jose, CA i i

"

EEEEE

Let's say that New York's router is the core router for the network. We establish private (but not necessarily high-speed) links
between San Jose and New York, and between New York and Atlanta. This means that San Jose will not only be able to reach
New York, but it will also be able to reach Atlanta via New York. Atlanta will use New York to reach San Jose, too. The private
links (denoted by thicker router-to-router connections) are primarily devoted to management traffic, though we could put them
to other uses. Using private links has the added benefit that our community strings are never sent out over the Internet. The
use of private network links for network management works equally well with the single NMS architecture, too. Of course, if
your corporate network consists entirely of private links and your Internet connections are devoted to external traffic only,
using private links for your management traffic is the proverbial "no-brainer."

One final item worth mentioning is the notion of trap-directed polling . This doesn't really have anything to do with NMS
architecture, but it can help to alleviate an NMS's management strain. The idea behind trap-directed polling is simple: the NMS
receives a trap and initiates a poll to the device that generated the trap. The goal of this scenario is to determine whether there
is indeed a problem with the device while allowing the NMS to ignore (or devote few resources to) the device in normal
operation. If an organization relies on this form of management, it should implement it in such a way that non-trap-directed
polling is almost done away with. That is, it should avoid polling devices at regular intervals for status information. Instead, the
management stations should simply wait to receive a trap before polling a device. This form of management can significantly
reduce the resources needed by an NMS to manage a network. However, it has an important disadvantage: traps can get lost in
the network and never make it to the NMS. This is a reality of the connectionless nature of UDP and the imperfect nature of
networks .

e roc |



e prcv |

4.3. A Look Ahead

Web-based network management entails the use of the HyperText Transfer Protocol (HTTP) and the Common Gateway Interface
(CGI) to manage networked entities. It works by embedding a web server in an SNMP-compatible device, along with a CGI
engine to convert SNMP-like requests (from a web-based NMS) to actual SNMP operations, and vice versa. Web servers can be
embedded into such devices at very low monetary and operating cost.

Figure 4-4 is a simplified diagram of the interaction between a web-based NMS and a managed device. The CGI application
bridges the gap between the management application and the SNMP engine. In some cases, the management application can be
a collection of Java applets that are downloaded to the web browser and executed on the web-based manager. Current versions
of OpenView ship with a web-based GUI. SNMPc also has web-based capabilities. They have a Java client for the network
management console and the recently released SNMPc Online, which is a web-based reporting frontend.

Figure 4-4. Web-based network management

Web-Based NMS

Browser-based manager

HTTP

HITTP

Gl

Managemem
application

SHMP

Managed device

Web-based network management could eliminate, or at least reduce, the need for traditional NMS software. NMS software can
be expensive to purchase, set up, and maintain. Most of today's major NMS vendors support only a few popular versions of Unix
and have only recently begun to support Windows, thus limiting your operating-system choices. With a web-based NMS,
however, these two concerns are moot. For the most part, web browsers are free, and Unix, Windows, and Apple platforms all
run the popular browsers.

Web-based network management should not be viewed as a panacea, though. It is a good idea, but it will take some time for
vendors to embrace this technology and move toward web integration of their existing products. There is also the issue of
standardization, or the lack of it. The Web-Based Enterprise Management (WBEM) Initiative addresses this by defining a
standard for web-based management. Industry leaders such as Cisco and BMC Software are among the original founders of
WBEM. You can learn more about this initiative at the Distributed Management Task Force ‘s web page,
http://www.dmtf.org/standards/wbem.

Another important standard in this area is XML (eXtensible Markup Language) . XML is a markup language used for the
interchange of structured data. XML makes use of DTDs (Document Type Definitions) or schemas to specify a document's
structure and, in the case of schemas, to validate data. A DTD or schema is similar to an SNMP MIB. XML may be used for
network management purposes in the following scenarios:

Using XML in place of standard SNMP over UDP

In environments where UDP traffic isn't permissible, XML can be used as an intermediary application-level protocol. Of
course, this requires a mapping layer to translate from XML to SNMP and vice versa.


http://www.dmtf.org/standards/wbem

Converting SNMP MIBs to XML for portability

This has the distinct advantage of allowing languages and systems that support XML parsing to access MIB information.
Java is a language that can easily interact with XML.

Using XML for command and control

While this may seem like a perversion of what XML was originally intended for, applications are being written that use
XML as an application-level protocol for not only exchanging messages, but also sending control messages.

As new technology comes to the forefront, SNMP researchers, vendors, and users will embrace it whenever it makes sense. This

is evidenced by the adoption of SNMPv3 as well as by the use of web technologies for tackling the problems presented by the
ever-expanding scope of network management.

e rrc |



e prcv |

Chapter 5. Configuring Your NMS

Now that you have picked out some software to use in your environment, it's time to talk about installing and running it. In this
chapter, we will look at a few NMS packages in detail. While we list several packages in Appendix F, we will dig into only a few
packages here, and we'll use these packages in examples throughout the rest of the book. These examples should allow you to
get most other SNMP-based network management packages up and running with very little effort.

e Py



e prcv |

5.1. HP's OpenView Network Node Manager

Network Node Manager (NNM) is a licensed software product. The package includes a feature called Instant-On that allows you
to use the product for a limited time (60 days) while you are waiting for your real license to arrive. During this period, you are
restricted to a 250-managed-node license, but the product's capabilities aren't limited in any other way. When you install the
product, the Instant-On license is enabled by default.

- Check out the OpenView scripts located in OpenView's bin directory (normally /opt/OV/bin). One
s particularly important group of scripts sets environment variables that allow you to traverse OpenView's
w f:: directory structure much more easily. These scripts are named ov.envvars.csh, ov.envvars.sh, etc. (that

is, ov.envvars followed by the name of the shell you're using). When you run the appropriate script for
your shell, it defines environment variables such as $OV_BIN, $OV_MAN, and $OV_TMP, which point to
the OpenView bin, man, and tmp directories, respectively. Thus, you can easily go to the directory
containing OpenView's manual pages with the command cd $OV_MAN. These environment variables are
used throughout this book and in all of OpenView's documentation.

5.1.1. Running NNM

To start the OpenView GUI on a Unix machine, define your DISPLAY environment variable and run the command $OV_BIN/ovw.
This starts OpenView's NNM . If your NNM has performed any discovery, the nodes it has found should appear under your
Internet (top-level) icon. If you have problems starting NNM, run the command $OV_BIN/ovstatus -c and then $OV_BIN/ovstart
or $OV_BIN/ovstop, respectively, to start or stop it. By default, NNM installs the necessary scripts to start its daemons when the
machine boots. OpenView will perform all of its functions in the background, even when you aren't running any maps . This
means that you do not have to keep a copy of NNM running on your console at all times and you don't have to start it explicitly
when your machine reboots.

When the GUI starts, it presents you with a clickable high-level map. This map, called the Root map , provides a top-level view
of your network. The map gives you the ability to see your network without having to see every detail at once. If you want
more information about any item in the display, whether it's a subnet or an individual node, click on it. You can drill down to
see any level of detail you wantfor example, you can look at an interface card on a particular node. The more detail you want,
the more you click. Figure 5-1 shows a typical NNM map.

Figure 5-1. A typical NNM map




The menu bar (see Figure 5-2) allows you to traverse the map with a bit more ease. You have options such as closing NNM (the
leftmost button, which resembles a closing door), going straight to the Home map (the second button from the left, which is, not
surprisingly, a house),[*1 the Root map (the third-left, a hierarchical diagram), the parent or previous map (the fourth-left
button, an up arrow), or the quick navigator (the fifth-left button, a right arrow with two diverging arrows).I 1 There is also a
magnifying glass button that lets you pan through the map or zoom in on a portion of it.

[1You can set any map as your Home map. When you've found the map you'd like to use, go to Map e Submap = Set This Submap as Home.

[ 1This is a special map in which you can place objects that you need to watch frequently. It allows you to access them quickly, without having to find them by searching
through the network map.

Figure 5-2. OpenView NNM menu bar

] Before you get sick of looking at your newly discovered network, keep in mind that you can add some
as quick and easy customizations that will transform your hodgepodge of names, numbers, and icons into
*. @~ a coordinated picture of your network.

5.1.2. The netmon Process

NNM's daemon process (netmon) starts automatically when the system boots and is responsible for discovering nodes on your
network, in addition to a few other tasks. In NNM's menu, go to Options =3 Network Polling Configurations: IP. A window
should appear that looks similar to Figure 5-3.

Figure 5-3 shows the General area of the configuration wizard. The other areas are IP Discovery , Status Polling, and Secondary
Failures. The General area allows us to specify a filter (in this example, NOUSERS) that controls the discovery process we might
not want to see every device on the network. We discuss the creation of filters in "Using OpenView Filters," later in this chapter.
We elected to discover beyond the license limit, which means that NNM will discover more objects on our network than our
license allows us to manage. "Excess" objects (objects past the license's limit) are placed in an unmanaged state so that you can
see them on your maps but can't control them through NNM. This option is useful when your license limits you to a specific
number of managed nodes.

The IP Discovery area (Figure 5-4) lets us enable or disable the discovery of IP nodes. Using the "auto adjust” discovery feature
allows NNM to figure out how often to probe the network for new devices. The more new devices it finds, the more often it

Figure 5-3. OpenView's General network polling configuration options



polls; if it doesn't find any new devices, it slows down, eventually waiting one day (1d) before checking for any new devices. If
you don't like the idea that the discovery interval varies (or perhaps more realistically, if you think that probing the network to
find new devices will consume more resources than you like, either on your network management station or on the network
itself), you can specify a fixed discovery interval. Finally, the Discover Level-2 Objects button tells NNM to discover and report
devices that are at the second layer of the OSI network model. This category includes things such as unmanaged hubs and
switches, many AppleTalk devices, and so on.

Figure 5-5 shows the Status Polling configuration area. Here you can turn status polling on or off and delete nodes that have
been down or unreachable for a specified length of time. The example in Figure 5-5 is configured to delete nodes after they've
been down for one week (1w).

The DHCP polling options are, obviously, especially useful in environments that use DHCP. They allow you to establish a
relationship between polling behavior and IP addresses. You can specify a filter that selects addresses that are assigned by
DHCP. Then you can specify a time after which netmon will delete nonresponding DHCP addresses from its map of your network.
If a device is down for the given amount of time, netmon disassociates the node and IP address. The rationale for this behavior
is

Figure 5-4. OpenView's IP Discovery network polling configuration options



simple: in a DHCP environment, the disappearance of an IP address often means that the node has received a new IP address
from a DHCP server. In that case, continuing to poll the old address is a waste of effort and is possibly even misleading, since
the address may be reassigned to a different host.

Finally, the Secondary Failures configuration area shown in Figure 5-6 allows you to tell the poller how to react when it sees a
secondary failure. This occurs when a node beyond a failed device is unreachablefor example, when a router goes down, making
the file server that is connected via one of the router's interfaces unreachable. In this configuration area, you can state whether
to show alarms for secondary failures or suppress them. If you choose to suppress them, you can set up a filter that identifies
important nodes in your network that should not be suppressed even if they are deemed secondary failures.

Figure 5-6. OpenView's Secondary Failures network polling configuration options



Once your map is up, you may notice that nothing is getting discovered. Initially, netmon won't discover anything beyond the
network segment to which your NMS is attached. If your NMS has an IP address of 24.92.32.12, you will not discover your
devices on 123.67.34.0. NNM finds adjacent routers and their segments, as long as they are SNMP compatible, and places them
in an unmanaged (tan colored) state on the map.L*1 This means that anything in and under that icon will not be polled or
discovered. Selecting the icon and going to Edit = Manage Objects tells NNM to begin managing this network and allows
netmon to start discovering nodes within it. You can quit managing nodes at any time by clicking on UnManage instead of
Manage.

[71n NNM, go to Help —_ Display Legend for a list of icons and their colors.

If your routers do not show any adjacent networks, you should try testing them with Fault =% Test IP/TCP/SNMP. Add the
name of your router, click Restart, and see what kind of results you get back. If you get a message that says "OK except for
SNMP," read Chapter 6 as well as the next section in this chapter, which discusses setting up the default community names
within OpenView .

netmon also allows you to specify a seed file that helps it to discover objects faster. The seed file contains individual 1P
addresses , IP address ranges, or domain names that narrow the scope of hosts that are discovered. You can create the seed file
with any text editorjust put one address or hostname on each line. Placing the addresses of your gateways in the seed file
sometimes makes the most sense since gateways maintain ARP tables for your network. netmon will subsequently discover all
the other nodes on your network, thus freeing you from having to add all your hosts to the seed file. For more useful
information, see the documentation for the -s switch to netmon and the Local Registration Files (LRFs).

NNM has another utility, called loadhosts , that lets you add nodes to the map one at a time. Here is an example of how you can
add hosts, in a sort of freeform mode, to the OpenView map. Note the use of the -m option, which sets the subnet to
255.255.255.0:

$ | oadhosts -m 255.255.255.0
10.1.1.12 gwouterl

Once you have finished adding as many nodes as you'd like, press Ctrl-D to exit the command.

5.1.3. Configuring Polling Intervals

The SNMP Configuration page is located off the main screen under Options = SNMP Configuration. A window similar to the
one in Figure 5-7 should appear. This window has four sections: Specific Nodes, IP Address Wildcards, Default, and the entry
area (cropped in this example). Each section contains the same general areas: Node or IP Address, Get Community, Set
Community, Proxy (if any), Timeout, Retry, Port, and Polling. The Default area, which is unfortunately at the bottom of the
screen, sets up the default behavior for SNMP on your networkthat is, the behavior (community strings, etc.) for all hosts that



aren't listed as "specific nodes" or that match one of the wildcards. The Specific Nodes section allows you to specify exceptions
on a per-node basis. IP Wildcard allows you to configure properties for a range of addresses. This is especially useful if you have
networks that have different get and set community names.L*1 All areas allow you to specify a Timeout in seconds and a Retry
value. The Port field gives you the option of inserting a different port number (the default port is 161). Polling is the frequency
at which you would like to poll your nodes.

[1 These community names are used in different places throughout NNM. For example, when polling an object with xnmbrowser, you won't need to enter (or remember) the
community string if it (or its network) is defined in the SNMP configurations.

Figure 5-7. OpenView's SNMP Configuration page

It's important to understand how timeouts and retries work. If we look at Specific Nodes, we see a Timeout of .9 seconds and a
Retry of 2 for 208.166.230.1. If OpenView doesn't get a response within .9 seconds, it tries again (the first retry) and waits 1.8
seconds. If it still doesn't get anything back, it doubles the timeout period again to 3.6 seconds (the second retry); if it still
doesn't get anything back, it declares the node unreachable and paints it red on NNM's map. With these Timeout and Retry
values, it takes about 6 seconds to identify an unreachable node.

Imagine what would happen if we had a Timeout of 4 seconds and a Retry of 5. By the fifth try, we would be waiting 128
seconds, and the total process would take 252 seconds. That's more than four minutes! For a mission-critical device, four
minutes can be a long time for a failure to go unnoticed.

This example shows that you must be very careful about your Timeout and Retry settingsparticularly in the Default area,
because these settings apply to most of your network. Setting your Timeout and Retry too high and your Polling periods too low
will make netmon fall behind; it will be time to start over before the poller has worked through all your devices.1 This is a
frequent problem when you have many nodes, slow networks, small polling times, and high numbers for Timeout and Retry.[ 1
Once a system falls behind, it will take a long time to discover problems with the devices it is currently monitoring, as well as to
discover new devices. In some cases, NNM may not discover problems with downed devices at all! If your Timeout and Retry
values are set inappropriately, you won't be able to find problems and you will be unable to respond to outages.

[1Keep in mind that most of NNM's map is polled using regular pings and not SNMP.

[ 1Check the manpage for netmon for the -a switch, especially around -a12. You can try to execute netmon with an -a \ ?, which lists all the valid -a options. If you see any
negative numbersin netmon.trace after running netmon -al2, your system is running behind.

Falling behind can be very frustrating. We recommend starting your Polling period very high and working your way down until
you feel comfortable. Ten to twenty minutes is a good starting point for the Polling period. During your initial testing phase, you
can always set a wildcard range for your test servers, etc.

5.1.4. A Few Words About NNM Map Colors

By now, discovery should be taking place, and you should be starting to see some new objects appear on your map. You should
see a correlation between the colors of these objects and the colors in NNM's Event Categories (see Chapter 9 for more about
Event Categories). If a device is reachable via ping, its color will be green. If the device cannot be reached, it will turn red. If
something "underneath" the device fails, the device will become off-green, indicating that the device itself is OK, but something
underneath it has a nonnormal status. For example, a router may be working, but a web server on the LAN behind it may have
failed. The status source for an object like this is Compound or Propagated. (The other types of status source are Symbol and
Object.) The Compound status source is a great way to see if there is a problem at a lower level while still keeping an eye on
the big picture. It alerts you to the problem and allows you to start drilling down until you reach the object that is under duress.



It's always fun to shut off or unplug a machine and watch its icon turn red on the map. This can be a great way to demonstrate
the value of the new management system to your boss. You can also learn how to cheat and make OpenView miss a device,
even though it was unplugged. With a relatively long polling interval, it's easy to unplug a device and plug it back in before
OpenView has a chance to notice that the device isn't there. By the time OpenView gets around to it, the node is back up and
looks fine. Long polling intervals make it easy to miss such temporary failures. Lower polling intervals make it less likely that
OpenView will miss something, but more likely that netmon will fall behind, and in turn miss other failures. Take small steps so
as not to crash or overload netmon or your network.

5.1.5. Using OpenView Filters

Your map may include some devices you don't need, want, or care about. For example, you may not want to poll or manage
users' PCs, particularly if you have many users and a limited license. It may be worthwhile for you to ignore these user devices
to open more slots for managing servers, routers, switches, and other more important devices. netmon has a filtering
mechanism that allows you to control precisely which devices you manage. It lets you filter out unwanted devices, cleans up
your maps , and can reduce the amount of management traffic on your network.

In this book, we warn you repeatedly that polling your network the wrong way can generate huge amounts of management
traffic. This happens when people or programs use default polling intervals that are too fast for the network or the devices on
the network to handle. For example, a management system might poll every node in your 10.1.0.0 networkconceivably
thousands of themevery two minutes. The poll may consist of SNMP get or set requests, simple pings, or both. OpenView's NNM
uses a combination of these to determine if a node is up and running. Filtering saves you (and your management) the trouble of
having to pick through a lot of useless nodes and reduces the load on your network. Using a filter allows you to keep the critical
nodes on your network in view. It allows you to poll the devices you care about and ignore the devices you don't care about.
The last thing you want is to receive notification each time a user turns off his PC when he leaves for the night.

Filters also streamline network management by letting you exclude DHCP users from network discovery and polling. DHCP and
BOOTP are used in many environments to manage large IP address pools. While these protocols are useful, they can make
network management a nightmare, since it's often hard to figure out what's going on when addresses are being assigned,
deallocated, and recycled.

In our environment, we use DHCP only for our users. All servers and printers have hardcoded IP addresses. With our setup, we
can specify all the DHCP clients and then state that we want everything but these clients in our discovery, maps, etc. The
following example should get most users up and running with some pretty good filtering. Take some time to review OpenView's
"A Guide£ Scalability and Distribution for HP OpenView Network Node Manager" manual for more in-depth information on
filtering L=

[1This manual is available at http://ovweb.external.hp.com/ovnsmdps/pdf/j1240-90001.pdf.

The default filter file, which is located in $OV_CONF/C, is broken up into three sections:

* Sets
« Filters
e FilterExpressions

In addition, lines that begin with // are comments. // comments can appear anywhere; some of the other statements have their
own comment fields built in.

Sets allow you to place individual nodes into a group. This can be useful if you want to separate users based on their geographic
locations, for example. You can then use these groups or any combination of IP addresses to specify your Filters, which are also
grouped by name. You then can take all of these groupings and combine them into FilterExpressions. If this seems a bit
confusing, it is! Filters can be very confusing, especially when you add complex syntax and not-so-logical logic (&&, ||, etc.).
The basic syntax for defining Sets, Filters, and FilterExpressions looks like this:

nanme "comments or description" { contents }

Every definition contains a name, followed by comments that appear in double quotes and then the command surrounded by
brackets. Our default filter,[*1 named filters, is located in $OV_CONF/C and looks like this:

[T Your filter, if right out of the box, will look much different. The one shown here is trimmed to ease the pains of writing a filter.

/1 lines that begin with // are considered COMWENTS and are ignored!


http://ovweb.external.hp.com/ovnsmdps/pdf/j1240-90001.pdf

/1 Begi nning of MyConpanyNane Filters

Sets {
di al upusers "Dial Up Users" { "dialupl00", " dialupl01", \
" dial up102" }
}
Filters {

ALLI PRouters "All I P Routers" { isRouter }

SinatraUsers "All Users in the Sinatra Plant" { \
("I P Address" ~ 199.127.4.50-254) || \
("I'P Address" ~ 199.127.5.50-254) || \
("I'P Address" ~ 199.127.6.50-254) }

Mar kel Users "All Users in the Markel Plant" { \
("I'P Address" ~ 172.247.63.17-42) }

Di al Access "All Dial Access Users" { "IP Hostnanme" in dialupusers }

}

Fi | t er Expressi ons
ALLUSERS "All Users" { SinatraUsers || Markel Users || Dial Access }

NOUSERS "No Users " { ! ALLUSERS }

Now let's break down this file into pieces to see what it does.

5.1.5.1. Sets

First, we defined a Setl 1 called di al upusers containing the hostnames (from DNS) that our dial-up users will receive when they
dial into our facility. These are perfect examples of things we don't want to manage or monitor in our OpenView environment.

[ 1These Sets have nothing to do with the snmpset operation with which we have become familiar.

5.1.5.2. Filters

The Filters section is the only required section. We defined four filters: ALLI PRout er s, Si natraUsers, Mar kel Users, and

Di al Access. The first filter says to discover nodes that have the field value i sRout er . OpenView can set the object attribute for a
managed device to values such as i sRout er , i sHub, i sNode, etc.[*1 These attributes can be used in Filter expressions to make it
easier to filter on groups of managed objects, as opposed to IP address ranges, for example.

[1 Check out the $OV_FIELDS folder for a list of fields.

The next two filters specify IP address ranges. The Si nat raUser s filter is the more complex of the two. In it, we specify three IP
address ranges, each separated by logical OR symbols (| | ). The first range (("I P Address" ~ 199. 127. 6. 50-254) ) says that if the
IP address is in the range 199.127.6.50-199.127.6.254, filter it and ignore it. If it's not in this range, the filter looks at the next
range to see if it's in that one. If it's not, the filter looks at the final IP range. If the IP address isn't in any of the three ranges,
the filter allows it to be discovered and subsequently managed by NNM. Other logical operators should be familiar to most
programmers: && represents a logical AND, and ! represents a logical NOT.

The final filter, Di al Access, allows us to exclude all systems that have a hostname listed in the di al upusers Set, which was
defined at the beginning of the file.

5.1.5.3. FilterExpressions

The next section, FilterExpressions, allows us to combine the filters we have previously defined with additional logic. You can
use a FilterExpression anywhere you would use a Filter. Think of it like this: you create complex expressions using Filters,



which in turn can use Sets in the contents parts of their expressions. You can then use FilterExpressions to create simpler yet
more robust expressions. In our case, we take all the filters from above and place them into a FilterExpression called ALLUSERS.
Since we want our NNM map to contain nonuser devices, we then define a group called NOUSERS and tell it to ignore all user-type
devices with the command ! ALLUSERS. As you can see, FilterExpressions can also aid in making things more readable. When you
have finished setting up your filter file, use the $OV_BIN/ovfiltercheck program to check your new filters' syntax. If there are
any problems, it will let you know so that you can fix them.

Now that we have our filters defined, we can apply them by using the ovtopofix command.

If you want to remove nodes from your map, use $OV_BIN/ovtopofix -f FILTER_NAME. Let's say that someone created a new
DHCP scope without telling you and suddenly all the new users are now on the map. You can edit the filters file, create a new
group with the IP address range of the new DHCP scope, add it to the ALLUSERS FilterExpression, and run ovfiltercheck. If there
are no errors, run $0OV_BIN/ovtopofix -f NOUSERS to update the map on the fly. Then stop and restart netmonotherwise, it will
keep discovering these unwanted nodes using the old filter. We run ovtopofix every month or so to take out some random
nodes.

5.1.6. Loading MIBs into OpenView

Before you continue exploring OpenView's NNM, take time to load some vendor-specific MIBs.L*1 This will help you later on
when you start interacting (polling, graphing, etc.) more with SNMP-compatible devices. Go to Options =2 Load/Unload MIBs:
SNMP. This presents you with a window in which you can add vendor-specific MIBs to your database. Alternatively, you can run
the command $0OV_BIN/xnmloadmib and bypass having to go through NNM directly.

[T Some platforms and environments refer to loading a MIB as compiling it.

That's the end of our brief tour of OpenView configuration . It's impossible to provide a complete introduction to configuring
OpenView in this chapter, so we tried to provide a survey of the most important aspects of getting it running. There can be no
substitute for the documentation and manual pages that come with the product itself.

e prc |



e prcv |

5.2. Castle Rock's SNMPc Enterprise Edition

We'll end the chapter with a brief discussion of Castle Rock's SNMPc, Version 7.0, which runs on Microsoft Windows.I 1 SNMPc is
a simpler product than OpenView in many respects. However, even though it's simpler, it's far from featureless. It's also
cheaper than OpenView, which makes it ideal for shops that don't have a lot of money to spend on an NMS platform but need
the support and backing that a commercial product provides.

[ ISNMPc runs on Windows Server 2003, Windows 2000, Windows XP, and Windows NT. The WorkGroup edition and console also run on Windows ME and Windows
98.

Installation of SNMPc is straightforward. The installer asks for the license number and a discovery seed device. The seed device
is similar to a seed file for OpenView's netmon. In the case of SNMPc, we recommend giving it the IP address (or hostname) of
your gateway since this device can be used to discover other segments of your network. The installer gives you the option
(checkbox) of turning on or off the discovery during the initial start. Bigger networks might opt to deactivate the initial
discovery to prevent a flood of requests (and maybe auth failures).

5.2.1. SNMPc's Map

Once SNMPc is up and running, you will see any devices it has discovered in the Root map view. Figure 5-8 shows the main
button bar. The far-right button (the house) gets you to the highest level on the map. The zooming tools allow you to pan in
and out of the map, increasing or decreasing the amount of detail it shows. You can also reach the Root submap by selecting
View =% Map View =2 Root Submap.

Figure 5-8. SNMPc main button bar

| 06| B[ 2 [ed MO [5i]5 5] | =] ] &)

5.2.2. Discovery and Filters

Once you are done playing around with your maps, it's time to start tuning your polling parameters. Go to Config =
Discovery/Polling. This should bring up a menu that looks like Figure 5-9. Looking at the menu tabs, it's easy to tell that you
will be able to configure your Seeds, Communities, Filters, and TCP service polling (Proto) here. SNMPc filters are equivalent to
OpenView filters, but they are much simpler.

Figure 5-9. SNMPc Discovery/Polling Agents menu



Discovery/Polling Agents...

Address | Status | Genesal |P|o!a | Seeds | Comm | Fiters |
locathost connected Discovery Corlig

i Enable Discovery Bestart |
W Use Subnet Broadcasts

I PngSgan Subnets

futo Restat Time fhows} [1

Poling Config

¥ Enable Stalus Poling
Layout: [Top Level/Complete _~] [¥ Enabla Seryvice Poling
™ Use ful DNS name
¥ Enable Poll Aftes Layout o ”TI e e

The General tab lets you control SNMPc's polling and discovery behavior. The checkbox for enabling and disabling discovery is
self-explanatory. The Enable Status Polling checkbox determines whether SNMPc will ping the nodes on your network
periodically to determine whether they are responding. By default, all nodes are polled every 10 to 30 seconds. To change these
default values, you can either edit the properties of each device (one by one), select and highlight multiple devices (using your
Ctrl key), or use the object selection tool. You can bring up this tool by going to View == Selection Tool. The Discover Ping
Nodes checkbox (under the Proto tab) lets you specify if you want to discover devices that have an IP or IPX entity but do not
have an SNMP agent. SNMPc will also check whether a device supports various protocols such as SMTP, HTTP, etc. This feature
allows you to set up custom menu items based on what services the device is running. The Find TCP Ports section of the Proto
tab lets you specify the protocols for which SNMPc will test.

The Seeds tab allows you to specify SNMP devices that will help the discovery process along. This tab allows you to specify more
than one seed IP address. (Remember that you're asked for a seed address device when you install the product.)

The Comm tab lets you specify the community strings for your network. You can specify multiple community names; SNMPc will
try the different community names when discovering your nodes. Once SNMPc figures out which community is correct for a
given device, it inserts the community string in the Get Community attribute for that particular device. This simply means the
newly discovered device will be saved with its community string.

The final tab, Filters, allows you to exclude certain IP addresses from being discovered. You can specify individual addresses or
use an asterisk (*) as a wildcard to specify entire networks.

5.2.3. Discovery Run-Through

Let's have SNMPc discover a small home network. First, | configure the discovery engine to find non-SNMP devices.

Figure 5-10 shows that the Find Non-SNMP (Ping) Nodes checkbox is selected. This setting will find devices on your network
that are up but are not running an SNMP agent and can be helpful in getting a general map of your entire network. When you
click OK, SNMPc does its thing. After a few moments, SNMPc creates a map that looks like Figure 5-11.

In this example, SNMPc has found my small home network, 192.168.1. If | double-click on the icon on the map, | see the actual
devices on my home network, as shown in Figure 5-12.

I have two machines: a Linux server and a laptop. Figure 5-13 shows a closer view of these discovered devices.
Notice that the LinuxServer icon has the word snmp as part of the icon. This means it responded to SNMP polls. The loanera22p

icon, however, is not running an SNMP agent, yet the discovery engine found it and placed the word icmp to denote that the
machine is up and running but is not responding to SNMP polls.

Figure 5-10. Finding non-SNMP devices



Discovery/Polling Agents...

Addiess [ Status | Genersl Proto | Seeds | Comm | Fiters |
eanct eosnectes [ Find NonSNMP (Ping) Nodes
W Find BMON Devices
- Find TCP Ports
W WEB I~ Teknet
W sMTP I ETP
Lapout: ITnp Level/Complete ;i
™ Use full DNS name
M Enable Poll After Layout dete [[T0E ] Comei | How

Figure 5-11. Root network discovered

Figure 5-12. The devices on the 192.168.1 network



| Tomd | Gt | e |

5.2.4. Configuring SNMPv3

Not only can SNMPc poll SNMPv1 and SNMPv2 devices, but it can also poll SNMPv3 devices. This is a very nice feature and
further shows that Castle Rock is committed to producing a full-featured network management platform. Let's briefly look at
how you would configure SNMPv3-specific parameters.

Right-click on a device and select Properties to display a window like that shown in Figure 5-14.

Figure 5-14. Map Object Properties



Map Object Properties El

General | Access | Attributes | Dependencies |

LinuiS etver Tupe: | Device ~|
Addvess: [192.169.169 Jeon: [autaico ]
Group:  [010=Workstation =] >
Descr

oK. I Cancel Help

Select the Access tab to see the SNMP configuration parameters, in Figure 5-15.

Figure 5-15. SNMP parameters

Map Object Properties

General Access IAILrtulssl Dependencies |

M ame: |
Vale: | = »|
Attite | pame o | Value |
Read Access Mode SHMPV2c
Read/wiite Access Mode SHMPV2e
Read Community public
Read/w/ite Commumnity public
Trap Corrwmity: public
Y3 Engneid <auto>
W3 Context Name <not sets

W3 No-Auth Secunty N ame £not sel»
W3 Auth/Priv Secunly M ame <not sel»
W3 Auth Passwd <nat gets
W3 Priv Passwd <not st

ok |  Cancel Heo |

As you can see, there are several attributes to choose from. If you select either Read/Access Mode or Read/Write Access Mode
and expand the Value drop-down box, you will see the different modes available to you, as in Figure 5-16.

Figure 5-16. Access modes



Map Object Properties

General
Name:
Wahue:
Aittribe

Access | Attibutes | Dependencies |

|FIaedM:itaAccass Moda

SNMP V2c

SHMP V3 Mo-Auth
SHMP V3 Auth-MD5
SHMP V3 Auth-SHA
SHMP %3 Priv Auth-MD 5
SHMP V3 Priv Auth-SHA
%3 Engineid

W3 Context Name

W3 No-dwth Secunty M ame
W3 Auth/Priv Secunly Name
W3 Auth Pazswd

W3 Priv Passwd

<auta

<nat sel>
<not set>
<not sel»
<not seb>
<not setx

0K I Cancel Help

Figure 5-16 shows the various SNMPv1, SNMPv2, and SNMPv3 access modes available to you. SNMPc supports only DES for
privacy. If my SNMP agent used MD5 for authentication and DES for privacy, | would configure the map object as shown in

Figure 5-17.

Note that Read Access Mode and Read/Write Access Mode are both SNMP V3 Priv Auth-MD5. This means SNMPc will use MD5 for
authentication. Since SNMPc supports only DES for privacy, it is implied that it will use this protocol for encrypting the data. My
SNMPv3 username is kj s, the authentication password is nypasswor d, and the privacy password is nyot her passwor d.[=

[1 Of course, these are just passwords for this example. In real life, one would never use such lame passwords.

5.2.5. Loading MIBs into SNMPc

Like any reasonably comprehensive network management product, SNMPc can load new MIBs. According to the SNMPc
documentation, you place new MIB source files in the \snmpcnt\mibfiles directory on the server computer. Note that on my
system, the full path for the MIB files is C:\Program Files\SNMPc Network Manager\mibfiles, so check both locations.

Figure 5-17. SNMPv3 configuration

Map Object Properties

Genesal

Access 'Attrbulas | Dependencies |

|T|an Commurdy

= B

Marme )

Read Access Mode
Read/wWiite Access Mode
Read Community
ReadAwnte Commumity
Trap Comrrwmity

%3 Engineid

W3 Context Mame

W3 Mo-dwth Secunty N ame
W3 Auth/Priv Security Name
W3 Auth Passwd

W3 Priv Passwd

| Malue |

SNMPV3 Pirv Auth-MD5
SNMP V3 Pirv Auth-MDS
public

public

Lauta>

<not sets

kig

mypaszword
myctherpassword

o]

Cancel Help |




Once you have copied your MIB file to this directory (make sure it has a .mib extension), select Config =* Mib Database from
the menu bar to display the Compile Mibs window shown in Figure 5-18.

Figure 5-18. Compile Mibs window

Compile Mibs...
Mibz To Compile:

standard. mib Compile Statiss

11592 mib i
i %.mib Enries: [0
il mib )
11748 mib Warings: |0
1fe1 742 mib 5
1fic1 253, mibs Enors: |
tfic] 269, mib .
1fe1 285, mib Compiling: |

11 694 mib

1fc1 315 mib Cornpile J .} !
1658 m

4

Add Remove | Dore Help l

Click Add to find the MIB file you want to add. This brings up another window where you can find the MIB you want to add in
the list and click OK. You will now be back at the Compile Mibs window. Click Compile to compile all the MIBs, including the one
you just added. This may take a little bit of time. Once it's done and there are no errors, you should see a window similar to

Figure 5-19.

Figure 5-19. Completion of MIB compile

Compile Mibs...

Mibz To Compile: !
sybootsy. b x [ Compile Status
:ﬁ?.;;“.h Enlries.  [B7961
sy mib )
wyened mib Wamings: !U
wyieZhub. b
Ryinet mib Ewors: |U
:ﬁiﬂfﬂ"}f Compiing:  [flush eventdb...
sypamcl. mib
xyplex mib Compile .} !
cisco-ping-meh.mib v
Add Remove Done | Help ]

If you want to learn more about adding MIBs, click on the Help button.

SNMPc is a compact NMS that provides some added features, such as trend reporting. A thorough treatment of its installation is
beyond the scope of this book. The online help system that comes with SNMPc is very good, and we recommend that you take
full advantage of it.

e prc |



e prcv |

Chapter 6. Configuring SNMP Agents

By this time, you should understand what an SNMP agent is: it's nothing more than software that lives on the device you want
to monitor. It responds to requests from the NMS and generates traps. This chapter discusses how to configure agents. It starts
by defining some standard configuration parameters that are common to all SNMP agents, and then goes into some advanced
parameters you might run into when configuring your equipment. The bulk of this chapter walks through the configuration for a
number of common devices, paying attention to security issues.

e prcy |



e prcv |

6.1. Parameter Settings

All SNMP devices share the following common configurable parameters:

« syslLocation

¢ sysContact

¢ sysName

- Read-write and read-only access community strings (and frequently, a trap community string)
» Trap destination

sysLocation is the physical location for the device being monitored. Its definition in RFC 1213 is:

sysLocati on OBJECT- TYPE

SYNTAX DisplayString (SIZE (0..255))

ACCESS read-wite

STATUS nandatory

DESCRI PTI ON
"The physical |ocation of this node (e.g., 'telephone closet,
3rd floor")."

:={ system6 }

As you can see, its SYNTAX is Di spl ayStri ng, which means it can be an ASCII string of characters; its size is declared to be, at
most, 255 characters. This particular object is useful for determining where a device is located. This kind of practical
information is essential in a large network, particularly if it's spread over a wide area. If you have a misbehaving switch, it's
very convenient to be able to look up the switch's physical location. Unfortunately, sysLocation frequently isn't set when the
device is installed and even more often isn't changed when the device is moved. Unreliable information is worse than no
information, so use some discipline and keep your devices up-to-date.

RFC 1213's definition of sysContact is similar to that of sysLocation:

sysCont act OBJECT- TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-wite

STATUS nandatory
DESCRI PTI ON
"The textual identification of the contact person for this nanaged
node, together with information on how to contact this person."
:={ system4 }

sysContact is a Di spl ayStri ng. It's fairly obvious what it's used for: it identifies the primary contact for the device in question. It
is important to set this object with an appropriate value, as it can help your operations staff determine who needs to be
contacted in the event of some catastrophic failure. You can also use it to make sure you're notified, if you're responsible for a
given device, when someone needs to take your device down for maintenance or repairs. As with sysLocation, make sure to
keep this information up-to-date as your staff changes. It's not uncommon to find devices for which the sysContact is someone
who left the company several years ago.

sysNames hould be set to the fully qualified domain name (FQDN) for the managed device. In other words, it's the hostname

associated with the managed device's IP address. The RFC 1213 definition follows:

sysNane OBJECT- TYPE
SYNTAX DisplayString (SIZE (0..255))



ACCESS read-wite
STATUS nmandat ory
DESCRI PTI ON
"An admi ni strativel y-assi gned nane for this nmanaged node. By
convention, this is the node's fully-qualified domain nanme."
:={ system5 }

The read-only and read-write parameters are the community strings for read-only and read-write access. Notice that
sysLocation, sysContact, and sysName all have ACCESS values of read-wite. With the appropriate read-write community string,
anyone can change the definition of these objects and many more objects of significantly greater importance. Ultimately, it's not
a huge problem if somebody maliciously makes your router lie about its locationyou probably already know that it isn't located
in Antarctica. But someone who can do this can also fiddle with your routing tables and do other kinds of much more serious
damage. Someone who has only the read-only community string can certainly find out more information about your network
than you would like to reveal to an outsider. Setting the community strings is extremely important to maintaining a secure
environment. Most devices are shipped with default community strings that are well known. Don't assume that you can put off
setting your community strings until later.

The trap destination parameters specify the addresses to which traps are sent. There's nothing really magical heresince traps
are asynchronous notifications generated by your devices, the agent needs to know who should receive notification. Many
devices support authentication-failure traps , which are generated if someone attempts to access them using incorrect
community strings. This feature is extremely useful, as it allows you to detect attempts to break into your devices. Many
devices also support the ability to include a community string with traps; you can configure the NMS to respond only to traps
that contain the proper community string.

Many devices have additional twists on the access and trap parameters. For example, Cisco devices allow you to create different
community strings for different parts of the MIByou can use this to allow people to set some variables, but not others. Many
vendors allow you to place restrictions on the hosts that are allowed to make SNMP requests. That is, the device will respond
only to requests from certain IP addresses, regardless of the community string.

The range of configuration options you're likely to run into is limited only by the imagination of the vendors, so it's obviously
impossible for us to describe everything you might encounter. "Agent Configuration Walkthroughs," later in this chapter, will
give you an idea of how some agents implement the standard configuration parameters, and a little insight into what other
features might be available.

e prcv |




e prcv |

6.2. Security Concerns

Chapter 2 discussed the security issues with SNMPv1 and SNMPv2. The biggest problem, of course, is that the read-only and
read-write community strings are sent as clear-text strings; the agent or the NMS performs no encryption. Therefore, the
community strings are available to anyone with access to a packet sniffer. That certainly means almost anyone on your network
with a PC and the ability to download widely available software. Does that make you uncomfortable? It should.

Obviously, you need to take the same precautions with the community strings that you would with your superuser or
administrator passwords. Choose community strings that are hard to guess. Mixed-case alphanumeric strings are good choices
for community strings; don't use dictionary words. Although someone with the read-only community string can't do as much
damage as someone with the read-write string, you might as well take the same precautions for both. Don't forget to change
your community stringsmost devices ship with preconfigured community strings that are extremely easy to guess.

That doesn't solve the problems with packet sniffers . When you're configuring an agent, it's a good idea to limit the devices
that can make SNMP requests (assuming that your agent allows you to make this restriction). That way, even if someone gets
the community strings, he'll have to spoof the IP address of one of your management stations to do any damage.

Of course, many people know how to spoof IP addresses these days, and it's not a really good idea to assume that you can trust
your employees. A better solution to the problem is to prevent the SNMP packets from being visible on your external network
connections and parts of your network where you don't want them to appear. This requires configuring your routers and
firewalls with access lists that block SNMP packets from the outside world (which may include parts of your own network). If you
don't trust the users of your network, you may want to set up a separate administrative network to be used for SNMP queries
and other management operations. This is expensive and inflexibleit's hard to imagine extending such a network beyond your
core routers and serversbut it may be what your situation requires.

If you want to use SNMP to monitor your network from home, be extremely careful. You do not want your community strings
traveling over the public Internet in an unencrypted form. If you plan to use SNMP tools directly from home, make sure to
install VPN software, or some form of tunneling, to keep your SNMP traffic private. A better approach to home monitoring is to
use a web interface; by using SSL, you can prevent others from seeing your usage graphs. (No network management products
that we're aware of support SSL out of the box, but they do allow you to integrate with external servers, such as Apache, which
do support SSL.)

SNMPv3 fixes most of the security problems; in particular, it makes sure that the community strings are always encrypted.

e prc |



e prcv |

6.3. Agent Configuration Walkthroughs

In the following sections, we will walk through the configurations of some typical SNMP agents. We have chosen devices that are
found on almost every modern network (PCs, Unix servers, routers, UPSs, etc.). The point of this discussion isn't to show you
how your particular agent is configuredthat would not be practical, given the hundreds of devices and vendors out there. Our
intent is to give you a feel for what the common options are, and what steps you'll typically go through to configure an agent.

6.3.1. Windows Agents (Net-SNMP)

Microsoft makes an SNMP agent for its operating systems. Unfortunately, it's not exactly the most feature-rich agent in the
world. In this section, we'll install the Net-SNMP agent on Windows. The nice thing about this agent is that it's free. For those of
you who need the support of a commercial product, take a look at Concord’'s SNMP agent; it's covered later in this chapter.

The Net-SNMP agent is available from http://net-snmp.sourceforge.net. We discuss the Net-SNMP agent for Windows in this
section, and the nice thing about this is that both environments share the same configuration settings. Review the section about
the Unix agent later in this chapter for details on advanced configurations.

We should point out some differences between the Windows version and the Unix version of the agent. If we wait until the end
of this section, they might not catch your attention as easily:

« The version that you download from the Internet is a precompiled binary. It doesn't have support for SNMPv3 built in. You
can build this support in, but you will need the Microsoft Visual C++ compiler. Download the source distribution from the
Net-SNMP URL listed earlier, unpack it, and read the section in the README.win32 file called "Microsoft Visual C++ -
Workspace - Building" if you want to compile a version with SNMPv3 support.

« The configuration file takes all the same options as the Unix version of the agent. The one difference is that on Windows,
paths use forward slashes. For example, a normal Windows path looks like this: C:\somepath\where\data\lives. In the Net-
SNMP configuration files for Windows, this same path would be C:/somepath/where/data/lives. Just be aware of this
difference.

Go to the Net-SNMP site and download the prebuilt binary for Windows. Once it's downloaded, double-click the icon to display a
setup screen as in Figure 6-1.

Click Next, which brings up a window like the one in Figure 6-2.

Select "I accept the terms in the License Agreement"” (after you have actually read it) and click Next to display Figure 6-3.

The Base Components option will install command-line tools and other things. This is actually a good idea, because then you can
use the same Net-SNMP command-line tools we use throughout the book; the options are the same. The next two options install

the SNMP agent and a trap receiver. The fourth option installs the Net-SNMP Perl modules. If you are interested in using Perl,
you will need to install a Perl interpreter. You can get a very good Windows interpreter from http://www.activestate.com.

Figure 6-4 appears when you click Next. You are selecting the location where you want to install the package. The default,
C:\usr, is a bit odd for Windows, but we suggest leaving it as is mainly because all the Unix examples in this book use that base
directory.

Figure 6-1. Net-SNMP initial install screen


http://net-snmp.sourceforge.net
http://www.activestate.com

© Net-SNMP 5.2.1 Setup =] ]

Welcome to the Net-SNMP 5.2.1
Setup Wizard

This wizard will quide vou through the installation of
Met-SHMP 5.2, 1.

It is recommended that you close all other applications
before starting Setup. This will make &t possible to update
relevant system Files without having to reboot your

conmputer.

Click Mext bo continue,

[gext:- j l Cancel ]

Figure 6-2. Net-SNMP license agreement

 Net-SNMP 5.2.1 Setup

License Agreement —
Flease review the icense terms before instaling Met-5MMP 5.2.1. (4:'

Press Page Down ko see the rest of the agresment,

various copyrights apply to this package, listed in various separate parts ”
below. Please make sure that you read all the parts, Up until 2001,

the project was based at UC Davis, and the first part covers all code

written during this bime. From 2001 onwards, the projeck has been

based at SourceForge, and Netwarks Associates Technology, Inc hold the

copyright on behalf of the wider Met-SNMP community, covering all

derivative work done since then. An additional copyright section has

been added as Part 3 below also under a BSD license For the work

rnirdribi iberd by Cambridos Rroadhand AL B bhie neniect sinee 2001, fe

IF wou accept the terms of the agreement, select the Ffirst option below. You must accept the
agreement bo install Net-SNMP 5.2, 1. Click Next bo continue.

(©1 accept the terms in the License Agreement;
(1 do not accept the terrns in the License Agreement

[ < Back i[ Next > ]l Canicel ]

Figure 6-3. Net-SNMP component selection



 Net-SNMP 5.2.1 Setup

Choose Components —
Chisose which features of Net-SMMP 5.2.1 you want to install, (

Check the components you want ko install and uncheck the components you don't want ko
imstall, Click Next bo continue,

Select components to install Base Components [ Dﬁf:rlplmf‘l
[¥] et-ShMP gent Service |

Net-SMMP Trap Service

Perl SNVP Modules '

Space required: §.9MB |

[ < Back ]l_l‘_'ie:t:- ][ Cancel ]

Figure 6-4. Net-SNMP install location

£ Net-SNMP 5.2.1 Setup

Choose Install Location "
Choose the Folder in which to install Net-SNMP 5.2.1. (-

Setup will install Net-SNIMP 5.2, 1 in the Following Folder. To install in 3 different Folder, click
Browse and select another Folder, Click Next to continue.

Destination Folder
Space requirad: §.9MB

Spaca available: 27,568

[ < Back “_L\ie:t:- ][ Cancel ]

Once the package is installed, you need to register the agent as a service so that it will start upon reboot. This also gives you
greater control over the agent. Here is the command sequence, assuming you installed the package in C:\usr.

C:\ Docunments and Settings\kschm dt\Desktop>cd c:\usr

C:\usr>regi steragent. bat
Regi stering snnpd as a service using the followi ng additional options:

-Lf "C:/usr/log/snnmpd. | og"

For information on running snnpd. exe and snnptrapd. exe as a W ndows
service, see 'How to Register the Net-SNWP Agent and Trap Daenon as



W ndows services' in README. wi n32.
Press any key to continue .

C:\usr>

Once this is done, you need to start the agent. Go to the Control Panel and bring up the Administrative Tools. Once this loads,
double-click the Services icon. Scroll through the list of services until you find the Net-SNMP service. It should not be running,
as shown in the status column in Figure 6-5.

Figure 6-5. Windows Services

= Sprvicec

St <SP Agent L | Eovriinn | Sigkun | s &
Shlrternst Conrmctio.., Provides pebwork sddrace branclabic.. Started  Auton
2} the sorvice B IPSEC Servces Marisges [F securty pobey and start..,  Started  Auton
Tloges Disk Moroger  Dietocts and moniers news hard dish .. Maras
m&m?!imwu %mwm Contigures hard disk drives and volu.... Man
i fedmand redpinies Macking DebugMan... Mansges local and romets debuggin..,  Sharted  Auton
;Tgmﬂmrmx SyMescangar Tranamsits nat send ard Alarter sard..  Sarted  Auton
oy — MG Soblwearn Thada, . Maruges schtw e-based vobume sh Maras
et Logon Supports passthrough suthenticatio..  Started  Auton
ByetMetig fomte... Enslies o ol uriod we | M
etwork Conrmctiors Marages chiecis nthe Nelwork and...  Soated  Manu
Mebvatek DCE Proracdad Faetvacrt br gt ot fty Mafai
R tostwork UUE UM Pianages Dynams: Lista Exchangs (1., Harus
astraek Location A, . Colects wd thover natecsbconfigr...  Sated M
yNT LM Security Sp...  Provides security to remole procedu... Mt
B OponiTH Sorace Mares
Gy Performancs Lode a... Cobects performands dats from bocal.. Moz
Pl s oy Crables & compuber b pcogrize ond..  Tarted  Auton
W bortable Madis Sevi..  etrees the seral rumber of sy b Mo
Rabrid Sumes Ll Pl by sy (on ke priiing. Started  Audum
B Protacted Sorace Provides probacted storae for el Started Baon
[ ST Byr o, oo o ww by el Be o My
1 . »

Extwnded A Standard /

Click on "Start the service" and it should start running, as shown in Figure 6-6.

Figure 6-6. The running Net-SNMP agent



"o Srviees

et -SNMP Agent Yoo | Ersytan | B | mau A
- Proades redwork addrect tranelatsc.., Sartad Radton
Hanages I securky poldy and start..,  Started Fadon
Cotecty ond mondors now hord dish. ... Mari
- Configuees Rard disk drives 40 voly... Marey
o Manoges locol ond romete dobagon...  Started Bagkon,
Tranamts rat gand and Alarter sorv..  Startad Rion

Dacorption)
ShePve [ S0P ) oomemand respondar

Frof Net-SHPP. Suppants MIB objects o 1 Manages softeere-based vokoma she . Plans
1P, 1CMP, TP LDP, and netwerk intertage Supports passtheough suthentcatio.,.  Started  Auton
ol o Bl @l nrlied e Ly . Mo

Panages cbiects ithe Nelwerk snd...  Started
Provedes ratveork brarsport and tecy
PAAnages Dymam Lista Exchange (L.,
R Nabvscab. Location ... Cobects arel theres ntvaceb. cordige. . Sarked
SNT LM Security Sep...  Provides security to remote precedu..

EHEAERERERE]

By OporTH Servce

S Performance Loas ... Collects perfoemance data from local..

Ry o Py Cruskles & comgutter b redognes and.,.  Started

Wi Piortable Mecka Sevi . etreves the oenal rumber of sy D

%Hllswun Rk Pk bap vt y [ow ol ity Startedd
SnProtected Roraon  Provides protected storage For senst., Rarted

[ Y S S T S Yo |

£ »

Datended A Standard

You can now stop, pause, and restart the agent. Start it and then try to access the agent. You can use the SNMP tools installed
on the machine to do this, using the following commands:

C:\usr>snnpwal k -v2c -c public |ocal host
Ti neout: No Response from | ocal host

C:\usr>

We get a timeout because we haven't configured the agent to respond to any SNMP queries. To do this, use your favorite editor
to create a file called c:\usr\etc\snmp\snmpd.conf and add this line to it:

rwconmunity public

This sets up a read-write community string of public. Please note that this example is just for demonstration purposes. You
should choose a more robust community string. For the changes to take effect, you need to go to the Services panel and click
Restart.

A When you make changes to Net-SNMP files, to have them take effect you must go to the Services panel
. Y y g p
as and restart the agent service.
[ I8
15N

Once you have done that, try the same command again, and the agent responds to our SNMP query:

C:\usr>snmpwal k -v2c -c public |ocal host

SNVPv2- M B: : sysDescr. 0 = STRING W ndows | oanera22p 5.1.2600 Service Pack 1 XP P
rof essional x86 Fanmily 6 Mdel 8 Stepping 10

SNVPv2- M B: : sysCbject I D.O = O D: NET- SNMP- M B: : net SnnpAgent O Ds. 13

DI SMAN- EVENT- M B: : sysUpTi nmel nstance = Tinmeticks: (4540) O0:00:45. 40

SNWPv2- M B: : sysContact.0 = STRING USER

SNVPv2- M B: : sysNane. 0 = STRING | oanera22p

SNVPv2- M B: : sysLocation.0 = STRING unknown

SNVPv2- M B: : sysORLast Change. 0 = Tineticks: (5) 0:00:00.05

SNWPv2-M B: :sysORID.1 = OD: IFFMB::ifMB



SNVPv2- M B: : sysORI D. 2
SNVPv2- M B: : sysORI D. 3
SNWPv2- M B: : sysORI D. 4
SNWPv2- M B: : sysORID. 5
SNVPv2- M B: : sysORI D. 6
SNWPv2- M B: : sysORI D. 7
SNWPv2- M B: : sysORI D. 8
SNVPv2- M B: : sysORI D. 9

O D TCP-MB::tcpMB

AD IP-MB::ip

O D: UDP-M B: : udpM B

A D SNWv2-M B::snnmpM B

O D: SNWP- VI EW BASED- ACM M B: : vacnBasi cG oup

O D: SNVP- FRAVEWORK- M B: : snnpFr amewor kM BConpl i ance
A D. SNVP- MPD- M B: : snnmpMPDConpl i ance

O D: SNWP- USER- BASED- SM M B: : usnM BConpl i ance

Now, if you don't want to run the agent as a service, you can run it from the command line. The command is simply snmpd:

C:\usr >snnpd
No | og handling enabled - turning on stderr |oggi ng
NET- SNMP version 5.2.1

The Net-SNMP folks have done a really nice job of putting the Windows distribution together. It may seem like quite a few steps
are involved, but believe me you would not even be done installing the Microsoft agent at this point. If you want to know more
about configuring the agent, read the section about the Unix version later in this chapter. The snmpconf Perl script that comes
with the Unix version also comes with the Windows version, so you can use it to create configuration files.

6.3.2. HP OpenView Agent for HP-UX and Solaris

One text configuration file controls the parameters for the OpenView agent; the file is typically named
/etc/SnmpAgent.d/snmpd.conf, or /etc/snmpd.conf on older systems. You don't need to edit this file for the agent to function
normally. If you do edit it, you must stop and restart the master agent by executing the SnmpMaster script, first with a stop and
then a start :

$ /sbin/init.d/ SnnpMaster stop
$ /sbin/init.d/ SnnpMaster start

6.3.2.1. Simple configuration

The following configuration file configures the agent to respond to get requests using the community name public and set
requests using the community name private. There are no restrictions on which MIBs can be queried, or which hosts can make
the queries. This configuration has no security, since the community strings are set to commonly used defaults and are widely
known. The OpenView agent sends authentication-failure traps by default, so you don't have to enable these traps in the
configuration file.

get - comuni t y- nane: public

set - conmuni ty- nane: private

trap-dest: 127.0.0.1

contact: B. Gat es

| ocati on: 12 Pyramid - Egypt

The simplest configuration is to edit the file and place more reasonable community names in the first two lines. We can't say it
too much: community names are essentially passwords. Use the same rules for picking community names that you would for
choosing the root password. You should always set the destination trap host (TRap- dest ) to the IP address of the host that will
receive the trap.

The next example configures several different community names:
get - comuni t y- nane: public

get - comuni t y- nane: medi a
set - communi t y- nane: hushed



set - communi t y- nane: veryprivate
set - communi t y- nane: shhhh

We have created two get (read-only) communities and three set (read-write) communities. These communities can be used as
you see fit. (In real life, we would have chosen more obscure names.) For example, you might give your operations group in
New York public community access and your operations group in Atlanta media community access. The remaining set
communities can further be subdivided among various administrators and other staff who need read-write access.

6.3.2.2. Advanced configuration

Setting up multiple community strings doesn't sound very useful, and by itself, it isn't. But you can take the concept a step
further and create different communities, each consisting of a few particular hosts and able to access only some of the objects
SNMP manages. The next example allows the host 10.123.56.25 to issue gets using the community name comname and sets
using the community name private. The host 10.123.46.101 can issue gets using only the community name comname. You
cannot use hostnames after the | P: directive; you must use IP addresses.

get - comuni ty- nane comane | P: 10.123.56.25 10.123. 46. 101
set - communi t y- nanme private | P: 10.123.56.25

You can also configure the agent to restrict access to MIB subtrees based on IP addresses. The next example allows any host to
get any object under iso.org.dod.internet.mgmt.mib-2, except for objects in the interfaces subtree. The minus sign (-) in front of
interfaces instructs the agent to disallow access to this subtree.

get - communi ty- nane public VIEW mb-2 -interfaces

The final example sets up multiple community names for both sets and gets. An administrator who is located at host
10.123.46.25 and knows the admin community string has read access to the entire MIB tree; with the adminset community
string, he has write access to the entire tree. Someone with the operator community string can sit anywhere and access
everything in mib-2 except for the interfaces subtree, but must be sitting at his desk (10.123.56.101) to issue sets and is not
allowed to set anything in the mib-2 subtree.

get - communi ty- nane operator VIEW nib-2 -interfaces

get - comuni ty- nane adm n | P: 10.123.56. 25

set - communi t y- nanme operset | P: 10.123.46.101 VIEW -m b-2
set - communi ty- nane admi nset |P: 10.123.56. 25

6.3.3. Net-SNMP for Unix

Net-SNMP is an open source agent that is freely available from http://net-snmp.sourceforge.net. We will focus on Net-SNMP
Version 5.2.1, which is the most recent as of this publication. Once you have downloaded and unpacked the distribution, cd into
the directory in which you unpacked Net-SNMP and read the README and INSTALL files. These files provide general information
on installing the agent and don't require much explanation here.

Net-SNMP uses a configure script to make sure your environment has some key utilities and libraries installed, so it can be
compiled successfully. Many configuration options are settable when you run this script. To see a list of them, run the following
command:

net-snnp-5.2.1/> ./configure --help

One common option is - -prefix=PATH. This specifies an alternate installation directory. By default, Net-SNMP will install in
/usr/local/bin, /usr/local/man, etc.


http://net-snmp.sourceforge.net

We'll be running configure without any options, which means our Net-SNMP build will have default values assigned for various
options. For example, the agent binary will be placed in /usr/local/sbin. Run the following command to begin the configuration
process:

net-snnp-5.2.1/> ./configure

Note that by default, Net-SNMP does not compile in the Host Resources MIB. You will want to add this to the configure line if you
want to access things like CPU statistics, memory and disk information, etc. Run configure like so:

net-snnp-5.2.1/> ./configure -wth-m b-nodul es=host

You will see various messages about what features configure is looking for and whether they're found.

After running for a while, configure will ask for some basic SNMP information:

khkkkhkhkhkhkkhkkhk* Q)nfiguration SeCtion **Fxxxxkkkxkkkx

You are about to be pronpted by a series of questions. Answer
them carefully, as they deternine how the snnp agent and rel ated
applications are to function.

After the configure script finishes, you can browse the newy
created config.h file for further - less inportant - paraneters to
nodi fy. Be careful if you re-run configure though since config.h wll
be over witten.

-Press return to continue-

When you press Return, you'll be prompted for the particular version of SNMP you wish to use:

di sabling above pronpt for future runs... yes
checking System Contact Information...

**x Default SNVP Version:

Starting with Net-SNWP 5.0, you can choose the default version of
the SNWP protocol to use when no version is given explicitly on the
comrand line, or via an 'snnp.conf' file. In the past this was set to
SNWMPv1, but you can use this to switch to SNWPv3 if desired. SNWPv3
wi Il provide a nore secure nanagenent environnent (and thus you're
encouraged to switch to SNWMPv3), but may break existing scripts that
rely on the old behaviour. (Though such scripts will probably need to
be changed to use the '-c¢' community flag anyway, as the SNWPv1
command |ine usage has changed as well.).

At this pronpt you can select "1", "2" (for SNWPv2c), or "3" as
the default version for the command tools (snnpget, ...) to use. This
can always be overridden at runtime using the -v flag to the tools, or
by using the "defVersion" token in your snnp.conf file.

Providing the --with-default-snnmp-version="x" paranmeter to ./configure
will avoid this pronpt.
Default version of SNWP to use (3): 3
setting Default version of SNWMP to use to... 3

We've decided to select version 3 as our default. Since it's now a full IETF standard, there is no reason to not use it. As noted in
the text before the prompt, you can always override the version for the command-line tools with the -v switch.



Next we are asked to configure the system contact:

checking System Contact Information...

*** System Contact |nfornation:

Descri bes who shoul d be contacted about the host the agent is
running on. This information is available in the MB-11 tree. This
can al so be over-ridden using the "syscontact" syntax in the agent's
configuration files.

Providing the --with-sys-contact="contact" paranmeter to ./configure
will avoid this pronpt.

System Contact Information (kjs@: snnpadm n@reilly.com
setting System Contact Information to... snnpadm n@ra.com

We've decided to set our contact information to something useful, but we could have left it blank. The next item you're asked to
configure is system location. We've chosen an informative value, but again we could have left it blank:

checking System Location...

*** System Location:

Descri bes the location of the system This information is
available in the MB-IIl tree. this can also be over-ridden using the
"syslocation" syntax in the agent's configuration files.

Providing the --with-sys-location="location" paraneter to ./configure
will avoid this pronpt.

System Location (Unknown): FTP Server #1, O Reilly Data Center
setting System Location to... FTP Server #1, OReilly Data Center

The final options you need to configure are the locations of snmpd's logfile and its persistent storage. In both cases, you simply
press Enter to accept the default locations.

checking Location to wite logfile...

*** Logfile location:

Enter the default location for the snnpd agent to dunp
information & errors to. |If not defined (enter the keyword "none"
at the pronpt below) the agent will use stdout and stderr instead.
(Note: This value can be over-ridden using command |ine options.)

Providing the --with-logfile="path" paraneter to ./configure
will avoid this pronpt.

Location to wite logfile (/var/log/snnpd.|log): <Enter>
setting Location to wite logfile to... /var/log/snnpd.!|og
checking Location to wite persistent information...

*** snnpd persistent storage |ocation:

Enter a directory for the SNWP library to store persistent
data in the formof a configuration file. This default location is

different than the old default |ocation (which was for ucd-snnp). If
you stay with the new path, 1'Il ask you in a second if you wish to
copy your files over to the new location (once only). |[If you pick

sone other path than the default, you'll have to copy them yourself.



There is nothing wong with picking the old path (/var/ucd-snnp) if
you'd rather.

Providing the --with-persistent-directory="path" paranmeter to
./configure will avoid this pronpt.

Location to wite persistent information (/var/net-snnp): <Enter>
setting Location to wite persistent information to... /var/net-snnp
configure: creating ./config.status

config.status: creating Makefile

config.status: creating snnplib/Makefile

config.status: creating apps/ Makefile

config.status: creating apps/snnpnetstat/Mkefile

config.status: creating agent/Mkefile

config.status: creating agent/hel pers/ Makefile

config.status: creating agent/ m bgroup/ Makefile

config.status: creating |ocal/Mkefile

config.status: creating testing/ Makefile

config.status: creating man/ Makefile

config.status: creating m bs/Makefile

config.status: creating net-snnp-config

config.status: creating include/net-snnp/net-snnp-config.h
config.status: executing default comrands

SNVP Ver si ons Supported: 1 2c 3

Net - SNMP Ver si on: 5.2.1

Bui I ding for: I'i nux

Networ k transport support: Callback Unix TCP UDP

SNVPv3 Security Modul es: usm

Agent M B code: m bl ucd_snnp snnpv3m bs notification target agent_nibs agentx utilities host
SNVP Per| nodul es: di sabl ed

Enbedded perl support: di sabl ed

Aut henti cation support: MD5 SHAL

Encryption support: DES AES

You can now compile your new package with the make command. The compilation process displays many messages, most of
which you can ignore. In short, if it completes, you've succeeded and can proceed to installation. If not, you will see errors and
should investigate what went wrong. Install your new package with the command make install. By default, this command installs
various executables in /usr/local/bin and other important information in /usr/local/share/snmp.
At this point, you can configure the agent further by using one of two approaches:

< Run the program /usr/local/bin/snmpconf, which asks you a lot of questions and creates a configuration file. The

configuration script is surprisingly confusing, though, so it's hard to recommend this approach.

- Craft a configuration by hand. If you're not interested in SNMPv3, this is fairly easy.

6.3.3.1. Running the configuration script

The configuration script is rather long and complex. Here are a few pointers:

« It starts by asking whether you want to create snmp.conf or snmpd.conf. To configure the agent, select snmpd.conf.
snmp.conf sets up some defaults for command-line tools such as snmpget. Strictly speaking, creating snmp.conf isn't
necessary.

« Most of the configurable options have to do with SNMPv3.

- When you're finished configuring, the script leaves the configuration file in your current directory. You can place the files
in ~/.snmp, if they're for your own use, or in /usr/local/share/snmp, if you want this configuration to be used by everyone



on the system.

6.3.3.2. Creating a configuration by hand

If you don't want to use SNMPv3, creating your own configuration file is easy. Here's a very simple configuration file:

sysl ocati on "OReilly Data Center"
syscont act snnpadni n@reilly.com
rwconmuni ty private

roconmunity public

aut htrapenable 1

trapcommunity trapsRus

trapsi nk nmshost . oreilly. com
trap2si nk nnshost.oreilly.com

The configuration items should be familiar: we're setting up the system location; the system contact; the read-write, read-only,
and trap community strings; and the destination to which traps should be sent. We're also enabling authentication traps. Note
that we configured destinations for both SNMP Version 1 and Version 2 traps. The trap destination lines (t rapsi nk and

trap2si nk) can also have a trap community string, if the NMS at the given host requires a different community name.

The rwecomuni ty and rocommuni ty lines allow us to be a bit more sophisticated than the example indicates. We're allowed to
specify the network or subnet to which the community strings apply, and an object ID that restricts queries to MIB objects that
are underneath that OID. For example, if you want to restrict read-write access to management stations on the subnetwork
10.0.15.0/24, you could use the line:

rwconmuni ty private 10.0.15.0

If you take this route, you should certainly look at the EXAMPLE.conf file in the directory in which you built Net-SNMP . You can
modify this file and install it in the appropriate location (either ~/.snmp/snmpd.conf or /usr/local/share/snmp/snmpd.conf ), or
you can take ideas from it and use them in your own configuration. It includes some particularly clever tricks that we'll discuss
in Chapter 10 (they are well beyond the simple configuration we're discussing here).

Finally, let's look at configuring Net-SNMP to use SNMPv3 . We'll also discuss a few utility commands that can help make
managing the various security options much easier. Keep in mind that because of its security features, SNMPVv3 is user based.
Even though you may not want to use authentication or privacy , you may still need to provide a username, even if it is blank.

o To use SHA and DES encryption, you will need to install the OpenSSL libraries on the machine where

- you built (or plan to build) Net-SNMP. Go to http://www.openssl.org to get these.

L

Fag

Ty

To create a user named kschmidt who has read-write access to the system subtree, add the following line to your snmpd.conf
file:

rwuser kschmidt auth system

To create a user with read-only access, use the command rouser instead of rwiuser. The aut h keyword requests secure
authentication, but not privacy: the SNMP packets themselves aren't encrypted. The other possibilities are noaut h (no
authentication and no privacy) and priv (authentication and privacy). Now add the following line to
/usr/local/share/snmp/snmpd.conf:

createUser kschm dt MD5 nysecr et pass

This creates an MD5 password for the user kschmidt. The password assigned to kschmidt is nysecr et pass. To create a user with a


http://www.openssl.org

DES passphrase in addition to an MD5 password, add the following line to /usr/local/share/snmp/snmpd.conf:

createUser kschm dt MD5 nysecretpass DES nypassphrase

If you omit nypassphr ase, Net-SNMP sets the DES passphrase to be the same as the MD5 password. The RFCs for SNMPv3
recommend that passwords and passphrases be at least eight characters long; Net-SNMP enforces this recommendation and
won't accept shorter passwords.

When the agent is started, it reads the configuration file and computes secret keys for the users you have added.

Now we can perform an snmpwalk using Version 3 authentication. The following command specifies Version 3, with the
username kschni dt , requesting authentication without privacy using the MD5 algorithm . The password is nysecr et pass:

$ snmpwal k -v 3 -u kschmdt -1 authNoPriv -a MD5 -A nysecretpass \
server.ora.com

system sysDescr.0 = Linux server 2.2.14-VA 2.1 #1 Mon Jul 31 21:58:22 PDT 2000 i 686
system sysChjectID.O = OD: enterprises.ucdavis.ucdSnnpAgent. | i nux
system sysUpTine.0 = Tineticks: (1360) 0:00:13.60

system sysContact.0 = "Ora Network Admin"

system sysNane. 0 = server

system sysLocation.0 = "Atlanta, &"

system sysServices.0 = 0

system sysORLast Change. 0 = Tineticks: (0) 0:00:00.00

system sysORTabl e. sysOREntry.sysORID.1 = O D ifMB

UDP- M B: : udpQut Datagrans.0 = No nore variables left in this MB View (It is past the end of the MB tree)

Note that we see only objects from the system subtree, even though the command tries to walk the entire tree. This limitation
occurs because we have given kschmidt access only to the system subtree. If kschmidt tries to query a subtree he is not allowed
to access, he gets the following result:

$ snnpwal k -v 3 -u kschmidt -1 authNoPriv -a MD5 -A nysecretpass \
server.ora.com interfaces
IF-MB::interfaces = No Such oject available on this agent at this QD

If you want privacy in addition to authentication, use a command like this:

$ snmpwal k -v 3 -u kschmdt -1 authPriv -a MD5 -A nysecretpass -x DES - X\
nypassphrase server.ora.com

6.3.3.3. Using snmpusm to manage users

The Net-SNMP utility snmpusm is used to maintain SNMPv3 users. This utility can be very useful when it comes to managing
and creating users on the fly.

Note that to use this command, your SNMPv3 user must have write access to the usniser Tabl e in the
*@ agent. With user kschmidt, we restricted his access to the system subtree by adding this line to the
snmpd.conf file: rwuser kschnidt auth system This can be remedied by simply removing the system
attribute: rwuser kschmidt auth.

The following command creates the user kjs by cloning the kschmidt user:

$ snmpusm -v 3 -u kschmdt -1 authNoPriv -a MD5 -A nysecretpass |ocal host create \ kjs kschmi dt



Since kjs was cloned from kschmidt, the two users now have the same authorization, password, and passphrase. It's obviously
essential to change kjs's password. To do so, use snmpusm with the -Ca option. Similarly, to change the privacy passphrase, use
-Cx. The following two commands change the password and passphrase for the new user Kkjs:

$ snnpusm -v 3 -1 authNoPriv -u kschmdt -a MD5 -A nysecretpass |ocal host -Ca
passwd mysecr et pass nynewpass kjs

$ snnmpusm -v 3 -1 authPriv -u kschm dt -a MD5 -A nysecretpass |ocal host -Cx
passwd nypassphrase nynewphrase kjs

There are many things to note about this seemingly simple operation:

¢ You must know both the password and passphrase for kschmidt to set up a new password and passphrase for kjs.
Presumably this is the case since you are the admin who is allowed to write to the usniser Tabl e.

« According to the documentation, Net-SNMP allows you to clone on to the same user only once. Attempts to reclone a
previously cloned user appear to succeed but are silently ignored. The SNMPv3 USM specification (RFC 3414) mandates
this particular behavior.

- snmpusm can only clone users; it can't create them from scratch. Therefore, you must create the initial user by hand,
using the process described earlier. (This isn't quite true. snmpusm can create a user, but once you've done so you have to
assign it a password by changing its previous password. So, you're in a Catch-22: the new user doesn't have a password,
but you can't change his password. The only way to do this is by cloning the last user you created, and changing the
password as we described here.)

For the user to be written to the persistent snmpd.conf file, you must either stop and restart the agent or send a HUP signal to
the snmpd process. This forces the agent to write the current state of the user table to disk, so the agent can reread it upon
startup. Note that using kill -9 does not produce the desired result.

The snmpusm command exists primarily to allow end users to manage their own passwords and passphrases. As the
administrator, you may want to change your users' passwords and passphrases periodically. This is possible only if you keep a
master list of users and their passwords and passphrases.

If the engine ID changes, you will have to regenerate all the usernames, passwords, and passphrases. (Remember that the
engine ID depends in part on the host's IP address and therefore changes if you have to change the address.) To do this, stop
the agent and edit the /var/net-snmp/snmpd.conf file. Remove all the persistent usnser enTRies and add new cr eat eUser
commands (as described previously) for your users. A usniser enTRy looks something like this:

usmJser 1 3 0x80001f 8880389a8f 7c2f 5ha342 0x6b6a7300 0x6b6a7300 NULL .1.3.6.1.6.3.10.1.1.2
Ox0Oecdaf 0c88993c416bd8f 0a555alla3a .1.3.6.1.6.3.10.1.2.2 Oxf64feel207d9a959e53c47398e05e872 "*

6.3.4. Concord SystemEDGE Agent for Unix and Windows

Concord SystemEDGE is a commercial product that can be used as a subagent to the standard Windows agent. On Unix systems,
this agent can be used either as a standalone agent or side by side with an existing agent. It runs on Linux, Solaris, and other
operating systems. The CD on which the product is shipped includes agents for all the platforms SystemEDGE supports.
Whenever possible, SystemEDGE uses the platform's native package manager to make installation easier. Each architecture-
dependent version of the agent comes with an easy-to-follow README file for installation. See Chapter 10 for a discussion of
this agent's capabilities.

6.3.4.1. Simple configuration
The SystemEDGE configuration file is located in /etc/sysedge.cf. Use your editor of choice to make changes to this file. You must

stop and restart SystemEDGE for your changes to take effect. The configuration file format is the same for all the versions of
SystemEDGE .

For a typical SNMP configuration, sysedge.cf looks like this:



community public read-only
community veryprivate read-wite 127.0.0.1 10.123.56.25
community traps 127.0.0.1

Comment lines begin with a # character. The first parameter sets the read-only community to publ i c. The read-write community
is defined to be veryprivate. The two IP addresses following the read-write community string are an access list that tells the
agent to allow set operations from localhost (127. 0. 0. 1) and 10. 123. 56. 25 only. Always use an access list if possible; without this
security feature, any host can execute set operations. Note that there is a space between the two addresses, not a Tab
character. The third option tells the agent where to send traps; in this case, to localhost (127.0.0. 1).

The agent sends authentication-failure traps by default, and we strongly recommend using them. If you don't want
authentication-failure traps, include the following line in your configuration file:

no_aut hen_traps

6.3.4.2. Advanced configuration

SystemEDGE provides some powerful self-monitoring capabilities . These extensions (found only in Concord's Empire private
enterprise MIB) are similar to the RMON MIB, which is discussed in Chapter 8. Empire's extensions can reduce network load by
allowing the agent, rather than an NMS, to perform monitoring (polling) of important system objects. For example, the agent
can be instructed to make sure the free space available in the root filesystem stays above some predefined threshold. When this
threshold is crossed, the agent sends a trap to the NMS so that the condition can be dealt with appropriately.

The following line shows how you can monitor and restart sendmail if it dies:

wat ch process procAlive 'sendmail' 1 0x100 60 'Watch Sendmeil' '/etc/init.d/ sendmail start'

This monitor sends a trap to the NMS, defined earlier as community traps 127.0. 0.1, when the sendmail process dies. The agent
then executes /etc/init.d/sendmail start to restart the process. The general form of this command is:

wat ch process procAlive 'procnane' index flags interv 'description' 'action'

The prochame parameter is a regular expression that SystemEDGE uses to select the processes that it is monitoring; in this
case, we're watching processes with the name sendmail. Each entry in the process-monitoring table must have a unique index;
in this example, we used the value 1. We could have picked any integer, as long as that integer was not already in use in the
table. The flag parameter is a hexadecimall*l flag that changes the behavior of the monitor. We specified a flag of 0x100, which
tells the monitor that the process it's watching spawns child processes; this flag ensures that SystemEDGE will take action only
when the parent sendmail process dies, not when any of the children die. The use of process-monitor flags is beyond the scope
of this chapter; see the manual that comes with SystemEDGE for more information. The interv parameter specifies how often (in
seconds) the agent checks the process's status. We have set the interval to 60 seconds. The description parameter contains
information about the process being monitored; it can be up to 128 characters in length. It is a good idea to use a description
that indicates what is being monitored, since the agent stores this value in the monitor table for retrieval by an NMS and
includes it in the variable bindings when a trap is sent. The final parameter is the action the monitor will take when the process
dies; we chose to restart the daemon.

[1 Generally speaking, there are several ways to represent hexadecimal numbers. SystemEDGE uses the notion of a number prefixed with 0x, which should be familiar to C
and Perl programmers.

SystemEDGE can be extended by using plug-ins . These plug-ins manage and monitor applications such as Apache (web server),
Exchange (Microsoft mail), and Oracle (database), to name a few. A "top processes" plug-in named topprocs comes with every
distribution. The following statement tells SystemEDGE to load this plug-in for 64-bit Solaris (this statement is similar for other
Unix platforms, and for Windows):

sysedge_pl ugin /opt/ EMPsysedge/ pl ugi ns/t opprocs/topprocs-sol 64bit. so



The folks at Concord have taken great care to add useful comments to the sysedge.cf file. The comments are often all you need
to configure the agent.

6.3.5. Cisco Devices

Cisco Systems produces a wide range of routers, switches, and other networking equipment. The configuration process is
virtually the same on all Cisco devices , because they share the 10S operating systeml 1 There are some minor differences in
the parameters that can be configured on every device; these generally have to do with the capabilities of the device, rather
than the SNMP implementation.

[ IThere are some exceptions to this rule, such as the PIX firewalls . These exceptions usually mean that the product is made by a company that Cisco acquired.

To configure the SNMP parameters, you must be in enable mode. You can use the following commands to see what traps are
available:

router> enabl e

Passwor d: nypassword

router# config term nal

router(config)# snnp-server enable traps ?

bgp Enabl e BGP state change traps

envnon Enabl e SNVMP environnmental nonitor traps
frame-relay Enable SNWP frane-relay traps

i sdn Enabl e SNWP i sdn traps

<Cr>

The question mark tells the router to respond with the possible completions for the command you're typing. You can use this

feature throughout the entire command-line interface. If the part of the command you have already typed has a syntax error,
the router will give you the "Unrecognized command" message when you type the question mark. <cr > tells you that you can
exit without configuring the command (snnp-server enabl e traps in this case) by pressing Return.

6.3.5.1. Simple configuration

Here's a simple configuration that lets you start using the SNMP agent:

router(config)# snnp-server community private RW
router(config)# snnp-server community public RO
router(config)# snnp-server trap-authentication

router(config)# snnp-server |ocation Delta Building - 1st Floor
router(config)# snnp-server contact J Jones

router(config)# snnp-server host 10.123.135.25 public

Most of these commands set parameters with which you should be familiar by now. We define two communities, publi ¢ and
private, with read-only (RO) and read-write (RW) permissions, respectively. snnp-server trap-authentication turns on
authentication-failure traps. The command snnp-server host 10.123.135.25 public configures the destination to which traps
should be sent. The IP address is set to the address of our NMS. The community string publ i ¢ will be included in the traps.

6.3.5.2. Advanced configuration

The following configuration item tells the device what interface it should use when sending out SNMP traps:

router(config)# snnp-server trap-source VLANL

Configuring the trap source is useful because routers, by definition, have multiple interfaces. This command allows you to send
all your traps out through a particular interface.



There may be times when you want to send only certain traps to your NMS. The next item sends only environmental monitor
traps to the specified host, 172.16.52.25 (the envmon option is not available on all Cisco devices ):

router(config)# snnp-server host 172.16.52.25 public envnon

One of the most frightening SNMP sets is the Cisco shutdown, which lets you shut down the router from the NMS. The good
news is that you have to include a switch in the configuration before the router will respond to shutdown commands. Issuing the
following command disables shutdowns:

router(config)# no snnp-server system shutdown

To receive traps about authentication failures (something trying to poll your device with the wrong community name), add the
following line:

router(config)# snnp-server trap-authentication

The final advanced configuration parameter is an access list. The first line sets up access list 15. It states that the IP address
10.123.56.25 is permitted to access the agent. The second line says that anyone that passes access list 15 (i.e., a host with IP
address 10.123.56.25) and gives the community name notsopublic has read-only (RO) access to the agent. Access lists are a
very powerful tool for controlling access to your network. They're beyond the scope of this book, but if you're not familiar with
them, you should be.

router(config)# access-list 15 permt 10.123.56.25
router(config)# snnp-server community notsopublic RO 15

6.3.5.3. Configuring SNMPv3

The first task in configuring SNMPV3 is to define a view. To simplify things, we'll create a view that allows access to the entire
internet subtree:

router(config)# snnp-server view readview internet included

This command creates a view called readview. If you want to limit the view to the system tree, for example, replace i nt er net
with system The i ncl uded keyword states that the specified tree should be included in the view; use excl uded if you want to
exclude a certain subtree.

Next, create a group that uses the new view. The following command creates a group called readonly; v3 means that SNMPv3

should be used. The aut h keyword specifies that the entity should authenticate packets without encrypting them; read readvi ew
says that the view named readview should be used whenever members of the readonly group access the router.

router(config)# snnp-server group readonly v3 auth read readvi ew

Now let's create a user. The following command creates a user called kschmidt, who belongs to the readonly group. auth nd5
specifies that the router should use MD5 to authenticate the user (the other possibility is sha). The final item on the command
line is the user's password or passphrase, which cannot exceed 64 characters.

router(config)# snnp-server user kschmdt readonly v3 auth nmd5 nysecret pass



This configuration uses encryption only to prevent passwords from being transferred in the clear. The SNMP packets themselves,
which may contain information that you don't want available to the public, are sent without encryption and can therefore be
read by anyone who has a packet sniffer and access to your network. If you want to go a step further and encrypt the packets
themselves, use a command like this:

router(config)# snnp-server user kschm dt readonly v3 auth nd5 nysecretpass \
priv des56 passphrase

The additional keywords on this command specify privacy (i.e., encryption for all SNMP packets), use of DES 56-bit encryption,
and a passphrase to use when encrypting packets.

The encrypted passwords and passphrases depend on the engine ID, so if the engine ID changes, you'll need to delete any users
you have defined (with the familiar IOS no command), and re-create them (with snmp-server user commands). Why would the
engine ID change? It's possible to set the engine ID on the 10S command line. You should never need to set the engine 1D
explicitly, but if you do, you'll have to delete and re-create your users.

This has been the briefest of introductions to configuring SNMPv3 on a Cisco router. For more details, see Cisco's
documentation, which is available at
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t3/snmp3.htm.

That's it! You now have a working SNMP configuration for your Cisco router.

6.3.6. APC Symetra

APC's uninterruptible power supplies (UPSs ) are typical of a large class of products that aren't usually considered network
devices, but that have incorporated a network interface for the purpose of management.

To configure an APC UPS, you can use its management port (a familiar serial port to which you can connect a console terminal)
or, assuming that you've performed basic network configuration, telnet to the UPS's IP address. SNMP configuration is the same
regardless of the method you use. Either way, you get a Text User Interface (TUI) that presents you with rather old-fashioned
menusyou type your menu selection (usually a number) followed by Enter to navigate through the menus.

We'll assume that you've already performed basic network configuration, such as assigning an IP address for the UPS. To
configure SNMP, go to the Network menu and select 5 to go into the SNMP submenu. You should get a menu like this:

1- Access Control 1
2- Access Control 2
3- Access Control 3
4- Access Control 4

5- Trap Receiver 1
6- Trap Receiver 2
7- Trap Receiver 3
8- Trap Receiver 4
9- System

10- Summary

?- Help

<ENTER> Redi spl ay Menu
<ESC> Return To Previous Menu

You need to configure three distinct sections: Access Control, Trap Receiver, and System. To see a summary of the current
SNMP settings, use the Summary submenu.

This particular device allows us to specify four IP addresses for access control and four IP addresses to receive traps. The access
control items allow you to configure the IP addresses of your management stationsthis is similar to the access lists we've seen in
other devices, and is obviously basic to security. The UPS will reply only to queries from the IP addresses you have listed.
Configuration is a bit awkwardyou need to go to a separate menu to configure each IP address. Here's what you'll see when


http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t3/snmp3.htm

configuring the Access Control 1 submenu:

------- Access Control 1 ---------mmmmi o

Access Control Summary

# Community Access NVS | P

1 public Read 10.123.56. 25
2 private Wite 10. 123.56. 25
3 public2 Di sabl ed 0.0.0.0

4 private2 Di sabl ed 0.0.0.0

1- Community : public

2- Access Type : Read

3- NV5 | P Address : 10.123.56. 25
4- Accept Changes :

?- Help
<ENTER> Redi spl ay Menu
<ESC> Return To Previous Menu

The first part of the menu summarizes the state of access control. On this menu, we can change only the first item on the list.
The special address 0.0.0.0 is a wildcardit means that the UPS will respond to queries from any IP address. Although addresses 3
and 4 are set to 0.0.0.0, these addresses are currently disabled, and that's how we want to keep them. We want the UPS to
respond only to the management stations we explicitly list.

On this menu, we've configured items 1 (the community string), 2 (the access type), and 3 (the IP address). We've set the
community string to publ i ¢ (not a choice you'd want in a real configuration), the access type to Read (allowing various SNMP get
operations, but no set operations), and the NMS IP address to 10. 123. 56. 25. The net effect is that the UPS's SNMP agent will
accept get requests from IP address 10.123.56.25 with the community name public. When you are satisfied with the
configuration, enter a 4 to accept your changes.

To configure the second access control item, press Esc to return to the previous menu; then select 2. As you can see, we allow
10.123.56.25 to perform set operations. We don't have any other management stations, so we've left items 3 and 4 disabled.

Once the Access Control section is complete, you can start configuring traps. The Trap Receivers section is simply a list of NMSs
that receive traps. As with Access Control, four trap receivers can be configured. To get to the first trap receiver, return to the
SNMP menu and select menu 5. A typical trap receiver setup looks like this:

------- Trap RecCeiVer 1 ------cmmm e

Trap Receiver Summary
# Community GCeneration Authentication Receiver NVS |P

1 public Enabl ed Enabl ed 10. 123. 56. 25
2 public Enabl ed Enabl ed 0.0.0.0
3 public Enabl ed Enabl ed 0.0.0.0
4 public Enabl ed Enabl ed 0.0.0.0
1- Trap Community Nanme : public
2- Trap Generation : Enabl ed
3- Authentication Traps: Enabled
4- Receiver NVS IP : 10.123.56. 25

5- Accept Changes
?- Help

<ENTER> Redi spl ay Menu
<ESC> Return To Previous Menu

Once again, the first part of the menu is a summary of the trap receiver configuration. We've already set the first trap receiver



to the address of our NMS, enabled trap generation, and enabled the generation of authentication trapsas always, a good idea.
The traps we generate will include the community string public. Note that trap receivers 2, 3, and 4 are set to 0. 0. 0. 0. On this
menu, 0.0.0.0 is not a wildcard; it's just an invalid address that means you haven't yet configured the trap receiver's IP address.
It's basically the same as leaving the entry disabled.

The final configuration items that should be set are on the System submenu, found under the SNMP main menu:

1-
2-
3-
4-

<ENTER>
<ESC>

Nl e R AL E R
sysNane © upsl.ora.com

sysCont act . Dougl as Mauro

sysLocati on : Apache Hilo Deck

Accept Changes :

Hel p
Redi spl ay Menu
Return To Previ ous Menu

After you have finished configuring all your SNMP parameters, use the Summary submenu for a quick look at what you have
done. A typical setup will look something like this:

SNVP Confi guration Summary

Upon completion and verification, use the Esc key to take you all the way out to the Logout menu.

sysNane © upsl.ora.com
sysLocati on : Apache Hilo Deck
sysCont act . Dougl as Mauro
Access Control Summary

# Community Access NVS | P

1 public Read 10. 123.56. 25
2 private Wite 10. 123. 56. 25
3 public2 Di sabl ed 0.0.0.0

4 private2 Di sabl ed 0.0.0.0

Trap Receiver Summary
# Community Generation

1 public Enabl ed
2 public Enabl ed
3 public Enabl ed
4 public Enabl ed

Aut hentication Receiver NVS | P

Enabl ed 1
Enabl ed 0.
Enabl ed 0.
Enabl ed 0

Press <ENTER> to continue...



e prcy

Chapter 7. Polling and Setting

We've put a lot of work into getting things set up so that we can use SNMP effectively. But now that we've installed a fancy
node manager and configured agents on all our devices, what can we do? How can we interact with the devices that are out
there?

The three basic SNMP operations are snmpget, snmpset, and snmpwalk. They are fairly self-explanatory: snmpget reads a value
from a managed device, snmpset sets a value on a device, and snmpwalk reads a portion of the MIB tree from a device. For
example, you can use snmpget to query a router and find out its administrative contact (i.e., the person to call if the router
appears to be broken), snmpset to change this contact information, and snmpwalk to traverse a MIB to get an idea of which
objects the router has implemented or to retrieve status information on all the router's interfaces.

This chapter shows you how to use these operations in day-to-day network management. First, we will use Perl to demonstrate
how you can set, get, and walk objects in a script (the nice thing about using Perl is that you can easily extend the simple
scripts in this chapter to fit your needs and environment). We will then use HP OpenView and Net-SNMP to perform the same
operations, but from the command line. Finally, as an alternative to the command line, we will demonstrate OpenView's
graphical MIB Browser, which has a nice interface for getting, setting, and walking MIB data.

e Py



e prcv |

7.1. Retrieving a Single MIB Value

Let's start by querying a router for the name of its administrative contact. This operation, called polling, is accomplished with
the SNMP get command. The following Perl script, snmpget.pl, uses an SNMP Perl module to retrieve the information we want:

#!/usr/ | ocal / bin/perl

#filenanme: /opt/local/perl_scripts/snnpget.pl

use BER

use SNWVP_util;

use SNWP_Sessi on;

$MB1L = ".1.3.6.1.2.1.1.4.0";

$HOST = "orarouterl”;

($val ue) = &snnpget (" public\ @GHOST", "$M B1") ;

if ($value) { print "Results :$M Bl: :$value:\n"; }
else { warn "No response from host :$HOST:\n"; }

This script is obviously very primitive, but it is also easy to understand, even if you're not an experienced Perl user. Its
importance isn't in what it does, which is very little, but as a template you can use to insert SNMP operations into other
programs. (If you are not used to writing quick Perl programs, or you are unfamiliar with the language, a good starting point is
the official Perl web site, http://www.perl.com.) The script starts with three use statements, which are similar to #i ncl ude
statements in C. The use statements load Perl modules containing functions and definitions for working with SNMP. The three
modules we use are:

BER

Describes how to encode management data into bit patterns for transmission. Basic Encoding Rules (BER) is an 1SO
standard.

SNVP_ut i |

Defines a set of functions that use the SNMP_Sessi on module to make it much more programmer friendly. SNMP_uti | itself
uses BER and SNWP_Sessi on, but in this first script, we chose to reference these other modules explicitly. In future
programs, we'll just use SNVP_util .

SNVP_Sessi on
Provides Perl with core SNMP functionality.

The next two lines specify the data we want to get. We have hardcoded the object ID of a particular piece of data defined by the
MIB and the hostname from which we want to retrieve this MIB data. In a more flexible program, you might want to get these
values from the command line, or build a user interface to help users specify exactly what they are interested in retrieving. For
the time being, however, this will get us started. It is easy enough to replace or arout er 1 with the hostname or IP address of the
device you want to poll. The OID we are requesting is stored in the variable $M B1. The value . 1. 3. 6. 1. 2. 1. 1. 4. 0 requests the
device's administrative contact. Again, you can replace this with any OID of your choice. We used the numeric form of this
object, but you can also use the textual form for the OID, which is .org.dod.internet.mgmt.mib-2.system.sysContact.0. You can
abbreviate this further to sysContact because SNVP_uti | defines some parts of the OID string for us (for example, SNVP_ut i |
defines sysContact as 1.3.6.1.2.1.1.4.0), but it's often safer to be explicit and use the entire OID. Don't forget to include the .0
at the end of your OID. The .0 states that we want the first (0) and only instance of iso.org.dod.internet.mgmt.mib-
2.system.sysContact.O.

The next line polls the device. The snnpget function retrieves the data from the device specified by the variable $HOST. Notice
the two arguments to the function. The first is the device we want to poll, preceded by the community name public. (If you
need to use another community nameyou did change the community names when you configured the device, didn't you?you'll
have to modify this line and insert your community name in place of it.) The second argument to snmpget is the OID in which
we are interested. If you type the code in yourself, do not forget the parentheses around $val ue. If you omit the parentheses,
$val ue will be set to the number of items in the array snmpget returns.


http://www.perl.com

Once we have polled the device, we print either the output or an error message. We put a colon before and after any output
that we print; this makes it easy to see if there are any hidden characters in the output. The decimal integer 16" is very
different from "16\n", which is the decimal integer 16 followed by a newline character.

Now let's run the program:

$ /opt/local/perl_scripts/snnpget.pl
Results :.1.3.6.1.2.1.1.4.0: :ORA IT G oup:

snmpget.pl prints the OID we requested, followed by the actual value of that object, which is ORA | T G oup. Don't worry if the
return value for sysContact is wrong or blank. (The trick of putting colons before and after the output will make it clear if
sysContact is blank or empty.) This probably means that no one has configured an administrative contact or that it was
configured incorrectly. We'll show you how to fix that when we discuss the set operation. If you get an error, skip to the end of
this chapter to see a list of some errors and their appropriate fixes.

We will now modify snmpget.pl to poll any host and any OID we want. This is accomplished by passing the host and OID as
command-line arguments to the Perl script:

#!/usr/ | ocal / bin/ perl

#filenanme: /opt/local/perl_scripts/snnpget.pl

use SNWP_util;

$M BLl = shift;

$HOST = shift;

($M B1) && ($HOST) || die "Usage: $0 M B_O D HOSTNAME";
($val ue) = &snnpget (" $HOST", "$M B1") ;

if ($value) { print "Results :$M B1l: :$value:\n"; }
else { warn "No response from host :$HOST:\n"; }

Now that this program is a little more flexible, it is possible to look up different kinds of information on different hosts. We even
left out the community string, which allows us to poll hosts with different community names. Here's how to run the new version
of snmpget.pl:

$ /opt/local/perl_scripts/snnpget.pl .1.3.6.1.2.1.1.1.0 public@rarouterl

Results :.1.3.6.1.2.1.1.1.0: : Cisco |0S Software, C2600 Software (C2600-|PBASE-M,
Version 12.3(8) T3, RELEASE SOFTWARE (fcl)

Techni cal Support: http://ww.cisco.conltechsupport

Copyright (c) 1986-2004 by Cisco Systens, Inc.

Conpi | ed Tue 20-Jul -04 17: 03 by eaarmas:

In this example, we asked the router to describe itself by looking up the OID . 1. 3.6. 1. 2. 1. 1. 1. 0 (system.sysDesc.0). The result
tells us that orarouter1 is a Cisco router running Version 11.0(16) of the 10S operating system, along with some other useful
information.

7.1.1. Using HP OpenView to Retrieve Values

Let's start by looking up our router's administrative contact (system.sysContact.0) and see if we get the same result as we did
with our previous Perl script. The arguments to OpenView's snmpget[*1 are the community name, the hostname of the device
we want to poll, and the OID of the data we are requesting; we gave the OID in numeric form, but again, we could have given it
as a text string:

[TMost OpenView executable files are located in /opt/OV/bin.

$ /opt/ OV/ bin/snnpget -c public orarouterl .1.3.6.1.2.1.1.4.0
system sysContact.0 : DI SPLAY STRING (ascii): ORAIT Goup



Although this looks a little different from the output of the Perl script, it tells us the same thing. snmpget prints the OID we
requested on the command line, making it easy to verify that we polled the right object. Again, note that the trailing .0 is
important. The output also tells us the object's datatype: DI SPLAY STRING (ascii). Back in Chapter 2, we discussed the
datatypes that SNMP uses; some of the common types are | NTEGER, OCTET STRI NG, Count er, and | pAddr ess. Finally, the output
gives us the information we asked for: the router is administered by the ORA IT Group, which is the value returned from the
SNMP get request.

Now let's do the same thing using OpenView's GUI interface. From the Network Node Manager's display, select Misc = SNMP
MIB Browser.L 1 If you don't have NNM running, you can start the MIB Browser from the command line using this command:

/ opt / OV/ bi n/ xnnbr owser . Figure 7-1 shows the GUI. Its input fields are similar to the variables we have been setting in our Perl
scripts: Name or IP Address, Community Name, MIB Object ID, MIB Instance, SNMP Set Value, and MIB Values.

[ JIf you find that the SNMP MIB Browser menu item is grayed out and cannot be clicked on, click on an SNMP object on your NNM map. You should then be able to click
on the menu item to start your GUI.

Let's use this browser to run an snmpget. Start by inserting a Name or IP Address and Community Name in the input boxes
provided. To enter the object you want to retrieve, use the MIB Object ID field and the text box below it. MIB Object ID shows
us that we are currently in the subtree .iso.org.dod.internet. The text area shows the objects at the next level of the tree:
directory, mgmt, etc. (To see the numeric OIDs for these objects, click on their names and then on the Describe button.) Then
browse down through the MIB by double-clicking mgmt, then mib-2, system, and finally sysContact. Click on sysContact and
then on Start Query. The result that appears in the MIB Values field (as shown in Figure 7-2) should look very similar to the
value that was returned in the command-line example.

Figure 7-1. OpenView xnmbrowser default

Let's go back to the command line and poll for sysDesc again:

$ /opt/ OV/ bin/snnpget orarouterl .1.3.6.1.2.1.1.1.0

system sysDescr.0 : DI SPLAY STRING (ascii): Cisco |I0OS Software, C2600 Software
(C2600- | PBASE-M, Version 12.3(8)T3, RELEASE SOFTWARE (fc1)

Techni cal Support: http://ww. ci sco.con techsupport

Copyright (c) 1986-2004 by Cisco Systens, Inc.

Conpi | ed Tue 20-Jul -04 17: 03 by eaarnmas



Looks the same, right? Notice that we left out the community string. We can do this because the default get community string is
public, which is the correct community string for the target host, orarouter1. You can change your default community strings in
OpenView's global settings. Let's see if we can get an object with a different datatype:

$ /opt/ OV/ bin/snnmpget orarouterl .1.3.6.1.2.1.1.3.0
system sysUpTine.0 : Tineticks: (159857288) 18 days, 12:02:52.88

Figure 7-2. OpenView xnmbrowser response

This command returns the system uptime, which is of type Ti neTi cks. Ti neTi cks (RFC 1155) represents a nonnegative integer,
which counts the time in hundredths of a second since some epoch. Ignoring the number in parentheses, this shows us that our
router has been up and operational for 18 days, 12 hours, 02 minutes, and so on. The big number in parentheses is the exact
amount of time the machine has been up, in hundredths of a second. If you do the math, you will see this adds up to 18.501
days, or 18 days, 12 hours, and a little bit: exactly what we expect.

7.1.2. Using Net-SNMP

The Net-SNMP tools provide an excellent command-line interface to SNMP operations. These tools are also commonly known as
UCD-SNMP you'll still find this older name in many references and even in the code itself.

Chapter 6 discussed how to compile, install, and configure the Net-SNMP agent. If you've done that, you've already compiled
and installed the SNMP tools. They're shipped in the same package as the SNMP agent, and no real configuration is necessary
for them. There is a configuration program, called snmpconf, which can be used to generate an snmp.conf file that provides
default values for some of the options to the commands.[*1 Unless you're using SNMPv3, though, it isn't really necessary. It
might be handy to set up a default community string, but in practice, this is of only limited use: you probably have different
community strings on different devices anyway. If you decide to use snmpconf to create the tool configuration file, make sure
that you place snmp.conf in the .snmp subdirectory of your home directory or (if you want the options to apply to all users) in
/usr/local/share/snmp.

[1 This is the same command used to create snmpd.conf, which configures the Net-SNMP agent. The snmp.conf configuration file is similar in form to snmpd.conf.



We'll assume that you won't do any configuration and will simply use the tools "out of the box." Here's a simple poll that asks a
router for its location:

$ snnpget -vl -c public orarouterl .1.3.6.1.2.1.1.6.0
SNWPv2- M B: : sysLocation.0 = STRING Sebastopol CA

It's fairly simple: we provided the hostname of the router we wanted to poll, a community string, and the OID of the object we
wanted to retrieve. Instead of using the numeric OID, you can use the lengthy human-readable form. To save typing, snmpget
assumes everything up to the object name and instance ID. Therefore, the following command is exactly equivalent to the
previous one:

$ snnpget -vl1 -c public orarouterl sysLocation.O
SNMPv2- M B: : sysLocation.0 = STRING Sebastopol CA

We'll take a look at the snmpwalk and snmpset commands that come with the Net-SNMP package later in this chapter, but the
package contains many tools and is well worth a more detailed explanation. One tool that's particularly useful is snmptranslate,
which converts between the numeric and textual names of MIB objects and can do things such as look up the definition of an
object in a MIB file. The software distribution comes with a humber of standard MIBs; you can place additional MIB files in
/usr/local/share/snmp/mibs. Appendix C gives an overview of the Net-SNMP package.

e prc |



e prcv |

7.2. Retrieving Multiple MIB Values

The syntax for snmpwalk is similar to the syntax for its cousin, snmpget. As discussed in Chapter 2, snmpwalk traverses a MIB
starting with some object, continuously returning values until it gets to the end of that object's branch. For example, the
upcoming Perl script begins walking the .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifDescr object and provides a
descriTtion of each Ethernet interface on the device it polls.

This new script is a minor modification of snmpget.pl. We turned the scalar $val ue into the array @al ues;I 1 we need an array
because we expect to get multiple values back. We also called the function snmpwalk instead of snmpget (syntactically, the two
functions are the same):

[ 1The Perl program we used earlier could have used the array instead of the scalar as well. This is possible because Perl's version of snmpget allows for multiple OIDs, not
just one. To specify multiple OIDs, place a comma (,) between each OID. Remember to enclose each OID within its own double quotes.

#!/usr/ | ocal /bin/perl

#filenane: /opt/local/perl_scripts/snmpwal k. pl

use SNWVP_util;

$M B1 = shift;

$HOST = shift;

($M B1) && ($HOST) || die "Usage: $0 M B_O D HOSTNAME";
(@al ues) = &snnpwal k(" $HOST", "$M B1");

if (@alues) { print "Results :$M B1: :@alues:\n"; }
else { warn "No response from host :$HOST:\n"; }

Here's how to run the script:

$ /opt/local/perl_scripts/snnmpwal k.pl .1.3.6.1.2.1.2.2.1.2 orarouterl

This command walks down the .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifDescr object, returning information
about the interfaces that are on the router. The results look something like this:

Results :.1.3.6.1.2.1.2.2.1.2: :1:EthernetO 2:Serial0 3:Serial1:

The output depends on the interfaces on the host or router you are polling. To give some examples, we've run this script
against some of the machines on our network. Here are the results.

Cisco 7000 router:

Results :.1.3.6.1.2.1.2.2.1.2: :1:Ethernet0/0 2:Ethernet0/1 3: TokenRi ngl/0
4: TokenRi ngl/1 5: TokenRingl/2 6: TokenRingl/3 7:Serial2/0 8:Serial2/1
9:Serial2/2 10:Serial2/3 11:Serial2/4 12:Serial 2/5 13:Serial 2/6 14:Serial 2/ 7
15: Fast Et hernet 3/ 0 16: Fast Et hernet3/1 17: TokenRi ng4/ 0 18: TokenRi ng4/ 1:

Linux workstation:

Results :.1.3.6.1.2.1.2.2.1.2: :1:10 2:eth0 3:sit0:

Sun workstation:



Results :.1.3.6.1.2.1.2.2.1.2: :1:100 2: hneO:

Windows XP Pro PC:

Results :.1.3.6.1.2.1.2.2.1.2: :1: M5 TCP Loopback interface
2: NETGEAR Wb11 54 Mops Wrel ess PC Card:

APC uninterruptible power supply:

Results :.1.3.6.1.2.1.2.2.1.2: :1:peda:

For each device, we see at least one interface. As you'd expect, the router has many interfaces. The first interface on the router
is listed as 1: Et hernet 0/ 0, the second is listed as 2: Et hernet 0/ 1, and so on, up through interface 18. SNMP keeps track of
interfaces as a table, which can have many entries. Even single-homed devices usually have two entries in the table: one for
the network interface and one for the loopback interface. The only device in the previous example that really has a single
interface is the APC UPSbut even in this case, SNMP keeps track of the interface through a table that is indexed by an instance
number.

This feature allows you to append an instance number to an OID to look up a particular table element. For example, we would
use the OID .1.3.6.1.2.1.2.2.1.2.1 to look at the first interface of the Cisco router, .1.3.6.1.2.1.2.2.1.2.2 to look at the second,
and so on. In a more human-readable form, ifDescr.1 is the first device in the interface description table, ifDescr.2 is the second
device, and so on.

7.2.1. Walking the MIB Tree with OpenView

Switching over to OpenView's snmpwalk, let's try to get every object in the .iso.org.dod.internet.mgmt.mib-2.system subtree:

$ /opt/OV/bin/snnpwal k oraswitch2 .1.3.6.1.2.1.1

system sysDescr.0 : DI SPLAY STRING (ascii): Cisco |OS Software, C2600 Software
(C2600- | PBASE-M, Version 12.3(8) T3, RELEASE SOFTWARE (fcl)

Techni cal Support: http://ww.cisco.conltechsupport

Copyright (c) 1986-2004 by Cisco Systens, Inc.

Conpi | ed Tue 20-Jul -04 17: 03 by eaarmas

system sysObj ect | D. 0: OBJECT | DENTI FI ER:
.i1so.org.dod.internet.private.enterprises.cisco.ciscoProducts.cisco2509
system sysUpTine.0 : Tineticks: (168113316) 19 days, 10:58:53.16
system sysContact.0 : DI SPLAY STRING (ascii): J.C. M Pager 555-1212
system sysNane. 0 : DI SPLAY STRING (ascii): orasw tch2.ora.com

system sysLocation.0 : DI SPLAY STRING (ascii): Sebastopol CA

system sysServices.0 : |INTEGER 6

Let's go to the GUI MIB Browser and try that same walk. Repeat the steps you took for snmpget using the GUI. This time insert
the OID .1.3.6.1.2.1.1 and click the Start Query button. Check out the results.

- The GUI figures out whether it needs to perform an snmpwalk or snmpget. If you give an instance value
as (being specific), the browser performs an snmpget. Otherwise, it does an snmpwalk. If you are looking
. @ for more speed and less cost to your network, include the instance value.

What will happen if you walk the entire .iso subtree? It may hurt or even crash your machine, because in most cases, the device
can return several thousand values. Each interface on a router can add thousands of values to its MIB tables. If each object
takes .0001 seconds to compute and return, and there are 60,000 values to return, it will take your device 6 seconds to return
all the valuesnot counting the load on the network or on the monitoring station. If possible, it is always a good idea to perform
an snmpwalk starting at the MIB subtree that will provide you with the specific information you are looking for, as opposed to



walking the entire MIB.

It might be useful to get a feel for how many MIB objects a given device has implemented. One way to do this is to count the
number of objects each snmpwalk returns. This can be accomplished with the Unix grep command. The -c switch to grep tells it
to return the number of lines that matched. The period (.) tells grep to match everything. Starting from the .system object
(.1.3.6.1.2.1.1), let's go back one and see how many objects are implemented in the mib-2 subtree. Take the last .1 off the
object ID and run the snmpwalk command again, this time piping the results into grep -c:

$ /opt/ OV/ bin/snmpwal k oraswitch2 .1.3.6.1.2.1 | grep -c .

The number of objects you see will depend on the type of device and the software running on it. When we tried several different
devices, we got results ranging from 164 to 5,193.

This command is great when you want to walk a MIB to see all the types of values that a device is capable of returning. When
we are trying out a new device or MIB, we often walk some decent-sized portion of the MIB and read through all the returned
values, looking for any info that may be of interest. When something catches our eye, we go to the MIB definition and read its
description. Many GUI MIB Browsers allow you to check the description with the click of a button. In OpenView's GUI, click on
the OID and then on Describe.

7.2.2. Walking the Tree with Net-SNMP

Net-SNMP's snmpwalk is very similar in form and function to OpenView's. Here's how you use it:

$ snmpwal k -v1l -c public orarouterl .1.3.6.1.2.1.1

SNVPv2- M B: : system sysDescr.0 = STRING Cisco | OS Software, C2600 Software
(C2600- 1 PBASE-M, Version 12.3(8)T3, RELEASE SOFTWARE (fcl)

Techni cal Support: http://ww.cisco.conltechsupport

Copyright (c) 1986-2004 by Cisco Systenms, Inc.

Conpi | ed Tue 20-Jul -04 17: 03 by eaarmas

SNVPv2- M B: : system sysChjectI D.O = OD: enterprises.9.1.284

SNVPv2- M B: : system sysUpTine. 0 = Tinmeticks: (100946413) 11 days, 16:24:24.13
SNMPv2- M B: : system sysContact. 0 = STRING thenetworkadninistrator@reilly.com
SNVPv2- M B: : system sysNane.0 = STRING orarouterl@reilly.com

SNVPv2- M B: : system sysLocation.0 = STRING Sebastopol CA

SNVPv2- M B: : system sysServices.0 = STRING 6

SNVPv2- M B: : syst em sysORLast Change. 0 = Tineticks: (0) 0:00:00.00

There aren't any real surprises. Again, you can use an object name rather than a numerical ID; because you're walking a tree,
you don't need to specify an instance number.

e prcv |



e prcv |

7.3. Setting a MIB Value

With snmpget and snmpwalk, we have retrieved management information only from devices. The next logical step is to change
the value of a MIB object via SNMP. This operation is known as snmpset, or set. In this section, we'll read the value of an
object, use snmpset to change its value, and read the value again to prove that it's been changed.

There's obviously some danger here: what happens if you change a variable that's critical to the state of the system you're
monitoring? In this chapter, we'll deal only with some simple objects, such as the administrative contact, that won't damage
anything if they're changed incorrectly. Therefore, if you keep the OIDs correct, you shouldn't worry about hurting any of your
devices. All the objects we set in this chapter have an ACCESS of read-write. It's a good idea to get a feel for which objects are
writable by reading the MIB in which the object is definedeither one of the RFCs, or a MIB file provided by your vendor.

Let's get started. Run the following OpenView command (or use one of the other programs we've discussed) to find out the
sysContact for your chosen device:

$ /opt/ OV/ bin/snnpget -c public orarouterl .1.3.6.1.2.1.1.4.0
system sysContact. 0 : DI SPLAY STRING (ascii): ORAIT Goup

The -c public switch passes the community string public to the snmpget command.

"'_} Keep in mind that your devices shouldn't use the same (default) community strings that are used in this
as book. In addition, using the same string for the read-only (snmpget) and read-write (snmpset)
. #4: communities is a poor idea.

Now let's run the OpenView snmpset command. This command takes the value specified in quotes on the command line and
uses it to set the object indicated by the given OID. Use the same OID (system.sysContact.0). Since the new value for
sysContact contains words and possibly numbers, we must also specify the variable type oct et string.[1 Run the OpenView
snmpset command with the following parameters:

[T1f you read RFC 1213 (MIB-Il), you will note that sysLocation has a SYNTAX of Di spl aySt ri ng. This is really a textual convention of type OCTET STRI NGwith a size of
0.255 octets.

$ /opt/ OV/ bin/snnpset -c private orarouterl .1.3.6.1.2.1.1.4.0 \
octetstring "Meg A Byte 555-1212"
system sysContact.0 : DI SPLAY STRING (ascii): Mg A Byte 555-1212

The result shows that snmpset successfully changed the router's contact person to Meg A. Byte 555-1212. If you don't see this
result, the set was not successful. Table 7-2 shows some of the common error messages you might receive and steps you can
take to correct the problems. To confirm the value the device has stored in sysContact, we can repeat the snmpget command.

If we use OpenView's GUI, things start to get a bit easier to see, set, and confirm. Use the GUI to get the value of sysContact.
Once you have confirmed that a value is there, type a description in the SNMP Set Value text box. Since there is only one
instance for sysContact, you have to insert a O (zero) for the MIB Instance. After you have completed all the required input
items, click on the Set button located to the right of the SNMP Set Value text box. You should see a pop-up window that reads
"Set has completed successfully." To verify that the set actually occurred, click on Start Query. (It should be apparent to you by
now that using a GUI such as OpenView's MIB Browser program makes getting and setting MIB objects much easier.)

To show how this can be done programmatically, we will write another small Perl script, named snmpset.pl:

#!/usr/ | ocal / bin/perl
#filename: /opt/local/perl_scripts/snnpset.pl

use SNWVP_util;

$MBlL = ".1.3.6.1.2.1.1.6.0";
$HOST = "oraswitch2";

$LOC = "@RGV;

($val ue) = &snnpset ("private\ @HOST", "$M B1", "' string',"$LCC");



if ($value) { print "Results :$M B1: :$value:\n"; }
else { warn "No response from host :$HOST:\n"; }

Let's run this script:

$ /opt/local/perl _scripts/snnpset.pl A bld JM 10119 floor 7
Results :.1.3.6.1.2.1.1.6.0: :A bld JM 10119 floor 7:

Using the snmpget.pl script, we can verify that the set took place:

$ /opt/local/perl_scripts/snnpget.pl .1.3.6.1.2.1.1.6.0 public@rasw tch2
Results :.1.3.6.1.2.1.1.1.0: :A bld JM 10119 floor 7:

Now we'll use the Net-SNMP snmpset utility to change the system contact:

$ snnpset -vl -c private oraswitch2 sysContact.0 s nyself
SNWPv2- M B: : system sysContact. 0 = nysel f

$ snnpget -vl -c public orasw tch2 sysContact.O

SNVPv2- M B: : system sysContact.0 = nysel f

There's nothing really confusing here. We supplied a community string, a hostname, and an object ID, followed by a datatype (s
for String) and the new value of sysContact. Just to convince ourselves that the set actually took place, we followed it with an
snmpget. The only additional thing you need to know is the mechanism for specifying datatypes. Net-SNMP uses the single-
character abbreviations shown in Table 7-1.

Table 7-1. Net-SNMP datatype abbreviations

Abbreviation Meaning

a IP address

b Bits

d Decimal string
D Double

F Float

i Integer

| Signed int64
o Object ID

s String

t Time ticks

Unsigned integer
U Unsigned int64

X Hexadecimal string

e rrc |



7.4. Error Responses

Table 7-2 shows the error responses that a device might return while executing the commands presented in this chapter.
Consult your local documentation if these explanations do not cover your exact problem.

Server responded with

Cont ai ned under subtree

No response arrived before timeout

Agent reported error with variable

M ssing instance value for...

Access is denied for variable

Table 7-2. Error responses

Explanation

snmpwalk returns this error if you have tried going down a MIB tree and are already
at the end, or if the tree doesn't exist on the client.

Possible causes include an invalid community name, an agent that is not running, or
an inaccessible node.

You are trying to set to an object with a datatype that is not the same as (or close
to) the variable's specified type. For example, if the variable wants a Di spl ayStri ng,
you'll get this error if you send it an | NTEGER. Read through the MIB to see what
SYNTAX type the variable needs.

When you are setting a value, you must supply the entire OID and instance. A
scalar object will end with zero (0) and a tabular object will end with the instance
number of the object in a table. Verify that the instance number you're using with
snmpget is correct and retry your set.

This may happen if you are trying to set a value on a read-only object. Review the
MIB to see what the object's ACCESS setting is.

NEXT B



e prcv |

Chapter 8. Polling and Thresholds

SNMP gives you the ability to poll your devices regularly, collecting their management information. Furthermore, you can tell
the NMS that there are certain thresholds that, if crossed, require some sort of action. For example, you might want to be
notified if the traffic at an interface jumps to an extremely high (or low) value; that event might signal a problem with the
interface, or insufficient capacity, or even a hostile attack on your network. When such a condition occurs, the NMS can forward
an alarm to an event-correlation engine or have an icon on an OpenView map flash. To make this more concrete, let's say that
the NMS is polling the status of an interface on a router. If the interface goes down, the NMS reports what has happened so that
the problem can be resolved quickly.

SNMP can perform either internal or external polling. Internal polling is typically used in conjunction with an application that
runs as a daemon or a facility such as cron that periodically runs a local application. External polling is done by the NMS. The
OpenView NMS provides a great implementation of external polling; it can graph and save your data for later retrieval or notify
you if it looks like something has gone wrong. Many software packages make good NMSs, and if you're clever about scripting,
you can throw together an NMS that's fine-tuned to your needs. In this chapter, we will look at a few of the available packages.

Polling is like checking the oil in a car; this analogy may help you to think about appropriate polling strategies. Three distinct
items concern us when checking the oil: the physical process (opening the hood, pulling out the dipstick, and putting it back in);
the preset gauge that tells us if we have a problem (is the level too high, too low, or just right?); and the frequency with which
we check it (once an hour, week, month, or year).

Let's assume that you ask your mechanic to go to the car and check the oil level. This is like an NMS sending a packet to a
router to perform an snmpget on some piece of information. When the mechanic is finished, you pay him $30 and go on your
way. Because a low oil level may result in real engine damage, you want to check the oil regularly. So, how long should you
wait until you send the mechanic out to the car again? Checking the oil has a cost: in this scenario, you paid $30. In networks,
you pay with bandwidth. Like money, you have only so much bandwidth, and you can't spend it frivolously. So, the real
question is, how long can you wait before checking the oil again without killing your budget?

The answer lies within the car itself. A finely tuned race car needs to have its fluids at perfect levels. A VW Beetle,[*1 unlike a
race car, can have plus or minus a quart at any time without seriously hindering its performance. You're probably not driving a
Beetle, but you're probably not driving a race car either. So, you decide that you can check the oil level about every three
weeks. But how will you know what is low, high, or just right?

[1The old ones from the 1960s, not the fancy modern ones.

The car's dipstick tells you. Your mechanic doesn't need to know the car model, engine type, or even the amount of oil in the
car; he only needs to know what value he gets when he reads the dipstick. On a network, a device's dipstick is called an agent,
and the dipstick reading is the SNMP response packet. All SNMP-compatible devices contain standardized agents (dipsticks) that
can be read by any mechanic (NMS). It is important to keep in mind that the data gathered is only as good as the agent, or
mechanic, that generated it.

In both cases, some predefined threshold determines the appropriate action. In the oil example, the threshold is "low oil," which
triggers an automatic response: add oil. (Crossing the "high oil" threshold might trigger a different kind of response.) If we're
talking about a router interface, the possible values we might receive are "up" and "down." Imagine that your company's
gateway to the Internet, a port on a router, must stay up 24 hours a day, 7 days a week. If that port goes down, you could lose
$10,000 for each second it stays down. Would you check that port often? Most organizations won't pay someone to check router
interfaces every hour, let alone every second. Even if you had the time, that wouldn't be fun, right? This is where SNMP polling
comes in. It allows network managers to guarantee that mission-critical devices are up and functioning properly, without having
to pay someone to constantly monitor routers, servers, etc.

Once you determine your monitoring needs, you can specify at what interval you would like to poll a device or set of devices.
This is typically referred to as the poll interval and can be as granular as you like (e.g., every second, every hour, etc.). The
threshold value at which you take action doesn't need to be binary: you might decide that something's obviously wrong if the
number of packets leaving your Internet connection falls below a certain level.

"'_} Whenever you are figuring out how often to poll a device, remember to keep three things in mind: the
as device's agent/CPU, bandwidth consumption, and the types of values you are requesting. Some values
g 4: you receive may be 10-minute averages. If this is the case, it is a waste to poll every few seconds.

Review the MIBs surrounding the data for which you are polling. Our preference is to start polling fairly
often. Once we see the trends and peak values, we back off. This can add congestion to the network but
ensures that we don't miss any important information.

Whatever the frequency at which you poll, keep in mind other things that may be happening on the network. Be sure to stagger



your polling times to avoid other events if possible. Keep in mind backups, data loads, routing updates, and other events that
can cause stress on your networks or CPUs.

e rrcv |



e prcv |

8.1. Internal Polling

It may seem like a waste of bandwidth to poll a device just to find out that everything is OK. On a typical day, you may poll
dozens of devices hundreds or thousands of times without discovering any failures or outages. Of course, that's really what you
want to find outand you'll probably conclude that SNMP has served its purpose the first time you discover a failed device and get
the device back online before users have had a chance to start complaining. However, in the best of all possible worlds, you'd
get the benefits of polling without the cost: that is, without devoting a significant chunk of your network's bandwidth to
monitoring its health.

This is where internal polling comes in. As its name implies, internal polling is performed by an agent that is internal, or built
in, to the device you want to manage. Since polling is internal to the device, it doesn't require traffic between the agent and
your NMS. Furthermore, the agent doing the polling does not have to be an actual SNMP agent, which can allow you to monitor
systems (either machines or software) that do not support SNMP. For example, some industrial-strength air-conditioning
equipment vendors provide operational status information via a serial port. If the air-conditioning unit is attached to a terminal
server or similar device, it becomes easy to use scripting languages to monitor the unit and generate traps if the temperature
exceeds a certain threshold. This internal program can be written in your favorite scripting language, and it can check any
status information to which you can get access. All you need is a way to get data from the script to the management station.

One strategy for writing a polling program is to use "hooks" within a program to extract information that can then be fed into an
SNMP trap and sent to the NMS. We will cover traps more in Chapter 9. Another way to do internal polling is to use a program
(e.g., sh, Perl, or C) that is run at set intervals. (On Unix, you would use cron to run a program at fixed intervals; there are
similar services on other operating systems.) Hooks and cron-driven scripts both allow you to check internal variables and
report errors as they are found. Here is a Perl script that checks for the existence of a file and sends a trap if the file is not
found:

#! /usr/ | ocal / bi n/ perl
# Filenane: /opt/local/perl_scripts/check4file.pl

use SNWVP_util "0.54"; # This will load the BER and SNVP_Sessi on npdul es for us

$FI LENAME = "/etc/passwd”;

#

# if the /etc/passwd file does not exist, send a trap!

#

if(!'(-e $FILENAME)) {

snnptrap("public\@ns: 162", ".1.3.6.1.4.1.2789", "sunserverl", 6, 1547, \

".1.3.6.1.4.1.2789.1547.1", "string", "File \:$FI LENAVE\: Coul d\
NOT Be Found");

}

Here is what the Sun-style crontab looks like:

$ crontab -1

# Check for this file every 15 mnutes and report trap if not found
4,19,34,49 * * * * [opt/local/perl_scripts/check4file.pl

Notice that we poll four minutes after each quarter hour rather than on the quarter hour. The next poll we insert into the
crontab file may run five minutes after the quarter hour (5,20,35,50). This practice prevents us from starting a huge number of
programs at the same time. It's a particularly good idea to avoid polling on the hourthat's a popular time for random programs
and cron jobs to start up. Consult the cron manpage if you are unfamiliar with its operation.

8.1.1. Remote Monitoring (RMON)

RMON is a supplement to the MIB-I11 group. This group, if supported by the device's SNMP agent, allows us to do both internal



and external polling. We can poll devices through a remote NMS (external polling) or have the local RMON agent check itself
periodically and report any errors (internal polling). The RMON agent will send traps when error conditions are found.

Many devices support RMON, making it an effective mechanism for internal polling. For example, Cisco supports the Events and
Alarms RMON categories. You can configure the Alarms category to poll MIBs internally and react in different ways when a
rising or falling threshold occurs. Each threshold has the option of calling an internal event. Figure 8-1 shows the flow that
these two RMON categories take.

The distinction between alarms and events is important. Each alarm is tied to a specific event that defines what action to
perform when the alarm goes off. Once a threshold is met, triggering an alarm, the alarm calls the event, which can perform

Figure 8-1. RMON process flow

RMON Alarm One  -ccosconmmsnsnconcac e RMON Event One o cocniesressmnisncac e
F ¥ SNMP Trap I
RMON Alam Two -~ . RMON Event Two
RMON Alarm Three - RMON Event Three 3

=

additional functions, including sending traps to the NMS and writing a record in a log. Standard SNMP traps are preconfigured
by the agent's vendor, which gives network managers no control over setting any kind of thresholds; however, RMON allows a
network manager to set rising and falling thresholds. Figure 8-2 represents the interaction between a router's RMON agent and
an NMS.

RMON Alarm Four

Figure 8-2. RMON and NMS interaction

NMS

Cisco Router w/RMON

External polling using SNMP gets

L

ﬂ

Internal potling
using REFON

SINMP traps

In Figure 8-2, the Cisco router's SNMP agent forwards a trap to the NMS. Notice the direction of communication: RMON trap
transmission is unidirectional. The NMS receives the trap from the Cisco router and decides what action to take, if any.

In addition to sending traps, we can also log events ; if we so choose, we can even log the event without generating a trap.
Logging can be particularly useful when you are initially configuring RMON alarms and events. If you make your alarm

conditions too sensitive, you can clog your NMS with trigger-happy RMON events. Logging can help you fine-tune your RMON
alarms before they are released into production.

8.1.1.1. RMON configuration

As a practical example of how to configure RMON, we will use Cisco's RMON implementation, starting with events. The following
10S command defines an RMON event:

rnon event nunber [log] [trap conmunity] [description string] [owner string]



If you're familiar with 10S, you should be expecting a corresponding no command that discards an RMON event:

no rnon event nunber

The parameters to these 10S commands are:

nunber

Specifies the unique identification number for the event. This value must be greater than O; a value of O is not allowed.

| og

Tells the agent to log the entry when triggered. This argument is optional.

trap community

Specifies the trap community string, i.e., a community string to be included with the trap. Many network management
programs can be configured to respond only to traps with a particular community string.

description string

Describes the event.

owner string
Ties the event or item to a particular person.

Here are two examples of how to create Cisco RMON events. The first line creates a rising alarm, which facilitates sending a trap
to the NMS. The second creates a falling alarm that might indicate that traffic has returned to an acceptable level (this alarm is
logged but doesn't generate a trap):

(config)#rnon event 1 log trap public description "H gh iflnQOctets" owner dmauro
(config)#rnon event 2 log description "Low iflnCctets" owner dmauro

You can also use logging to keep track of when the events were called. Though you can configure traps without logging, what
happens if the line to your NMS goes down? Logging ensures that you don't lose information when the NMS is disabled. We
suggest using both | og and trap on all your events. You can view the logs of your RMON events by issuing the following
command on the router:

orarouter1# show rnon event

Event 1 is active, owned by dnmauro

Description is Hgh ifInCctets

Event firing causes log and trap to community public, last fired 00:00: 00
Event 2 is active, owned by dnmauro

Description is Low iflnCctets

Event firing causes log, last fired 00:00: 00

The following Net-SNMP command walks the rmon event table, which displays the values we just set:

$ snnmpwal k -v1l -c public -morarouterl .iso.org.dod.internet.ngnt.mb-2.rnon
RMON- M B: : event I ndex.1 = I NTEGER 1

RMON- M B: : event I ndex. 2 = | NTEGER 2

RMON- M B: : event Description.1 = STRING Hi gh iflnCctets



RMON- M B: : event Description.2 = STRING Low iflnCctets
RMON- M B: : event Type. 1 = | NTEGER: | ogandtrap(4)

RMON- M B: : event Type. 2 = | NTEGER | 0g(2)

RMON- M B: : event Conmunity.1 = STRING "public"

RMON- M B: : event Community.2 = "*"

RMON- M B: : event Last Ti mreSent. 1 = Timeticks: (0) 0:00:00.00
RMON- M B: : event Last Ti mneSent. 2 = Tinmeticks: (0) 0:00:00.00
RVON- M B: : event Omner.1 = STRING "dmauro"

RMON- M B: : event Oaner. 2 = STRING "dnauro"”

RMON-M B: : event Status.1 = I NTEGER valid(1)

RMON- M B: : event St at us. 2 | NTECER: valid(1)

Most of the information we set on the command line is available through SNMP. We see two events, with indexes 1 and 2. The
first event has the description H gh iflnCctets; it is logged and a trap is generated; the community string for the event is

publ i c; the event's owner is dnmaur o; the event is val i d, which essentially means that it is enabled; and we also see that the
event has not yet occurred because the value of eventLastTimeSent is 0:00:00.00.*1 Instead of using the command line to
define these events, we could have used snmpset either to create new events or to modify events we already have. If you take
this route, keep in mind that you must set the eventEntry.eventStatus to 1, for "valid," for the event to work properly.

[1 Timeticks: (0) shows that no event occurred. This value is useful if you plan to write your own script to query the RMON objects on your router.

b You can poll the objects ifDescr and ifType in the mgmt.interfaces.ifEntry subtree to help you identify
.'..._ which instance number you should use for your devices. If you are using a device with multiple ports,
o #: you may need to search the ifType, ifAdminStatus, and ifOperStatus objects to help you identify what's

what. In the next section, "External Polling,” we will see that it is not necessary to keep track of these
MIB variables (the external polling software takes care of this for us).

Now that we have our events configured, let's start configuring alarms to do some internal polling. We need to know what we
are going to poll, what type of data is returned, and how often we should poll. Assume that the router is our default gateway to
the Internet. We want to poll the router's second interface, which is a serial interface. Therefore, we want to poll
mgmt.interfaces.ifEntry.ifiInOctets.2 to get the number of outbound octets on that interface, which is an | NTEGER type.L 1 To be
precise, the ifinOctets MIB object is defined as "the total number of octets received on the interface, including framing
characters.” (The .2 at the end of the OID indicates the second entry in the ifEntry table. On our router, this denotes the second
interface, which is the one we want to poll.) We want to be notified if the traffic on this interface exceeds 90,000 octets/second;
we'll assume things are back to normal when the traffic falls back under 85,000 octets/second. This gives us the rising and
falling thresholds for our alarm. Next, we need to figure out the interval at which we are going to poll this object. Let's start by
polling every 60 seconds.

[ JFrom RFC 2819, alarmVariable (the object/MIB we are going to poll) needs to resolve to an ASN.1 primitive type of | NTEGER, Count er, Gauge, or Ti neTi cks.

Now we need to put all this information into a Cisco RMON alarm command. Here is the command to create an alarm:

rnon al arm nunber variable interval {delta | absol ute}
rising-threshold val ue [ event-nunber]
falling-threshold val ue [event-nunber]
[owner string]

The following command discards the alarm:

no rnon al arm nunber

The parameters to these commands are:

nunber

Specifies the unique identification number assigned to the alarm.



vari abl e

Specifies which MIB object to monitor.

interval

Specifies the frequency (in seconds) at which the alarm monitors the MIB variable.

del ta

Indicates that the threshold values given in the command should be interpreted in terms of the difference between
successive readings.

absol ute

Indicates that the threshold values given in the command should be interpreted as absolute values; i.e., the difference
between the current value and preceding values is irrelevant.

ri sing-threshol d val ue [event-nunber]

Specifies the val ue at which the alarm should be triggered, calling the event, when the value is rising. event - nunber is the
event that should be called when the alarm occurs. The event number is optional because the threshold doesn't have to
be assigned an event. If either of the two thresholds is left blank, the event number will be set to 0, which does nothing.

falling-threshol d val ue [event-nunber]

Specifies the val ue at which the alarm should be triggered, calling the event, when the value is falling. event - nunber is
the event that should be called when the alarm occurs. The event number is optional because the threshold doesn't have
to be assigned an event. If either of the two thresholds is left blank, the event number will be set to 0, which does
nothing.

owner string
Ties this alarm to a particular person.

To configure the alarm settings we just described, enter the following command, in configuration mode, on a Cisco console:

orarouterl1(config)#rnon alarm 25 ifEntry.10.2 60 absolute \
rising-threshold 90000 1 falling-threshold 85000 2 owner dnauro

This command configures alarm number 25, which monitors the object in ifEntry.10.2 (instance 2 of ifEntry.ifInOctets, or the
input octets on interface 2) every 60 seconds. It has a rising threshold of 90,000 octets, which has event number 1 tied to it:
event 1 is called when traffic on this interface exceeds 90,000 octets/second. The falling threshold is set to 85,000 octets and
has event number 2 tied to it. Here's how the alarm looks in the router's internal tables:

or arout er 1#show rnon al arm

Alarm 1 is active, owned by dmauro

Monitors ifEntry.10.2 every 60 second(s)

Taki ng absol ute sanples, |ast value was 87051
Ri sing threshold is 90000, assigned to event 1
Falling threshold is 85000, assigned to event 2
On startup enable rising or falling alarm

The last line of output says that the router will enable the alarm upon reboot. As you'd expect, you can also look at the alarm
settings through the RMON MIB, beginning with the subtree 1.3.6.1.2.1.16. As with the events themselves, we can create,
change, edit, and delete entries using snmpset.

One problem with internal polling is that getting trends and seeing the data in a graph or table is difficult. Even if you develop



the backend systems to gather MIB objects and display them graphically, retrieving data is sometimes painful. The Multi Router
Traffic Grapher (MRTG) is a great program that allows you to do both internal and external polling . Furthermore, it is designed
to generate graphs of your data in HTML format. MRTG is covered in Chapter 12.

e prcv |



e prcv |

8.2. External Polling

It is often impossible to poll a device internally, for technical, security, or political reasons. For example, the System
Administration group may not be in the habit of giving out the root password, making it difficult for you to install and maintain
internal polling scripts. However, they may have no problem with installing and maintaining an SNMP agent such as Concord's
SystemEDGE or Net-SNMP. It's also possible that you will find yourself in an environment in which you lack the knowledge to
build the tools necessary to poll internally. Despite the situation, if an SNMP agent is present on a machine that has objects
worth polling, you can use an external device to poll the machine and read the objects' values.[*1 This external device can be
one or more NMSs or other machines or devices. For instance, when you have a decent-size network, it is sometimes
convenient, and possibly necessary, to distribute polling among several NMSs.

[1 Many devices say they are SNMP compatible but support only a few MIBs. This makes polling nearly impossible. If you don't have the object(s) to poll, there is nothing
you can do, unless there are hooks for an extensible agent. Even with extensible agents, unless you know how to program, the Simple in SNMP goes away fast.

Each of the external polling engines we will look at uses the same polling methods, although some NMSs implement external
polling differently. We'll start with the OpenView xnmgraph program, which can be used to collect and display data graphically.
You can even use OpenView to save the data for later retrieval and analysis. We'll include some examples that show how you
can collect data and store it automatically and how you can retrieve that data for display. Castle Rock's SNMPc also has an
excellent data-collection facility that we will use to collect and graph data.

8.2.1. Collecting and Displaying Data with OpenView

One of the easiest ways to get some interesting graphs with OpenView is to use the xnmgraph program. You can run xnmgraph
from the command line and from some of NNM's menus. One practical way to graph is to use OpenView's xnmbrowser to collect
some data and then click Graph. It's as easy as that. If the node you are polling has more than one instance (say, multiple
interfaces), OpenView will graph all known instances. When an NMS queries a device such as a router, it determines how many
instances are in the ifTable and retrieves management data for each entry in the table.

8.2.2. OpenView Graphing

Figure 8-3 shows the sort of graph you can create with NNM. To create this graph, we started the browser (Figure 8-2) and
clicked down through the MIB tree until we found the .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry list. Once there,
we clicked on ifInOctets; then, while holding down the Ctrl key, we clicked on ifOutOctets. After both were selected and we
verified that the Name or IP Address field displayed the node we wanted to poll, we clicked on the Graph button.

Once the graph has started, you can change the polling interval and the colors used to display different objects. You can also
turn off the display of some or all of the object instances. The menu item View = Line Configuration lets you specify which
objects you would like to display; it can also set multipliers for different items. For example, to display everything in K, multiply
the data by .001. There is also an

Figure 8-3. OpenView xnmgraph of octets in/out



]
&

orarouterl i1fInlctets.
orarouterl ifInlctet
t erl 1flutict
orarount | i tlctets. 3 [ erl 1f0utlctet

6000-
5500
5000
4500
4000
3500
3000
2500
2000
1500
1000
500

< B 5 T 13 T T =
19:22:14 : 19:23:54 19:24:44 19:25:34 19:26:24
12/23/98

option (View == Statistics) that shows a statistical summary of your graph. Figure 8-4 shows some statistics from the graph in
Figure 8-3. While the statistics menu is up, you can left-click on the graph, and the statistics window will display the values for
the specific date and time to which you are pointing with the mouse.

Figure 8-4. xnmgraph statistics

Starting xnmgraph from the command line allows you to start the grapher at a specific polling period
""@ and gives you several other options. By default, OpenView polls at 10-second intervals. In most cases,
this is fine, but if you are polling a multiport router to check if some ports are congested, a 10-second
polling interval may be too quick and could cause operational problems. For example, if the CPU is busy
answering SNMP queries every 10 seconds, the router might get bogged down and become very slow,
especially if the router is responsible for OSPF or other CPU-intensive tasks. You may also see
messages from OpenView complaining that another poll has come along while it is still waiting for the
previous poll to return. Increasing the polling interval usually gets rid of these messages.

Some of NNM's default menus let you use the grapher to poll devices depending on their type. For example, you can select the
object type "router” on the NNM and generate a graph that includes all your routers. Whether you start from the command line
or from the menu, sometimes you will get a message back that reads "Requesting more lines than number of colors (25).
Reducing number of lines." This message means that there aren't enough colors available to display the objects you are trying
to graph. The only good ways to avoid this problem are to break up your graphs so that they poll fewer objects, or eliminate
object instances you don't want. For example, you probably don't want to graph router interfaces that are down (for whatever
reason) and other "dead" objects. We will soon see how you can use a regular expression as one of the arguments to the



xnmgraph command to graph only those interfaces that are up and running.

Although the graphical interface is very convenient, the command-line interface gives you much more flexibility. The following
shell script displays the graph in Figure 8-3 (i.e., the graph we generated through the browser):

#!/bin/sh

# filenane: /opt/OV/local/scripts/graphCctets

# syntax: graphCctets <hostnanme>

/ opt/ OV/ bi n/ xnngraph -c public -mb \
".iso.org.dod.internet.ngnt. mb-2. interfaces.ifTable.ifEntry.iflnCctets::::::::,\
.iso.org.dod.internet.mgnmt.mb-2. interfaces.ifTable.ifEntry.ifQutCctets::::::::" \
$1

You can run this script with the command:

$ /opt/ OV/local /scripts/graphCctets orarouterl

The worst part of writing the script is figuring out what command-line options you wantparticularly the long strings of nine
colon-separated options. All these options give you the ability to refine what you want to graph, how often you want to poll the
objects, and how you want to display the data. (We'll discuss the syntax of these options as we go along, but for the complete
story, see the xnmgraph(1) manpage.) In this script, we're graphing the values of two MIB objects, ifInOctets and ifOutOctets.
Each OID we want to graph is the first (and in this case, the only) option in the string of colon-separated options. On our
network, this command produces eight traces: input and output octets for each of our four interfaces. You can add other OIDs to
the graph by adding sets of options, but at some point, the graph will become too confusing to be useful. It will take some
experimenting to use the xnmgraph command efficiently, but once you learn how to generate useful graphs you'll wonder how
you ever got along without it.

Keeping your scripts neat is not only good practice but also aesthetically pleasing. Using a \ at the end
H@ of a line indicates that the next line is a continuation of the current line. Breaking your lines
intelligently makes your scripts more readable. Be warned that the Unix shells do not like extra
whitespace after the \. The only character after each \ should be one carriage return.

Now, let's modify the script to include more reasonable labelsin particular, we'd like the graph to show which interface is which,
instead of just showing the index number. In our modified script, we've used numerical object IDs, mostly for formatting
convenience, and we've added a sixth option to the ugly sequence of colon-separated options: .1.3.6.1.2.1.2.2.1.2 (this is the
ifDescr, or interface description, object in the interface table). This option says to poll each instance and use the return value of
snmpget .1.3.6.1.2.1.2.2.1.2.INSTANCE as the label. This should give us meaningful labels. Here's the new script:

#!'/ bin/ sh

# filenane: /opt/OV/1ocal/scripts/graphCctets

# syntax: graphCctets <hostnanme>

/opt/ OV/ bi n/ xnmgraph -c public -title Bits_In_n Qut -mb \
".1.3.6.1.4.1.9.2.2.1.1.6:::::.1.3.6.1.2.1.2.2.1.2:::,\
.1.3.6.1.4.1.9.2.2.1.1.8:::::.1.3.6.1.2.1.2.2.1.2:::" $1

To see what we'll get for labels, here's the result of walking .1.3.6.1.2.1.2.2.1.2:

$ snnpwal k orarouterl .1.3.6.1.2.1.2.2.1.2
interfaces.ifTable.ifEntry.ifDescr.1 : DI SPLAY STRING (ascii): EthernetO
interfaces.ifTable.ifEntry.ifDescr.2 : DI SPLAY STRING (ascii): Serial0
interfaces.ifTable.ifEntry.ifDescr.3 : DI SPLAY STRING (ascii): Seriall

Figure 8-5 shows our new graph. With the addition of this sixth option, the names and labels are much easier to read.

Meaningful labels and titles are important, especially if management is interested in seeing the graphs. A label that contains an
OID and not a textual description is of no use. Some objects that are useful in building labels are ifType (.1.3.6.1.2.1.2.2.1.3)



and ifOperStatus (.1.3.6.1.2.1.2.2.1.8). Be careful when using ifOperStatus; if the status of the interface changes during a poll,
the label does not change. The label is evaluated only once.

One of the most wasteful things you can do is poll a useless object. This often happens when an interface is administratively
down or not configured. Imagine that you

Figure 8-5. OpenView xnmgraph with new labels

have 20 serial interfaces, but only one is actually in use. If you are looking for octets in and out of your serial interfaces, you'll
be polling 40 times and 38 of the polls will always read 0. OpenView's xnmgraph allows you to specify an OID and regular
expression to select what should be graphed. To put this feature to use, let's walk the MIB to see what information is available:

$ snnpwal k orarouterl .1.3.6.1.2.1.2.2.1.8
interfaces.ifTable.ifEntry.ifQperStatus.1 : |INTECGER up
interfaces.ifTable.ifEntry.ifOperStatus.2 : |INTEGER up
interfaces.ifTable.ifEntry.ifOperStatus.3 : |INTEGER down

This tells us that only two interfaces are currently up. By looking at ifDescr, we see that the live interfaces are EthernetO and
SerialO; Seriall is down. Notice that the type of ifOperStatus is | NTEGER, but the return value looks like a string. How is this?
RFC 1213 defines string values for each possible return value:

i f Oper St at us OBJECT- TYPE
SYNTAX | NTEGER {

up(1), --ready to pass packets
down(2),
testing(3) --in sone test node

}
ACCESS read-only
STATUS nmandat ory
DESCRI PTI ON
"The current operational state of the interface. The testing(3)
state indicates that no operational packets can be passed."
o= { ifEntry 8}

It's fairly obvious how to read this: the integer value 1 is converted to the string up. We can therefore use the value 1 in a
regular expression that tests ifOperStatus. For every instance we will check the value of ifOperStatus; we will poll that instance
and graph the result only if the status returns 1. In pseudocode, the operation would look something like this:

if (ifOperStatus == 1) {
pol | For M BDat a;
graphCctets;

Here's the next version of our graphing script. To put this logic into a graph, we use the OID for ifOperStatus as the fourth colon
option and the regular expression (1) as the fifth option:

#!/ bi n/ sh



# filename: /opt/OV/local/scripts/graphCctets

# syntax: graphCctets <hostnane>

[ opt/ OVI bi n/ xnngraph -c¢ public \

-title COctets_In_and _Qut_For_All _Up_Interfaces \

-mb ".1.3.6.1.2.1.2.2.1.10:::.1.3.6.1.2.1.2.2.1.8:1::::, \
.1.3.6.1.2.1.2.2.1.16:::.1.3.6.1.2.1.2.2.1.8: 1L::::" $1

This command graphs the ifInOctets and ifOutOctets of any interface that has a current operational state equal to 1, or up. It
therefore polls and graphs only the ports that are important, saving on network bandwidth and simplifying the graph.
Furthermore, we're less likely to run out of colors while making the graph because we won't assign them to useless objects.
Note, however, that this selection happens only during the first poll and stays effective throughout the entire life of the
graphing process. If the status of any interface changes after the graph has been started, nothing in the graph will change. The
only way to discover any changes in interface status is to restart xnmgraph.

Finally, let's look at:

- How to add a label to each OID we graph

« How to multiply each value by a constant

¢ How to specify the polling interval
The cropped graph in Figure 8-6 shows how the labels change when we run the following script:
#!'/ bin/ sh

# filenanme: /opt/OV/local/scripts/graphCctets
# syntax: graphCctets <hostnane>

/ opt/ OV/ bi n/ xnngraph -c¢ public -title Internet_Traffic_In_K -poll 68 -mb \
".1.3.6.1.4.1.9.2.2.1.1.6:Incomng_Traffic::::.1.3.6.1.2.1.2.2.1.2::.001:,\
.1.3.6.1.4.1.9.2.2.1.1.8: Qutgoing_Traffic::::.1.3.6.1.2.1.2.2.1.2::.001:" \
$1

The labels are given by the second and sixth fields in the colon-separated options (the second field provides a textual label to
identify the objects we're graphing and the sixth uses the ifDescr field to identify the particular interface); the constant
multiplier (.001) is given by the eighth field; and the polling interval (in seconds) is given by the -poll option.

By now it should be apparent how flexible OpenView's xnmgraph program really is. These graphs can be important tools for

troubleshooting your network. When a network manager receives complaints from customers regarding slow connections, he
can look at the graph of ifInOctets generated by xnmgraph to see if any router interfaces have unusually high traffic spikes.

Figure 8-6. xnmgraph with labels and multipliers

1alld (* 0.001)
all (* 0.001)

uterl [quninq__'fra_ffi- iernetd (* D.001)

oraronter]l Dotgoing Traffic.Ser 1all (* 0.001)

1.0+

Graphs like these are also useful when you're setting thresholds for alarms and other kinds of traps. The last thing you want is
a threshold that is too "triggery" (one that goes off too many times) or a threshold that won't go off until the entire building
burns to the ground. It's often useful to look at a few graphs to get a feel for your network's behavior before you start setting
any thresholds. These graphs will give you a baseline from which to work. For example, say you want to be notified when the
battery on your UPS is low (which means it is being used) and when it is back to normal (fully charged). The obvious way to
implement this is to generate an alarm when the battery falls below some percentage of full charge, and another alarm when it
returns to full charge. So the question is: what value can we set for the threshold? Should we use 10% to indicate that the



battery is being used and 100% to indicate that it's back to normal? We can find the baseline by graphing the device's MIBs.[*1
For example, with a few days' worth of graphs, we can see that our UPS's battery stays right around 94-97% when it is not in
use. There was a brief period where the battery dropped down to 89% when it was performing a self-test. Based on these
numbers, we may want to set the "in use" threshold at 85% and the "back to normal"” threshold at 94%. This pair of thresholds
gives us plenty of notification when the battery's in use but won't generate useless alarms when the device is in self-test mode.
The appropriate thresholds depend on the type of devices you are polling, as well as the MIB data that is gathered. Doing some
initial testing and polling to get a baseline (normal numbers) will help you set thresholds that are meaningful and useful.

[1 Different vendors have different UPS MIBs. Refer to your particular vendor's MIB to find out which object represents low battery power.
Before leaving xnmgraph, we'll take a final look at the nastiest aspect of this program: the sequence of nine colon-separated

options. In the examples, we've demonstrated the most useful combinations of options. In more detail, here's the syntax of the
graph specification:

obj ect: | abel : i nstances: mat ch: expressi on: i nstance-| abel : truncator: nul tiplier:nodes

The parameters are:

obj ect

The OID of the object whose values you want to graph. This can be in either numeric or human-readable form, but it
should not have an instance number at the end. It can also be the name of an expression (expressions are discussed in

Appendix A).
| abel
A string to use in making the label for all instances of this object. This can be a literal string or the OID of some object
with a string value. The label used on the graph is made by combining this label (for all instances of the object) with
i nst ance- | abel , which identifies individual instances of an object in a table. For example, in Figure 8-6, the labels are

Incoming_Traffic and Outgoing_Traffic; i nstance-1 abel is1.3.6.1.2.1.2.2.1.2, or the ifDescr field for each object being
graphed.

i nstances
A regular expression that specifies which instances of obj ect to graph. If this is omitted, all instances are graphed. For
example, the regular expression 1 limits the graph to instance 1 of obj ect ; the regular expression [ 4-7] limits the graph
to instances 4 through 7. You can use the mat ch and expr essi on fields to further specify which objects to match.

mat ch
The OID of an object (not including the instance ID) to match against a regular expression (the match expression) to
determine which instances of the object to display in the graph.

expressi on
A regular expression; for each instance, the object given by nmat ch is compared to this regular expression. If the two
match, the instance is graphed.

i nstance- | abel
A label to use to identify particular instances of the object you are graphing. This is used in combination with the | abel
and truncator fields to create a label for each instance of each object being graphed.

truncat or

A string that will be removed from the initial portion of the instance label to make it shorter.

mul tiplier

A number that's used to scale the values being graphed.



nodes

The nodes to poll to create the graph. You can list any number of nodes, separated by spaces. The wildcard * polls all the
nodes in OpenView's database. If you omit this field, xnmgraph takes the list of nodes from the final argument on the
command line.

The only required field is obj ect ; however, as we've seen, you must have all eight colons even if you leave some (or most) of
the fields empty.

8.2.3. OpenView Data Collection and Thresholds

Once you close the OpenView graphs, the data in them is lost forever. OpenView provides a way to fix this problem with data
collection. Data collection allows the user to poll and record data continuously. It can also look at these results and trigger
events. One benefit of data collection is that it can watch the network for you while you're not there; you can start collecting
data on Friday and then leave for the weekend, knowing that any important events will be recorded in your absence.

You can start OpenView's Data Collection and Thresholds function from the command line, using the command

$OV_BIN/xnmcollect, or from NNM under the Options menu. This brings you to the Data Collection and Thresholds window,
shown in Figure 8-7, which displays a list of all the collections you have configured and a summary of the collection parameters.

Figure 8-7. OpenView's Data Collection and Thresholds window

File Edit Actions Help
MIB Dbjects Configured for Collection

Status Label HIE Object ID

if Inllctets .1.,3.6,1.2,1,2,.2.1,10
Suspended  iflutOctets .1.3.6,1.2.1,2.2.1.16
Suspended  iflnErrors .1.3.6,1,2,1,2,2,1,14
Suspended  iflutErrors .1.3.6,1.2,1.2,2,1.20
Suspended  159Hinl oadfvg A.3.6.1.4,1.11,2.3.1.1.5
Suspended  srmplnPkts .1.3.6,1.2.1.11.1
Suspended  [fXutil IfFutil
Suspended  DiskZIutil Diskiutil

MIB Object Collection Summary
Interval Store Threshold Source Instances

Configured collections that are in Suspended mode appear in a dark or bold font. This indicates that OpenView is not collecting
any data for these objects. A Collecting status indicates that OpenView is polling the selected nodes for the given object and
saving the data. To change the status of a collection, select the object, click on Actions, and then click on either Suspend
Collection or Resume Collection. (Note that you must save your changes before they will take effect.)

8.2.3.1. Designing collections
To design a new collection, select Edit =% Add MIB Object. This takes you to a new screen. At the top, click on MIB Object[*1

and click down through the tree until you find the object you would like to poll. To look at the status of our printer's paper tray,
for example, we need to navigate down to:



[1You can collect the value of an expression instead of a single MIB object.

.iso.org.dod.internet.private.enterprises.hp.nm.system.net-peripheral.net-
printer.generalDeviceStatus.gdStatusEntry.gdStatusPaperOut (.1.3.6.1.4.1.11.2.3.9.1.1.2.8).[*1

[1 This object is in HP's private MIB, so it won't be available unless you have HP printers and have installed the appropriate MIBs. Note that there is a standard printer MIB,
RFC 1759, but HP's MIB has more useful information.

The object's description suggests that this is the item we want: it reads "This indicates that the peripheral is out of paper." (If
you already know what you're looking for, you can enter the name or OID directly.) Once there, you can change the name of
the collection to something that is easier to read. Click OK to move forward. This brings you to the menu shown in Figure 8-8.

The Source field is where you specify the nodes from which you would like to collect data. Enter the hostnames or IP addresses
you want to poll. You can use wildcards like 198.27.6.* in your IP addresses; you can also click Add Map to add any nodes
currently selected. We suggest that you start with one node for testing purposes. Adding more nodes to a collection is easy once
you have everything set up correctly; you just return to the window in Figure 8-8 and add the nodes to the Source list.

Collection Mode lets you specify what to do with the data NNM collects. There are four collection modes: Exclude Collection;
Store, Check Thresholds; Store, No Thresholds; and Don't Store, Check Thresholds. Except for Exclude Collection, which allows
us to turn off individual collections for each device, the collection modes are fairly self-explanatory. (Exclude Collection may
sound odd, but it is very useful if you want to exclude some devices from data collection without stopping the entire process; for
example, you may have a router with a hardware problem that is bombarding you with meaningless data.) Data collection
without a threshold is easier than collection with a threshold, so we'll start there. Set the Collection Mode to Store, No
Thresholds. This disables (grays out) the bottom part of the menu, which is used for threshold parameters. (Select Store, Check
Thresholds if you want both data collection and threshold monitoring.) Then click OK and save the new collection. You can now
watch your collection grow in the $OV_DB/snmpCollect directory. Each collection consists of a binary datafile, plus a file with
the same name

Figure 8-8. OpenView poll configuration menu

preceded by an exclamation mark (!); this file stores the collection information. The data collection files will grow without
bounds. To trim these files without disturbing the collector, delete all files that do not contain an ! mark.

Clicking on Only Collect on Nodes with sysObjectID allows you to enter a value for sysObjectID. sysObjectID
(iso.org.dod.internet.mgmt.mib-2.system.sysObjectID) lets you limit polling to devices made by a specific manufacturer. Its
value is the enterprise number the device's manufacturer has registered with IANA. For example, Cisco's enterprise number is
9, and HP's is 11 (the complete list is available at http://www.iana.org/assignments/enterprise-numbers); therefore, to restrict



http://www.iana.org/assignments/enterprise-numbers

polling to devices manufactured by HP, set the sysObjectID to 11. RFC 1213 formally defines sysObjectID (1.3.6.1.2.1.1.2) as
follows:

sysObj ect | D OBJECT- TYPE
SYNTAX OBJECT | DENTI FI ER
ACCESS read-only
STATUS nmandat ory
DESCRI PTI ON
"The vendor's authoritative identification of the network
managenent subsystem contained in the entity. This val ue
is allocated within the SM enterprises subtree (1.3.6.1.4.1)
and provi des an easy and unanbi guous neans for determn ning
what kind of box' is being managed. For exanple, if vendor
"Flintstones, Inc.' was assigned the subtree 1.3.6.1.4.1.4242,
it could assign the identifier 1.3.6.1.4.1.4242.1.1 to its
"Fred Router'."
:={ system?2}

The polling interval is the period at which polling occurs. You can use one-letter abbreviations to specify units: s for seconds, m
for minutes, h for hours, and d for days. For example, 32s indicates 32 seconds; 1.5d indicates one and a half days. When we're
designing a data collection, we usually start with a very short polling intervaltypically 7s (7 seconds between each poll). You
probably wouldn't want to use a polling interval this short in practice (all the data you collect is going to have to be stored
somewhere), but when you're setting up a collection, it's often convenient to use a short polling interval. You don't want to wait
a long time to find out whether you're collecting the right data.

The next option is a drop-down menu that specifies what instances should be polled. The options are All, From List, and From
Regular Expression. In this case, we're polling a scalar item, so we don't have to worry about instances; we can leave the
setting to All or select From List and specify instance O (the instance number for all scalar objects). If you're polling a tabular
object, you can either specify a comma-separated list of instances or choose the From Regular Expression option and write a
regular expression that selects the instances you want. Save your changes (File = Save), and you're done.

8.2.3.2. Creating a threshold

Once you've set all this up, you've configured NNM to periodically collect the status of your printer's paper tray. Now for
something more interesting: let's use thresholds to generate some sort of notification when the traffic coming in through one of
our network interfaces exceeds a certain level. To do this, we'll look at a Cisco-specific object, loclfInBitsSec (more formally
iso.org.dod.internet.private.enterprises.cisco.local.linterfaces.lifTable.lifEntry.loclfInBitsSec), whose value is the five-minute
average of the rate at which data arrives at the interface, in bits per second. (There's a corresponding object called
locIfOutBitsSec, which measures the data leaving the interface.) The first part of the process should be familiar: start Data
Collection and Thresholds by going to the Options menu of NNM, then select Edit =% Add MIB Object. Navigate through the
object tree until you get to loclflnBitsSec; click OK to get back to the screen shown in Figure 8-8. Specify the IP addresses of
the interfaces you want to monitor and set the collection mode to Store, Check Thresholds; this allows you to retrieve and view
the data at a later time. (We typically turn on the Store function so that we can verify that the collector is actually working and
view any data that has accumulated.) Pick a reasonable polling intervalagain, when you're testing it's reasonable to use a short
intervalthen choose which instances you'd like to poll, and you're ready to set thresholds.

The Threshold field lets you specify the point at which the value you're monitoring becomes interesting. What "interesting"
means is up to you. In this case, let's assume that we're monitoring a T1 connection, with a capacity of 1.544 Mbits/second.
Let's say somewhat arbitrarily that we'll start worrying when the incoming traffic exceeds 75% of our capacity. So, after
multiplying 1.544 by .75, we set the threshold to > 1158000. Of course, network traffic is fundamentally bursty, so we won't
worry about a single peakbut if we have two or three consecutive readings that exceed the threshold, we want to be notified. So
let's set "consecutive samples"” to 3: that shields us from getting unwanted notifications, while providing ample notification if
something goes wrong.

Setting an appropriate consecutive samples value will make your life much more pleasant, though picking the right value is
something of an art. Another example is monitoring the /tmp partition of a Unix system. In this case, you may want to set the
threshold to >= 85, the number of consecutive samples to 2, and the poll interval to 5m. This will generate an event when the
usage on /tmp exceeds 85% for two consecutive polls. This choice of settings means that you won't get a false alarm if a user
copies a large file to /tmp and then deletes the file a few minutes later. If you set consecutive samples to 1, NNM generates a
Threshold event as soon as it notices that /tmp is filling up, even if the condition is only temporary and nothing to be concerned
about. It then generates a Rearm event after the user deletes the file. Since we are really only worried about /tmp filling up
and staying full, setting the consecutive threshold to 2 can help reduce the number of false alarms. This is generally a good
starting value for consecutive samples, unless your polling interval is very high.



The rearm parameters let us specify when everything is back to normal or is, at the very least, starting to return to normal.
This state must occur before another threshold is met. You can specify either an absolute value or a percentage. When
monitoring the packets arriving at an interface, you might want to set the rearm threshold to something like 926,400 bits per
second (an absolute value that happens to be 60% of the total capacity) or 80% of the threshold (also 60% of capacity).
Likewise, if you're generating an alarm when /tmp exceeds 85% of capacity, you might want to rearm when the free space
returns to 80% of your 85% threshold (68% of capacity). You can also specify the number of consecutive samples that need to
fall below the rearm point before NNM considers the rearm condition met.

The final option, Configure Threshold Event, asks what OpenView events you would like to execute for each state. You can leave
the default event, or you can refer to Chapter 9 for more on how to configure events. The Threshold state needs a specific
event number that must reside in the HP enterprise. The default Threshold event is OV_DataCollectThresh - 58720263. Note
that the Threshold event is always an odd number. The Rearm event is the next number after the Threshold event: in this case,
58720264. To configure events other than the default, click on Configure Threshold Event and, when the new menu comes up,
add one event (with an odd number) to the HP section and a second event for the corresponding Rearm. After making the
additions, save and return to the Collection window to enter the new number.

When you finish configuring the data collection, click OK. This brings you back to the Data Collection and Thresholds menu.
Select File =3 Save to make your current additions active. On the bottom half of the MIB Object Collection Summary window,
click on your new object and then select Actions =% Test SNMP. This brings up a window showing the results of an SNMP test
on that collection. After the test, wait long enough for your polling interval to have expired once or twice. Then click on the
object collection again, but this time select Actions == Show Data. This window shows the data that has been gathered so far.
Try blasting data through the interface to see if you can trigger a Threshold event. If the Threshold events are not occurring,
verify that your threshold and polling intervals are set correctly. After you've seen a Threshold event occur, watch how the
Rearm event gets executed. When you're finished testing, go back and set up realistic polling periods, add any additional nodes
you would like to poll, and turn off storing if you don't want to collect data for trend analysis. Refer to the
$OV_LOG/snmpCol.trace file if you are having any problems getting your data collection rolling. Your HP OpenView manual
should describe how to use this trace file to troubleshoot most problems.

Once you have collected some data, you can use xnmgraph to display it. The xnmgraph command to use is similar to the ones
we saw earlier; it's an awkward command that you'll want to save in a script. In the following script, the -browse option points
the grapher at the stored data:

#1/ bi n/ sh

# filename: /opt/OV/local/scripts/graphSavedDat a

# syntax: graphSavedData <hostnane>

/opt/ OV/ bi n/ xnmgraph -c public -title Bits_In_n_Qut_For_ Al _Up_Interfaces \

-browse -mb \
".1.3.6.1.4.1.9.2.2.1.1.6:::.1.3.6.1.2.1.2.2.1.8:1:.1.3.6.1.2.1.2.2.1.2:::,\

.1.3.6.1.4.1.9.2.2.1.1.8:::.1.3.6.1.2.1.2.2.1.8:1:.1.3.6.1.2.1.2.2.1.2:::" \

$1

Once the graph has started, no real (live) data is graphed; the display is limited to the data that has been collected. You can
select File =2 Update Data to check for and insert any data that has been gathered since the start of the graph. Another option
is to leave off -browse, which allows the graph to continue collecting and displaying the live data along with the collected data.

Finally, to graph all the data that has been collected for a specific node, go to NNM and select the node you would like to
investigate. Then select Performance =% Graph SNMP Data == Select Nodes from the menus. You will get a graph of all the
data that has been collected for the node you selected. Alternately, select the All option in Performance =+ Graph SNMP Data.
With the number of colors limited to 25, you will usually find that you can't fit everything into one graph.

8.2.4. Castle Rock's SNMPc

The workgroup edition of Castle Rock's SNMPc program has similar capabilities to the OpenView package. It uses the term trend
reporting for its data collection and threshold facilities. The enterprise edition of SNMPc even allows you to export data to a web

page.

To see how SNMPc works, let's graph the snmpOutPkts object. This object's OID is 1.3.6.1.2.1.11.2
(iso.org.dod.internet.mgmt.mib-2.snmp.snmpOutPkts). It is defined in RFC 1213 as follows:

snnpQut Pkt s OBJECT- TYPE
SYNTAX Count er
ACCESS read-only
STATUS nmandat ory



DESCRI PTI ON
"The total nunber of SNWP nessages which were passed from
the SNMP protocol entity to the transport service."

o= { snnp 2}

We'll use the orahub device for this example. Start by clicking on the MIB Database selection tab shown in Figure 8-9; this is
the tab at the bottom of the screen that looks something like a spreadsheetit's the second from the left. Click down the tree
until you come to iso.org.dod.internet.mgmt.mib-2.snmp. Click on the object you would like to graph (for this example,
snmpOutPkts). You can select multiple objects with the Ctrl key.

Figure 8-9. SNMPc MIB Database view

%

SNMPc has a nonstandard way of organizing MIB information. To get to the snmpOutPkts object, you
need to click down through the following: Snmp Mibs =% mgmt = snmp = snmplnfo. Though this is
&+ quicker than the RFC-based organization used by most products, it does get a little confusing,

*  particularly if you work with several products.

4

2 9

o
=y
3

Once you have selected the appropriate MIB object, return to the top level of your map by either selecting the house icon or
clicking on the Root Subnet tab (at the far left) to select the device you would like to poll. Instead of finding and clicking on the
device, you can enter the device's name by hand. If you have previously polled the device, you can select it from the drop-down
box. Figure 8-10 shows what a completed menu bar should look like.

Figure 8-10. SNMPc menu bar graph section



To begin graphing, click the button with the small jagged graph (the third from the right). Another window will appear
displaying the graph (Figure 8-11). The controls at the top change the type of graph (line, bar, pie, distribution, etc.) and the
polling interval and allow you to view historical data (the horizontal slider bar). Review the documentation on how each of these
work or, better yet, play around to learn these menus even faster.

Once you have a collection of frequently used graphs, you can insert them into the custom menus. Let's insert a menu item in
the Tools menu that displays all the information in the snmplnfo table as a pie chart. Click on the Custom Menus tab (the last
one), right-click on the Tools folder, and then left-click on Insert Menu. This gets you to the Add Custom Menu window (Eigure
8-12). Enter a menu name and select Pie for the display type. Use the browse button (>>) to click down the tree of MIB objects
until you reach the snmplnfo table and click OK. Back at Add Custom Menu, use the checkboxes in the Use Selected Object
section to specify the types of nodes that will be able to respond to this custom menu item. For example, to chart snmp-

Figure 8-11. SNMPc snmpOutPkts graph section

Info, a device obviously needs to support SNMP, so we've checked the Has SNMP box. This information is used when you (or
some other user) try to generate this chart for a given device. If the device doesn't support the necessary protocols, the menu
entry for the pie chart will be disabled.



Figure 8-12. SNMPc Add Custom Menu window

. |Show Pie Chart of snmplnfo T

[RFCI213MIBlsrmpinfo

Click OK and proceed to your map to find a device to test. Any SNMP-compatible device should suffice. Once you have selected
a device, click on Tools and then Show Pie Chart of snmpInfo. You should see a pie chart displaying the data collected from the
MIB objects you have configured. (If the device doesn't support SNMP, this option will be disabled.) Alternately, you could have
double-clicked your new menu item in the Custom Menu tab.

SNMPc has a threshold system called Automatic Alarms that can track the value of an object over time to determine its highs

and lows (peaks and troughs) and get a baseline. After it obtains the baseline, it alerts you if something strays out of bounds. In
the main menu, selecting Config = Trend Reports brings up the menu shown in Figure 8-13.

Figure 8-13. SNMPc Trend Reports Global Settings menu

Irend Reports Global Settings

WEB Setlings | Schedules Automatic Alarms |
- Al Critenia -
Limit Alams For [B0 Minutes

W Expand Alter I*’ Alarmz/Day
W Heduce On No Alaims In One Week

I Restart Leaming

[ ok ] cance Hep |

Check the Enable Automatic Alarms box to enable this feature. The Limit Alarms For box lets you specify how much time must
pass before you can receive another alarm of the same nature. This prevents you from being flooded by the same message over
and over again. The next section, Baseline Creation, lets you configure how the baseline will be learned. The learning period is
how long SNMPc should take to figure out what the baseline really is. The Expand After option, if checked, states how many
alarms you can get in one day before SNMPc increases the baseline parameters. In Figure 8-13, if we were to get four alarms in
one day, SNMPc would increase the threshold to prevent these messages from being generated so frequently. Checking the
Reduce On No Alarms In One Week box tells SNMPc to reduce the baseline if we don't receive any alarms in one week. This
option prevents the baseline from being set so high that we never receive any alarms. If you check the last option and click OK,
SNMPc will restart the learning process. This gives you a way to wipe the slate clean and start over.



8.2.5. Open Source Tools for Data Collection and Graphing

One of the most powerful tools for data collection and graphing is MRTG, familiar to many in the open source community. It
collects statistics and generates graphical reports in the form of web pages. In many respects, it's a different kind of animal than
the tools discussed in this chapter. RRDtool is the successor to MRTG. Cricket is a popular frontend for RRDtool. We cover MRTG
in Chapter 12 and Cricket and RRDtool in Chapter 13.

e rrcv |



e prcv |

Chapter 9. Traps

Traps provide a way for an agent to send a monitoring station asynchronous notification about conditions that the monitor
should know about. The traps that an agent can generate are defined by the MIBs it supports; the number of traps can range
from zero to hundreds. To see what traps are defined in any MIB file, search for the term TRAP-TYPE (SMIv1) or NOTIFICATION-
TYPE (SMIv2) in the MIB file. This search will quickly get you a list of possible traps.

Of course, just having asynchronous traps arrive at your NMS isn't terribly useful. You can configure the NMS's response to

different traps; the response can be anything from discarding the trap to running a script that sends a message to your pager
(or even takes some drastic action, such as shutting down your power supplies). In this chapter, we'll show you how to handle
incoming traps using OpenView and other tools such as Perl. Then we'll discuss how to read and configure different aspects of

trap events. Finally, we'll show you how to define your own traps to report special conditions of particular interest for your
network.

e rrc |



e prcv |

9.1. Understanding Traps

Before discussing the tools for receiving and generating traps, it's worth reviewing what a trap is. Traps were introduced in
Chapter 2. A trap is basically an asynchronous notification sent from an SNMP agent to a network management station. Like
everything else in SNMP, traps are sent using UDP (port 162) and are therefore unreliable. This means that the sender cannot
assume that the trap actually arrives nor can the destination assume that it's getting all the traps being sent its way. Of course,
on a healthy network, most traps should reach their destinations. But if networks were always healthy, we wouldn't need SNMP.

In somewhat more detail, a trap is a bundle of data that's defined by a MIB. Traps fall into two categories: generic and
enterprise specific. There are seven generic trap numbers (0-6), defined in Chapter 2 in Table 2-8, for conditions ranging from
system reboots (coldStart) and interface state changes (linkUp and linkDown) to generic trap 6 (enterpriseSpecific). Enterprise-
specific traps are the loophole that makes the trap mechanism so powerful. Anyone with an enterprise number can define
enterprise-specific traps for whatever conditions she considers worth monitoring. An enterprise-specific trap is identified by two
pieces of information: the enterprise ID of the organization that defined the trap and the specific trap number assigned by that
organization. The notion of an enterprise-specific trap is extremely flexible because organizations are allowed to subdivide their
enterprises as much as they like. For example, if your enterprise number is 2789, your enterprise ID is .1.3.6.1.4.1.2789. But
you can further subdivide this, defining traps with enterprise IDs such as .1.3.6.1.4.1.2789.5000, .1.3.6.1.4.1.2789.5001, and
so on.

The fact that you've received a trap and therefore know its generic trap number, enterprise ID, and specific trap number is
often all you need to diagnose a problem. But traps also carry additional information. In the case of generic traps 0-5, the
specific information is predefined and hardwired into the NMS. When you receive a generic trap, the NMS knows how to
interpret the information it contains and will be able to display it appropriately, whether it's the time of the reboot or the
identity of the interface that just changed state. In contrast, the information carried by an enterprise-specific trap is entirely up
to the person who defined the trap. An enterprise-specific trap can contain any number of variable bindings, or MIB object-value
pairs. When you define your own traps, you can decide what information is appropriate for them to carry. The objects contained
in a trap can be standard MIB objects, vendor-specific objects, or objects of your own devising. It's common to define objects
purely for the purpose of including them within a trap.

9.1.1. SNMPv2 Traps

SNMPv2 defines traps in a slightly different way. In a MIB, SNMPv1 traps are defined as tr AP- TYPE, SNMPVv2 traps are defined as
NOTI FI CATI ON- TYPE. SNMPVv2 also does away with the notion of generic trapsinstead, it defines many specific traps (properly
speaking, notifications) in public MIBs. SNMPv3 traps, which are discussed briefly in Chapter 3, are simply SNMPv2 traps with
added authentication and privacy capabilities. Most SNMP implementations support only Version 1.

e roc | et



e prcv |

9.2. Receiving Traps

Let's start by discussing how to deal with incoming traps . Handling incoming traps is the responsibility of the NMS. Some NMSs d
little as display the incoming traps to standard output (stdout). However, an NMS server typically has the ability to react to SNMP
traps it receives. For example, when an NMS receives a linkDown trap from a router, it might respond to the event by paging the
contact person, displaying a pop-up message on a management console, or forwarding the event to another NMS. This procedure
streamlined in commercial packages but still can be achieved with freely available open source programs.

9.2.1. HP OpenView

OpenView uses three pieces of software to receive and interpret traps:

e ovtrapd (1M)
* Xnmtrap
¢ Xnmevents

OpenView's main trap-handling daemon is called ovtrapd. This program listens for traps generated by devices on the network and
hands them off to the Postmaster daemon (pmd). In turn, pmd triggers what OpenView calls an event. Events can be configured t
perform actions ranging from sending a pop-up window to NNM users, forwarding the event to other NMSs, or doing nothing at al
configuration process uses xnmtrap, the Event Configurations GUl. The xnmevents program displays the events that have arrivec
sorting them into user-configurable categories.

OpenView keeps a history of all the traps it has received; to retrieve that history, use the command $OV_BIN/ovdumpevents. In
versions of OpenView, traps are kept in an event logging file in $OV_LOG/trapd.log. By default, this file rolls over after it grows t
MB. It is then renamed trapd.log.old and a new trapd.log file is started. If you are having problems with traps, either because you
know whether they are reaching the NMS or because your NMS is being bombarded by too many events, you can use tail -f to we
trapd.log so that you can see the traps as they arrive. (You can also use ovdumpevents to create a new file.) To learn more about
format of this file, refer to OpenView's manual pages for trapd.conf (4) and ovdumpevents (1M).

Recent releases of OpenView instead put traps into the OpenView Event Database. Many admins prefer the old logfile format,
however. If you are running a recent release of OpenView and want to see a trapd.log file of all your traps, run ovdumpevents to
create this file.

It might be helpful to define exactly what an OpenView event is. Think of it as a small record, similar to a database record. This r¢
defines which trap OpenView should watch out for. It further defines what sort of action (send an email, page someone, etc.), if a
should be performed.

9.2.2. Using NNM's Event Configurations

OpenView uses an internal definition file to determine how to react to particular situations. This definition file is maintained by th
xnmtrap program. We can start xnmtrap by selecting Options == Event Configurations (in the NNM GUI) or by giving the commze
$OV_BIN/xnmtrap. In the Enterprise Identification window, scroll down and click on the enterprise name OpenView
.1.3.6.1.4.1.11.2.17.1. This displays a list in the Event Identification window. Scroll down in this list until you reach OV_Node_Dc
Double-click on this event to bring up the Event Configurator (Figure 9-1).

Figure 9-1. OpenView Event ConfiguratorOV_Node_Down



Figure 9-1 shows the OV_Node_Down event in the Event Configurator. When this event is triggered, it inserts an entry containin
message "Node down," with a severity level of Warning, into the Status Events category. OpenView likes to have a leading O (zer
the Event Object Identifier, which indicates whether this is an event or trapthere is no way to change this value yourself. The nur
before the 0 is the enterprise OID; the number after the O is the specific trap numberin this case, 58916865.*1 Later we will use
these numbers as parameters when generating our own traps.

[1 This is the default number that OpenView uses for this OV_Node_Down trap.

9.2.2.1. Selecting event sources

The Source option is useful when you want to receive traps from certain nodes and ignore traps from other nodes. For example, i
have a development router that people are taking up and down all day, you probably would rather not receive all the events
generated by the router's activity. In this case, you could use the Source field to list all the nodes from which you would like to re
traps and leave out the development router. To do this, you can either type each hostname by hand and click Add after each one,
select each node (using the Ctrl and mouse-click sequence) on your OpenView Network Node Map and click Add From Map.
Unfortunately, the resulting list isn't easy to manage. Even if you take the time to add all the current routers to the Event Source
you'll eventually add a new router (or some other hardware you want to manage). You then have to go back to all your events an
add your new devices as sources . OpenView allows you to use pattern matching and source files, making it easier to tailor and
maintain the source list.

9.2.2.2. Setting event categories

When NNM receives an event, it sorts the event into an event category. The Categories drop-down box lets you assign the event
you're configuring to a category. The list of available categories will probably include the following predefined categories (you can
customize this list by adding categories specific to your network and deleting categories, as we'll see later in this section):

e Error events

Threshold events
« Status events

» Configuration events



- Application alert events
- Don't log or display
e Log only

The last two categories really aren't event categories in the true sense of the word. If you select "Don't log or display,” OpenView
not save the event in its database and will not display the Event Log Message in any Event Categories. OpenView will display the
Popup Notification in a pop-up window and run the Command for Automatic Action. The "Log only" option tells OpenView not to di
the event but to keep a log of the event in its database.[*1

[1 As mentioned earlier, you can convert the database into a logfile using the ovdumpevents command.

ol "Log only" is useful if you have some events that are primarily informational; you don't want to see them
as when they arrive, but you would like to record them for future reference. The Cisco event
. 4. frDLCIStatusChange - .1.3.6.1.2.1.10.32.0.1 is a good example of such an event. It tells us when a Virtual

Circuit has changed its operational state. If displayed, we will see notifications whenever a node goes down
and whenever a circuit changes its operational state to down. This information is redundant because we have
already gotten a status event of "node down" and a DLCI change.l*1 with this event set to "Log only" we can
go to the logfile only when we think things are fishy.

[1OpenView has a feature called Event Correlation that groups certain events together to avoid flooding the user with redundant information. You
can customize these settings with a developer's kit.

9.2.2.3. Forwarding events and event severities

The Forward Event radio button, once checked, allows you to forward an event to other NMSs. This feature is useful if you have
multiple NMSs or a distributed network management architecture. Say that you are based in Atlanta, but your network has a
management station in New York in addition to the one on your desk. You don't want to receive all of New York's events, but you
would like the node_down information forwarded to you. On New York's NMS, you could click Forward Event and insert the IP adc
of your NMS in Atlanta. When New York receives a node_down event, it will forward the event to Atlanta.

The Severity drop-down list assigns a severity level to the event. OpenView supports six severity levels: Unknown, Normal, Warn
Minor, Major, and Critical. The severity levels are color-coded to make identification easier; Table 9-1 shows the color associated
each severity level. The levels are listed in order of increasing severity. For example, an event with a severity level of Warning h:
higher precedence than an event with a severity level of Minor.

Table 9-1. OpenView severity levels

Severity Color
Unknown Blue
Normal Green
Warning Cyan
Minor Yellow
Major Orange
Critical Red

The colors are used both on OpenView's maps and in the Event Categories. Parent objects, which represent the starting point for
network, are displayed in the color of the highest severity level associated with any object underneath them.[*1 For example, if a
object represents a network with 250 nodes and one of those nodes is down (a Critical severity), the object will be colored red,
regardless of how many nodes are up and functioning normally. The term for how OpenView displays colors in relation to objects
status source; it is explained in more detail in Chapter 5.

[1 Parent objects can show status (colors) in four ways: Symbol, Object, Compound, or Propagated.
9.2.2.4. Log messages, notifications, and automatic actions

Returning to Figure 9-1, the Event Log Message and Popup Notification fields are similar but serve different purposes. The Event |



Message is displayed when you view the Event Categories and select a category from the drop-down list. The Popup Notification, \
is optional, displays its message in a window that appears on any server running OpenView's NNM. Figure 9-2 shows a typical pof
message. The event name, delme in this case, appears in the titlebar. The time and date at which the event occurred are followec
the event message, "Popup Message Here." To create a pop-up message like this, insert "Popup Message Here" in the Popup
Notification section of the Event Configurator. Every time the event is called, a pop-up will appear.

Figure 9-2. OpenView pop-up message

The last section of the Event Configurator is the Command for Automatic Action. The automatic action allows you to specify a Uni
command or script to execute when OpenView receives an event. You can run multiple commands by separating them with a
semicolon, much as you would in a Unix shell. When configuring an automatic action, remember that rsh can be very useful. We
to use rsh sunserverl audioplay -v50 /opt/local/sounds/siren.au, which causes a siren audio file to play. The automatic action car
range from touching a file to opening a trouble ticket.

In each Event Log Message, Popup Notification, and Command for Automatic Action, special variables can help you identify the va
from your traps or events. These variables provide the user with additional information about the event. Here are some of the
variables you can use (the online help has a complete list):

$1
Print the first passed attribute (i.e., the value of the first variable binding) from the trap.
$2
Print the second passed attribute.
$n
Print the nth attribute as a value string. Must be in the range of 1-99.
$*

Print all the attributes as [seq] name (type).

Before you start running scripts for an event, find out the average number of traps you are likely to receive
'@ for that event. This is especially true for OV_Node_Down. If you write a script that opens a trouble ticket
whenever a node goes down, you could end up with hundreds of tickets by the end of the day. Monitoring
your network will make you painfully aware of how much your network "flaps,” or goes up and down. Even if
the network goes down for a second, for whatever reason, you'll get a trap, which will in turn generate an
event, which might register a new ticket, send you a page, etc. The last thing you want is "The Network That
Cried Down!" You and other people on your staff will start ignoring all the false warnings and may miss any
serious problems that arise. One way to estimate how frequently you will receive events is to log events in a
file ("Log only"). After a week or so, inspect the logfile to see how many events accumulated (i.e., the
number of traps received). This is by no means scientific, but it will give you an idea of what you can expect.

9.2.3. Custom Event Categories

OpenView uses the default categories for all its default events. Look through the $OV_CONF/C/trapd.conf file to see how the defz



events are assigned to categories. You can add categories by going to Event Configuration =% Edit = Configure = Event
Categories. Figure 9-3 shows this menu, with some custom categories added.

It's worth your while to spend time thinking about what categories are appropriate for your environment. If you plow everything
the default categories, you will be bothered by the Critical "Printer Needs Paper" event when you really want to be notified of the
Critical "Production Server on Fire" event. Either event will turn Status Events red. The categories in Figure 9-3 are a good start,
think about the types of events and activities that will be useful for your network. The Scheduled and Unscheduled (S/U) Downtir
category is a great example of a category that is more for human intervention than for reporting network errors. Printer Events i
nice destination for your "Printer Needs Paper" and "Printer Jammed" messages.

Even though none of the default categories is required (except for Error), we recommend that you don't delete them, precisely
because they are used for all of the default events. Deleting the default categories without first reconfiguring all the

Figure 9-3. Adding event categories in OpenView

default events will cause problems. Any event that does not have an event category available will be put into the default Error
category. To edit the categories, copy the trapd.conf file into /tmp and modify /tmp/trapd.conf with your favorite editor. The file
some large warnings telling you never to edit it by hand, but sometimes a few simple edits are the best way to reassign events. A
entry in the portion of the file that defines event behavior looks like this:

EVENT RMON _Rise_Alarm .1.3.6.1.2.1.16.0.1 "Threshold Events" Warning

FORVAT RMON Rising Alarm $2 exceeded threshold $5; value = $4. (Sanple type =\
$3; alarmindex = $1)

SDESC

This event is sent when an RMON device exceeds a preconfigured threshold.

EDESC

It's fairly obvious what these lines do: they map a particular RMON event into the Threshold Events category with a severity of
Warning; they also specify what should happen when the event occurs. To map this event into another category, change Thresho
Events to the appropriate category. Once you've edited the file, use the following command to merge in your updates:

$ $OV_BI N xnnevents -I load /tnp/trapd. conf

9.2.4. The Event Categories Display

The Event Categories window (Figure 9-4) is displayed on the user's screen when NNM is started. It provides a very brief summar
what's happening on your network; if it is set up appropriately, you can tell at a glance whether there are any problems you shou
worrying about.

If the window gets closed during an OpenView session, you can restart it using the Fault =% Events menu item or by issuing the
command $0OV_BIN/xnmevents. The menu displays all the event categories, including any categories you have created.



Figure 9-4. OpenView Event Categories

-
|
|
u
|
L1
T
|
r
o
=

Two categories are special: the Error category is the default category used when an event is associated with a category that cann
found; the All category is a placeholder for all events and cannot be configured by the Event Configurator. The window shows yot
highest severity level of any event in each event category.

The box to the left of Status Events is cyan (a light blue), showing that the highest unacknowledged severity in the Status Events
category is Warning. Clicking on that box displays an alarm browser that lists all the events received in the category. A nice featt
the Event Categories display is the ability to restore a browser's state or reload events from the trapd.log and trapd.log.old files.
Reloading events is useful if you find that you need to restore messages you deleted in the past.

":,i‘~ OpenView extends the abilities of Event Categories by keeping a common database of acknowledged and
s unacknowledged events. Thus, when a user acknowledges an event, all other users see this event updated.
Wl ol

M5y

At the bottom of Figure 9-4, the phrase "[Read-Only]" means that you don't have write access to Event Categories. If this phrase
present, you have write access. OpenView keeps track of events in a single database, though older versions stored events on a pe
user basis, using a special database located in $OV_LOG/xnmevents.<username>. With write access, you have the ability to upd:
this file whenever you exit. By default, you have write access to your own event category database, unless someone has already
started the database by starting a session with your username. There may be only one write-access Event Categories per user, w
the first one getting write access and all others getting read-only privileges.

9.2.5. The Alarms Browser

Figure 9-5 shows the alarms browser for the Status Events category. In it we see a single Warning event, which is causing the St
Events category to show cyan.

Figure 9-5. OpenView alarms browser

abus Alarms Browser

The color of the Status Events box is determined by the highest precedence event in the category. Therefore, the color won't chai
until either you acknowledge the highest precedence event or an event arrives with an even higher precedence. Clicking in the fe
column (Ack)*1 acknowledges the message and sets the severity to 0.

[1 OpenView also supports Event Correlation, which has a column in this window as well.



The Actions menu in the alarms browser allows you to acknowledge, deacknowledge, or delete some or all events. You can even
change the severity of an event. Keep in mind that this does not change the severity of the event on other Event Categories sess
that are running. For example, if one user changes the severity of an event from Critical to Normal, the event will remain Critical
other users. The View menu lets you define filters, which allow you to include or discard messages that match the filter.

When configuring events, keep in mind that you may receive more traps than you want. When this happens, you have two choice
First, you can go to the agent and turn off trap generation, if the agent supports this. Second, you can configure your trap view t
ignore these traps. We saw how to do this earlier: you can set the event to "Log only" or try excluding the device from the Event
Sources list. If bandwidth is a concern, you should investigate why the agent is sending out so many traps before trying to mask -
problem.

9.2.6. Creating Events Within OpenView

OpenView gives you the option of creating additional (private) events. Private events are just like regular events, except that the
belong to your private enterprise subtree rather than to a public MIB. To create your own events, launch the Event Configuration
window from the Options menu of NNM. You will see a list of all currently loaded events (Figure 9-6).

Figure 9-6. OpenView's Event Configuration window

The window is divided into two panes. The top pane displays the Enterprise ldentification, which is the leftmost part of an OID. CI
on an enterprise ID displays all the events belonging to that enterprise in the lower pane. To add your own enterprise ID, select E
=3 Add =% Enterprise Identification and insert your enterprise name and a registered enterprise ID.L*1 Now you're ready to cre:
private events. Click on the enterprise name you just created; the enterprise ID you've associated with this name will be used to
the OID for the new event. Click Edit =2 Add = Event, and then type the Event Name for your new event, making sure to use
Enterprise Specific (the default) for the event type. Insert an Event Object Identifier. This identifier can be any number that hasn
eit}aady been assigned to an event in the currently selected enterprise. Finally, click OK and save the event configuration (using |
Save).

[1 Refer to Chapter 2 for information about obtaining your own enterprise ID.

To copy an existing event, click on the event you wish to copy and select Edit =% Copy Event; you'll see a new window with the ¢
you selected. From this point on, the process is the same.

Traps with "no format" are traps for which nothing has been defined in the Event Configuration window. There are two ways to sc
this problem: you can either create the necessary events on your own, or load a MIB that contains the necessary trap definitions,
discussed in Chapter 5. "No format" traps are frequently traps defined in a vendor-specific MIB that hasn't been loaded. Loading t



appropriate MIB often fixes the problem by defining the vendor's traps and their associated names, IDs, comments, severity level:
etc.

- Before loading a MIB, review the types of traps the MIB supports. You will find that most traps you load come,
.y by default, in LOGONLY mode. This means that you will not be notified when the traps come in. After you
'*. 4 load the MIB, you may want to edit the events it defines, specifying the local configuration that best fits your

site.

9.2.7. Monitoring Traps with Perl

If you can't afford an expensive package like OpenView, you can use the Perl language to write your own monitoring and logging
utility. You get what you pay for since you will have to write almost everything from scratch. On the other hand, you'll learn a lot
probably have a better appreciation for the finer points of network management. One of the most elementary, but effective, prog
to receive traps is in a distribution of SNMP Support for Perl 5, written by Simon Leinen. Here's a modified version of Simon's
program:

#! [ usr/ bi n/ perl

use SNWP_Sessi on;
use BER
use Socket;

$sessi on = SNWPv1_Sessi on- >open_trap_session ( );
while (($trap, $sender, $sender_port) = $session->receive_trap ( )) {
chonp ($DATE='/bin/date \'+% % % %N\'');
print STDERR "\ n$DATE - " . inet_ntoa($sender)
. " - port: $sender_port\n";
print_trap ($session, $trap);

sub print_trap{
($this, $trap) = @;
ny($community, $ent, $agent, $gen, $spec, $dt, $bi ndings)
= $thi s->decode_trap_request ($trap);

print Comunity:\t". $comunity. "\ n";

print " Enterprise:\t".BER :pretty_oid ($ent)."\n";
print " Agent addr:\t".inet_ntoa ($agent)."\n";

print " Generic ID:\t$gen\n";

print " Specific ID\t$spec\n”;

print " Uptime:\t".BER :pretty_uptinme_value ($dt)."\n";
$prefix =" bi ndi ngs:\t";

ny ($binding, $oid, $value);
while ($bindings ne '') {
($bi ndi ng, $bi ndi ngs) = &decode_sequence ($bi ndi ngs);
($oid, $value) = decode by tenplate ($binding, "%@);
print $prefix.BER :pretty_oid ($oid).
" => ".pretty_print ($value)."\n";
$prefix = "\t\t";

This program displays traps as they are received from different devices in the network. Here's some output, showing two traps:

Mon Apr 28 22:07:44 - 10.123.46.26 - port: 63968
communi ty: public
enterprise: 1.3.6.1.4.1.2789.2500
agent addr: 10.123.46. 26
generic ID: 6
specific I D 5247
upti me: 0: 00: 00
bi ndi ngs: 1.3.6.1.4.1.2789.2500. 1234 => 14264026886



Mon Apr 28 22:09:46 - 172.16.51.25 - port: 63970
conmmuni ty: public
enterprise: 1.3.6.1.4.1.2789. 2500
agent addr: 172.16.253.2
generic ID 6
specific I D 5247
upti ne: 0: 00: 00
bi ndi ngs: 1.3.6.1.4.1.2789. 2500. 2468 => Hot Swap Now In Sync

The output format is the same for both traps. The first line shows the date and time at which the trap occurred, together with the
address of the device that sent the trap. Most of the remaining output items should be familiar to you. The bi ndi ngs output item |
the variable bindings that were sent in the trap PDU. In the preceding example above, each trap contained one variable binding. -
object ID is in numeric form, which isn't particularly friendly. If a trap has more than one variable binding, this program displays
binding, one after another.

An ad hoc monitoring system can be fashioned by using this Perl script to collect traps and some other program to inspect the tra|
they are received. Once the traps are parsed, the possibilities are endless. You can write user-defined rules that watch for signific
traps and, when triggered, send an email alert, update an event database, send a message to a pager, etc. These kinds of solutiol
work well if you're in a business with little or no budget for commercially available NMS software or if you're on a small network &
don't need a heavyweight management tool.

9.2.8. Using the Network Computing Technologies Trap Receiver

The Trap Receiver by Network Computing Technologies is a freely available program that's worth trying.[*1 This program, which
currently runs only on Windows-based systems, displays trap information as it's received. It has a standard interface but can be
configured to execute certain actions against traps, like OpenView's Command for Automatic Action function. Figure 9-7 shows Tr
Receiver's user interface.

[1 This software can be found at http://www.ncomtech.com/download.htm.

Figure 9-7. Trap Receiver

i 1.36.1.4.1.2854 Mon Nov 23 18:40:33 1938 |

. 10123, 1.36.1.4.1.2785.2500 Mon Nov 23 18:55:13 1938
10.123.200.25 1.361.41.2763. 250 i Mon Nov 23 18:56:39 1938
10.123.200.10 1.36.1.4.1.2783.2501 Enterprise Specific/2468  Mon Nov 23 18:56:54 1958

You can log and forward messages and traps, send email or a page in response to a trap, as well as execute commands. By writin(
some code in C or C++, you can gain access to an internal trap stream. This program can be a great starting place for Windows
administrators who want to use SNMP but lack the resources to implement something like OpenView. It's simple to use, extensibl
and free.

9.2.9. Receiving Traps Using Net-SNMP

The last trap receiver we'll discuss is part of the Net-SNMP package, which is also freely available. snmptrapd allows you to send !
trap messages to facilities such as Unix syslog or stdout. For most applications the program works in the background, shipping
messages to syslog(8). There are some configuration parameters for the syslog side of snmptrapd; these tell snmptrapd what faci
level it should use for the syslog messages. The following command forwards traps to standard output (-Lo) rather than to syslog
does not fork off into the background (-f):


http://www.ncomtech.com/download.htm

$ ./snmptrapd -f -Lo

2005- 05-05 08:00: 24 NET-SNWP version 5.2.1 Started.

2005- 05-05 08:03: 05 sunserver2.ora.com [12.1.45.26] (via UDP: [12.1.45.26]:37223) TRAP, SNWP v1, community pul
SNVPv2- SM : : enterprises. 2789. 2500. 1224 Enterprise Specific Trap (1224) Uptine: 60 days, 14:41:38.72
SNVPv2- SM : : enterprises. 2789. 2500. 1224 = | NTEGER. 123123

2005- 05-05 08:10: 16 sunserver2.ora.com [12.1.45.26] (via UDP: [12.1.45.26]:37223) TRAP, SNWP v1, community pul
SNVPv2- SM : : enterprises. 2789. 2500. 1445 Enterprise Specific Trap (1445) Uptinme: 60 days, 14:41:38.72
SNVPv2- SM : : enterprises. 2789. 2500. 1445 = STRING "Fail Over Conplete"

By now the output should look familiar; it's similar to the reports generated by the other programs we've seen in this chapter. Th
Net-SNMP trap daemon is another great tool for scriptwriters. A simple Perl script can watch the file in which snmptrapd logs its t
looking for important events and reacting accordingly. It's easy to build a powerful and flexible monitoring system at little or no
expense.

The Net-SNMP trap daemon can also handle SNMPv2/SNMPv3 traps and informs. Recall that inform was introduced in SNMPv2. It
allows a sender to receive an acknowledgment when the receiver gets the trap. To configure snmptrapd to receive both SNMPv3 1
and informs, care must be taken. You must add a creat eUser command to the snmpd.conf file. For example, to receive informs, |
the following in my snmpd.conf file:

createUser kschmi dt MD5 nysecretpass DES nypassphrase

When snmptrapd starts up, it will discover the remote engine ID of the sender of the inform. To understand the role of the engine
let's look at a creat eUser enTRy that can be used to handle SNMPVv3 traps:

createUser -e 0x012345 kschm dt MD5 nysecretpass DES nypassphrase

The difference is the inclusion of the -e switch. This configures the engine ID of the remote machine that will send us traps. In otl
words, we need to know it ahead of time. Refer to RFC 3411 for a specific algorithm for creating the engine ID. The next section ¢
how to send SNMPv3 traps from Net-SNMP.

In this section, we have looked at several packages that can receive traps and act on them, based on the traps' content. Keep in 1
that all of these programs, whether they're free or cost tens of thousands of dollars, are basically doing the same thing: listening
some port (usually UDP port 162) and waiting for SNMP messages to arrive. What sets the various packages apart is their ability
something constructive with the traps. Some let you program hooks that execute some other program when a certain trap is rece
The simpler trap monitors just send a message logging the trap to one or more files or facilities. These packages are generally les
expensive than the commercial trap monitors but can be made to operate like full-fledged systems with some additional programr
effort. Languages such as Perl give you the ability to extend these simpler packages.

e rrcv |



e prcv |

9.3. Sending Traps

By now you should have a mechanism in place for receiving traps. In this section, we'll look at some different utilities that send ti
and allow you to develop traps that are appropriate for your environment. You'll notice that almost all trap utilities are command
based. This allows you to execute the command from within a script, which is almost always what you want to do. For example, y
can write a shell script that checks disk space every five minutes and sends a trap to the NMS if you're running low. You can also
these trap generators within existing programs and scripts. If you have a Perl script that accesses a database, you can use the Pe
SNMP module to send a trap from within the script if a database insert fails. The possibilities are almost endless.

Although there are many different snmptrap programs, they are all fundamentally similar. In particular, though their command-li
syntax may vary, they all expect roughly the same arguments:

Port

The UDP port to which to send the trap. The default port is 162.

SNMP version

The SNMP version appropriate for the trap you want to send. Many traps are defined only for Version 2. Note that many SN
tools support only Version 1.

Hostname or IP address of NMS

The hostname or IP address of your NMSi.e., the trap's destination. It is better to use an IP address than a hostname in cas
are sending traps during a DNS outage. Remember that SNMP is most valuable when your network is failing; therefore, try
avoid assuming that you have a fully functional network when you design traps.

Community name

The community name to be sent with the trap. Most management stations can be configured to ignore traps that don't have
appropriate community string.

Enterprise OID

The full enterprise OID for the trap you want to send: everything in the trap’'s OID from the initial .1 up to the enterprise
number, including any subtrees within the enterprise but not the specific trap number. For example, if your enterprise num
is 2789, you've further subdivided your enterprise to include a group of traps numbered 5000, and you want to send specif
trap 1234, the enterprise OID would be .1.3.6.1.4.1.2789.5000.

If you have some reason to send a generic trap, you can set the enterprise ID to anything you wantbut it's probably best to
the enterprise ID to your own enterprise number, if you have one.

Now for the most confusing case. A few specific traps are defined in various public MIBs. How do you send them? Basically,
construct something that looks like an enterprise OID. One such trap is rdbmsOutOfSpace, which is defined in the RDBMS M
Its complete OID is .1.3.6.1.2.1.39.2.2 (.iso.org.dod.internet.mgmt.mib-2.rdbmsMIB.rdbmsTraps.rdbmsOutOfSpace). To sen
this trap, which is really an SNMPv2 notification, you would use everything up to rdbmsTraps as the enterprise OID, and th
entire object ID as the specific trap number.

Hostname or IP address of sender
The IP address of the agent that is sending the trap. Although this may appear to be superfluous, it can be important if thei
a proxy server between the agent and the NMS. This parameter allows you to record the actual address of the agent within

SNMP packet; in turn, the NMS will read the agent's address from the trap and ignore the packet's sender address. If you di
specify this parameter, it will almost always default to the address of the machine sending the trap.

Generic trap number



A number in the range 0-6. The true generic traps have numbers 0-5; if you're sending an enterprise-specific trap, set this
number to 6. Table 2-8 in Chapter 2 lists the generic traps.

Specific trap number

A number indicating the specific trap you want to send. If you're sending a generic trap, this parameter is ignoredyou're
probably better off setting it to zero. If you're sending a specific trap, the trap number is up to you. For example, if you sen
trap with the OID .1.3.6.1.4.1.2500.3003.0, 3003 is the specific trap number.

Timestamp

The time elapsed between the last initialization of the network entity and the generation of the trap.

OID_1, type_1, value_1

Data bindings to be included in the trap. Each data binding consists of an OID together with a datatype, followed by the vali
you want to send. Most programs let you include any number of data bindings in a trap. Note that the OIDs for these variak
bindings are often specific to the trap and therefore "underneath” the specific OID for the trap. But this isn't a requirement,
it's often useful to send bindings that aren't defined as part of the trap.

Before we start to tackle this section, let's take a moment to review what we learned in Chapter 2 about the various datatypes:

e Each variable that we send has a particular datatype.
- Different datatypes are supported by different versions of SNMP.
« Some common datatypes are | NTEGER, Cctet String, Nul | , Count er, Gauge, and Ti neTi cks.

Be aware that not all programs support all datatypes. For example, the Perl SNMP module supports only the Cct et String, | NTEGER
QO D types, while the OpenView and Net-SNMP snmptrap commands support these three and many more. For each package we use
will list, if applicable, the datatypes the program supports.

In the next sections, we'll discuss snmptrap programs from HP, Network Computing Technologies, and Net-SNMP. We'll also incluc
script that uses a Perl module to send traps. If you are not using these particular programs in your environment, don't worry. Yot
should still be able to relate these examples to your in-house programs.

9.3.1. Sending Traps with OpenView

OpenView has a commanad-line program for generating arbitrary traps, called snmptrap. snmptrap supports the count er, counter
count er 64,1 gauge, gauge32, i nteger, i nteger 32, i paddress, nul |, obj ectidentifier, octetstring, octetstringascii, octetstringr
octetstringoctal , opaque, opaqueasci i , opaquehex, opaqueoct al , ti meti cks, and unsi gned32 datatypes. Its command-line structure
looks like this:

[1This type works only on agents that support SNMPv2.

snnptrap -c comunity [-p port]
node_addr enterprise_id agent-addr generic \
specific timestanp [ O D type val ue]

Here's a typical snmptrap command. It sends one trap, with three ASCII-string variable bindings for values:

$ /opt/ OV/ bin/snnptrap -c public nnms \

.1.3.6.1.4.1.2789.2500 "" 6 3003 "" \

.1.3.6.1.4.1.2789. 2500. 3003. 1 octetstringascii "Oracle" \
.1.3.6.1.4.1.2789. 2500. 3003. 2 octetstringascii "Backup Not Running" \
.1.3.6.1.4.1.2789. 2500. 3003. 3 octetstringascii "Call the DBA Now for Help"

It's a complicated command, and it's hard to imagine that you would ever type it on the command line. Let's break it up into piece
The first line specifies the community string (publ i c) and the address to which the trap should be sent (nns, though in practice it



would be better to use an IP address rather than a node name). The next line is in many respects the most complicated. It specifi
the enterprise ID for the trap we're going to send (. 1. 3. 5. 1. 6. 1. 2789. 2500, which is a subtree of the enterprise-specific tree we'v
devoted to traps); the address of the agent sending the trap (in this case, the null string "", which defaults to the agent's address
you're using a proxy server, it is useful to specify the agent's address explicitly); the generic trap number (6, which is used for all
enterprise-specific traps); the specific trap number (3003, which we've assigned); and a timestamp ("", which defaults to the curr
time).

The remaining three lines specify three variable bindings to be included with the trap. For each binding, we have the variable's ot
ID, its datatype, and its value. The variables we're sending are defined in our private (enterprise-specific) MIB, so their OIDs all k
with .1.3.6.1.4.1.2789.2500. All the variables are strings, so their datatype is octetstringascii. The trap PDU will be packed witt
these three strings, among other things. The program that receives the trap will decode the trap PDU and realize that there are t
variable bindings in the trap. These variable bindings, like the one that reads "Call the DBA Now for Help," can be used to alert th
operator that something bad has happened.

9.3.2. Sending Traps with Perl

In Chapter 7, we learned how to use the get and set pieces of the SNMP Perl module. In this section, we'll see how to use the
snnptrap() routine to generate traps. Currently, SNMP_uti | supports only three types for traps: string, i nt, and oi d. This can see
limiting, but it covers most needs. Here's how snmptrap is called:

snnpt rap(conmuni t ynanme@ost : port _nunber, enterprised D, host_nane_from \
generic_I D, specific_ID, OD type, value, [OD type, value ...])

One call to snmptrap can include any number of values; for each value, you must specify the object ID, the datatype, and the val
you're reporting. The next script generates a trap with only one value:

#! /usr/ | ocal / bi n/ perl
# Filename: /opt/local/perl_scripts/snnptrap.pl

use SNWVP_util "0.54"; # This will |oad the BER and SNWP_Session for us
snnptrap(" public\ @ns: 162", ".1.3.6.1.4.1.2789", "sunserverl", 6, 1247, \
".1.3.6.1.4.1.2789.1247. 1", "int", "2448816");

The call to snnptrap() sends a trap to port 162 on host nns. The trap is sent from host sunserver 1; it contains a single variable
binding, for the object . 1. 3. 6. 1. 4. 1. 2789. 1247. 1. The OID's type is i nt and its value is 2448816.

Now let's try sending a trap with multiple values (multiple variable bindings). The first object we'll report is an integer, to which v
give the arbitrary value 4278475. The second object has a string value and is a warning that our database has stopped. Because w
using OIDs that belong to our own enterprise, we can define these objects to be anything we want:

snnptrap("public\@ns: 162", ".1.3.6.1.4.1.2789", "sunserver2", 6, 3301, \
".1.3.6.1.4.1.2789.3301.1", "int", "4278475", \
".1.3.6.1.4.1.2789.3301.2", "string", "Sybase DB Stopped");

We can use the Net-SNMP snmptrapd program to monitor the traps coming in. We executed the preceding Perl code while running
snmptrapd in stdout mode and received:

$ ./snnptrapd -f -Lo

2005- 05-05 08:00: 24 NET- SNWP version 5.2.1 Started.

2005- 05-05 08:03: 05 sunserver2.ora.com [12.1.45.26] (via UDP: [12.1.45.26]:37223) TRAP, SNWP v1, community pul
SNVPv2- SM : : enterprises. 2789. 3301 Enterprise Specific Trap (3301) Uptinme: 60 days, 14:41:38.72
SNMPv2- SM : :enterprises. 2789.3301.1 = | NTEGER 4278475
SNVPv2- SM : : enterprises. 2789.3301.2 = STRING "Sybase DB Stopped"



snmptrapd reported both of the values we sent in the trap: we see the integer value 4278475 and the notification that Sybase has
stopped. Although this example is highly artificial, it's not all that different from what you would do when writing your own monit
software. You would write whatever code is necessary to monitor vital systems such as your database and use the Perl SNMP moc
to send traps when significant events occur. You can then use any program capable of receiving traps to inform you when the tra|
arrive. If you want, you can add logic that analyzes the values sent in the trap or takes other actions, such as notifying an operat
via a pager.

9.3.3. Sending Traps with Network Computing Technologies' Trap Generator

This command-line utility runs on Windows and, more recently, on Unix (to be specific, Solaris 2.6, Linux, Irix 6.2, and HP-UX). I
understands the String, Count er, Gauge, | nt eger, Address, O D, Ti meTi cks, and Cct et datatypes. You specify each of these types to
tool with S, C, G, I, A, O, T, and H, respectively. The command line for trapgen looks like this:

trapgen -d Destinationl pAddress: port -c Comuni tyNane
-0 senderO D -i senderlP -g GenericTrapType
-s SpecificTrapType -t timestanp -v O D TYPE VALUE

Here's how to use trapgen to send a trap notifying us that the UPS battery is running low. We use the Stri ng datatype to send an
informative message, and we use trap 4025.1 from our private enterprise ID, 2789:

C:\tool s> trapgen -d nns:162 -c public -0 »
1.3.6.1.4.1.2789.4025 -i 10.123.456.4 -g 6 -s 4025 -t 124501 *
-v 1.3.6.1.4.1.2789.4025.1 S 5 Mnutes Left On UPS Battery

This trap will be sent to our network management station (which has the hostname nns) on port 162, which is the standard port 1
SNMP traps. Any management station should be able to receive the trap and act on it appropriately. You can use this command ir
Windows batch scripts and in Unix shell scripts. Therefore, you can use trapgen to generate traps as you need them: you can wril
scripts that monitor key processes and generate traps when any interesting events take place. As with the earlier Perl example, y
can use this simple trap generator in your environment if you don't need a heavy-duty management system.

9.3.4. Sending Traps with Net-SNMP

This snmptrap program looks very similar to OpenView's snmptrap. This program uses a single letter to refer to datatypes, as sho
Table 9-2.

Table 9-2. Net-SNMP snmptrap datatypes

Abbreviation Datatype

a IP address

C Counter32

D Decimal string

| Integer

Null

Object ID

String

Time ticks
Unsigned integer

Hexadecimal string

o X Cc 4 »nwn 0 ZzZ

Bits



Here's how the Net-SNMP snmptrap program is invoked:

snnptrap hostname community enterprise-oid agent \
generic-trap specific-trap uptine [OD type value]...

If you use two single quotes (' ') in place of the time, snmptrap inserts the current time into the trap. The following command
generates a trap with a single value. The object ID is 2005. 1, within our private enterprise; the value is a string that tells us that
web server has been restarted:

$ snnptrap nns public .1.3.6.1.4.1.2789.2005 ntserverl 6 2476317 '' \
.1.3.6.1.4.1.2789.2005.1 s "WANN Server Has Been Restarted"

Here's how to send a Version 2 notification with Net-SNMP:

$ snnptrap -v2c nns public "' .1.3.6.1.6.3.1.1.5.3\
iflndex i 2 ifAdminStatus i 1 ifOperStatus i 1

The command is actually simpler than its Version 1 equivalent. It has no generic numbers, specific numbers, or vendor IDs. The
argument defaults to the current system uptime. The OID specifies the linkDown notification, with three data bindings specifying -
link's status. The definition of linkDown in the IF-MIB states that the linkDown notification must include the ifIndex, ifAdminStatus
and ifOperStatus objects, which report the index of the interface that went down, its administrative status, and its operational ste
respectively. For ifAdminStatus and ifOperStatus, a value of 1 indicates that the link is up. So, this notification reports that interf
has changed its state from "down" to "up.”

Finally, here's how to send an SNMPVv3 trap:

$ snnptrap -e 0x012345 -v3 -1 authPriv -u kschmdt -a MD5 \ -A
nysecretpass -x DES -X nypassphrase localhost "' \ .1.3.6.1.4.1.2789.2005
.1.3.6.1.4.1.2789.2005.1 s \

"WAW Server Has Been Restarted"

Notice the -e command-line flag; it specifies this application's engine ID. The corresponding trap receiver should be configured wi
this value.

The snmptrap command-line tool is great for integrating SNMP monitoring into shell scripts and other programs.

9.3.5. Forcing Your Hardware to Generate Traps

When you install a new piece of equipment, you should verify that it generates traps correctly. Testing your equipment's ability tc
generate traps has the added benefit of testing the behavior of your NMS; you can ensure that it handles traps in the way you wze
The best way to test new hardware is to read your vendor's MIB and look for all the tr AP- TYPEs it has defined. This will give you &
good feel for the sort of traps your vendor has implemented. For example, | read through the APC MIB and noticed that the unit ¢
a trap when it goes onto battery power if the AC power goes out. To test this feature, | secured the area in our datacenter and
switched off the circuit breaker to simulate a power failure. The trap was generated, but it showed up in the Error event category
because | did not have the correct MIB loaded in OpenView. | took the OID from the Error events and searched the APC MIBs for .
match. When | found one, | loaded the MIB file into OpenView and repeated the test. This time, when the trap was received,
OpenView put an informative message in the Event Categories.

Most SNMP-compatible routers, switches, and network devices can generate linkDown traps. From RFC 1157, a linkDown trap is a
“failure in one of the communication links represented in the agent's configuration.” This means that if you start unplugging ports
your router, you should receive traps, right? Yes, but first make sure you don't start disconnecting production database servers.

Furthermore, make sure you don't disconnect the port by which your device would send the trap back to the NMS. Remember, SN
designed with the assumption that the network is unreliableif something sends a trap but there's no way for the trap to reach its



destination, no one will find out. By default, a linkDown trap won't appear in OpenView's Event Categories because the default se
for linkDown is "Log only"; watch the log file $OV_LOG/trapd.log to see these traps arrive. Once you have a mechanism for recei\
traps, bringing the link up and down on your device should send some traps your way.

9.3.6. Receiving Traps with SNMPc

SNMPc has support for a great many trap types out of the box. Let's first look at what SNMPc does when it gets a coldStart trap fr
an SNMP agent. Figure 9-8 shows a pop-up window from SNMPc when our agent is restarted.

Figure 9-9 also shows the events in the active event window with the appropriate color statusin this case, the color is magenta.

And of course, the icon for my LinuxServer changed to the color of the next most severe event, which is the coldStart event (see
Figure 9-10).

Figure 9-8. SNMPc trap pop-up window

SNMP NT Alarme. .. X]
An SNMPe event has occured thal requines
immediate attention.
e |
Alarrn Ewenits:
Minor UB/A23/2005 134303 Linvcaerver, .. LoldStatt i
< | »

Figure 9-9. SNMPc event viewer

I--uu-.n e A b

If you right-click on the Cold Start event and select Edit Event Actions, you can change the properties for this trap. Figure 9-11 s
this window.

The Message input box allows you to change the text of the event as seen in the event window. If you click on the Actions tab, yc
can change the actions for this event filter (Figure 9-12).

The priority is currently magenta, but you can change it to whatever you see fit. The checkboxes on the right near the top contro
SNMPc reacts to this event. Checking Log causes the event to show up in the event window. Alarm causes a pop-up window to ap|
like the one in Figure 9-8. You have other options at your disposal including running a program, playing a sound, or sending an e
The Clear Events checkbox allows you to dictate what, if any, other events will cause this event to be automatically cleared. If yo!
select authenticationFailure, for example, and click Yes, if an authenticationFailure is received after the coldStart event, the coldS
event will be cleared.



Figure 9-11. SNMPc event actions editor

Event Filter Properties [E|

General | Match | Actions |

Event Name: | Deloul

Enteprise.  [snmpTraps
TrapName:  [coldStat [ Show OID

Trap Number: ||

Message: |i:05d Stast

Description: coldStan tap signifies that the SNMPv2 entity, actingl
in an agent role, is reiribializing fzelf and that it
canfiguration may have been altered

OK I Cancel Help

Figure 9-12. SNMPc event actions

Event Filter Properties

General | Match Actions |

Set Priciity: | ey v| ¥ Llog ¥ Clear Dups

Page Group: | <NONE> w| [ Beep ¥ Alaim

Emad Group: | <NONE> »| [T Exportto ODBC

Bun Progiam: | 2 I

Play Sound: | :J

Forward Tor | ™ Al

Clear Events: | authenticationF allwe - Default Yes
egpMeighbarLoss - Defaul *——J
linkDrown - Drefault Mo I
rkUp - Default
warrnStar - Default I Alte

0K I Cancel Help

To see the actual trap details, right-click the event and select Event Properties to display the screen shown in Figure 9-13.

Figure 9-13. SNMPc trap details



Event Properties...

Full Message Test:

enterprises 8072 4.02

Trap Varbinds:

Varniable

| Valug

syslipTime.0
snmpTrap0ID.0

Addrezsing Infa

Sender's Address:

18353
RFC1213-MIBlenteiprises 8072.4.0.2

132.168.1.69

Agent Address: |192.1E&1,ES Trap Commusity: l—p e

[ o 1]

Figure 9-13 shows the full text for the event and th

Finally, go back to the event window, right-click on the event, and select Acknowledge so that the event can move from the Curre

e variable bindings.

event tab to the History event tab. Figure 9-9 shows these tabs.

9.3.6.1. Custom trap actions

Let's say you want to add a custom action to an SNMP trap. First see Chapter 5 for a discussion on how to add your MIBs to SNMF
Once you have done this, you are ready to customize an action. We have already loaded the Cisco Ping MIB in our SNMPc system
MIB allows you to configure Cisco routers to send out ICMP messages to one or more remote hosts. As an optional setting for this

feature, the Cisco device can send you a trap when

The first thing to do is to find the entry in the Event Selection tab of the Selection tool. If you don't see this, go to View =% Sele«
Tool. Then select the Event tab at the bottom of the tool. You should see a window similar to Figure 9-14.

Since the events are in alphabetical order, it is easy to find the ciscoPingMIBTrapPrefix action. When you expand it, it has two act
Default and ciscoPingCompletion. Right-click on the ciscoPingCompletion action and select Insert Event Filter. This will bring up a

window like Figure 9-15.

it is done sending these messages.

Figure 9-14. SNMPc event action selection




=5 SNMPc Management Console - [192.14
3 Fie Edt Wew [nset Manage Tooks G

#lu|o|[a s mo|u]s

= ¥ Event Actions A
3 Global-Defaults T
o Snmpc-App-Events
# Snmnpc-Backup-Service
= Snempc-Map-Editing
* Snmpc-Status-Polling
[+ Sompc-System-Info =
] Snrnpec-Threshold-Alarm
# 5] sompTraps
# ] a3Com

[+ abedTelesyn
* apc g

@ (] stactDualHubiigt
# (I3 atkknbSwivib
#- [ atmForum
¥ [] banyan_traps
[+ 2] banyanExtension
¥ [ belicore
® 33 boe
# (7 bgpTraps
& ([ briéosagent
# (] breezecom
# [ cabletron
@ (O CastleRock
& 33 chipcom
¥ [[] ceMIBTrapPrefi
# (] dpCardTraps
] dsco
# [ dscoConfigManiIBNotiFicationF
[+ D ciscoErviMlonMIBNotificationPrel
[+ [ discoFlashMIBTrapPrefix
[+ ciscolCsuDsuMIBMatificationPre
= ciscoPingMIBTrapPrefiv
* Default
i+ ciscoPingCompletion
# [ ome-system
[ CMET1
L2 COmpaq
# ] controlledaccessUnit
* controlledattachmentodule

oo Frenlwicafies s _—

4 il |
Map |Mib | Trend | Event | Menu |

Here you change the Event Name to suit your taste. You can also change the Message input as well, which is what will be displayt
the Event log window. The

Figure 9-15. SNMPc event filter details



Add Event Filter [E|

General | Match | Actions |

Evert Name: |TEIRNSZ

Enterprise;  [ciscoPingMIBTrapPrefix ™ Show 0ID
TrapName: [ciscoPingCompletion [ Show OID
Trap Mumber: |1

Message: |$0 $

Desciption: ciscoPingCompleted trap iz sent at the completiorBof a
sequence of pings if such a lap was requestediwhen
the sequence was initiated. In addition to thelabove
listed obgects (which are shvays presentlithe message
wall alzo contam the followang objectslif any responses
were receivediciscoPingMinFticiscoPmgdwgRitl
ciscoPingh axRitt

0K I Cancel Help

Message input can be free-form text and/or contain special characters. These characters are summarized in Table 9-3.

Table 9-3. Summary of arguments for SNMPc message box

Argument Displays
The dollar ($) symbol

$$
Expanded event message (use this argument when adding a Run Program setting in the Actions dialog)
$V
Console frame window number
$W
Server IP Address
$M
Address of sending entity (could be the same as the target device, or could be a Polling Agent address)
$R
Event Action Filter name
$F
Event Action Filter database record number
$f
Trap Name as a textual string
$0

Trap Object Identifier in dot format
$0



Argument Displays

$P

$A

$T

$x

$X

s@

$U

$N

$i

$G

$S

$E

$Y

$P

$C

$~k

$+n

$n

Device parent submap name

Address of target device (device that the event is about)

Trap Community Name

Date the event occurred, in local format at server

Time the event occurred, in time zone of server

Time the event occurred, in seconds since Jan. 1, 1970

Value of sysUpTime in the event trap

The map object name of the target device

The map database record number of the target device

The Get Community name of the target device

The Set Community name of the target device

The timeout attribute, in seconds, of the target device

The max retries for the target device

The name of the map parent subnet object

The number of variables in the event trap

All variables as "[seq] name (type): value"

The nth variable as "name (type): value"

The nth variable as "name: value"

The nth variable as "value"



Argument Displays
All variables from the nth as "value"

$>n

All variables from the nth as "[seq] name (type): value"
$>-n

All variables from the nth as "name: value"
$>+n

Next you have to associate a device, or set of devices, with this trap. Select the Match tab at the top of the window. You have twc
choices. You can associate a group of nodes with this trap, which means all traps received from any device in this group will have

action applied to it. Figure 9-16 shows this option.

The second option is to specify individual devices to apply this trap to. Click the Add button, which will bring up the Browse Map T
in Figure 9-17.

Here you can select as many individual devices as you want. In Figure 9-18, LinuxServer shows up under Sources.

The next step would be to click on the Actions tab and configure the Priority and color and any other options you want. We discus
this in the previous section, so there is no need to reexamine it here.

Click on the OK button to save your Event filter. It will be updated in the Event Selection tree, as shown in Figure 9-19.

That's all there is to creating custom filters and actions.

Figure 9-16. SNMPc: apply actions to devices

Add Event Filter x|

General Match | Actions |

VarName: |

Var Valae: | ;]

Var List Name | Value l
cizcoPngComple..
crcoPmgSentPa...
crcoPingReceiv. .

MNode Group: _v_j 3 |

Sowces Add... I

OK I Cancel Help

Figure 9-17. Browsing the map in SNMPc



B Browse Map Tree...

= BB} Root Subnet|
=) 192.168.1

A LinixSaryver
& loanerazzp

i
I~ Show Ports Cancel

9.3.7. Using Hooks with Your Programs

A hook is a convenient interface that lets you integrate your own code into some other product. The Emacs text editor is a good
example of a program that uses hooks, almost entirely, to allow its users to extend how it operates. Let's look at the following sin
program to explain this concept further:

# Logi cal Sanple Program NHL
# PROGRAM COMVENTS
# PROGRAM BEG NS

Figure 9-18. LinuxServer added to Sources

X

Add Event Filter

Genetal Match | Actions |

Yar Name: |
Var Value: | l}
ar List: MName !Vdue |
cizcoPingComple...
crcoPngSentFa...
crcoPingReceiv. .
Node Group: _'vj ¥ |
Sources: LinuServer Add... I
Del

0K I Cancel Help

Figure 9-19. Custom filter added
(5o CISCOLSULSUMISINODNCartion:- e
= zﬁ cisCOPiNgMIBTrapPrefix

+ Default

gCompletion

r-hrFet



PROGRAM ADDS $VARL + $VAR2 $VAR3
PROGRAM SUBTRACTS $VARS - $VAR6 = $VARY
PROGRAM PRI NTS RESULTS $VAR3 $VAR7

# PROGRAM ENDS

This program simply ADDS, SUBTRACTS, and PRI NTS RESULTS; it does not have any hooks. To add a feature, you have to modify the ¢
For a small program like this, that is a trivial exercise, but it would be difficult in a longer program. The next program contains so
hooks that let you add extensions:

# Logi cal Sanple Program Hl
# PROGRAM COMMVENTS
# PROGRAM BEGQ NS
PROGRAM RUNS $PATH start. sh

PROGRAM ADDS $VARL + $VAR2
PROGRAM SUBTRACTS $VARS - $VARG
PROGRAM PRI NTS RESULTS $VAR3 $VAR7

$VAR3
$VAR7

PROGRAM RUNS $PATH end. sh
# PROGRAM ENDS

Notice the two additional RUNS statements. These hooks allow you to run anything you want at the start or end of the program. Tt
first program, start.sh, might be as simple as the command echo "I am starting," which sends a simple message to the system or
management console. This script could also call one of the trap-generation programs to send a trap to the NMS stating that some
program is starting. It would be even more useful to send a message when the program terminates, possibly including informatiol
about the program's status. Here's a slightly more complicated program that runs a script, providing a number of arguments so tt
the script can send useful information back to the NMS when it generates a trap:

# Logi cal Sanple Program H2
# PROGRAM COMMVENTS
# PROGRAM BEG NS
PROGRAM RUNS $PATH st art.sh $PROGRAM NANME

PROGRAM ADDS $VARL + $VAR2
PROGRAM SUBTRACTS $VAR5 - $VARG
PROGRAM PRI NTS RESULTS $VAR3 $VAR?

$VAR3
$VAR7

PROGRAM RUNS $PATH end. sh  $PROGRAM_NAME $VARL $VAR2 $VAR3 $VAR5 $VAR6 $VAR7
# PROGRAM ENDS

With the additional arguments available to the hook programs, we can generate messages like "The Program Widget has ended w
sales at $4 and YTD at $7." If your hook programs are shell scripts, you can simply add snmptrap commands using a text editor. (
you finish adding the snmptrap code, you can test your hook program by running it on the command line.

Many scripts can benefit from snmptrap hooks. On Solaris or Linux machines, for example, some of your /etc/init.d scripts can be
retrofitted to make use of snmptrap commands. It might be useful to have some kind of notification when important processes su
your web server or DNS server start and stop. Having such information on hand might make life much easier for your help desk.
Concord SystemEDGE SNMP agent provides more rigorous process-monitoring capabilities. See Chapter 10 for more information «
this product.)

It's harder to add hooks to programs written in languages like C because you need access to the source code as well as the ability
figure out where to place the hooks. Once you have identified where your hooks go and you have added them, you must recompi
source code. Some programs have hooks built in, allowing you to run external programs or RPCs. Check your program's
documentation for the locations of these hooks. This is much more convenient than trying to build your own hooks into another
program. Once you have established what these external programs are called, you can start writing your own traps or adding to
existing ones.

e roc |



e prcv |

Chapter 10. Extensible SNMP Agents

There will come a time when you want to extend an agent's functionality. Extending an agent usually means adding or changing
the MIBs the agent supports. Many agents that claim to support SNMP cover only a minimal number of somewhat useless
MIBsobviously a frustrating situation for someone who is planning on doing lots of automated network management. Upgrading
your software to a newer version of SNMPsay, Version 2 or 3won't help; you won't get any more information out of a device
than if you were using SNMPv1. The newer versions of SNMP add features to the protocol (such as additional security or more
sophisticated options for retrieving and setting values), but the information that's available from any device is defined in the
agent's MIBs, which are independent of the protocol itself.

When you are faced with an agent's limitations, you can turn to extensible agents I*1 These programs, or extensions to existing
programs, allow you to extend a particular agent's MIB and retrieve values from an external source (a script, program, or file).
In some cases, data can be returned as if it were coming from the agent itself. Most of the time you will not see a difference
between the agent's native MIBs and your extensible ones. Many extensible agents give you the ability to read files, run
programs, and return their results; they can even return tables of information. Some agents have configurable options that
allow you to run external programs, and have preset functions, such as disk-space checkers, built in.

[7We don't make a distinction between existing agents that can be extended and agents that exist purely to support extensions. We'll call them both "extensible agents."

The OpenView , Net-SNMP, and SystemEDGE agents are all examples of extensible agents. OpenView provides a separate
extensible agent that allows you to extend the master agent (snmpdm); requests for the extensible agent won't work unless the
master agent is running. You can start and stop the extensible agent without disturbing the master agent. To customize the
extensible agent, you define new objects using the ASN.1 format, as specified by the SMI. The Net-SNMP agent takes an
alternate approach. It doesn't make a distinction between the master agent and the extensible agent; there's only one agent to
worry about. You can use ASN.1 to define new objects (as with the OpenView extensible agent), but there's also a facility for
adding extensions without writing any ASN.1, making this agent significantly more accessible for the novice administrator.
SystemEDGE is similar to Net-SNMP in that there is only one agent to worry about. Of the three agents discussed in this
chapter, it is the easiest to extend. Figure 10-1 compares the design strategies of the OpenView, Net-SNMP, and SystemEDGE
agents.

Figure 10-1. Architecture of extensible agents

Agent ma
Master | Mti

Net-SNMP extensible agent

Slave mi I
Agent Mg :

OpenView extensible agent, master-+slave

SystemEDGE extensible agent

All three agents have fairly comprehensive configuration options and all allow you to extend the local agent without heavy
programming. You may need to write some scripts or a few short C programs, but with the sample programs here and the
thousands more that are on the Internet,l*1 nonprogrammers can still get a lot done.

[1 See SNMPLinks.org (http://www.snmplink.org/Tools.html) for links to commercial and free SNMP software.

We'll start with the Net-SNMP agent, since it is the simplest, and then move to SystemEDGE. We'll round out the discussion
with OpenView's extensible agent. Be sure to see Chapter 6 for information on where to obtain these agents.

e rrcv |


http://www.snmplink.org/Tools.html

e prcv |

10.1. Net-SNMP

When+you install the Net-SNMP package,l 1it creates a sample snmpd.conf configuration file called EXAMPLE.conf in the source
directory. This file contains some great examples that demonstrate how to extend your agent. Read through it to see the types
of things you can and can't do. We will touch on only a few of Net-SNMP's features: checking for any number of running
processes (proc), executing a command that returns a single line or multiple lines of output (exec), and checking disk-space
utilization (di sk).

[ INet-SNMP was formerly called UCD-SNMP and as a result, you'll see references to the University of California at Davis in the code.

The main Net-SNMP configuration file can be found at $NET_SNMP_HOME/share/snmp/snmpd.conf, where $NET_SNMP_HOME
is the directory in which you installed Net-SNMP. Here is the configuration file that we will use for the remainder of this section:

# Filename: $NET_SNMP_HOVE/ shar e/ snnp/ snnpd. conf

# Check for processes running

# Itenms in here will appear in the ucdavis. procTable
proc sendmail 10 1

proc httpd

# Return the value fromthe executed programw th a passed parm
# Items in here will appear in the ucdavis. extTable
exec FileCheck /opt/local/shell_scripts/filecheck.sh /tnp/vxprint.error

# Multiline return fromthe comrand
# This needs its own O D
# | have used a subset of ny registered enterprise ID (2789) within the QD
exec .1.3.6.1.4.1.2021.2789.51 FancyCheck /opt/local/shell_scripts/fancycheck.
sh \

/core

# Check disks for their nins
di sk / 100000

o Note that the system-monitoring OIDs presented in this section can be found in the UCD-SNMP-MIB.

N -_':“
o]
=
s

Whenever you make changes to the Net-SNMP agent's configuration file, you can have it reread the configuration by sending
the process an HUP signal:

$ ps -ef | grep snnpd
r oot 12345 1 0 Nov 16 ? 2:35 /usr/local /bin/snnpd
$ kill -HUP 12345

Now let's look at the file itself. The first proc command says to check for the process sendmai | . The numbers 10 and 1 define how
many sendmail processes we want running at any given time (a maximum of 10 and a minimum of 1) . The second proc
command says that we want at least one htt pd process running. To see what effect these commands have on our agent, let's
look at an snmpwalk of the ucdavis.procTable (.1.3.6.1.4.1.2021.2):

$ snnpwal k sunserver2 public .1.3.6.1.4.1.2021.2

enterprises.ucdavis. procTabl e. prEntry. prindex.1 = 1
enterprises.ucdavi s. procTabl e. prEntry. prindex.2 = 2
enterprises.ucdavis. procTabl e. prEntry. prNames. 1 = "sendnai | "
enterprises.ucdavis. procTabl e. prEntry. prNanes.2 = "httpd"



enterprises. ucdavi
enterprises. ucdavi
enterprises. ucdavi
enterprises. ucdavi
enterprises. ucdavi
enterprises. ucdavi
enterprises. ucdavi
enterprises. ucdavi
enterprises. ucdavi
enterpri ses. ucdavi
enterprises. ucdavi
enterprises. ucdavi

.procTabl e. prEntry. prM n.
.procTabl e.prEntry. prM n.
.procTabl e. prEntry. pr Max.
.procTabl e. prEntry. prMax.2 =
.procTabl e. prEntry. prCount. 1
.procTabl e. prEntry. prCount.2 =
.procTabl e. prEntry. prErrorFl ag.
.procTabl e. prEntry. prErrorFl ag.
.procTabl e. prEntry. prErr Message.1 = ""
.procTabl e. prEntry. prErr Message.2 = ""
.procTable.prEntry.prErrFix.1 = 0

.procTable.prEntry.prErrFix.2 = 0

I OoOkRr OoOr
o

NEFE o

NEFE DN

nnunononononononononon

The agent returns the contents of the procTable. In this table, the sendmail and httpd process entries occupy instances 1 and 2.
prM n and pr Max are the minimum and maximum numbers we set for the sendmail and httpd processes.[*1 The pr Count value
gives us the number of processes currently running: it looks like we have one sendmail process and six httpd processes. To see
what happens when the number of processes falls outside the range we specified, let's Kill all six httpd processes and look at the
procTable again (instead of listing the whole table, we'll walk only instance 2, which describes the httpd process):

1 When prM n and pr Max are both 0, it says that we want at least one and a maximum of infinity processes running.

$ snnpwal k sunserver2 public .1.3.6.1.4.1.2021.2

enterprises.ucdavis. procTabl e. prEntry.prindex.1 = 1
enterprises.ucdavis. procTabl e. prEntry. prNanes. 1 = "httpd"
enterprises.ucdavis. procTabl e. prEntry.prMn.1 = 0
enterprises.ucdavis. procTabl e. prEntry. prMax.1 = 0
enterprises.ucdavis. procTabl e. prEntry. prCount.1 = 0
enterprises.ucdavis. procTabl e. prEntry. prErrorFlag.1 = 1
enterprises.ucdavis. procTabl e. prEntry. prErrMessage.1 = "No httpd

process running."
enterprises.ucdavis. procTable. prEntry.prErrFix.1 = 0

We had six httpd processes running and now, per pr Count , we have none. The pr Err Message reports the problem, and the

pr Error Fl ag has changed from 0 to 1, indicating that something is wrong. This flag makes it easy to poll the agent, using the
techniques discussed in Chapter 8, and see that the httpd processes have stopped. Let's try a variation on this theme. If we set
prM n to indicate that we want more than six httpd processes running, and then restart httpd, our pr Err Message is:

enterprises.ucdavis. procTabl e. prEntry. prErr Message. 1 = "Too few
httpd running (# = 0)"

The next command in the configuration file is exec; this command allows us to execute any program and return the program's
results and exit value to the agent. This is helpful when you already have a program you would like to use in conjunction with
the agent. We've written a simple shell script called filecheck.sh that checks whether the file that's passed to it on the command
line exists. If the file exists, it returns a O (zero); otherwise, it returns a 1 (one):

#!/ bi n/ sh
# FileNane: /opt/local/shell_scripts/filecheck.sh

if [ -f $1]; then
exit O

fi

exit 1

Our configuration file uses filecheck.sh to check for the existence of the file /tmp/vxprint.error. Once you have the filecheck.sh
script in place, you can see the results it returns by walking ucdavis.extTable (.1.3.6.1.4.1.2021.8):

$ snnpwal k sunserver2 public .1.3.6.1.4.1.2021.8



1
"Fi | eCheck"

enterprises. ucdavi s. ext Tabl e. ext Entry. ext| ndex. 1
enterprises. ucdavi s. ext Tabl e. ext Entry. ext Nanes. 1
enterprises.ucdavi s. ext Tabl e. ext Entry. ext Conmand.
"/opt/local/shell _scripts/filecheck.sh /tnp/vxprint.error"
enterprises.ucdavis. ext Tabl e. extEntry. extResult.1 = 0
enterprises.ucdavi s. ext Tabl e. ext Entry. ext Qut put. 1 "
enterprises.ucdavi s. ext Tabl e. extEntry. extErrFix. 1 0

=l

The first argument to the exec command[=l in the configuration file is a label that identifies the command so that we can easily
recognize it in the extTable. In our case, we used Fi | eCheckthat's not a particularly good name, because we might want to check
the existence of several files, but we could have named it anything we deemed useful. Whatever name you choose is returned
as the value of the extTable.extEntry.extNames.1 object. Because the file /tmp/vxprint.error exists, filecheck.sh returns a O,
which appears in the table as the value of extTable.extEntry.extResult.1. You can also have the agent return a line of output
from the program. Change filecheck.sh to perform an Is -la on the file if it exists:

[1 See the EXAMPLE.conf configuration file introduced at the beginning of this chapter.

#!/ bi n/ sh
# FileNane: /opt/local/shell_scripts/filecheck.sh

if [ -f $1 ]; then
Ils -la $1
exit O

fi

exit 1

When we poll the agent, we see the output from the script in the extOutput value the agent returns:

enterprises.ucdavi s. ext Tabl e. extEntry. extQutput.1 =\
" 16 -rwrr-- 1 root ot her 2476 Feb 3 17:13 /tnp/vxprint.error."

This simple trick works only if the script returns a single line of output. If your script returns more than one line of output,
insert an OID in front of the string name in the exec command.

Here's the next command from our snmpd.conf file:

exec .1.3.6.1.4.1.2021.2789.51 FancyCheck /opt/local/shell_scripts/fancycheck.
sh \
/core

This command runs the program fancycheck.sh, with the identifying string FancyCheck. We won't bother to list fancycheck.sh;
it's just like filecheck.sh, except that it adds a check to determine the file type. The OID identifies where in the MIB tree the
agent will place the result of running the command. It needs to be in the ucdavis enterprise (.1.3.6.1.4.1.2021). We
recommend that you follow the ucdavis enterprise ID with your own enterprise humber, to prevent collisions with objects
defined by other sources and avoid overwriting one of ucdavis's subtrees. Follow your enterprise number with another number
to identify this particular command. In this case, our enterprise ID is 2789 and we assign the arbitrary number 51 to this
command. Thus, the complete OID is .1.3.6.1.4.1.2021.2789.51.

Here are the results from walking the .1.3.6.1.4.1.2021.2789.51 subtree:

$ snnpwal k sunserver2 public .1.3.6.1.4.1.2021.2789.51
enterprises.ucdavis.2789.51.1.1 1
enterprises.ucdavis.2789.51. 2.1 = "FancyCheck"
enterprises.ucdavis.2789.51.3.1 =

"/ opt/local/shell_scripts/fancycheck.sh /core"

ucdavi s. 2789.51.100.1 = 0

ucdavi s. 2789.51.101.1 = "-rwrr-- 1 root ot her



346708 Feb 14 16:30 /core."

ucdavi s.2789.51.101.2 = "/core:..ELF 32-bit MSB core file SPARC
Version 1, from'httpd ."

ucdavi s. 2789.51.102.1 = 0

Notice that we have a few additional lines in our output. 2789.51.100.1 is the exit number, 2789.51.101.1 and 2789.51.101.2
are the output from the command, and 2789.51.102.1 is the errorFix value. These values can be useful when you are trying to
debug your new extension. (Unfortunately, snmpwalk can give you only the numeric OID, not the human-readable name,
because snmpwalk doesn't know what 2789.51.x is.)

The last task for Net-SNMP's extensible agent is to perform some disk-space monitoring. This is a great option that lets you
check the availability of disk space and return multiple (useful) values. The di sk option takes a filesystem mount point followed
by a number. Here is what our entry looks like in snmpd.conf:

# Check disks for their nins
di sk / 100000

The definition of the di sk option from UCD-SNMP-MIB.txt is "Minimum space required on the disk (in kBytes) before the errors
are triggered." Let's first take a look on sunserver2 to see what the common df program returns:

$ df -k /
Fi | esystem kbyt es used avail capacity Munted on
/ dev/ dsk/ cOt 0d0OsO 432839 93449 296110 24% /

To see what SNMP has to say about the disk space on our server, run snmpwalk against the ucdavis.diskTable object
(.1.3.6.1.4.1.2021.9). This returns virtually the same information as the df command:

$ snnpwal k sunserver2 public .1.3.6.1.4.1.2021.9
enterprises.ucdavi s. di skTabl e. dskEntry. dskl ndex.1 = 1
enterprises. ucdavi s. di skTabl e. dskEntry. dskPath.1 = "/"
enterprises.ucdavis. di skTabl e. dskEntry. dskDevice. 1 =
"/ dev/ dsk/ cOt 0d0s0"
enterprises. ucdavi s. di skTabl e. dskEntry. dskM ni rum 1 = 100000
enterprises.ucdavi s. di skTabl e. dskEntry. dskM nPercent.1 = -1
enterprises. ucdavis. di skTabl e. dskEntry. dskTotal .1 = 432839
enterprises. ucdavi s. di skTabl e. dskEntry. dskAvail.1 = 296110
enterprises.ucdavis. di skTabl e. dskEntry. dskUsed. 1 = 93449
enterprises. ucdavis. di skTabl e. dskEntry. dskPercent.1 = 24
enterprises.ucdavis. di skTabl e. dskEntry. dskErrorFlag.1 = 0
enterprises.ucdavi s. di skTabl e. dskEntry. dskErrorMsg.1 = ""

Hex: 2F

As you can see, the Net-SNMP agent has many customizable features that allow you to tailor your monitoring without having to
write your own object definitions. Be sure to review $NET_SNMP_HOME/share/snmp/mibs/UCD-SNMP-MIB.txt for complete
definitions of all of Net-SNMP's variables. While we touched on only a few customizable options here, you will find many other
useful options in the EXAMPLE.conf file that comes with the Net-SNMP package.

e prc |



e prcv |

10.2. SystemEDGE

The SystemEDGE agent is also extensible. No other system processes need to be run to extend this agent. It comes with three
predefined extended objects: DNS for Unix, Network Information System (NIS) for Unix, and Remote Pinger for Unix and
Windows XP, 2000, and NT. The first object returns the domain name of the underlying operating system, the second returns
the NIS domain name of the underlying operating system, and the third sends Internet Control Message Protocol (ICMP)
requests to a remote host from the system on which the agent is running. While these are nice scripts to have, what we want to
focus on is how to add your own OIDs to the agent.

10.2.1. Extensibility for Unix and Windows

The SystemEDGE agent has a private MIB that defines a table called the extensionGroup. Its full OID is 1.3.6.1.4.1.546.14
(iso.org.dod.internet.private.enterprises.empire.extensionGroup). This is where you define your own objects. The first object you
define has the OID extensionGroup.1.0 (1.3.6.1.4.1.546.14.1.0), where the .0 indicates that the object is scalar; the next has
the OID extensionGroup.2.0, and so on. Note that all the objects defined this way must be scalar. For advanced users, Concord
has developed a plug-in architecture for SystemEDGE that allows you to develop complex extended objects (including tables)
and full-blown MIBs.

To extend the agent, start by editing the sysedge.cf file. This file tells the agent to which extended OIDs it must respond. The
format of a command in this file is:

ext ensi on Leaf Nunber Type Access '' Command''

The keyword ext ensi on tells the agent that this configuration entry is an extension that belongs to the extensionGroup.

Leaf Nunmber is the extension object numberi.e., the number you assign to the object in the extensionGroup table. Type is the
SNMP type for the OID. Valid types are | nt eger, Count er, Gauge, Oct et string, Ti meTi cks, Obj ecti d, and | PAddr ess. Access is
either Read- Onl y or Read- Wi te. And finally, Cormand is the script or program the agent will execute when this particular OID is
queried by an NMS. We'll talk more about this shortly. Here are some examples of extension objects:

extension 1 Integer Read-Only '/usr/local/bin/Script.sh'
extension 2 Gauge Read-Only '/usr/local/bin/Script.pl'
extension 33 Counter Read-Wite '/usr/local/bin/Program

The first item defines a read-only OID of type I nteger. The OID is 1.3.6.1.4.1.546.14.1.0. The agent will execute
/usr/local/bin/exampleScript.sh when this OID is queried. The second entry is similar, except its type is Gauge and its numeric
OID is 1.3.6.1.4.1.546.14.2.0. The third example simply shows that Leaf Nunber doesn't have to be sequential; you can use any
number you want, provided that it is unique.

Extending the agent allows you to write your own scripts that do whatever you want: you can get information about devices or
programs that are not SNMP capable, as long as you can write a script that queries them for their status. In the preceding
example, /usr/local/bin/Script.sh, /usr/local/bin/Script.pl, and /usr/local/bin/Program are all examples of scripts the agent will
execute when the OID assigned to each script is queried. Two requirements must be met by any script or program:

« All set, get, and getnext requests must generate output. For get and getnext, the output from the script should be the
actual value of the object requested. This means that the script or program that fetches the required information must
return a single value. For a set request, the script should return the object's new value. The request will fail if there is no
output. (Note that for a set request, a script may succeed in changing the state of the device even if it produces no output
and the agent considers the script to have failed.)

e The script or program should print whatever information it needs to return (based on the type of request), followed by a
newline character. The agent parses only up to this character. If a newline is the first character the agent encounters, the
agent generates an error and returns this to the NMS or SNMP application.

The agent sends three arguments to the script or program it executes: the Leaf Nunber , the request type (GET, GETNEXT, or SET, in
capital letters), and a string that represents some value to be set (the third argument is used only for SET requests). The



following skeletal Perl script, called skel.pl, shows how you can use all three arguments:

#!/usr/ 1 ocal / bin/perl

if ($ARGV[0] == 1) {
# ODqueried is 1.3.6.1.4.1.546.14.1.0
if ($ARGV[ 1] eq "SET") {
# use $ARGV[2] to set the value of something and return the set val ue,
# followed by a new ine character, to the agent
} elsif (($ARGV[1] eq "GET") || ($ARGV[1] eq "GETNEXT")) {
# get the information to which this O D pertains, then return it,
# followed by a new ine character, to the agent
}
} else {
return O;
# return O, since | don't know what to do with this QD

All you have to do is add the logic that takes some action to retrieve (or set) the appropriate value and return the correct value
to the agent. The corresponding entry in sysedge.cf might look something like this:

extension 1 Integer Read-Wite '/usr/local/bin/skel.pl'

What we've done so far gives the agent the ability to respond to requests for a new kind of data. We still need to solve the
other part of the puzzle: telling the management station that some new kind of data is available for it to retrieve. This requires
creating an entry in a MIB file.L*1 After adding this entry to the file, you must recompile the MIB into your NMS system so that
the NMS will know the access and type of each of the extended objects in the MIB for which it is to perform queries. Here is a
MIB entry that corresponds to the previous agent extension:

[1 Concord recommends that you keep all your extended MIB objects in a separate file, away from the SystemEDGE MIB file. This makes it easier for you to recompile it
into your NMS.

skel etonVari abl e OBJECT- TYPE
SYNTAX | nt eger
ACCESS Read-Wite
DESCRI PTI ON
"This is an exanple object."
1= { extensionGoup 1}

Once this is compiled into the NMS, you can query the object by specifying its full name
(iso.org.dod.internet.private.enterprises.empire.extensionGroup.skeletonVariable.0). Alternatively, you can use the numeric
OID; for example:

$ snnpget server.ora.com public .1.3.6.1.4.1.546.14.1.0

Security can be a concern when writing your own extension scripts. On Unix systems, it's a good idea to create a separate user
and group to execute your extensions, instead of allowing the root user to run your scripts.

10.2.2. Added Extensibility for Windows

While the extensionGroup is supported on all platforms, the Windows version of SystemEDGE allows you to extend SystemEDGE
with objects taken from the registry and performance registry. You can gain access to configuration data and performance data,
which are normally viewed using regedit and perfmon. The Windows extension group is defined as
iso.org.dod.internet.private.enterprises.empire.nt.ntRegPerf (1.3.6.1.4.1.546.5.7). As with the Unix extensions, these
extensions are defined in the sysedge.cf file.



To configure a registry extension, add a line with the following syntax to sysedge.cf:

ntregperf Leaf Nunber Type Registry ''Key'' ''Value''

The keyword ntregperf defines this as a registry or performance extension object. Leaf Nunber and Type are the same as for Unix
extensions. The keyword Regi st ry identifies this entry as a registry extension. Registry extensions are read-only. Key is a
quoted string that specifies the registry key to be accessed. Val ue is the value you want to read from the key. Here is an
example:

ntregperf 1 CctetString Registry
' SYSTEM Cur rent Cont rol Set\ Control \ CrashControl' ' DunpFil e

This creates a registry extension object that returns the path to the crash-control dump file. The OID is 1.3.6.1.4.1.546.5.7.1.0
(iso.org.dod.internet.private.enterprises.empire.nt.ntRegPerf.1.0).

To configure a performance extension, use the following syntax:

ntregperf Leaf Nunber Type Performance ''Cbject'' ''Counter'' ''Perflnstance''’

Here again, ntregperf is the keyword that indicates this is a registry/performance extension object. Leaf Nunber and Type should
be familiar to you. The keyword Per f or mance indicates that we're reading a value from the performance registry; performance
extensions are read-only. Obj ect specifies the performance object to be accessed. Count er specifies the object's performance
counter value to be accessed. Finally, Perf I nst ance specifies the performance counter instance to be accessed. This should be
identical to what's listed with perfmon. Here's a typical performance extension:

ntregperf 2 Counter Performance ' TCP' ' Segnents Sent/sec' '1'

You can use this extension to watch the total number of TCP segments transmitted by the system. Its OID is
1.3.6.1.4.1.546.5.7.2.0 (iso.org.dod.internet.private.enterprises.empire.nt.ntRegPerf.2.0). Keep in mind that you should create
a MIB entry (in a MIB file) for any extensions you create, similar to the entry we defined earlier for skeletonVariable.

The examples in this section should be enough to get you up and running with an extended SystemEDGE agent. Be sure to read
the SystemEDGE manual for a complete treatment of this topic.

e roc |



e prcv |

10.3. OpenView's Extensible Agent

Before you start playing around with OpenView's extensible agent , make sure that you have its master agent (snmpdm)
configured and running properly. You must also obtain an enterprise number, because extending the OpenView agent requires
writing your own MIB definitions, and the objects you define must be part of the enterprises subtree.[*1 Chapter 2 describes
how to obtain an enterprise number.

[1 Do not use our enterprise number. Obtaining your own private enterprise number is easy and free. Using our number will only confuse you and others later in the game.

MIBs are written using the SMI, of which there are two versions: SMIv1, defined in RFCs 1155 and 1212; and SMIv2, defined in
RFCs 2578, 2579, and 2580. RFC 1155 notes that "ASN.1 constructs are used to define the structure, although the full
generality of ASN.1 is not permitted.” While OpenView's extensible agent file, snmpd.extend, uses ASN.1 to define objects, it
requires some additional entries to create a usable object. snmpd.extend also does not support some of the SNMPv2 SMI
constructs. In this chapter, we will discuss only those constructs that are supported.

By default, the configuration file for the extensible agent in the Unix version of OpenView is /etc/SnmpAgent.d/snmp.extend. To
jump right in, copy the sample file to this location and then restart the agent:

$ cp /opt/OV/prg_sanpl es/ eagent/snnpd. extend /et c/ SnnpAgent . d/ 1-
$ /etc/rc2.d/ S98SnmpExt Agt st op
$ /etc/rc2.d/ S98SnnpExt Agt start

T

You should see no errors and you should get an exit code of O (zero). If errors occur, check the snmpd.log file.L 1 If the agent
starts successfully, try walking one of the objects monitored by the extensible agent. The following command checks the status
of the mail queue:

[ 1On Solaris and HP-UX machines, this file is located in /var/adm/snmpd.log.

$ snmpwal k sunserverl .1.3.6.1.4.1.4242.2.2.0
4242.2.2.0 : OCTET STRING (ascii): Mai | queue is enpty

We're off to a good start. We have successfully started and polled the extensible agent.

The key to OpenView's snmpd.extend file is the DESCRI PTI ON. If this seems a little weird, it is! Executing commands from within
the DESCRI PTI ON section is peculiar to this agent, not part of the SNMP design. The DESCRI PTI ON tells the agent where to look to
read, write, and run files. You can put a whole slew of parameters within the DESCRI PTI ON, but we'll tackle only a few of the
more common ones. Here's the syntax for the snmpd.extend file:

your - | abel -here DEFINITIONS ::= BEG N

-- insert your coments here

enterprise-nane OBJECT | DENTI FI ER ::
subt ree- nanel OBJECT | DENTI FI ER : :
subtree- nane2 OBJECT | DENTI FIER ::

{ ODlabel (1) ODIlabel{2) 3}
{ ODlabel(3) 4}
{ ODlabel (123) 56 }

data-ldentifier
This is sonetines called a | eaf node, node, object, or MB.
OBJECT- TYPE
SYNTAX Integer | Counter | Gauge | DisplayString
These are just to name a few supported datatypes.

ACCESS read-only | read-wite
STATUS mandatory | optional | obsolete | deprecated
For now we will always use nandatory as our STATUS.

DESCRI PTI ON



Enter Your Description Here

READ- COMVAND:  / your / command/ here passedl passed2

READ- COMWWAND- TI MEQUT: timeout i n_seconds (defaults to 3)

FI LE- COWAND: /your/fil e-command/ here passedl passed2

FI LE- COMWAND- FREQUENCY: frequency_i n_seconds (defaults to 10)
FI LE- NAME: /your/fil enane/ here

.= { parent-subtree-nane subidentifier }

END

We can glean some style guidelines from RFC 2578. While there are many guidelines, some more useful than others, one thing
stands out: case does matter. Much of ASN.1 is case sensitive. All ASN.1 keywords and macros should be in uppercase: OBJECT-
TYPE, SYNTAX, DESCRI PTI ON, etc. Your data-ldentifiers (i.e., object names) should start in lowercase and contain no spaces. If you
have read any of the RFC MIBs or done any polling, you should have noticed that all the object names obey this convention. Try
to use descriptive names and keep your names well under the 64-character limit; RFC 2578 states that anything over 32
characters is not recommended. If you define an object under an existing subtree, you should use this subtree-name, or parent-
name, before each new object-name you create. The ip subtree in mib-2 (RFC 1213) provides an example of good practice:

ip OBJECT IDENTIFIER ::= { nib-2 4}
i pForwar di ng OBJECT- TYPE

= {ip1l}

i pDefaul t TTL OBJECT- TYPE

= {ip2}

This file starts by defining the ip subtree. The names of objects within that subtree start with ip and use ip as the parent-
subtree-name. As useful as this recommended practice is, there are times when it isn't appropriate. For example, this practice
makes it difficult to move your objects to different parents while you are building a MIB file.

Here's a working snmpd.extend file that contains three definitions: psZombieNum, prtDiagExitC, and whosOnCall. | have placed

all these objects within my own private enterprise (2789, which | have named mauro). Figure 10-2 shows this portion of my
private subtree.

Figure 10-2. mauro subtree



[ i I |__isum [ jom2 i

ey
BT
]

| psZambieNum(0) i | priDiagExitC(1) i

You can now walk the tree and see what my new objects look like; my tree starts at the OID .1.3.6.1.4.1.2789, which is
equivalent to .iso.org.dod.internet.private.enterprises.mauro. | can organize my own subtree any way | want, so I've split it into
two branches beneath mauro: mauro.sysinfo (2789.3) will hold information about the status of the system itself (psZombieNum
and prtDiagExitC), and mauro.other (2789.255) will hold additional information (whosOnCall). If you look further down, you can
see the three leaf nodes | define in this file:

other(225)

whasOnCall{0)

Sanpl eExt DEFINITIONS ::= BEG N

-- comments appear here behind the dashes

i nternet OBJECT IDENTIFIER ::= { iso(l) org(3) dod(6) 1}
enterprises OBJECT IDENTIFIER ::= { internet(1l) private(4) 1}
maur o OBJECT | DENTIFIER ::= { enterprises(1l) 2789 }

-- Now that we have defined mauro, let's define some objects

syslnfo OBJECT | DENTI FIER ::
ot her OBJECT | DENTI FI ER ::

{ mauro 3}
{ mauro 255 }

psZonbi eNum OBJECT- TYPE
SYNTAX | NTEGER
ACCESS read-only
STATUS nmandat ory
DESCRI PTI ON
"Search through ps and return the nunber of zonbies.
READ- COMWAND: VALUE='ps -ef | grep -v grep | grep -c \<defunct\>'; echo
$VALUE"
:={ sysinfo 0}

prt D agExi t C OBJECT- TYPE
SYNTAX | NTEGER
ACCESS read-only
STATUS nmandat ory
DESCRI PTI ON
"On Solaris, prtdiag shows us system di agnostic information. The



manpage states that if this command exits with a non-zero val ue,
we have a problem This is a great polling nechanismfor sone
systens.
READ- COWAND: /usr/platform 'unanme -m/sbin/prtdiag > /dev/null; echo
$?7"

::={ sysinfo 1}

whosOnCal | OBJECT- TYPE

SYNTAX CctetString

ACCESS read-wite

STATUS nandatory

DESCRI PTI ON
"This file contains the nane of the person who will be on call
today. The hel pdesk uses this file. Only the hel pdesk and
managers should update this file. If you are sick or unable to

be on call, please contact your manager and/or the hel pdesk.
FI LE- NAME: /opt/local/oncall/today.txt"
::={ other 0}

END

The first two objects, psZombieNum and prtDiagExitC, both use the READ- COWAND in the DESCRI PTI ON. This tells the agent to
execute the named command and send any output the command produces to the NMS. By default, the program must complete
within three seconds and have an exit value of O (zero). You can increase the timeout by adding a READ- COMWAND- TI MEQOUT:

READ- COWAND: / sone/ f s/ sonmecomrand. pl
READ- COMWWAND- TI MEQUT: 10

This tells the agent to wait 10 seconds instead of 3 for a reply before killing the process and returning an error.

The last object, whosOnCall, uses a Fl LE- NAME in the DESCRI PTI ON. This tells the agent to return the first line of the file, program,
script, etc., specified after FI LE- NAME. Later we will learn how to manipulate this file.

Now that we've created a MIB file with our new definitions, we need to load the new MIB into OpenView. This step isn't strictly
necessary, but it's much more convenient to work with textual names than to deal with numeric IDs. To do this, use
xnmloadmib, discussed in Chapter 5. After we load the MIB file containing our three new objects, we should see their names in
the MIB browser and be able to poll them by name.

Once you have copied the MIB file into the appropriate directory and forced the extensible agent, extsubagt, to reread its
configuration (by using kill -HUP), try walking the new objects using OpenView's snmpwalk program:

$ snmpwal k sunserver2 -c public .1.3.6.1.4.1.2789
maur 0. sysl nfo. psZonbi eNum O : | NTEGER: O
maur 0. sysinfo.prtDiagExitC.0 : | NTEGER 2

Notice anything strange about our return values? We didn't get anything for whosOnCall. Nothing was returned for this object
because we haven't created the oncall.txt file whose contents we're trying to read. We must first create this file and insert some
data into the file. There are two ways of doing this. Obviously, you can create the file with your favorite text editor. But the
clever way is to use snmpset:

$ snnpset -c private sunserver2 \

.1.3.6.1.4.1.2789.255.0.0 octetstring "david jones"
maur 0. & her.whosOnCal | .0 : OCTET STRING (ascii): david jones

This command tells the SNMP agent to put davi d jones in the file /opt/local/oncall/today.txt. The filename is defined by the

FI LE- NAME: /opt/local /oncal | /today. txt command that we wrote in the extended MIB. The additional .0 at the end of the OID
tells the agent we want the first (and only) instance of whosOnCall. (We could have used
.iso.org.dod.internet.private.enterprises.mauro.other.whosOnCall.O rather than the numeric OID.) Furthermore, the snmpset



command specifies the datatype oct et stri ng, which matches the Cct et Stri ng syntax we defined in the MIB. This datatype lets
us insert string values into the file. Finally, we're allowed to set the value of this object with snmpset because we have read-
write access to the object, as specified in the MIB.

If you choose to use an editor to create the file, keep in mind that anything after the first line of the file is ignored. If you want
to read multiple lines, you have to use a table; tables are covered in the next section.

Now let's add another object to the MIB for our extended agent. We'll use a modification of the example OpenView gives us.
We'll create an object named fmailListMsgs (2) that summarizes the messages in the mail queue. This object will live in a new
subtree, named fmail (4), under the private mauro subtree. So the name of our object will be mauro.fmail.fmailListMsgs or, in
numeric form, .1.3.6.1.4.1.2789.4.2. First, we need to define the fmail branch under the mauro subtree. To do this, add the
following line to snmpd.extend:

f il OBJECT IDENTIFIER ::= { mauro 4 }

We picked 4 for the branch number, but we could have chosen any number that doesn't conflict with our other branches (3 and
255). After we define fmail, we can insert the definition for fmailListMsgs into snmpd.extend, placing it before the END
statement:

frail Li st Msgs OBJECT- TYPE

SYNTAX Di splayString

ACCESS r ead-only

STATUS nandat ory

DESCRI PTI ON

"List of nmessages on the mail queue.

READ- COWAND: /usr/lib/sendmail -bp
READ- COWAND- TI MEQUT: 10"

= { fmail 2}

When polled, fmailListMsgs runs the command sendmail -bp, which prints a summary of the mail queue. When all this is done,
you can use your management station or a tool such as snmpget to read the value of mauro.fmail.fmailListMsgs and see the
status of the outgoing mail queue.

10.3.1. Tables

Tables allow the agent to return multiple lines of output (or other sets of values) from the commands it executes. At its most
elaborate, a table allows the agent to return something like a spreadsheet. We can retrieve this spreadsheet using snmpwalka
process that's significantly easier than issuing separate get operations to retrieve the data one value at a time. One table we've
already seen is .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable, which is defined in MIB-Il and contains information about all
of a device's interfaces.

Every table contains an integer index, which is a unique key that distinguishes the rows in the table. The index starts with 1,
for the first row, and increases by one for each following row. The index is used as an instance identifier for the columns in the
table; given any column, the index lets you select the data (i.e., the row) you want. Let's look at a small table, represented by
the text file animal.db:

1 Tweety Bird Chirp 2
2 Madi son Dog Bar k 4
3 "Big Ben" Bear Grr 5

Our goal is to make this table readable via SNMP, using OpenView's extensible agent. This file is already in the format required
by the agent. Each column is delimited by whitespace; a newline marks the end of each row. Data that includes an internal
space is surrounded by quotes. OpenView doesn't allow column headings in the table, but we will want to think about the names
of the objects in each row. Logically, the column headings are nothing more than the names of the objects we will retrieve from
the table. In other words, each row of our table consists of five objects:



animallndex

An index that specifies the row in the table. The first row is 1, as you'd expect for SNMP tables. The SYNTAX for this object
is therefore | NTEGER.

animalName

The animal's name. This is a text string, so the SYNTAX of this object will be Di spl ayString.

animalSpecies

The animal's species (another text string, represented as a Di spl ayStri ng).

animalNoise

The noise the animal makes (another Di spl ayStri ng).

animalDanger

An indication of how dangerous the animal is. This is another | NTEGER, whose value can be from 1 to 6. This is called an
"enumerated integer"; we're allowed to assign textual mnemonics to the integer values.

At this point, we have just about everything we need to know to write the MIB that allows us to read the table. For example, we
know that we want an object named animalNoise.2 to access the animalNoise object in the second row of the table; this object
has the value Bark. It's easy to see how this notation can be used to locate any object in the table. Now let's write the MIB
definition for the table:

Tabl eExt Exanpl e DEFINITIONS ::= BEG N
i nternet OBJECT | DENTIFIER ::= { iso(1) org(3) dod(6) 1 }
enterprises OBJECT IDENTIFIER ::= { internet(1) private(4) 1}
maur o OBJECT IDENTIFIER ::= { enterprises(1l) 2789 }
ot her OBJECT | DENTIFIER ::= { mauro 255 }
Ani mal Entry ::=

SEQUENCE {

ani mal | ndex | NTECER,

ani mal Nanme Di spl ayStri ng,

ani nal Speci es Di splayString,

ani mal Noi se Di spl ayString,

ani mal Danger | NTEGER

}
ani mal Tabl e OBJECT- TYPE

SYNTAX SEQUENCE OF Ani nal Entry

ACCESS not - accessi bl e

STATUS mandat ory

DESCRI PTI ON

"This is a table of animals that shows:
Nane
Speci es
Noi se

Danger Level
FI LE- NAMVE: /opt/ 1 ocal / ani mal . db"
= { other 247 }

ani mal Entry OBJECT- TYPE
SYNTAX Ani nal Entry
ACCESS not - accessi bl e
STATUS mandat ory
DESCRI PTI ON

"List of aninmal Nunt

I NDEX { ani mal | ndex }
o= { aninal Table 1 }



ani mal | ndex OBJECT- TYPE
SYNTAX | NTEGER
ACCESS r ead-only
STATUS mandat ory
DESCRI PTI ON
"The uni que index nunber we will use for each row
;= { animal Entry 1 }

ani mal Name OBJECT- TYPE
SYNTAX Di splayString
ACCESS read-only
STATUS mandat ory
DESCRI PTI ON
"My pet nane for each aninal"
::={ animal Entry 2 }

ani mal Speci es OBJECT- TYPE
SYNTAX Di splayString
ACCESS r ead-only
STATUS mandat ory
DESCRI PTI ON
"The animal's species"”
o= { aninalEntry 3}

ani mal Noi se OBJECT- TYPE
SYNTAX Di spl ayString
ACCESS r ead-only
STATUS mandat ory
DESCRI PTI ON
"The noise or sound the animal makes"
;= { animal Entry 4 }

ani mal Danger OBJECT- TYPE

SYNTAX | NTEGER {
no- Danger (1),
can- Harn{ 2),
sone- Damage( 3),
wi |l -Wund(4),
sever e- Pai n(5),
will-Kill(6)

}
ACCESS read-write
STATUS mandat ory
DESCRI PTI ON
"The | evel of danger that we may face with the particular aninmal"
::={ animal Entry 5 }

END

The table starts with a definition of the animalTable object, which gives us our DESCRI PTI ON and tells the agent where the
animal.db file is located. The SYNTAX is SEQUENCE OF Ani mal Entry. AnimalEntry (watch the case) gives us a quick view of all our
columns. You can leave AnimalEntry out, but we recommend that you include it since it documents the structure of the table.

The table is actually built from animalEntry elementsbecause object nhames are case sensitive, this object is different from
AnimalEntry. animalEntry tells us what object we should use for our index or key; the object used as the key is in brackets after
the | NDEX keyword.

The definitions of the remaining objects are similar to the definitions we've already seen. The parent-subtree for all of these
objects is animalEntry, which effectively builds a table row from each of these objects. The only object that's particularly
interesting is animalDanger, which uses an extension of the | NTEGER datatype. As we noted before, this object is an enumerated
integer, which allows us to associate textual labels with integer values. The values you can use in an enumerated type should
be a series of consecutive integers, starting with 1.1 For example, the animalDanger object defines six values, ranging from 1
to 6, with strings like no- danger associated with the values.

[1 Some SNMPv1 SMI-compliant MIB compilers will not allow an enumerated type of 0 (zero).

You can save this table definition in a file and use the xnmloadmib command to load it into OpenView. Once you've done that
and created the animal.db file with a text editor, you can walk the table:



$ snnpwal k sunserverl .1.3.6.1.4.1. nauro.other.aninal Tabl e
ani mal Entry. ani mal I ndex. 1 : | NTEGER 1

ani mal Entry. ani mal | ndex. 2 : | NTEGER 2

ani mal Entry. ani mal | ndex. 3 : | NTEGER 3

ani mal Entry. ani mal Nane. 1 : DI SPLAY STRING (ascii): Tweety
ani mal Entry. ani mal Narme. 2 : DI SPLAY STRI NG (ascii): Madi son
ani mal Entry. ani nal Nane. 3 : DI SPLAY STRING (ascii): Big Ben
ani mal Entry. ani mal Species. 1 : DI SPLAY STRING (ascii): Bird
ani nal Entry. ani mal Species.2 : DI SPLAY STRING (ascii): Dog
ani mal Entry. ani mal Speci es.3 : DI SPLAY STRING (ascii): Bear
ani mal Entry. ani mal Noi se. 1 : DI SPLAY STRING (ascii): Chirp
ani mal Entry. ani mal Noi se. 2 : DI SPLAY STRING (ascii): Bark
ani mal Entry. ani mal Noi se. 3 : DI SPLAY STRING (ascii): Grr
ani mal Entry. ani mal Danger.1 : | NTEGER can-Harm

ani mal Entry. ani mal Danger. 2 : |INTEGER w || -Wund

ani mal Entry. ani nal Danger. 3 : | NTEGER severe-Pain

snmpwalk goes through the table a column at a time, reporting all the data in a column before proceeding to the next. This is
confusingit would be easier if snmpwalk read the table a row at a time. As it is, you have to hop from line to line when you are
trying to read a row; for example, to find out everything about Tweety, you need to look at every third line (all the .1 items) in
the output.

Two more things are worth noticing in the snmpwalk output. The first set of values that snmpwalk reports are the index values
(animallndex). It then appends each index value to each OID to perform the rest of the walk. Second, the animalDanger output
reports strings, such as can- Har m, rather than integers. The conversion from integers to strings takes place because we defined
the animalDanger object as an enumerated integer, which associates a set of possible values with strings.

Of course, just reading a table doesn't do a whole lot of good. Let's say that we need to update this file periodically to reflect
changes in the animals' behavior. The animalDanger object has an ACCESS of read-wri t e, which allows us to set its value and
update the database file using our SNMP tools. Imagine that the dog in row 2 turns very mean. We need to turn its danger level
to 5 (severe- Pai n). We could edit the file by hand, but it's easier to issue an snmpset:

$ snnpset -c private sunserver2 \

maur 0. ot her. ani mal Tabl e. ani nal Ent ry. ani nal Danger. 2 i nteger "5"
maur o. ot her . ani nal Tabl e. ani mal Entry. ani mal Danger. 2 : | NTEGER severe-Pain

Now let's go back and verify that the variable has been updated:[*1

1 We could already deduce that the set was successful when snmpset didn't give us an error. This example does, however, show how you can snmpget a single instance
within a table.

$ snnpget sunserver2 \
maur 0. ot her . ani nmal Tabl e. ani nal Ent ry. ani nal Danger . 2
maur o. ot her . ani nal Tabl e. ani nal Entry. ani mal Danger. 2 : | NTEGER severe-Pain

Once the snmpset is complete, check the file to see how it has changed. In addition to changing the dog's danger level, it has
enclosed all strings within quotes:

1 "Tweety" "Bird" "Chirp" 2
2 "Madi son" "Dog" "Bark" 5
3 "Big Ben" "Bear" "Grr" 5

There are even more possibilities for keeping the file up-to-date. For example, you could use a system program or application to
edit this file. A cron job could kick off every hour or so and update the file. This strategy would let you generate the file using a
SQL query to a database such as Oracle. You could then put the query's results in a file and poll the file with SNMP to read the
results. One problem with this strategy is that you must ensure that your application and SNMP polling periods are in sync.



Make sure you poll the file after Oracle has updated it, or you will be viewing old data.

An effective way to ensure that the file is up-to-date when you read it is to use FI LE- COWAND within the table's definition. This
tells the agent to run a program that updates the table before returning any values. Let's assume that we've written a script

named get_animal_status.pl that determines the status of the animals and updates the database accordingly. Here's how we'd
integrate that script into our table definition:

ani mal Tabl e OBJECT- TYPE
SYNTAX  SEQUENCE OF Ani nal Entry
ACCESS not - accessi bl e
STATUS mandat ory
DESCRI PTI ON
"This is a table of animals that shows:
Nanme
Speci es
Noi se
Danger Level
FI LE- COWAND: /opt/ | ocal / get _ani mal _st at us. pl
FI LE- NAME: /opt /| ocal / ani nal . db"
::={ other 247 }

The command must finish within 10 seconds or the agent will kill the process and return the old values from the table. By
default, the agent runs the program specified by FI LE- COWAND only if it has not gotten a request in the last 10 seconds. For
example, let's say you issue two snmpget commands, two seconds apart. For the first snmpget, the agent runs the program and
returns the data from the table with any changes. The second time, the agent won't run the program to update the datait will
return the old data, assuming that nothing has changed. This is effectively a form of caching. You can increase the amount of
time the agent keeps its cache by specifying a value, in seconds, after FI LE- COWAND- FREQUENCY. For example, if you want to
update the file only every 20 minutes (at most), include the following commands in your table definition:

FI LE- COWAND: /opt/ | ocal / get _ani mal _st at us. pl
FI LE- COMVAND- FREQUENCY: 1200
FI LE- NAME: /opt/ | ocal / ani mal . db"

This chapter has given you a brief introduction to three of the more popular extensible SNMP agents on the market. While a
thorough treatment of every configurable option for each agent is beyond the scope of this chapter, it should help you to
understand how to use extensible agents. With an extensible agent, the possibilities are almost endless.

e prc |



e prcy

Chapter 11. Adapting SNMP to Fit Your Environment

SNMP can make your life as a system administrator a lot easier by performing many of the tasks that you'd either have to do by
hand or automate by writing some clever script. It's relatively easy to take care of most everyday system monitoring: SNMP can
poll for disk-space utilization, notify you when mirrors are syncing, or record who is logging in or out of the system. This
chapter introduces some interesting scripts for automating common system administration tasks. The SNMP scripts in this
chapter represent just a few of the things SNMP allows you to do; use them as a launching pad for your own ideas.

@ prcy |



e prcv |

11.1. General Trap-Generation Program

Chapter 9 contained some scripts for collecting SNMP information using Perl, OpenView's snmptrap program, and some other
tools. Here's how we used snmptrap to generate a trap giving us information about some problems with the database:

$ /opt/ OV/ bin/snnptrap -c¢ public nns .1.3.6.1.4.1.2789.2500 "" 6 3003 "" \

.1.3.6.1.4.1.2500.3003.1 octetstringascii "Oracle" \
.1.3.6.1.4.1.2500. 3003. 2 octetstringascii "Backup Not Running" \
.1.3.6.1.4.1.2500. 3003. 3 octetstringascii "Call the DBA Now for Hel p"

The way you send a trap in Perl is a little more involved, but it's still easy to do:

#!'/usr/ | ocal/bin/perl
# Fil enane: /opt/local/perl_scripts/snnptrap. pl

use SNWP_util "0.54"; # This will load the BER and SNWP_Sessi on

snnptrap(" public\ @ns: 162", ".1.3.6.1.4.1.2789", "sunserverl",
6, 1247, ".1.3.6.1.4.1.2789.1247.1", "int", "2448816");

In this chapter, we won't look so much at how to write commands like these, but at how to use them in clever ways. We might
want to include commands like these in startup scripts, or invoke them via hooks into other programs. We'll start by writing
some code that records successful logins.

The scripts in this chapter, and all of the code examples in this book, can be downloaded from
http://www.oreilly.com/catalog/esnmp2.

e prc |


http://www.oreilly.com/catalog/esnmp2

e prcv |

11.2. Who's Logging into My Machine? (I-Am-In)

When Unix users log in, the system automatically executes a profile; for users of the Bourne, Korn, or bash shells, the
systemwide profile is named /etc/profile. There's a similar file for users of csh and tcsh (/etc/login). We can use SNMP to record
logins by adding a trap to these profiles. By itself this isn't all that interesting, because Unix already keeps a log of user logins.
But let's say that you're monitoring a few dozen machines and don't want to check each machine's log. Adding a trap to the
systemwide profile lets you monitor logins to all your systems from one place. It also makes your logging more secure. It's not
too difficult for an intelligent user to delete the wtmp file that stores Unix login records. Using SNMP to do the logging stores
the information on another host, over which you should have better control L1

[1 Yes, a clever user could intercept and modify SNMP packets or rewrite the shell profile, or do any number of things to defeat logging. We're not really interested in
making it impossible to defeat logging; we just want to make it more difficult.

To generate the trap, invoke the external program /opt/local/mib_ programs/os/iamin in /etc/profile (you can call the same

program within /etc/login). Here is the code for iamin:

#!/usr/ 1 ocal / bin/perl

#

# Filenane: /opt/local/m b_prograns/os/ianmn

chonmp ($WHO = '/bin/who ami \| awk \{\'print \$1\'\}");

exit 123 unless ($WHO ne '');

chonp ($WHOAM = '/usr/ucb/ whoam ');

chonmp ($TTY = '/bin/tty");

chonp ($FROM = '/bin/last \-1 $WHO \| /bin/awk \{\'print \$3\"\}");
if ($FROM =~ /Sun| Mon| Tue| Wd| Thu| Fri|Sat/) { $FROM = "N A"; }

# DEBUG BELOW
# print "WHO : $WHO \n"; print "WHOAM :$WHOAM :\n"; print "FROM : $FROM \ n";

if ("SWHOAM " ne "SWHO') { $WHO = "SVHO -\ >$WHOAM "; }

# Sending a trap using Net- SNW

#

system "/usr/local /bin/snmptrap nms public .1.3.6.1.4.1.2789.2500 '' 6 1502 "'
.1.3.6.1.4.1.2789. 2500. 1502.1 s \"$WHO "

.1.3.6.1.4.1.2789. 2500. 1502. 2 s \"$FROM "

.1.3.6.1.4.1.2789. 2500. 1502. 3 s \"$TTVM\"";

# Sending a trap using Perl

#
#use SNWP_util "0.54"; # This will load the BER and SNWP_Session for us
#snnptrap( " public\ @ns: 162", ".1.3.6.1.4.1.2789.2500", nylocal hostnane, 6, 1502,

#'.1.3.6.1.4.1.2789. 2500. 1502. 1", "string", "$WHO',

#".1.3.6.1.4.1.2789. 2500. 1502. 2", "string", "$FROV',

#'.1.3.6.1.4.1.2789. 2500. 1502. 3", "string", "$TTY");

# Sending a trap using OpenView s snnptrap

#

#system "/ opt/ OV/ bin/snnptrap -c public nnms .1.3.6.1.4.1.2789.2500 \"\" 6 1502
A

#.1.3.6.1.4.1.2789. 2500. 1502. 1 octetstringascii \"$WHO"

#.1.3.6.1.4.1.2789. 2500. 1502. 2 octetstringascii \"$FROM"

#.1.3.6.1.4.1.2789. 2500. 1502. 3 octetstringascii \"$TT™V\""

#

#

print "\ n####HH#HHAHAE N

print "# NOTICE \# - You have been | ogged: :$WHO :$FROM :$TTY: \n"; #
print "##H#HHAEEH## D\ D"



This script is a bit meatier than expected because we need to weed out a number of bogus entries. For instance, many programs
run within a shell and hence invoke the same shell profiles. Therefore, we have to figure out whether the profile is being
invoked by a human user; if not, we quit.L1 The next step is to figure out more about the user's identity; i.e., where she is
logging in from and what her real identity iswe don't want to be confused by someone who uses su to switch to another identity.
The third part of the program sends the trap with all the newly found information (who the user is, the host from which she is
logging in, and what TTY she is on). We've included trap-generation code using the Net-SNMP utilities, the native Perl module,
and OpenView's utilities. Take your pick and use the version with which you're most comfortable. The last portion of this
program tells the user that she has been logged.

[1 This will also fail if the user is su'ing to another user. In a well-designed environment, users really shouldn't have to su all that oftenusing sudo or designing appropriate
groups should greatly reduce the need to su.

This script isn't without its problems. The user can always break out of the script before it is done, bypassing logging. You can
counter this attempt by using trap(1), which responds to different signals. This forces the user to complete this program, not
letting her stop midstream. This strategy creates its own problems, since the root user doesn't have any way to bypass the
check. In a sense, this is good: we want to be particularly careful about root logins. But what happens if you're trying to
investigate a network failure or DNS problem? In this case, the script will hang while DNS tries to look up the host from which
you're logging in. This can be very frustrating. Before implementing a script like this, look at your environment and decide
which profiles you should lock.

Any of the packages for receiving traps can be used to listen for the traps generated by this program.

e prc |



e prcv |

11.3. Throw Core

Programs frequently leave core dumps behind. A core file contains all the process information pertinent to debugging. It usually
gets written when a program dies abnormally. While there are ways to limit the size of a dump or prevent core dumps entirely,
there are still times when they're needed temporarily. Therefore, most Unix systems have some sort of cron script that
automatically searches for core files and deletes them. Let's add some intelligence to these scripts to let us track what files are
found, their sizes, and the names of the processes that created them.

The following Perl program is divided into four parts: it searches for a file with a given name (defaults to the name core), gets
the file's statistics, deletes the file,[*1 and then sends a trap. Most of the processing is performed natively by Perl, but we use
the command Is -I $FILENAME to include the pertinent core file information within the SNMP trap. This command allows our
operators to see information about the file in a format that's easy to recognize. We also use the file command, which
determines a file's type and its creator. Unless you know who created the file, you won't have the chance to fix the real

problem.

[1 Before you start deleting core files, you should figure out who or what is dropping them and see if the owner wants these files. In some cases, this core file may be their
only means of debugging.

#!/usr/1ocal / bin/perl

# Finds and deletes core files. It sends traps upon conpletion and

# errors. Argunents are:

# -path directory . search directory (and subdirectories); default /

# -lookfor filename : filename to search for; default core

# -debug val ue . debug | evel

while ($ARGV[0] =~ /"-1)

{
if ($ARGV[ 0] eq "-path") { shift; $PATH = $ARGV[ 0] ; }
elsif ($ARGV[0] eq "-lookfor") { shift; $LOOKFOR = $ARGV[O]; }
elsif ($ARGV[0] eq "-debug") { shift; $DEBUG = $ARGV[O]; }
shift;

}

HRBHHHHHH AR R HH R AR R R R R R
BT T Begi n Mai N #HEHBR BT T T ###HIHHH
HRAHHHHHET T R R T R R i R i

require "find.pl"; # This gives us the find function.

$LOOKFOR = "core" unless ($LOOKFOR); # If we don't have sonething
# in $LOOKFOR, default to core

$PATH ="/ unl ess ($PATH); # Let's use / if we don't get
# one on the conmand |ine

(-d $PATH) || die "$PATH is NOT a valid dir!"; # W can search
# only valid
# directories

&f i nd(" $PATH") ;

L g
L R A R Rt

HARHH TR Begi n SubRout i nes  ####HHHHHHHHHHHHHHHHHE
BHAHBHHABHHBRHHBRHHRHHARHHARHH AR HHBRHHBHHARBHHARH AR HH B HHBHHBRHA

sub want ed
if (/"$LOOKFORS$/)

if (!(-d $nanme)) # Skip the directories naned core

{



&get _stats;

&can_file;
&send_trap;
}
}
}
sub can_file
{
print "Deleting :$_: :$nanme:\n" unless (!($DEBUG);
$RES = unlink "$nane";
if ($RES I= 1) { $ERROR = 1; }
}
sub get_stats
{
chop ($STATS = 'Is -1 $nane');
chop ($FILE_STATS = '/bin/file $nane');
$STATS =~ s/\s+/ /g;
$FI LE_STATS =~ s/\s+/ /g;
}
sub send_trap
{
if ($ERROR == 0) { $SPEC = 1535; }
el se { $SPEC = 1536; }

print "STATS: $STATS\n" unless (! ($DEBUG));
print "FILE_STATS: $FILE _STATS\n" unless (! ($DEBUQG) );

# Sending a trap using Net-SNW

#

#system "/usr/local /bin/snnptrap nns public .1.3.6.1.4.1.2789.2500 '" 6 $SPEC "'
#.1.3.6.1.4.1.2789. 2500.1535.1 s \"$nane\"

#.1.3.6.1.4.1.2789. 2500. 1535.2 s \"$STATS\ "

#.1.3.6.1.4.1.2789. 2500. 1535.3 s \"$FI LE_STATS\"";

# Sending a trap using Perl

#
use SNVP_util "0.54"; # This will load the BER and SNWP_Session for us
snnpt rap( " public\ @ns: 162", ".1.3.6.1.4.1.2789.2500", nylocal hostnane, 6, $SPEC,
".1.3.6.1.4.1.2789. 2500. 1535. 1", "string", "$nane",
".1.3.6.1.4.1.2789. 2500. 1535. 2", "string", "$STATS',
'.1.3.6.1.4.1.2789. 2500. 1535. 3", "string", "$FILE_STATS");
# Sending a trap using OpenView s snnptrap
#

#system "/ opt/ OV/ bin/snnptrap -c public nns
#.1.3.6.1.4.1.2789.2500 \"\" 6 $SPEC \"\"
#.1.3.6.1.4.1.2789. 2500. 1535. 1 octetstringascii \"$nane\"
#.1.3.6.1.4.1.2789. 2500. 1535. 2 octetstringascii \"$STATS\"
#.1.3.6.1.4.1.2789. 2500. 1535. 3 octetstringascii \"$FI LE _STATS\"";
}

The logic is simple, though it's somewhat hard to see since most of it happens implicitly. The key is the call to fi nd( ), which
sets up lots of things. It descends into every directory underneath the directory specified by $PATH and automatically sets $_ (so
the i f statement at the beginning of the want ed( ) subroutine works). Furthermore, it defines the variable nane to be the full

pathname to the current file; this allows us to test whether the current file is really a directory, which we wouldn't want to
delete.

Therefore, we loop through all the files, looking for files with the name specified on the command line (or named core, if no -
lookfor option is specified). When we find one, we store its statistics, delete the file, and send a trap to the NMS reporting the
file's name and other information. We use the variable SPEC to store the specific trap ID. We use two specific IDs: 1535 if the
file was deleted successfully and 1536 if we tried to delete the file but couldn't. Again, we wrote the trap code to use either
native Perl, Net-SNMP, or OpenView. Uncomment the version of your choice. We pack the trap with three variable bindings,
which contain the name of the file, the results of Is -l on the file, and the results of running /bin/file. Together, these give us a
fair amount of information about the file we deleted. Note that we had to define object IDs for all three of these variables;



furthermore, although we placed these object IDs under 1535, nothing prevents us from using the same objects when we send
specific trap 1536.

Now we have a program to delete core files and send traps telling us about what was deleted; the next step is to tell our trap
receiver what to do with these incoming traps. Let's assume that we're using OpenView. To inform it about these traps, we have
to add two entries to trapd.conf, mapping these traps to events. Here they are:

EVENT foundNDel Core .1.3.6.1.4.1.2789.2500.0.1535 "Status Al arns" Warni ng
FORMAT Core File Found :$1: File Has Been Deleted - LS :$2: FILE :$3:
SDESC

This event is called when a server using cronjob |ooks for core

files and del etes them

$1 - octetstringascii - Nane of file

$2 - octetstringascii - Is -1 listing on the file

$3 - octetstringascii - file $name

EDESC

#

#

#

EVENT foundNNot Del Core .1.3.6.1.4.1.2789.2500.0.1536 "Status Al arns" M nor
FORVAT Core File Found : $1:

File Has Not Been Del eted For Some Reason - LS :$2: FILE :$3:
SDESC

This event is called when a server using cronjob |ooks for core
files and then CANNOT del ete them for some reason.

$1 - octetstringascii - Nane of file

$2 - octetstringascii - Is -1 listing on the file
$3 - octetstringascii - file $nane

EDESC

#

#

#

For each trap, we have an EVENT statement specifying an event name, the trap's specific ID, the category into which the event
will be sorted, and the severity. The FORMAT statement defines a message to be used when we receive the trap; it can be spread
over several lines and can use the parameters $1, $2, etc. to refer to the variable bindings that are included in the trap.

Although it would be a good idea, we don't need to add our variable bindings to our private MIB file; trapd.conf contains enough
information for OpenView to interpret the contents of the trap.

Here are some sample traps[*l generated by the throwcore script:

[TWe've removed most of the host and date/time information.

Core File Found :/usr/sap/HQD/ DVEBMSGS00/ wor k/ core: File Has Been \
Deleted - LS :-rwrw--- 1 hgdadm sapsys 355042304 Apr 27 17:04 \
/ usr/ sap/ HQD/ DVEBMGS00/ wor k/ core: '\

FI LE :/usr/sap/ HQD/ DVEBMGS00/ wor k/ core: ELF 32-bit MSB core file \

SPARC Version 1, from'disp+work':

Core File Found :/usr/sap/HQ / DVEBMGS10/ wor k/ core: File Has Been \
Deleted - LS :-rwrr-- 1 hqi adm sapsys 421499988 Apr 28 14:29 \

/ usr/ sap/ HQ / DVEBMGS10/ wor k/ core: \

FILE :/usr/sap/ HQ / DVEBMES10/ wor k/ core: ELF 32-bit MSB core file \
SPARC Version 1, from'disp+work':

Here is root's crontab, which runs the throwcore script at specific intervals. Notice that we use the -path switch, which allows us
to check the development area every hour:

# Check for core files every night and every hour on special dirs



27 * * * * [opt/local/mb_prograns/scripts/throwore.pl -path /usr/sap
23 2 * * * Jopt/local/mb_prograns/scripts/throwcore. pl

e rrcv |



e prcv |

11.4. Veritas Disk Check

The Veritas Volume Manager is a package that allows you to manipulate disks and their partitions. It gives you the ability to add
and remove mirrors, work with RAID arrays, and resize partitions, to name a few things. Although Veritas is a specialized and
expensive package that is usually found at large data centers, don't assume that you can skip this section. The point isn't to
show you how to monitor Veritas, but to show you how you can provide meaningful traps using a typical status program. You
should be able to extract the ideas from the script we present here and use them within your own context.

Veritas Volume Manager (vxvm) comes with a utility called vxprint. This program displays records from the Volume Manager
configuration and shows the status of each of your local disks. If there is an error, such as a bad disk or broken mirror, this
command will report it. A healthy vxprint on the rootvol (/) looks like this:

$ vxprint -h rootvol
Di sk group: rootdg

TY NAMVE ASSCC KSTATE LENGTH PLOFFS  STATE TUTILO PUTILO
v rootvol r oot ENABLED 922320 - ACTI VE - -
pl rootvol -01 root vol ENABLED 922320 ACTIVE - -

- - Bl ockO

sd rootdi sk-B0O rootvol-01 ENABLED 1

sd rootdisk-02 rootvol-01 ENABLED 922319
pl rootvol -02 root vol ENABLED 922320 - ACTIVE - -
sd di sk01-01 root vol - 02 ENABLED 922320

o

o
'

The KSTATE (kernel state) and STATE columns give us a behind-the-scenes look at our disks, mirrors, etc. Without explaining the
output in detail, a KSTATE of ENABLED is a good sign; a STATE of ACTI VE or - indicates that there are no problems. We can take this
output and pipe it into a script that sends SNMP traps when errors are encountered. We can send different traps of an

appropriate severity, based on the type of error that vxprint reported. Here's a script that runs vxprint and analyzes the results:

#!/usr/ 1l ocal /bin/perl -wc

$VXPRI NT_LOC "/ usr/sbin/vxprint";

$HOSTNAME "/bin/unane -n'; chop $HOSTNAME;

while ($ARGV 0] =~ /"-1)

{
if ($ARGV[ 0] eq "-debug") { shift; $DEBUG = $ARGV[O0]; }
elsif ($ARGV[0] eq "-state_active") { $SHOW STATE_ACTIVE = 1; }
shift;

}

b g g g g g g g g g g g g
HHHHHHHH AR AR AR AR AR AR AR R H AR H

HHHHHH A Begi n MR N ##HHEHH I
SR B S R B T R T

&get _vxprint; # Get it, process it, and send traps if errors found!

L g g g g g g g g g
L e L L L L S R s

HRHHHHHHHHH RS Begi N SUDRoOUt | nes  #######HHHHHIHH#IHHHHHHHHH
BHHABHHHBHHBRHHBRBHHARHHBRHHBHHHRHHABHH AR HHBHH BB HARHHARHH B HHBHHBRRHA

sub get_vxprint

{

open( VXPRI NT, "$VXPRINT_LOC |") || die "Can't Qpen $VXPRINT_LOC';
whi | e( $VXLI NE=<VXPRI NT>)
{

print $VXLINE unl ess ($DEBUG < 2);

if ($VXLINE ne "\n")

{



& s_a_di sk_group_nang;
&split_vxprint_output;

if (($TY ne "TY") &&
($TY ne "Disk") &&
($TY ne "dg") &&
($TY ne "dnt))

if (($SHOW STATE_ACTI VE) && ($STATE eq "ACTIVE"))
{

}

if (($STATE ne "ACTIVE') &&
($STATE ne "DI SABLED') &&
($STATE ne "SYNC') &&
($STATE ne "CLEAN') &&
($STATE ne "SPARE") &&
($STATE ne "-") &&
($STATE ne "))

print "ACTIVE: $VXLI NE";

&send_error_nsgs;

}

el sif (($KSTATE ne "ENABLED') &&
($KSTATE ne "DI SABLED') &&
($KSTATE ne "-") &&

( $KSTATE ne ""))

&send_error_nsgs;

}
} #end if (($TY
} # end if ($VXLINE
} # end whil e( $VXLI NE
} # end sub get_vxprint

sub is_a_disk_group_nane
if ($VXLINE =~ /~Di sk\sgroup\:\s(\w+)\n/)

$DI SK_GROUP = $1;
print "Found Disk Goup :$1:\n" unless (!($DEBUG);
return 1,

}

sub split_vxprint_out put

{

($TY, SNAME, $ASSCOC, $KSTATE,
$LENGTH, $PLOFFS, $STATE, $TUTI LO,
$PUTI LO) = split(/\s+/,$VXLI NE):

if ($DEBUG) {
print "SPLIT: $TY $NAVE $ASSOC $KSTATE ";
print "$LENGTH $PLOFFS $STATE $TUTILO $PUTILO:\n";
}

sub send_snnp_trap
$SNVP_TRAP_LOC

$SNVP_COVM_NANE
$SNVP_TRAP_HOST

"/ opt/ OVI bi n/ snnptrap";
"public";
"nms"

$SNVP_ENTERPRI SE_I D ".1.3.6.1.4.1.2789. 2500";

$SNVP_GEN_TRAP = "g";
$SNVP_SPECI FI C_TRAP = "1000";
chop( $SNVP_TI ME_STAMP = "1" . 'date +UHUB);

$SNVP_EVENT _| DENT_ONE
$SNVP_EVENT_VTYPE_ONE

".1.3.6.1.4.1.2789. 2500. 1000. 1";
"octetstringascii";



$SNVP_EVENT_VAR_ONE = "$HOSTNANE" ;

$SNVP_EVENT_I DENT_TWO = ".1.3.6.1.4.1.2789. 2500. 1000. 2";
$SNVP_EVENT_VTYPE_TWO = "octetstringascii";
$SNVP_EVENT_VAR_TWO = "$NAMVE";

$SNVP_EVENT_| DENT_THREE = ".1.3.6.1.4.1.2789. 2500. 1000. 3";
$SNVP_EVENT_VTYPE_THREE = "octetstringascii";
$SNVP_EVENT_VAR_THREE = "$STATE";

$SNVP_EVENT_| DENT_FOUR = ".1.3.6.1.4.1.2789. 2500. 1000. 4";
$SNVP_EVENT_VTYPE_FOUR = "octetstringascii";
$SNVP_EVENT_VAR_FOUR = "$DI SK_GROUP";

$SNVP_TRAP = "$SNVP_TRAP_LOC \-c $SNVP_COVM NAME $SNVP_TRAP_HOST
$SNVP_ENTERPRI SE_I D \ "\ " $SNMP_GEN_TRAP $SNVP_SPECI FI C_ TRAP $SNVP_TI ME_STAWP
$SNVP_EVENT | DENT_ONE  $SNVP_EVENT VTYPE ONE  \ " $SNVP_EVENT VAR ONE\ "
$SNVP_EVENT | DENT_TWO ~ $SNVP_EVENT VTYPE TWO  \ " $SNVP_EVENT VAR TWO. "
$SNVP_EVENT_| DENT_THREE $SNVP_EVENT_VTYPE_THREE \ " $SNVP_EVENT_VAR THREE\ "
$SNVP_EVENT | DENT_FOUR $SNVP_EVENT_VTYPE_FOUR \"$SNVP_EVENT VAR FOUR\ "":

# Sending a trap using Net- SNW

#

#system "/ usr /1 ocal / bi n/ snnptrap $SNVP_TRAP_HOST $SNVP_COVM NAVE
#$SNVP_ENTERPRI SE_ID '' $SNMP_GEN TRAP $SNVP_SPECI FI C_TRAP "'
#$SNVP_EVENT_| DENT_ONE s \ " $SNMP_EVENT_VAR ONE\ "

#$SNVP_EVENT | DENT_TWD s \ " $SNVP_EVENT_VAR TWO. "

#$SNVP_EVENT _| DENT_THREE s \ " $SNMVP_EVENT VAR THREE\ "
#$SNVP_EVENT_| DENT_FOUR s \ " $SNVP_EVENT_VAR FOUR\ "";

# Sending a trap using Perl

#

#use SNWP_util "0.54"; # This will |oad the BER and SNWMP_Session for us
#snnpt r ap( " $SNVP_COVM_NAME\ @SNVP_TRAP_HOST: 162", "$SNVP_ENTERPRI SE_| D",
#nyl ocal host nane, $SNVP_GEN_TRAP, $SNVP_SPECI FI C_TRAP,

#" $SNVP_EVENT_| DENT_ONE', "string", "$SNVP_EVENT_VAR ONE',

#" $SNVP_EVENT_| DENT_TWO', "string", "$SNVP_EVENT_VAR TWO',

#" $SNVP_EVENT_| DENT_THREE", "string", "$SNVP_EVENT_VAR THREE",

#" $SNVP_EVENT_| DENT_FOUR', "string", "$SNVP_EVENT_VAR FOUR');

# Sending a trap using OpenView s snnptrap (using VARs from above)
#
i f ($SEND_SNVP_TRAP) {
print "Problem Running SnnmpTrap with Result ";
print ":$SEND SNVP_TRAP: : $SNVP_TRAP:\n";

}
sub send_error_nsgs
{
$TY =~ s/”v/ Vol une/;
$TY =~ s/ pl/Plex/;
$TY =~ s/~sd/ SubDi sk/;
print "VXfs Problem Host:[$HOSTNAVE] State:[$STATE] Di skG oup: [ $DI SK_GROUP]
Type: [$TY] FileSystem [ $NAME] Assoc: [ $ASSOC] Kst at e: [ SKSTATE] \ n"
unl ess (! ($DEBUG));
&send_snnp_trap;
}

Knowing what the output of vxprint should look like, we can formulate Perl statements that figure out when to generate a trap.
That task makes up most of the get _vxprint subroutine. We also know what types of error messages will be produced. Our
script tries to ignore all the information from the healthy disks and sort the error messages. For example, if the STATE field
contains NEEDSYNC, the disk mirrors are probably not synchronized and the volume needs some sort of attention. The script
doesn't handle this particular case explicitly, but it is caught with the default entry.

The actual mechanism for sending the trap is tied up in a large number of variables. Basically, though, we use any of the trap



utilities we've discussed; the enterprise ID is .1.3.6.1.4.1.2789.2500; the specific trap ID is 1000; and we include four variable
bindings, which report the hostname, the volume name, the volume's state, and the disk group.

As with the previous script, it's a simple matter to run this script periodically and watch the results on whatever network
management software you're using. It's also easy to see how you could develop similar scripts that generate reports from other
status programs.

e prc |



e prcv |

11.5. Disk-Space Checker

OpenView's agent has a fileSystemTable object that contains statistics about disk utilization and other filesystem parameters. At
first glance, it looks extremely useful: you can use it to find out filesystem names, blocks free, etc. But it has some quirks, and
we'll need to play a few tricks to use this table effectively. Walking fileSystemTable.fileSystemEntry.fileSystemDir
(.1.3.6.1.4.1.11.2.3.1.2.2.1.10) lists the filesystems that are currently mounted:[*1

1 We've truncated the leading .iso.org.dod.internet.private.enterprises.hp.nm.system.general to the walk results for space reasons.

[root] [ nms] /opt/OV/Iocal/bin/disk_space> snnmpwal k spruce \

.1.3.6.1.4.1.11.2.3.1.2.2.1.10

fileSystemfileSysteniTable.fileSystenEntry.fileSystenDir.14680064.1
DI SPLAY STRING (ascii): [/

fileSystemfil eSystenilable.fileSystenEntry.fileSystenDir.14680067.1
DI SPLAY STRING (ascii): [/var

fileSystemfileSystenTable.fileSystenEntry.fileSystenDir.14680068. 1
DI SPLAY STRING (ascii): [/export

fileSystemfil eSystenTable.fileSystenEntry.fileSystenDir.14680069. 1
DI SPLAY STRING (ascii): [/opt

fileSystemfileSystenrlable.fileSystenEntry.fileSystenDir.14680070.1
DI SPLAY STRING (ascii): [usr

fileSystemfileSystenTable.fileSystenEntry.fileSystenDir.41156608. 1
DI SPLAY STRING (ascii): [/proc

fileSystemfileSystenrlable.fileSystenEntry.fileSystenDir.41680896.1
DI SPLAY STRING (ascii): /dev/fd

fileSystemfileSystenTable.fileSystenEntry.fileSystenDir.42991617.1
DI SPLAY STRING (ascii): [/net

fileSystemfil eSystenTable.fileSystenEntry.fileSystenDir.42991618.1
DI SPLAY STRING (ascii): /home

fileSystemfileSystenrlable.fileSystenEntry.fileSystenDir.42991619.1
DI SPLAY STRING (ascii): /xfn

Let's think about how we'd write a program that checks for available disk space. At first glance, it looks like this will be easy.
But this table contains a number of objects that aren't filesystems in the normal sense; /proc, for example, provides access to
the processes running on the system and doesn't represent storage. This raises problems if we start polling for free blocks:
/proc isn't going to have any free blocks, and /dev/fd, which represents a floppy disk, will have free blocks only if a disk
happens to be in the drive. You'd expect /home to behave like a normal filesystem, but on this server it's automounted, which
means that its behavior is unpredictable; if it's not in use, it might not be mounted. Therefore, if we polled for free blocks using
the fileSystem.fileSystemTable.fileSystemEntry.fileSystemBavail object, the last five instances might return O under normal
conditions. So, the results we'd get from polling all the entries in the filesystem table aren't meaningful without further
interpretation. At a minimum, we need to figure out which filesystems are important to us and which aren't. This is probably
going to require being clever about the instance numbers.

When we discovered this problem, we noticed that all the filesystems we wanted to check happened to have instance numbers
with the same leading digits; i.e., fileSystemDir.14680064.1, fileSystemDir.14680067.1, fileSystemDir.14680068.1, etc. That
observation proved to be less useful than it seemedwith time, we learned that not only do other servers have different leading
instance numbers, but also, on any server the instance numbers could change. Even if the instance number changes, though,
the leading instance digits seem to stay the same for all disks or filesystems of the same type. For example, disk arrays might
have instance numbers like fileSystemDir.12312310.1, fileSystemDir.12312311.1, fileSystemDir.12312312.1, and so on. Your
internal disks might have instance numbers like fileSystemDir.12388817.1, fileSystemDir.12388818.1,
fileSystemDir.12388819.1, and so on.

So, working with the instance numbers is possible, but painfulthere is still nothing static that can be easily polled. There's no
easy way to say "Give me the statistics for all the local filesystems," or even "Give me the statistics for /usr." We were forced to
write a program that would do a fair amount of instance-number processing, making guesses based on the behavior we
observed. We had to use snmpwalk to figure out the instance numbers for the filesystems we cared about before doing anything
more interesting. By comparing the initial digits of the instance numbers, we were able to figure out which filesystems were
local, which were networked, and which were "special purpose” (like /proc). Here's the result:



#!/usr/ 1 ocal /bin/perl
# filenane: polling.pl

# options:

# -mnn : send trap if less than n 1024-byte bl ocks free

# -table f : table of servers to watch (defaults to ./default)
# -server s : specifies a single server to poll

# -inst n : nunber of |eading instance-nunber digits to conpare
# -debug n : debug |evel

$| ++;

$SNVPVWALK_LOC
$SNVPGET_LOC

"/ opt/OV/ bin/ snnpwal k -r 5";
"/ opt/ OVI bi n/ snnpget ";

$HOVE_LCC = "/opt/OV/local / bin/di sk_space";

$LOCK_FI LE_LOC = "$HOVE_LOC/ | ock_fil es";

$GREP_LOC = "/bin/grep";

$TOUCH_LOC = "/bin/touch";

$PI NG _LOC = "/ usr/sbin/ping"; # Ping Location

$PING_TI MEQUT = 7; # Seconds to wait for a ping
$MB C=".1.3.6.1.4.1.11.2.3.1.2.2.1.6"; # fileSystenBavai l
$MB_BSIZE = ".1.3.6.1.4.1.11.2.3.1.2.2.1.7"; # fileSystenBsize
$MBDIR=".1.3.6.1.4.1.11.2.3.1.2.2.1.10"; # fileSystenDir

while ($ARGV 0] =~ /7-/)

{
if ($ARGV[ 0] eq "-min") { shift; $M N = $ARGV[O]; } # In 1024 bl ocks
elsif ($ARGV[0] eq "-table") { shift; $TABLE = $ARGV[O0]; }
elsif ($ARGV[0] eq "-server") { shift; $SERVER = $ARGV[O0]; }
el sif ($ARGV[O] eq "-inst")  { shift; $I NST_LENGTH = $ARGV[0]; }
elsif ($ARGV[0] eq "-debug") { shift; $DEBUG = $ARGV[O0]; }
shift;
}

HRRRHHHHHA R HH AR AR R R R
BT Begi n Ml N ##BHTH BT #H#HHHHHH
HHE T R T R T R I s v i i

$ALLSERVERS
$I NST_LENGTH

1 unl ess ($SERVER);
5 unl ess ($!I NST_LENGTH);

$TABLE = "default" unless ($TABLE);

open( TABLE, "$HOVE_LOC/ $TABLE") || die "Can't Qpen File $TABLE";
whi | e( $LI NE=<TABLE>)
{

if (SLINE ne "\n")

{

chop S$LINE;

( $HOST, $I GNOREL, $| GNORE2, $1 GNORE3) = split(/\:/, $LI NE);

if (&ping_server_bad("$HOST")) { warn "Can't Ping Server
S $HOST: " unless (!($DEBUG)); }
el se

{
& ind_inst;

if ($DEBUG > 99)

{

print "HOST: $HOST: | GNOREL : $I GNOREL: | GNORE2 : $I GNORE2:
| GNORE3 : $I GNORE3: \ n";

print "Running : $SNVPWALK_LOC $HOST $M B_C \| $GREP_LOC
\.$A NST: \ n";

}

$I GNOREL = " C1LANT5MATOCHT4HI S*

unl ess ($I GNORELl); # If we don't have anything then let's set
$I GNORE2 = "CA2NAT6MBALT3C5H7THI S"

unl ess ($I GNORE2); # to sonething that we can never natch.



$I GNORE3 = "CAN3TMA7TCH2THI 6S" unl ess ($I GNORE3) ;

if (($SERVER eq "$HOST") || ($ALLSERVERS))

{

open( WALKER, " $SNVPWALK_LOC $HOST $M B_C \| $GREP_LOC

\.$GINST |") || die "Can't Walk $HOST $M B Qn";

whi | e( $WLI NE=<WALKER>)

{

chop $WLI NE;

($M B, $TYPE, $VALUE) = split(/\:/, $W.I NE);
$M B =~ s/\s+//g;

$SMB =~ /(\d+\.\d+)$/;

$INST = $1;

open( SNVPGET, " $SNVPGET_LOC $HOST $M B_DI R $I NST | ");
whi | e( $DLI NE=<SNMPGET>)

($NULL, SNULL, SDNAVE) = split(/\:/, $DLI NE);
}

$DNAME =~ s/\s+//g;
cl ose SNWPGET;

open( SNVPGET, " $SNVPGET_LOC $HOST $M B_BSI ZE. $I NST | ") ;
whi | e( $BLI NE=<SNVPGET>)

{
($NULL, $NULL, $BSI ZE) = split(/\:/, $BLINE);
}

cl ose SNWPGET;

$BSI ZE =~ s/\s+//g;

$LOCK_RES = & nst_found; $LOCK_RES = "\[ $LOCK_RES \]";
print "LOCK_RES :$LOCK_RES:\n" unless ($DEBUG < 99);
$VALUE = $VALUE * $BSIZE / 1024; # Put it in 1024 bl ocks
if ((SDNAME =~ /.*$I GNOREL. */) ||

($DNAME =~ /. *$I GNORE2. */) ||
($DNAVE =~ /. *$I GNORE3. */))

{
$DNAME = "$DNAME "ignored"";
}
el se
{
if (($VALUE <= $MN) && ($LOCK_RES eq "\[ 0 \]"))
{
&write_lock;
&send_snnp_trap(0);
}
el sif (($VALUE > SMN) && ($LOCK_RES eq "\[ 1\]"))
{
& enove_| ock;
&send_snnp_trap(1);
}
}

$VALUE = $VALUE / $BSIZE * 1024; # Display it as the
# original block size

wite unless (!($DEBUG);

} # end whil e( $WLI NE=<WALKER>)



} # end if (($SERVER eq "$HOST") || ($ALLSERVERS))
} # end else fromif (&ping_server_bad("$HOST"))

} # end if ($LINE ne "\n")
} # end whi | e( $LI NE=<TABLE>)

HERRHHHHH AR AR AR R R R R R
HiHHTHTHTHHHHHH . Begi n SubRout | nes  ######H#H#H#H#HHHHHHH ]

L g
L A R Rt

format STDOUT_TOP =
Server Mount Poi nt Bl ocksLeft Bl ockSi ze M B LockFile

format STDOUT =
OK<<<<KKK [@X<<KLKLKLKLKLKLKKKLKLKLS (KKK (K<K<KKKKLKLKLS [K<<K<K<KKKS - @& <<<<<<<<

$HOST, $DNAME, $VALUE, $BSI ZE, $I NST, $LOCK_RES

sub inst_found

{
if (-e "$LOCK_FILE_LOC/ $HOST\ . $I NST") { return 1; }
else { return 0; }

}

sub renove_l ock

{
if ($DEBUG > 99) { print "Renoving Lockfile $LOCK FILE_LOC/ $HOST\. $I NST\n"; }
unlink "$LOCK FI LE_LOC/ $HOST\ . $I NST";

}

sub wite_|ock

{
if ($DEBUG > 99) { print "Witing Lockfile

$TOUCH LOC $LOCK _FI LE_LOC/ $HOST\ . $I NST\ n"; }

system "$TOUCH LOC $LOCK_FI LE_LOC/ $HOST\ . $I NST";

}

S G R
## send_snnp_trap ##
B e

This subroutine allows you to send diff traps depending on the
passed parm and gives you a chance to send both good and bad
traps.

$1 - integer - This will be added to the specific event ID.

If we created two traps:
2789. 2500. 0. 1000 = Maj or
2789. 2500. 0. 1001 = CGood

If we declare:
$SNVP_SPECI FI C_TRAP = "1000";

We coul d send the 1st by using:

send_snnp_trap(0); # Here is the math (1000 + 0 = 1000)
And to send the second one:

send_snnp_trap(l); # Here is the math (1000 + 1 = 1001)

This way you could set up nultiple traps with diff errors using
the same function for all.

#####################%

#it
HRBRHHHHHA R R HH AR H R AR R R R

sub send_snnp_trap

{



$TOTAL_TRAPS_CREATED = 2; # Let's do sone checki ng/rem ndi ng
# here. This nunber should be the
# total nunber of traps that you
# created on the nns.

$SNVP_ENTERPRI SE_I D = ".1.3.6.1.4.1.2789. 2500";
$SNVP_SPECI FI C_TRAP = "1500";

$PASSED_PARM =$_[0];

$SNVP_SPECI FI C_TRAP += $PASSED_PARM
$SNVP_TRAP_LOC = "/opt/OV/bin/snnptrap”;
$SNIVP_COVM_NANVE = "public";

$SNVP_TRAP_HOST = "nns";

$SNVP_GEN_TRAP ="6",;

chop( $SNVP_TI ME_STAMP = "1" . 'date +%&E);

$SNVP_EVENT _| DENT_ONE
$SNVP_EVENT_VTYPE_ONE
$SNVP_EVENT_VAR_ONE

".1.3.6.1.4.1.2789. 2500. $SNVP_SPECI FI C_TRAP. 1";
"octetstringascii";
" $DNAMVE" ;

$SNVP_EVENT_| DENT_TVO
$SNVP_EVENT_VTYPE_TVO
$SNVP_EVENT_VAR TWO

".1.3.6.1.4.1.2789. 2500. $SNVP_SPECI FI C_TRAP. 2";
"integer";
" $VALUE";

$SNVP_EVENT_| DENT_THREE ".1.3.6.1.4.1.2789. 2500. $SNVP_SPECI FI C_TRAP. 3";

$SNVP_EVENT_VTYPE_THREE = "integer";

$SNVP_EVENT_VAR_THREE = "$BSI ZE";

$SNVP_EVENT_| DENT_FOUR = ".1.3.6.1.4.1.2789. 2500. $SNVP_SPECI FI C_TRAP. 4";
$SNVP_EVENT_VTYPE_FOUR = "octetstringascii";

$SNVP_EVENT_VAR_FOUR = "$I NST";

$SNVP_EVENT_I DENT_FIVE = ".1.3.6.1.4.1.2789. 2500. $SNVP_SPECI FI C_TRAP. 5";
$SNVP_EVENT_VTYPE_FI VE = "integer";

$SNVP_EVENT_VAR_FI VE = "$MN';

$SNVP_TRAP = "$SNVP_TRAP_LOC \-c $SNVP_COVM NAME $SNVP_TRAP_HOST
$SNVP_ENTERPRI SE_I D \ " $HOST\ " $SNMP_GEN_TRAP $SNVP_SPECI FI C_TRAP
$SNVP_TI VE_STAMP
$SNVP_EVENT | DENT_ONE  $SNVP_EVENT VTYPE_ONE  \ " $SNVP_EVENT VAR ONE\"
$SNVP_EVENT_| DENT_TWO ~ $SNWVP_EVENT VTYPE_ TWO  \ " $SNVP_EVENT VAR TWO "
$SNVP_EVENT | DENT_THREE $SNVP_EVENT VTYPE THREE \ " $SNVP_EVENT VAR THREE\ "
$SNVP_EVENT_| DENT_FOUR $SNVP_EVENT VTYPE_FOUR \"$SNVP_EVENT VAR FOUR "
$SNVP_EVENT_| DENT_FI VE  $SNVP_EVENT_VTYPE_FIVE \"$SNVP_EVENT VAR FI VE\"";

if (!($PASSED PARM < $TOTAL_TRAPS_CREATED))
{
die "ERROR SNWPTrap with a Specific Number \>
$TOTAL_TRAPS_CREATED\ nSNVP_TRAP: $SNVP_TRAP: \ n";
}

# Sending a trap using Net-SNW

#

#system "/ usr/ | ocal / bi n/ snnptrap $SNVP_TRAP_HOST $SNVP_COVM NANVE
#$SNVP_ENTERPRI SE_ID ' $SNMP_GEN _TRAP $SNVP_SPECI FI C_TRAP '
#$SNVP_EVENT | DENT_ONE s \ " $SNVP_EVENT VAR ONE\ "

#$SNVP_EVENT | DENT_TWO i\ " $SNVP_EVENT VAR TWO\ "

#$SNVP_EVENT | DENT_THREE i \"$SNMP_EVENT VAR THREE\"
#$SNVP_EVENT_| DENT_FOUR s \ " $SNMP_EVENT_VAR FOUR "";
#$SNVP_EVENT | DENT_FIVE i \"$SNVP_EVENT VAR FI VE\"";

# Sending a trap using Perl

#

#use SNWP_util "0.54"; # This will |oad the BER and SNWP_Session for us
#snnpt r ap( " $SNVP_COVM_NAME\ @SNVP_TRAP_HOST: 162", "$SNVP_ENTERPRI SE_| D",
#myl ocal host nane, $SNVP_GEN_TRAP, $SNVP_SPECI FI C_TRAP,



#" $SNVP_EVENT_| DENT_ONE", "string", "$SNVP_EVENT_VAR ONE",

#'$SNVP_EVENT | DENT_TWO', "int", "$SNVP_EVENT VAR TWO',

#' $SNVP_EVENT | DENT_THREE", "int", "$SNMP_EVENT VAR THREE',
#' $SNVP_EVENT_| DENT_FOUR', "string", "$SNVP_EVENT_VAR FOUR',
#'$SNVP_EVENT | DENT_FIVE', "int", "$SNVP_EVENT VAR FI VE");

# Sending a trap using OpenView s snnptrap (using VARs from above)
#
i f ($SEND_SNWVP_TRAP) {

print "ERROR Running SnnpTrap Result ";

print ":$SEND SNVP_TRAP: : $SNVP_TRAP: \ n"

}
sub find_inst
{
open( SNVPVALK2, " $SNVPWALK_LOC $HOST $MB DIR | ") ||
die "Can't Find Inst for $HOST\n";
whi | e( $DLI NE=<SNVPWALK2>)
{
chonmp $DLI NE;
($DI RTY_I NST, $NULL, $DI RTY_NAME) = split(/\:/, $DLI NE);
$DI RTY_NAME =~ s/\s+//g; # Lose the whitespace, folks!
print "DIRTY_I NST :$DI RTY_|I NST:\ nDI RTY_NAME : $DI RTY_NANE: \ n"
unl ess (! ($DEBUG>99));
i f ($DIRTY_NAME eq "/™)
{
$DI RTY_INST =~ /fileSystenmDir\.(\d*)\.1/;
$G NST = $1;
$LENGTH = (Il engt h($G NST) - $I NST_LENGTH);
whil e (SLENGTH-) { chop $G NST; }
cl ose SNVPWALK;
print "Found Inst DIRTY_INST :$Dl RTY_I NST: DI RTY_NANME\
:$DI RTY_NAME: G NST : $G NST: \ n"
unl ess (! ($DEBUG > 99));
return O;
}
}
cl ose SNVPWALKZ2;
die "Can't Find Inst for HOST :$HOST:";
}
sub ping_server_bad
{
| ocal $SERVER = $ [0];
$RES = system "$PI NG LOC $SERVER $PI NG TI MEQUT \> /dev/nul|";
print "Res fromPing : $RES: \- :$PI NG LOC $SERVER \ n"
unl ess (! ($DEBUG));
return $RES;
}

The script contains a handful of useful features:
» We use an external ASCII file for a list of servers to poll. We specify the file by using the switch -table FILENAME. If no -
table switch is given, the file named default in the current directory is used.

« We can specify a single server name (which must appear in the preceding file) to poll using the switch -server
SERVER_NAME.

« We can ignore up to three filesystems per server. For example, we might want to ignore filesystems that are being used
for software development.

« The script polls only servers that respond to a ping. We don't want to get filesystem traps from a server that is down or not
on the network.

- We can set the minimum threshold for each list of servers in 1024-byte blocks using the -min blocks option.



e The script sends a trap when a server's threshold has been met and sends another trap when the state goes back to
normal.

- We use lockfiles to prevent the server from sending out too many redundant traps.*1 When a threshold has been met, a
file named hostname.instance is created. We send a trap only if the lockfile doesn't exist. When the space frees up, we
delete the lockfile, allowing us to generate a trap the next time free storage falls below the threshold.

[1 A few times we missed the fact that a system filled up because a trap was lost during transmission. Using cron, we frequently delete everything in the lock
directory. This resubmits the entries, if any, at that time.

- We can set the number of leading instance digits used to grab the appropriate filesystem with the -inst switch.
Unfortunately, the number of instance digits you can safely use to isolate a local filesystem varies from installation to
installation. The default is five, but a lower value may be appropriate.

* The script displays a useful table when we invoke it with the -debug flag.

The script starts by reading the table of servers in which we're interested. It pings the servers and ignores those that don't
respond. It then calls the subroutine fi nd_i nst, which incorporates most of the instance-number logic. This subroutine walks
the filesystem table to find a list of all the filesystems and their instance numbers. It extracts the entry for the root filesystem
(/), which we know exists, and which we assume is a local disk. (We can't assume that the root filesystem will be listed first; we
do assume that you won't use a script like this to monitor diskless workstations.) We then store the first | NST_LENGTH digits of
the instance number in the variable G NST, and return.

Back in the main program, we ask for the number of blocks available for each filesystem; we compare the instance number to
G NST, which selects the local filesystems (i.e., the filesystems with an instance number whose initial digits match the instance
number for /). We then ask for the total number of blocks, which allows us to compare the space available against our
thresholds. If the value is less than our minimum, we send one of the two enterprise-specific traps we've defined for this
program, 1500, which indicates that the filesystem's free space is below the threshold. If the free space has returned to a safe
level, we send trap 1501, which is an "out of danger" notification. Some additional logic uses a lockfile to prevent the script
from bombarding the NMS with repeated notifications; we send, at most, one warning a day and send an "out of danger" only if
we've previously sent a warning. In either case, we stuff the trap with useful information: a number of variable bindings
specifying the filesystem, the available space, its total capacity, its instance number, and the threshold we've set. Later, we'll
see how to map these traps into OpenView categories.

Let's put the program to work by creating a table called default that lists the servers we are interested in watching:

db_servo0
db_servil
db_serv2

Now we can run the script with the -debug option to show us a table of the results. The following command asks for all
filesystems on the server db_servO with fewer than 50,000 blocks (50 MB) free:

$ /opt/ OV/ | ocal /bin/disk_space/polling.pl -min 50000 -server db_serv0 -debug 1

Res from Ping :0: - :/usr/sbin/ping db_servoO:

Ser ver Mount Poi nt Bl ocksLeft Bl ockSize MB LockFil e
db_serv0 / 207766 1024 38010880. 1 [ 0]
db_serv0 /usr 334091 1024 38010886. 1 [ 0]
db_serv0 /opt 937538 1024 38010887. 1 [ 0]
db_serv0 /var 414964 1024 38010888. 1 [ 0]
db_serv0 /dbl 324954 1024 38010889. 1 [ 0]

Notice that we didn't need to specify a table explicitly; since we omitted the -table option, the polling.pl script used the default
file we put in the current directory. The -server switch let us limit the test to the server named db_servO; if we had omitted this
option, the script would have checked all servers within the default table. If the free space on any of the filesystems falls under
50,000 1024-byte blocks, the program sends a trap and writes a lockfile with the instance number.

Because SNMP traps use UDP, they are unreliable. This means that some traps may never reach their destination. This could
spell disasterin our situation, we're sending traps to notify a manager that a filesystem is full. We don't want those traps to
disappear, especially since we've designed our program so that it doesn't send duplicate notifications. One workaround is to
have cron delete some or all of the files in the lock directory. We like to delete everything in the lock directory every hour; this
means that we'll get a notification every hour until some free storage appears in the filesystem. Another plausible policy is to
delete only the production-server lockfiles. With this policy, we'll get hourly notification about filesystem capacity problems on



the server we care about most; on other machines (e.g., development machines, test machines), we will get only a single
notification.

Let's say that the filesystem /dbl is a test system and we don't care if it fills up. We can ignore this filesystem by specifying it in
our table. We can list up to three filesystems we would like to ignore after the server name (which must be followed by a
colon):

db_serv0: dbl

Running the polling.pl script again gives these results:

$ /opt/ OV/ I ocal /bin/disk_space/polling.pl -min 50000 -server db_serv0 -debug 1

Res from Ping :0: - :/usr/sbin/ping db_servoO:

Server Mount Poi nt Bl ocksLeft Bl ockSize MB LockFil e
db_serv0 / 207766 1024 38010880. 1 [ 0]
db_serv0 [ usr 334091 1024 38010886. 1 [ 0]
db_serv0 / opt 937538 1024 38010887. 1 [ 0]
db_serv0 /var 414964 1024 38010888. 1 [ 0]
db_serv0 /dbl (ignored) 324954 1024 38010889. 1 [ 0]

When the /db1l filesystem drops below the minimum disk space, the script will not send any traps or create any lockfiles.

Now let's go beyond experimentation. The following crontab entries run our program twice every hour:

4,34 * * * * [opt/OV/ bin/polling.pl -mn 50000
5,35 * * * * [opt/OV/bin/polling.pl -mn 17000 -table stocks_table
7,37 * * * * [opt/OV/bin/polling.pl -mn 25000 -table bonds_table -inst 3

Next we need to define how the traps polling.pl generates should be handled when they arrive at the NMS. Here's the entry in
OpenView's trapd.conf file that shows how to handle these traps:

EVENT Di skSpacelLow . 1.3.6.1.4.1.2789.2500.0.1500 "Threshold Al arns" Maj or
FORMAT Di sk Space For FileSystem:$1: Is Low Wth :$2:
1024 Bl ocks Left - Current FS Block Size :$3: - Mn Threshold

:$5: - Inst :$4:

SDESC

$1 - octetstringascii - FileSystem
$2 - integer - Current Size
$3 - integer - Block Size
$4 - octetstringascii - INST

$5 - integer - Mn Threshold Size
EDESC

#

#

#

EVENT Di skSpaceNormal .1.3.6.1.4.1.2789.2500.0.1501 "Threshold Al arns" Nor nal
FORMVAT Di sk Space For FileSystem:$1: |Is Normal Wth :$2:
1024 Bl ocks Left - Current FS Block Size :$3: - Mn Threshold

©$5: - Inst :$4:

SDESC

$1 - octetstringascii - FileSystem

$2 - integer - Current Size

$3 - integer - Block Size

$4 - octetstringascii - INST

$5 - integer - Mn Threshold size

EDESC



These entries define two OpenView events: a DiskSpaceLow event that is used when a filesystem's capacity is below the
threshold and a DiskSpaceNormal event. We place both of these in the Threshold Alarms category; the low disk space event has
a severity of Major, while the "normal™ event has a severity of Normal. If you're using some other package to listen for traps,
you'll have to configure it accordingly.

e prc |



e prcv |

11.6. Port Monitor

Most TCP/IP services use static ports to listen for incoming requests. Monitoring these ports allows you to see whether particular
servers or services are responding or not. For example, you can tell whether your mail server is alive by periodically poking
port 25, which is the port on which an SMTP server listens for requests. Some other ports to monitor are FTP (23), HTTP (80)
and POP3 (110).[*1 A freely available program called netcat can connect to and interact with a specific port on any device. We
can write a wrapper for this program to watch a given port or service; if something happens outside of its normal operation,
then we can send a trap. In this section, we'll develop a wrapper that checks the SMTP port (25) on our mail server. The
program is very simple, but the results are outstanding!

[1 Check your services file for a listing of port numbers and their corresponding services. On Unix systems, this file is usually in the directory /etc; on Windows it is usually
in a directory such as C:\WINDOWS\System32\drivers\etc, though its location may vary depending on the version of Windows you are using.

Before we start to write the program, let's establish what we want to do. Telnet to port 25 of your SMTP server. Once you're
connected, you can issue the command HELO mydomain.com. This should give you a response of 250. After you get a response
from the mail server, issue the QUIT command, which tells the server you are done. Your session should look something like
this:

$ telnet mmil.ora.com 25

220 sntp.oreilly.com ESMIP O Reilly & Associates Sendmail 8.11.2 ready
HELO nydonai n. com

250 K

QT

221 cl osing connection

The netcat program needs to know what commands you want to send to the port you are monitoring. We will be sending only
two commands to our mail server, so we'll create a file called input.txt that looks like this:

HELO nydonai n. com
QT

Next, we should test this file and see what output we get from the server. The actual netcat executable is named nc; to test the
file, run it like this:

$ /opt/OV/local/bin/netcat/nc -i 1 mailserver 25 < input.txt

This command produces the same results as the telnet session. You won't see the commands in your input.txt file echoed, but
you should see the server's responses. Once you have verified that netcat works and gives the same response each time, save a
copy of its output to the file mail_good. This file will be used to determine what a normal response from your mail server looks
like. You can save the output to a file with the following command:

$ /opt/OV/local/bin/netcat/nc -i 1 mailserver 25 < input.txt > mail_good

An alternate approach is to search for the line numbered 250 in the mail server's output. This code indicates that the server is
up and running, though not necessarily processing mail correctly. In any case, searching for 250 shields you from variations in
the server's response to your connection.

Here's a script called mail_poller.pl that automates the process. Edit the appropriate lines in this script to reflect your local
environment. Once you have customized the script, you should be ready to go. There are no command-line arguments. The
script generates an output file called mail_status that contains a O (zero) if the server is OK (i.e., if the output of netcat
matches $GOOD_FILE); any number other than O indicates that an error has occurred:



#!/usr/ 1 ocal / bin/perl
# filenane: mail _poller.pl

$HOVE_LOC = "/opt/OV/local/bin/netcat";
$NC_LCC = "/opt/netcat/nc";

$DI FF_LCC = "/bin/diff";

$ECHO LOC = "/bin/echo";

$MAI L_SERVER = "nmmi | . exanpl edomai n. cont';
$MAI L_PORT = 25;

$INPUT_FILE = "$HOVE LOC\/input.txt";
$GOOD_FI LE = "$HOVE_LOC\/ mai | _good";
$CURRENT_FI LE = "$HOVE_LOQ\/ mei | _current™;
$EXI T_FI LE = "$HOVE_LOC\/ mai | _stat us";

$DEBUG = 0;

print "$NC LOC -i 1 -w 3 $MAIL_SERVER $NMAI L_PORT
\'< $I NPUT_FI LE \ > $CURRENT_FI LE\ n" unl ess (! ($DEBUG));

$NETCAT_RES = system "$NC_LOC -i 1 -w 3 $MAI L_SERVER $MAI L_PORT
\< $I NPUT_FILE \ > $CURRENT FI LE";
$NETCAT_RES = $NETCAT_RES / 256;

i f ($NETCAT_RES)

# We had a problemw th netcat... maybe a tineout?
system "$ECHO LOC $NETCAT_RES > $EXI T_FI LE";
&cl eanup;

}

$DI FF_RES = system "$DI FF_LOC $GOOD_FI LE $CURRENT_FI LE";
$DI FF_RES = $DI FF_RES / 256;

if ($Dl FF_RES)

{
# 1 ooks like things are different!
system "$ECHO LCC $DI FF_RES > $EXI T_FI LE";
&cl eanup;
}
el se
# Al systens go!
system "$ECHO LOC 0 > $EXI T_FI LE";
&cl eanup;
}
sub cl eanup
{
unl i nk "$CURRENT_FI LE";
exit 0;
}

After you run the program, review the results in mail_status. If you can, try shutting down the mail server and running the
script again. Your file should now contain a nonzero error status.

Once you have made sure the script works in your environment, you can insert an entry in crontab to execute this program at

whatever interval you would like. In our environment, we use a 10-minute interval:

# Check the mail server and create a file that we can poll via OpenVi ew
1,11,21,31,41,51 * * * * [opt/OV/Iocal/bin/netcat/mail_poller.pl

Notice we staggered the polling so that we don't check on the hour, half hour, or quarter hour. Once cron has started updating
mail_status regularly, you can use tools such as the extensible OpenView agent to check the file's contents. You can configure



the agent to poll the file regularly and send the results to your management console. The entry in my
/etc/SnmpAgent.d/snmpd.extend looks like this:

servicelnfo OBJECT IDENTIFIER ::= { mauro 5 }

-- BEG@ N - servicelnfo

serMai | Port  OBJECT- TYPE

SYNTAX | NTEGER

ACCESS read-only

STATUS nmndat ory

DESCRI PTI ON

"This file is updated via crontab. It uses netcat to check the
port and push a value into this file.
FI LE- NAME: /opt/ OV/ |1 ocal / bi n/ net cat/ mai | _st at us"
::={ servicelnfo 0 }

Chapter 10 discusses the syntax of this file. Basically, this entry just defines a MIB object in the servicelnfo tree, which is node
5 under my private-enterprise tree. In other words, this object's OID is mauro.servicelnfo.serMailPort (2789.5.0). The object
can be read by any program that can issue an SNMP get operation. The DESCRI PTI ON, as we saw in Chapter 10, specifies a
filename from which the agent will read an integer value to use as the value of this object. This program can easily be modified
to monitor any port on any number of machines. If you're ambitious, you might want to think about turning the serMailPort
object into an array that reports the status of all your mail servers.

e rrcv |



e prcv |

11.7. Service Monitoring

This section presents simple scripts that can help you monitor services like mail, DNS, and web content. Earlier we showed how
you can use the netcat tool to verify that, for example, your SMTP server is up and responding. This is all well and good, but
there are times when you may need more control over the situation. These times may include when you need to know when a
service:

* Has been unreachable X number of times

* Has been unreachable X number of times in timeframe Y

« Is not meeting your company's Service Level Agreement (SLA). For example, your SLA may state that your SMTP or POP3
services will take no longer than 500 milliseconds (half a second) to service requests.

In each of these instances, it would be nice to know ahead of time that things may not be working properly in your
environment.

The examples presented in this section use Perl modules to interact with the services directly. By using Perl, you have a great
deal of control over how the services are monitored and how and when they send traps. What follows here is a Perl module that
all the service monitors in this section use to track things like SLA information:

1 #

2 # File: MyStats.pm

3 #

4

5 package MyStats;

6 use Cass:: Struct;

7 use Exporter;

8 use SNWVP_util;

9 our (@ SA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS, $VERSI O\, $duration, $count,
10 $count AndTi me, $sla, 9%watchers);

11

12 $VERSI ON = 1. 00;

13 @ SA = qw( Exporter);

14

15 #

16 # There are two scenarios we want to track and alert on:
17 # 1. Some resource has been down a certain nunber of tines
18 # 2. Service Level Agreenents (SLAs). We are concerned w th nmeking sure
19 # services respond and operate within limts set forth in our SLA
20 #

21

22 struct Count => {

23 name =>'§$',

24 count =>'$§',

25 current Count =>"'$',

26 nessage=> '$',

27 b

28

29 struct SLA => {

30 name => '$',

31 responseTine => '$',

32 count =>"'$',

33 current ResponseTine => '$§',

34 current Count => '$',

35 nessage=> '$',

36 }s

37

38 $count ;

39 $sl a;

40 %nat chers;

S
=



42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

sub new {
ny $classnane = shift;
ny $sel f ={};
ny Yarg = @;
bl ess($sel f, $cl assnane);
return $self;

}

sub renoveWat cher{
ny $classnane = shift;
ny ($nane) = @;
i f (exists($wat chers{$nane})){
del et e($wat cher s{ $nane}) ;

}
}
sub thi sExi st s{

ny $classnane = shift;

ny ($name) = @;

return exists($wat chers{$nane});
}

sub set Count Wt cher {
ny $classnane = shift;
ny ($nane, $c, $nessage) = @;
$count = Count->new( );
$count - >nanme( $nane) ;
$count - >count ($c);
$count - >message( $nessage) ;
$wat cher s{ $nane} = $count;

}

sub i ncr Count Wt cher {
ny $cl assnane = shift;
ny ($name) = @;
i f(exists($wat chers{$nane})){
ny $count = $wat cher s{$nane}->{Count:: current Count};
$count ++;
$wat cher s{ $nane} - >curr ent Count ($count) ;

}

sub decr Count WAt cher {
ny $cl assnane = shift;
ny ($name) = @;
i f (exists($wat chers{$nane})){
ny $count = $wat cher s{$nane}->{Count:: current Count};
if($count > 0){
$count - -;
$wat cher s{ $nane} - >cur r ent Count ( $count ) ;

}

sub set SLA {
ny $cl assnane = shift;
ny ($nane, $count, $responseTi ne, $nessage) = @;
$sla = SLA->new( );
$sl a- >nane( $nane) ;
$sl a- >count ($count) ;
$sl a- >responseTi me(sprintf ("% 3f", $responseTi ne) ) ;
$sl a->current Count (0) ;
$sl a- >current ResponseTi ne(0);
$sl a- >message( $nessage) ;
$wat cher s{$nane} = $sl a;

}

sub updat eSLA {
ny $classnane = shift;



111 nmy ($nane, $responseTinme) = @;

112 i f(exists($wat chers{$nane})){

113 i f ($responseTi ne >= $wat cher s{ $nane}- >{ SLA: : responseTi ne}) {
114 $wat cher s{ $nane} - >curr ent ResponseTi ne( $r esponseTi ne) ;
115 ny $count = $wat cher s{$nane}->{ SLA: : current Count};

116 $count ++;

117 $wat cher s{ $nane} - >curr ent Count ($count) ;

118 }el sif($responseTi me < $wat cher s{$nane} - >{ SLA: : responseTi ne} &&
119 $wat cher s{ $nane} - >{ SLA: : current Count} > 0){

120 ny $count = $wat cher s{$nane}->{ SLA: : current Count };

121 $count - -;

122 $wat cher s{ $nane} - >cur r ent Count ( $count ) ;

123 $wat cher s{ $nane} - >cur r ent ResponseTi me( $r esponseTi ne) ;
124 }

125 }

126 }

127

128 sub sendAl ert{

129 ny $classnane = shift;
130 ny $host = "public\@ocal host: 162";
131 ny $agent = "local host";
132 ny $eid = ".1.3.6.1.4.1.2789";
133 ny $trapld = 6;
134 nmy $specificld = 1300;
135 ny $oid = ".1.3.6.1.4.1.2789.1247.1";
136 foreach ny $key (sort keys %watchers){
137 i f ($wat cher s{$key}->i sa(Count)){
138 i f($wat cher s{ $key}->{ Count::current Count} >=
139 $wat cher s{ $key} - >{ Count : : count }) {
140 ny $nessage = $wat cher s{ $key}->{Count: : message};
141 print "Sending Count Trap: $nessage\n";
142 snnpt rap($host, $eid, $agent,
$trapld, $specificld, $oid,"string", $nessage) ;
143 $wat cher s{ $key} - >current Count (0) ;
144 }
145 }
146 i f ($wat cher s{$key}->i sa(SLA)){
147 i f($wat cher s{$key}->{ SLA: : current Count} >=
148 $wat cher s{ $key}->{ SLA : count} &&
149 $wat cher s{ $key} - >{ SLA: : curr ent ResponseTi ne} >
150 $wat cher s{ $key} - >{ SLA: : responseTi ne}) {
151 ny $nessage = $wat cher s{ $key}->{ SLA: : nessage};
152 print "Sending SLA Trap: $nmessage\n";
153 snnpt rap($host, $eid, $agent,
$trapld, $specificld, $oid,"string", $nessage) ;
154 $wat cher s{ $key} - >current Count (0) ;
155 }
156 }
157 }
158 }
159
160
161 1;

The user of this module can create two types of watchers:

Simple counter
You establish some threshold, and as the item you are monitoring changes (for example, becomes unable to connect to
your service), MyStats.pm updates the count. When the count exceeds the threshold, an SNMP trap is sent.

SLA

The SLA object allows the user to set a duration and count. For example, if connecting to your SMTP server takes longer
than one second (duration) and this happens 10 times (count), send an SNMP trap.



MyStats.pm is a basic implementation, but it is functional as is. Its use will become clearer when we present actual service
monitoring scripts.

When monitoring customer-visible services, keep in mind the following:
- Deploy the monitoring scripts in the network where the path from the monitoring point traverses a path similar to that of
the customer. This is rarely possible, but it's worth mentioning.
- If this sort of placement isn't possible and you have a network that is outside the particular server farm where your
services are running, try to at least have the monitoring traffic go through the same router or firewall that the customer
would use.

e If this is still not possible, monitoring your services from the same LAN segment or switch is still better than nothing!

Now let's look at three service monitoring scripts.

11.7.1. Web Content

Many people monitor the hardware their web server runs on without actually monitoring the web content itself. The scripts in
this section use the Library for WWW in Perl (LWP) module to interact with a web server's content. The LWP module comes with
Perl and you should not have to download a copy. We will present two scripts that perform the following monitoring tasks:

- Monitor content retrieval from a server

* Monitor a web site for dead links
The first example is in the same vein as the other service monitors. The second monitor, however, shows how easy it is to
validate a web site's links. This can come in handy when you go live with a total redesign of your corporate web site. If the link
to investor information is dead, wrong, or just not working, you will want to know about it pronto. Believe it or not, we have
seen this happen over and over again.
This script attempts to get the main page from a URL. It detects whether the connection can be made to the web server and

whether the request takes an inordinately long time.

162 #! [ usr/ bin/ perl

163 #
164 # File: web-1oad. pl
165 #

166 use LWP:: Sinple;

167 use MyStats;

168

169 ny $URL = "http://ww. oreilly.cont;

170 ny $count = 3;

171 ny $loadTinme = 1;

172 ny $duration = 3;

173 ny $nanel = "URL Watcher1";

174 ny $nane2 = "URL Watcher2";

175 ny $nessagel = "$URL has been down $count tines";

176 ny $nmessage2 = "$URL took greater than $l oadTine second(s) to |oad. The
probl em
persisted for over $duration seconds";

177

178 ny $stats = MyStats->new );

179 $st at s- >set Count Wt cher ($nanel, $count, $nessagel);

180 $st at s- >set SLA( $nane2, $dur ati on, $I oadTi ne, $nessage?) ;

181

182 #

183 # Exanple taken from O Reilly's Perl Cookbook 2nd edition

184 #

185 ny $start = O;

186 ny $stop = O;

187 ny $sleep = 1;

188 whi | e(1){

189 $start = time( );



190 ny $content = get ($URL);

191 if(!defined($content)) {

192 # Couldn't get content at all!
193 $st at s- >i ncr Count Wat cher ($nanel);
194 }el se{

195 $st at s- >decr Count Wat cher ($nanel) ;
196 $stop = tinme( );

197 ny $total = sprintf("%3f", ($stop-Pstart));
198

199 $st at s- >updat eSLA( $nane2, $total );
200 }

201 $stats->sendAlert( );

202 print "Sleeping...\n";

203 sl eep($sl eep);

204 }

Here are some pertinent points about this script. Note that all the scripts in this section follow the same form when it comes to
collecting SLA information and sending traps.

Line 169

This is the base URL you wish to monitor.

Line 170

This value is used to set the count used for simple counting.

Line 171

The $l oadTi e variable is used for the SLA watcher. This value, expressed as seconds, says "when it takes $| oadTi me time
to do something, then note it."

Line 172

$duration is just like $count, but it's for the SLA watcher.

Lines 173 and 174

These two lines are labels used to uniquely identify the two watchers that this monitor will use. You can have any number
of watchers in a monitor, as long as they have a unique name.

Lines 175 and 176

When a trap is sent for a given watcher, these messages will be the guts of the trap. These message strings are meant to
be as informative as possible so that someone can begin to resolve the problem.

Lines 178, 179, and 180

Line 178 creates a new MyStats instance. Line 179 creates a count watcher while 180 creates an SLA watcher.

Line 188

We enter a loop and continually monitor the service.

Line 189

We start a timer.

Line 190



Here we do the work of getting the URL content.

Lines 191 and 193

If the content isn't defined, we failed to get the content. Line 193 bumps up the counter for the counter watcher.

Lines 195 through 199

Since we were able to get content from the server, we decrement the counter on Line 195. We stop the timer on Line 196
by setting a variable to the current time. Line 197 calculates how long it took to get the content to three positions after
the decimal. This allows for setting $dur ati on to subsecond valuese.g., 0.1 for one-tenth of a second. Line 199 updates
the SLA monitor.

Line 201
The sendAl ert subroutine handles checking to see if any watchers need to have traps sent on their behalf. See the
MyStats.pm code presented at the beginning of this section to see how sendAl ert does its thing.

Line 203
The script sleeps, wakes up, and repeats.

That's about it. It really is quite simple but can be very effective.

The following script can find bad links. It starts at a given URL and works its way through the href tags:

#!/ usr/ bi n/ perl

#

# File: web-badlinks.pl
#

use HTM.:: Li nkExt or;
use LWP:: Sinple;

use MyStats;

3

$URL = "http://ww. oreilly.con;
ny $count = 3;

ny $loadTinme = 1;

ny $duration = 3;

ny $nanel = "URL Watcherl";

ny $nane2 = "Bad Link Watcher2";
ny $nessagel = "$URL has been down $count tines";
ny $message2 = "This URL is BAD: “;

nmy
$s

$stats = MyStats->new( );
t at s- >set Count Wat cher ($nanel, $count, $nessagel);

#

# Place links in here that you do not want to check

#

ny %exenptLinks = (
# http://ww. oreilly.com partners/index.php wll not get processed.
"$URL/ par t ner s/ i ndex. php"=>1

)

#
# Parts of this Exanple taken from O Reilly's Perl Cookbook,
# 2nd edition

#

ny $start = 0;
ny $stop = 0O;
ny $sleep = 1;
whi | e(1){

ny $parser = HTM.:: Li nkExtor->new( undef, $URL);
ny $htnm = get ($URL);



i f(!defined($htm)){
# Couldn't get html. Server may be down
$st at s- >i ncr Count Wat cher ($nanel);
}el sef
$st at s- >decr Count Wat cher ($nanel) ;
$par ser - >parse($htm);
ny @inks = $parser->|inks;
foreach $linkarray (@inks) {
ny @l enent = @linkarray;
ny $elt_type = shift @l enent;
while (@l enent) {
ny ($attr_nane, $attr_value) = splice(@lenent, 0, 2);
next unl ess($exenpt Li nks{$attr_value} != 1);
if ($attr_val ue->scheme =~ /\b(ftp|https?|file)\b/) {
if(!head($attr_val ue)){
i f(!$stats->thisExists($attr_value))({
ny $m = $nessage2. $attr_val ue;
$st at s- >set Count Wat cher ($attr _val ue, $count, $m ;
}el sef
$st at s- >i ncr Count Wat cher ($attr_val ue);
}

}
}

$stats->sendAlert( );
print "Sleeping..\n";
sl eep($sl eep);

We're not going to go into detail about how this script works. The watchers are set up in a similar fashion to the previous script.

One thing to note is that this script can actually produce false positives. When it comes across a link that requires login
credentials, it may wrongly assume the link is bad when in fact it is not. To remedy this, you can add URLs to the %exenpt Li nks
hash and they will be ignored altogether.

Finally, here is some sample output generated by these monitors:

$ snnptrapd -f -Lo
2005- 05-05 12:49:34 NET-SNWP version 5.2.1 Started.

2005- 05-05 12:51:39 |ocal host. | ocal domain [127.0.0.1] (via UDP: [127.0.0.1]:
37243)

TRAP, SNWP v1, community public
enterprises. 2789 Enterprise Specific Trap (1300) Uptine: 0:00:08.00
enterprises.2789.1247.1 = STRING "http://ww.oreilly.comtook greater
than 1 second(s) to |load. The problem persisted for over 3 seconds"

2005-05-05 13:52:43 | ocal host. |l ocal donain [127.0.0.1] (via UDP: [127.0.0.1]:
37249)
TRAP, SNWVP v1, community public
enterprises. 2789 Enterprise Specific Trap (1300) Uptine: 0:00:10.00
enterprises.2789.1247.1 = STRING "This URL is BAD: http://ww.oreilly.
conl partners/index. php"

11.7.2. SMTP and POP3

The best way to monitor the health of your email service is to actually use it. This means sending and receiving email. The logic
flow for monitoring SMTP follows:



P

Start timer.
Connect to SMTP server.
Send email message to dummy account.

Stop timer.

o > W N

Note how long it took to interact with the server.

Steps 1 and 4 form a calculation for how long it took to interact with the SMTP server. If you begin to see a decline in the
response time, it could be indicative of a problem. Of course, if in step number 2, you aren't able to connect to the server, this
should be noted and a trap should be sent.

Monitoring POP3 has a similar logic flow:

1. Start timer.

2. Connect to POP3 server.

3. Start login timer.

4. Send login credentials.

5. Start retrieval timer.

6. Retrieve email for dummy account.

7. Start delete timer.
8. Delete email from account.
9. Stop all timers.
10. Note how long it took to connect, log in, retrieve, and delete from the POP3 server.

Here we are concerned with measuring several additional aspects of the POP3 server. Knowing how long it took to provide
authentication credentials to the server may be useful, as well as knowing how long it took to delete one or more messages.

The scripts used in this section use the Net::SMTP and Net::POP3 modules that come with recent versions of Perl. If you are
using an older version of Perl, you should be able to download these modules from http://www.cpan.org. The SMTP monitor is a
separate script from the POP3 monitor so that you can easily run one script on one machine and the other on a different
machine.

Now let's look at the actual code for the SMTP monitor:

#! [/ usr/ bi n/ perl

#

# File: sntp.pl

#

use Net:: SMIP;

use MyStats;

ny $sleep = 1;

ny $server = "sntp.oreilly.cont;

ny $hel oSever = "sntp.oreilly.cont;

nmy $tineout = 30;

ny $debug = 1;

nmy $count = 3;

ny $loadTinme = 1;

ny $duration = 3;

ny $meilbox = "testl\ @reilly.conf;

ny $from= "testl-admn\@reilly.cont;

ny $data = "This is a test enmmil.\n";

ny $nanel = "Mail Server Watcher1";

ny $nane2 = "Mail Server Watcher2";

nmy $nessagel = "$server has been down $count tinmes";
ny $message2 = "Sending email to $nmilbox took greater than $l oadTi ne second(s).


http://www.cpan.org

The probl em persisted for over $duration seconds";

$stats = MyStats->new );
$st at s- >set Count Wat cher ($nanel, $count, $nessagel);
$st at s- >set SLA($nane2, $dur ati on, $l oadTi ne, $nessage?) ;

ny $start = 0;

nmy $stop = O;
whil e(1){

$start = tinme( );
ny $sntp = Net::SMIP->new

$server

Hel | o=>$hel oSer ver,

Ti meout

=> $tineout,

Debug => $debug

)k
i f(!$sntp)

{

$st at s- >i ncr Count Wat cher ($nanel);

}el sef

$st at s- >decr Count Wat cher ($nanel);
$snt p- >nai | ($nai | box) ;

$snt p- >t o( $from;

$snt p- >data( );

$snt p- >dat asend( $dat a) ;

$snt p- >dat aend( );

$snt p->qui t;

$end =

t

ime( );

nmy $total = sprintf("%3f", ($stop-$start));
$st at s- >updat eSLA( $nane?2) ;

}

$stats->sendAlert( );
print "Sleeping...\n";
sl eep($sl eep);

Now the POP3 script:

#!/ usr/ bi n/ perl

#

# File: pop3.pl

#

use Net:: POP3;

use MyStats;

$sleep = 1
$server =
$user nanme
$passwor d

3

"pop3.oreilly.cont;

"kschm dt";
"pword";

$ti meout = 30;
$count = 3;

$durati on

1;
3;

$namel = "POP3 Server Watcher1";
$name2 = "POP3 Server Watcher2";

$nessagel

ny

ny

nmy

ny

ny

ny $l oadTi ne
ny

nmy

my

ny

ny $message?2
th

"$server has been down $count tines";
"Popping enail from $server for account $usernane took greater

an $l oadTi ne second(s). The problem persisted for over $duration seconds";

$stats = MyStats->new( );
$st at s- >set Count Wat cher ($nanel, $count, $nessagel);
$st at s- >set SLA( $nane2, $dur ati on, $| oadTi ne, $nessage?2) ;

ny $start = 0;

ny $stop = 0;
whi | e(1){



$start = time( );
ny $pop = Net::POP3->new $server, Tinmeout => $tineout);
i f(!$pop){
$st at s- >i ncr Count Wat cher ($nanel) ;
}el sef
$st at s- >decr Count Wat cher ($nanel);
i f ($pop->l ogi n($usernane, $password) > 0) {
nmy $nsgnuns = $pop->list; # hashref of msgnum => size
foreach ny $msgnum (keys % bnmsgnuns) {
At this point we get the nmessage and delete it. If you want to
nmeasure getting and del eti ng i ndependent of each other, you
shoul d probably start a new tinmer, get the nessages, stop the
tiner, start a new timer, delete the nmessages and stop the
timer. You will also want to create two new SLA trackers.
ny $msg = $pop- >get ($nsgnum ;
$pop- >del et e( $sgnun) ;

HOH O R

}
}el se{
# Login failure. You will want to track this.
}
$pop->qui t ;
$end = time( );
ny $total = sprintf("%3f", ($stop-$start));
$st at s- >updat eSLA( $nanme?2) ;
}
$stats->sendAlert( );
print "Sleeping..\n";
sl eep($sl eep);

The POP3 script will run continually. As soon as the SMTP script sends an email, the POP3 monitor will spring into action and do
its thing.

11.7.3. DNS

One of the services that people often forget to monitor is DNS. Using similar techniques used to monitor web, SMTP, and POP3,
we can monitor DNS as well. The Net::DNS Perl module is used in the example and is available from
http://search.cpan.org/~olaf/Net-DNS-0.49/. While Net::DNS does not require the presence of the libresolv library on your Unix
system to operate, if it does exist, the package uses it to build the module, which allows for increased performance.

This module is full featured and allows for at least the following:

e Look up a host's address.
« Discover nameserver(s) for a domain.
¢ Discover Mail Exchange (MX) record(s) for a domain.
¢ Obtain a domain's Start of Authority (SOA) record.
For our purposes, we will measure how long it takes to perform a DNS query for a host as well as obtain MX records for a
domain.
#!/ usr/ bi n/ perl
#
# File: dns.pl
#

use Net:: DNS;
use MyStats;

ny $sleep = 30;
ny $search = "www. oreilly.cont;


http://search.cpan.org/~olaf/Net-DNS-0.49/

ny $nmxSearch = "oreilly.cont;
ny $count = 3;

ny $l oadTime = 1;

ny $duration = 3;

ny $ns = "192.168.0.4";

ny $debug = 0;

ny $nanel = "DNS Server Watcher1";

nmy $nessagel = "The DNS server $ns took greater than $l oadTi ne second(s) to
respond to queries. The problem persisted for over $duration seconds";

$stats = MyStats->new );
$st at s- >set SLA( $nanel, $dur ati on, $I oadTi ne, $nessagel) ;

ny $start = 0;
ny $stop = 0O;
whi | e(1){
$start = time( );
ny $res = Net::DNS:: Resol ver->new(
naneservers => [ $ns],
debug => $debug,
)
ny $query = $res->search($search);
if ($query) {
foreach ny $rr ($query->answer) {
next unless $rr->type eq "A";
print $rr->address, "\n";

}

} else {
# You may want to create a new watcher for search errors
warn "query failed: ", $res->errorstring, "\n";

}

# | ookup MX records
ny @x = nx($res, $nxSearch);

if(@x){

foreach $rr (@x) {

print $rr->preference, " ", $rr->exchange, "\n";

}
} else {

# You may want to create a new watcher for MX errors

warn "Can't find MX records for $nane: ", $res->errorstring, "\n";
}

$stop = tinme( );

ny $total = sprintf("%3f", ($stop-$start));
$st at s- >updat eSLA( $nanel) ;
$stats->sendAlert( );

print "Sleeping..\n";

sl eep($sl eep);

11.7.4. More Monitoring Suggestions

Here are some suggestions on how you can enhance these monitors:

¢ A database such as MySQL can be used to store the response times for every run of a monitor. Over time, a profile of how
well a service performs can be developed from the stored information. Additionally, SLA reports can be created that show
how often a service was responsive during some time interval.

« For web monitoring, you might want to create a script that can detect the age of dynamically created content. This would
allow an administrator to know if some component on the backend is malfunctioning. We suggest getting a copy of
O'Reilly's Perl Cookbook for ways of using LWP and other modules to accomplish this.

- The bad web link finder can be extended to actually log into pages that require authentication credentials. Again, the Perl
Cookbook can help with adding this functionality to the script.






e prcv |

11.8. Pinging with Cisco

Using ICMP messages (also know as "pinging") to determine if a host is up is a common and simple network monitoring
technique. Pinging a small number of hosts is not that challenging. But if you have many hosts that are distributed all over the
place, things could get ugly.

If the polling interval used is short enough, you could run into the problem where the nth poll hasn't finished before the nth+1
poll begins. Another problem could be that the machine you want to ping from doesn't have proper routing to the host or hosts
you want to monitor.

Cisco routers and some switches support the Cisco ping MIB (download from ftp://ftp.cisco.com/pub/mibs/v2/CISCO-PING-
MIB.my). Basically, this feature allows you to have routers perform ICMP operations on your behalf. In effect, you can have a
distributed ping system.

In this script,l*1 we'll use SNMP to configure a Cisco router to perform pings on our behalf:

[1 Note that this Perl script uses the SNMP Perl API based on Net-SNMP. See Appendix E for an introduction to this Perl module.

#1 [ usr/ bi n/ perl

use SNVP;

#

# This script was adapted fromthe one that conmes with Net-SNW
#

my % psToPing = (
"192.168. 0. 48" => 333,

~

$router = "192.168.0.130";
$community = "public";
$version = 1;

e 338

$sess = new SNWP: : Sessi on (DestHost => $router,
Comunity => $community,
Retries => 1,
Ver si on => $version);

$ci scoPingEntry = ".1.3.6.1.4.1.9.9.16.1.1.1";
$ci scoPi ngEntryStatus = "$ci scoPi ngEntry. 16";
$ci scoPi ngEnt ryOaner = "$ci scoPi ngEntry. 15";
$ci scoPi ngProtocol = "$ci scoPi ngEntry. 2";

$ci scoPi ngPacket Count = "$ci scoPi ngEntry. 4";
$ci scoPi ngPacket Si ze = "$ci scoPi ngEntry. 5";

$ci scoPi ngAddress = "$ci scoPi ngEntry. 3";

$ci scoPi ngSent Packets = "$ci scoPi ngEntry. 9";
$ci scoPi ngRecei vedPackets = "$ci scoPi ngEntry. 10";
$ci scoPingM nRtt = "$ci scoPi ngEntry. 11";

$ci scoPi ngAvgRtt = "$ci scoPi ngEntry. 12";

$ci scoPi ngMaxRtt = "$ci scoPi ngEntry. 13";

$ci scoPi ngConpl eted = "$ci scoPi ngEntry. 14";

2333333333333

H*

# Set up Cisco Ping table with targets we want to ping
#
foreach nmy $target (sort keys % psToPing){
ny $row = $i psToPi ng{ $t arget};
# We nust encode the IP we want to ping to HEX
ny $dec = pack("C*",split /\./, S$target);
$sess- >set ([
# First we clear the entry for this target
[ $ci scoPi ngEntryStatus, $row, 6, "INTECER'],
# Now we create a new entry for this target



[ $ci scoPi ngEntryStatus, $row, 5, "INTECER'],

# Set the owner of this entry

[ $ci scoPi ngEntryOwner, $row, "kjs", "OCTETSTR'],
# Set the protocol to use, in this case "1" is IP
[ $ci scoPi ngProtocol, $row, 1, "INTECER'],

# Set the nunmber of packets to send

[ $ci scoPi ngPacket Count, $row, 20, "INTEGER'],

# Set the packet size

[ $ci scoPi ngPacket Si ze, $row, 150, "INTECER'],

# Finally set the target we want to ping

[ $ci scoPi ngAddr ess, $row, $dec, "OCTETSTR']]);

# This enables this target and causes the router to start pinging
$sess->set ([ [ $ci scoPi ngEntryStatus, $row, 1, "INTEGER']]);

if($sess->{ErrorsStr}){
print "An Error Occurred: $sess->{ErrorStr}\n";

exit;

}
}
# Gve router tine to do its thing...
sl eep 30;
#
# Cet results
#

foreach ny $target (sort keys % psToPing){
ny $row = $i psToPi ng{ $t arget };
ny ($sent, $received, $low, $avg, $high, $conpleted) = $sess->get ([
[ $ci scoPi ngSent Packets, $row], [$ciscoPingReceivedPackets, $row],
[$ci scoPingM nRtt, $row], [$ciscoPingAvgRit, $rowl,
[ $ci scoPi ngMaxRtt, $row], [$ciscoPingConpleted, $rowj]);

printf "($target)Packet |oss: %% (%l/ %)\n", (100 * (S$sent-$received)) /
$sent,

$recei ved, $sent;
print "Average delay $avg (low $l ow high: $high)\n";
# Here we renove this target's entry fromthe C sco Ping Table
$sess- >set ([ $ci scoPi ngEntryStatus, $row, 6, "INTEGER']);

Let's look at some details of this script:

« The i psToPi ng hash is used to map all the target hosts we want our Cisco router to ping for us. Note that we are mapping
the IP address to a number. This number uniquely identifies this IP address. If you want to add other IP addresses, make
sure they all have unique numbers. This is because the Cisco ping MIB maintains a table of the hosts it has to ping and
each entry in the table needs a unique number.

¢ Look at the first f oreach( ) loop where we go through the i psToPi ng hash. This is where we create new entries on the
Cisco router. The first item we set is the ci scoPi ngEntrySt atus. It is defined in the Cisco ping MIB as follows:

ci scoPi ngEntrySt at us OBJECT- TYPE

SYNTAX RowsSt at us

MAX- ACCESS r ead- create

STATUS current

DESCRI PTI ON
"The status of this table entry. Once the entry status is
set to active, the associate entry cannot be nodified until
the sequence conpl etes (ciscoPingConpleted is true)."

.= { ciscoPingEntry 16 }

Its SYNTAX is RowSt at us. RowSt at us is a textual convention in the SNMPv2 textual conventions MIB. Basically, RowSt at us is
used to control the creation and deletion of table entries and can take the values listed in Table 11-1.



Table 11-1. RowStatus values

Value Status
1

active
2

not I nServi ce

3

not Ready
4

creat eAndGo
5

creat eAndWai t
6

destroy

The first line of the SNMP set is issued against the ci scoPi ngEnt rySt at us OID with a value of 6, which is destroy. This
removes a previously defined entry in this table for the row representing this target IP. The next line also issues a set
against ci scoPi ngEnt rySt at us, but this time we create a new entry for the target IP address by using a value of 5. This
creates the entry but places the row in a holding pattern. The router will not perform any action until we tell it to. The
other parameters to the multipart set are self-explanatory. The action we take, before we leave the loop, is to enable the
table entry by setting ci scoPi ngEntrySt at us to 1, which is active. This will cause the Cisco router to begin its ping of the
target.

« Once out of the loop, the script pauses for a bit to let the router do its thing. The final f oreach( ) loop gathers the
statistics that the router has captured for the target we previously configured it to ping. The final set operation in the loop
removes this target's entry from the table. It does so by setting ci scoPi ngEnt rySt at us to 6, which destroys the row from
the table.

Here's sample output from a run of this script:

$ ./ pingnib.pl
(192. 168. 0. 48) Packet | oss: 0% (20/20)
Average delay 1 (low 1 high: 1)

Now here's a look at an SNMP walk of the Cisco ping MIB (note that we ftp'ed the Cisco ping MIB and placed it in the same
folder with the rest of the Net-SNMP MIBs):

$ snnpwal k -m ALL -IR -v1l -c public 192.168.0.130 ciscoPingMB

Cl SCO- PI NG M B: : ci scoPi ngProtocol . 333 = | NTEGER: i p(1)

Cl SCO- PI NG M B: : ci scoPi ngAddr ess. 333 = STRING c¢0: a8:0: 30

Cl SCO- PI NG M B: : ci scoPi ngPacket Count . 333 = | NTEGER 20

Cl SCO- PI NG M B: : ci scoPi ngPacket Si ze. 333 = | NTEGER 150

Cl SCO- PI NG M B: : ci scoPi ngPacket Ti meout . 333 = | NTEGER: 2000 milliseconds
Cl SCO- PI NG M B: : ci scoPi ngDel ay. 333 = INTEGER 0 nmilliseconds

Cl SCO- PI NG M B: : ci scoPi ngTrapOnConpl etion. 333 = | NTEGER: fal se(2)
Cl SCO- PI NG M B: : ci scoPi ngSent Packet s. 333 = Counter32: 20

Cl SCO- PI NG M B: : ci scoPi ngRecei vedPackets. 333 = Counter32: 20

Cl SCO-PING M B: : ciscoPingMnRtt.333 = INTEGER 1 milliseconds

Cl SCO- PI NG M B: : ci scoPi ngAvgRt t. 333 = INTEGER: 1 nmilliseconds

Cl SCO- PI NG M B: : ci scoPi ngvaxRtt. 333 = INTEGER 1 milliseconds

Cl SCO- PI NG M B: : ci scoPi ngConpl et ed. 333 = | NTEGER true(1)



Cl SCO- PI NG M B: : ci scoPi ngEntryOmner. 333 = STRING kjs
Cl SCO- PI NG M B: : ci scoPi ngEntryStatus. 333 = | NTEGER active(1l)

To summarize, this script does the following:

1. Processes the i psToPi ng hash by first destroying (as a just-in-case) and creating a new row in the table
2. Sleeps to give the router time to do its job
3. Gathers the results from the router, and deletes each row from the table

One enhancement that can be made is to persist each row to the table and let the router continually ping the target or targets.
This could be accomplished by creating new entries on the router and setting the following OID:

ci scoPi ngDel ay OBJECT- TYPE

SYNTAX I nteger 32 (0..3600000)

UNI TS "mlliseconds”

MAX- ACCESS r ead-create

STATUS current

DESCRI PTI ON
"Specifies the mininmumanmount of tinme to wait before sending
the next packet in a sequence after receiving a response or
declaring a tineout for a previous packet. The actual delay
may be greater due to internal task scheduling.”

DEFVAL { 0 }

::={ ciscoPingEntry 7 }

As the DESCRIPTION notes, ci scoPi ngDel ay specifies a sort of sleep. The router will wait for the specified amount of time (in
milliseconds) before it tries to ping the target again. Of course, you would also not want to destroy each row after you get the
statistics from the routers, as is done in the earlier script.

Here are a couple of things to watch out for if you use this method:
- If you are the only one using the router to perform pings, creating unique row values is controlled by one person. If more
than one person uses the router, you run the risk of stepping on each other's toes if someone picks the same unique row

number as you.

* The router can reschedule these pings if it needs to. In other words, if it comes down to the router performing a routing
function over a ping function, it's going to pick the routing function.

e rrc |



e prcv |

11.9. Simple SNMP Agent

Traditional SNMP agents typically give you all the monitoring and management features you could want. Sometimes you may
wish you could write your own SNMP agent. Anyone who has looked at the Net-SNMP agent code knows how complex it is. Well,
have no fear! The Net-SNMP package now comes with Perl bindings that allow you to create a Perl SNMP agent in a number of
ways:

» Standalone SNMP agent

¢ AgentX subagent

« Embedded agent within the normal Net-SNMP agent

For this section, we thought it would be interesting to present a fully working Perl agent. This isn't so much to write yet another
SNMP agent but rather to show how an SNMP agent operates.

The basic flow through the agent is as follows:

1. Create a new agent object

2. Register the top of the agent's OID tree
3. Register a callback subroutine

4. Sit and wait for requests

It's pretty straightforward, and so is the code itself. First things first, though. You need to get a copy of the Net-SNMP package
from http://www.net-snmp.org. Follow the instructions for building and installing the package and Perl modules.

The complete agent source follows:

205 #! [/ usr/ bi n/ perl

206

207 #

208 # File: agent.pl
209 #

210

211 use Net SNMP: :agent (':all');

212 use Net SNVP: : default_store (':all');
213 use Net SNMP: : ASN (':all");

214 use Net SNVP: : O D;

215 use SNWVP;

216

217 ny $port = "9161";

218 ny $host = ".1.3.6.1.4.1.8072.25";
219 ny $hrMenorySize = $host.".2.2";

220

221 sub nyHandl er {

222 ny ($handler, $registration_info, $request_info, $requests) = @;
223 ny $request;

224 for($request = $requests; $request; $request = $request->next( )) {
225 ny $oid = $request->getd D( );

226 if ($request_info->getMde( ) == MODE_GET) {

227 if ($oid == new Net SNVP: : O D( $hr MenorySi ze)) {

228 ny $val ue = get MenorySi ze( );

229 $request - >set Val ue( ASN_I NTEGER, $val ue);

230 }

231 } elsif ($request_info->get Mode( ) == MODE_GETNEXT) {

232 if ($oid <= new Net SNVP: : O D( $host)) {

233 $request - >set O D( $hr MenorySi ze) ;

234 ny $value = get MenorySi ze( );


http://www.net-snmp.org

235 $request - >set Val ue( ASN_I NTEGER, $val ue);

236 }

237 }

238 }

239 }

240

241 sub get MenorySi ze{

242 ny $file = "/proc/nem nfo";

243 ny $total = 0;

244 open(FILE, $file) || die("Unable to open file: $!'\n");

245 whi | e( <FI LE>) {

246 chonp;

247 if($_ =~ /~Menilotal/){

248 # One Linux (Kernel 2.6.8-2-686), the entry |ooks |ike:
249 # Menilot al : 1026960 kB

250 ($total) = $_ =~ m ~Menifotal :.*?2(\d+).*?kB$/;

251 | ast;

252 }

253 }

254 cl ose(FI LE);

255 return $total;

256 }

257

258 ny $agent = new Net SNVP: : agent (

259 "Name' => 'snnpd',

260 "Ports' => $port);

261

262 ny $regoid = new Net SNVP: : O D( $host); #Begi nning of Host Resources Tree
263 print "regoid: $regoid\n";

264 $regitem = $agent->register("mtest”, $regoid, \&ryHandler);

265 if($regitem == 0){

266 print "Error registering: $'\n";
267 exit -1;

268 }

269

270 ny $running = 1;

271 $SIG ' TERM } = sub {$running = 0;};

272 $SIG'INT'} = sub {$running = 0;};

273 whi | e($running) {

274 $agent - >agent _check_and_process(1); # 1 blocks, and O does not
275 }

276 print "Good-bye!\n";

The agent mimics tracking a small portion of the Host Resources MIB (RFC 1514). While Net-SNMP has support for this MIB, it
does serve as a good example of how a real agent works under the covers.

Here are some key points about the agent:

Line 217
This is the port the agent will listen on. You can optionally specify the protocol; e.g., tcp:9161 would have the agent listen
on TCP port 9161.

Line 218
$host is the top of the OID tree that this agent implements. .1.3.6.1.4.1.8072 is the Net-SNMP enterprise OID. We added
.25 to it since this corresponds to the Host Resources top-level OID.

Line 219

$hrMemorySize is the one and only managed variable we will implement. It represents the total memory on the system.

Lines 258 and 259



Line 258 begins the creation of a new agent. Line 259 gives a name to this agent. Note that the underlying Net-SNMP
library is going to tack on a .conf to this attribute. We used snmpd so that the library would find the default snmpd.conf
and use whatever access permissions are in it. If you don't have a configuration file for the library to use, your agent is
effectively uselessit won't respond to any requests.

Line 262

Here we create a new OID object which represents the top of the agent's OID tree. The agent will respond to requests for
any objects under this tree.

Line 264

The regi ster method is used to define the subroutine that handles incoming requests. The first argument is a name, the
second argument is the OID we created on Line 262, and the third argument is the subroutine name.

Line 274

Here we just sit and wait for requests to come in. The underlying library will call the subroutine we registered on Line 264
for us when a request comes in.

Line 221

This begins the subroutine for handling requests. In this agent, we respond to get and getnext requests, but there is no
reason why we couldn't handle set requests as well.

Lines 228 and 234

These lines call a routine to parse the /proc/meminfo on Linux to get the total memory on the system. Note that this is
not portable. Some operating systems, like Solaris, may support actual kernel calls that can return such information.

Lines 229 and 235

Here we encode the value obtained from Line 228 or 234 and encode it as an integer. Why an integer? If we look in the
Host Resources MIB for hr MenorySi ze, we see the following:

hr Menor ySi ze OBJECT- TYPE

SYNTAX KByt es

ACCESS r ead-only

STATUS mandat ory

DESCRI PTI ON
"The ampbunt of physical main nenory contained by
the host."

o= { hrStorage 2 }

The SYNTAX is Kbyt es. Kbyt es is defined earlier in the MIB as:

-- nenory size, expressed in units of 1024bytes
KBytes ::= I NTEGER (0..2147483647)

It's an integer under the covers, so that's how we chose to encode the total memory.

That's it. The various modules installed by Net-SNMP have corresponding manpages. They provide good details for general
usage.

e prc |



e prcv |

11.10. Switch Port Control

Sometimes it can be handy to turn up or down a switch port. For example, you may want to play a prank on an annoying co-
worker. Other times, it may be a case of disabling a host that is infected with a virus and spewing packets all over the network.
Whatever the case may be, it can be helpful to have something like this in your toolbox.

Most people attach a serial cable from a laptop to the management port on the switch to configure it or manage it. To manage a
switch via SNMP, you generally have to create a VLAN (which may encompass all the ports on the switch). This VLAN is
configured with an IP address, which allows for SNMP access and control. The actual ability to manage a port comes via the
Bridge MIB (RFC 1493). Most if not all switch vendors implement this MIB. Many vendors also have their own MIB that may
enhance or extend the Bridge MIB, but we will focus on the RFC version to keep things generic.

To successfully manage a switch port, you have to know the following bits of information:

« IP address of host on port

- MAC address of host on port

¢ Switch port number
The key to managing your switch ports is keeping track of which hosts are on which switch ports. Tobias Oetiker, creator of
MRTG, created a Perl script called Cammer (http://people.ee.ethz.ch/~oetiker/webtools/mrtg/pub/contrib/cammer). Cammer

displays which MAC addresses are on a switch, along with IP address information. It does this by querying the Address
Resolution Protocol (ARP) table on a router and then matching this up with what's on your switch. Here's a sample run:

$ ./camrer.pl public@w tch public@outer

Fa0/ 9 1 00:11:43:17:06:8d 192.168.0.48 dhcp48. domai n
Fa0/ 3 1 00:60:f5:08:4e:3c 192.168.0.1 rout er. domai n
Fa0/ 8 1 00:60:47:40:fd: 14 192.168.0. 130 dhcpl130. domai n

When running Cammer, you must pass it the community string for your switch and router. The first column is the interface
name from the switch. The second column is the VLAN number, followed by the MAC address, IP address, and DNS name of the
IP address (if available). Unfortunately, this script is Cisco-specific, but modifying it to operate with other vendors is doable.

For our purposes, we modified the Cammer source a little bit. The output now looks like this:

$ ./camer2.pl public@w tch public@ outer

192. 168. 0. 148
1 (iflndex = 10, ifName = Fa0/9) 00:11:43:17:06:8d 192. 168. 0. 48
dhcp48. domai n
1 (iflndex = 4, ifNane = Fa0/3) 00:60:f5:08:4e:3c 192.168.0.1
router.domain
1 (iflndex =9, ifNane
dhcp130. domai n

Fa0/8) 00:60:47:40:fd: 14 192.168. 0. 130

The display now shows the ifIndex in addition to the ifName. The ifIndex is used later in the script that does the actual port
control. The output from running diff on the original Cammer version and the one we modified follows:

51d50

<

62a62, 65

> ny % D_TO NONARRAY = ( 'dotldBasePortl|flndex' => "1.3.6.1.2.1.17.1.4.1.2",);
>

>

>

129a133, 134


http://people.ee.ethz.ch/~oetiker/webtools/mrtg/pub/contrib/cammer

> ny %racsTol f | ndex;

> nmy %racsTol f Nane;

132a138

> #my $sws = SNWPv2c_Sessi on->open ($opt{sw}, $opt{swco}.' @. $vl an, 161)
141c147, 152

< $port { $vl an}{$mac} =$port;

> ny $iid = snnpget ($opt{swco}.' @. $opt{sw},"$O D TO_
NONARRAY{ ' dot 1dBasePort | f I ndex'}. $port");

> ny $i fnane = snnpget ($opt {swco}.' @. $opt {sw}, "ifNane. $iid");
> #my $i f name = snnpget ($opt {swco}.' @. $opt{sw},"$0 D TO_
NONARRAY{ ' i f Nane' }. $i i d");

> $macsTol f I ndex{$nac} = $iid;

> $macsTol f Name{ $mac} = $i f name;

> $port {$vl an}{$mac} =$port;

145c156, 158

< sub { ny($port,$if) = pretty(@);

> sub {

> ny($port,$if) = pretty(@);

> print "$port, $ifin";

166¢179

< push @ $out put {$nanme}}, sprintf "%s % 17s % 1l5s s

%", $truevl an, $nac, $i p[ 0] , $host [ 0], $quest ;

> push @ $out put { $nane}},

sprintf "%ls (iflndex = %, ifNane = %) % 17s % 15s %

%", $truevl an, $nacsTol f | ndex{ $nac}, $nacsTol f Nanme{ $mac}, $mac, $i p[ 0] , $host [ 0],
$quest if($ip[0] ne "");

168a182

> print "\ n$opt{sw\n";

249d262

<

The switch control Perl script that follows uses a few MIB objects from the Bridge MIB:

#1 [ usr/ bi n/ perl
use SNWVP;

use Cetopt::Long;

Get Opti ons("mac=s" => \$gMac,
"index=s" => \$gl ndex,
"action=s" => \$gActi on,

)
($gMac, $gActi on, $gl ndex) = verifyl nput ($gMac, $gActi on, $gl ndex) ;

&SNWVP: i initMb( );
&SNWP: : | oadModul es( qw BRI DGE-M B/ ) ;

ny $host = "192.168.0.148";
ny $roConm = "public";
ny $rwComm = "private";

$roSessi on = new SNWP: : Sessi on( Dest Host => $host, Community => $roConm
UseSprintValue => 1, Version=>2);
die "session creation error: $SNWVP::Session::ErrorStr" unless
(defined $roSession);

$rwSessi on = new SNWP: : Sessi on(Dest Host => $host, Community => $rwComm
UseSprintValue => 1, Version=>2);
die "session creation error: $SNWP::Session::ErrorStr" unless
(defined $rwSession);

findvac( );



sub findMac {
ny($di scover) = @;
$vars = new SNMWP: : VarLi st ([' dot 1dTpFdbAddress'], ['dot1dTpFdbPort']);
# get first row
ny ($mac, $port) = $roSessi on->get next ($vars);
die $roSession->{ErrorStr} if ($roSession->{ErrorStr});
while (!$roSession->{ErrorStr} and $$vars[0]->tag eq "dot 1dTpFdbAddress"
|| $$vars[0]->tag eq "dotldBasePort!flndex"){
ny @mac = $mac =~ m (\wW1,2}) (\wW1,2}) (\w{1,2}) (\W1,2}) (\w1,2}) (\
W1, 2})/g;
$mac = sanitizeMac(sprintf("%: %: %: %: %: %", @nmac));
i f($gvac eq $nac){
# We found it
ny $i fnum = $roSessi on- >get (" dot 1dBasePort|fl ndex\. $port");
i f($ifnumeq $gl ndex){
doAct i on( $gActi on, $i f num) ;
tel se{
print "$mac has noved to iflndex $ifnumn";
}
| ast;
}
# keep going
($mac, $port) = $roSession->get next ($vars);

}

sub doActi on{

ny ($action, $ifnum = @;

ny $ifname = $roSession->get("ifDescr\.$ifnunt);

if($action eq "up"){
print "Turning $ifname $action (ifNumis $ifnum..\n";
$rwSession->set ([["ifAdmi nStatus", $ifnum 1, "INTEGER']]);

}elsif($action eq "down"){
print "Turning $ifname $action (ifNumis $ifnum...\n";
$rwSession->set ([["ifAdmi nStatus", $ifnum 2, "INTEGER']]);

if($rwSession->{ErrorStr}){
print "An error occurred during processing: $rwSession->{ErrorStr}\n";
}
}

sub sanitizeMac{
ny($mac) = @;
ny @mac = split(/:/,$nmac);
foreach ny $byte (0..$#t mac){
$t mac[ $byte] =~ s/"0//g;
$tmac[ $byte] = I c($tnac[ $byte]);
}
$mac = sprintf("%: %: %: %: %: %", @ nac) ;
return $nac;

sub verifyl nput{
ny($mac, $action, $i ndex) = @;
if(($nac eq "" && $action eq "" && $index eq "")) {
usage( );
exit;

if($action eq ""){
usage( );
exit;
}
$mac = saniti zeMac($mac);
$action = | c($action);
i f($action ne "up" & $action ne "down"){
usage( );
exit;



return ($mac, $action, $i ndex) ;

}

sub usage{

print "Usage:\t$0 --nmac=0:f:0:d:55:a --index=10 --action=up\n";

print "\tSpecify a MAC adddress and the index in the interfaces MB tree
where this port lives on the switch. Action can be EITHER \"up\" OR \"down\"\n";
}

Here are some key points about this script:

¢ The MAC address that is passed to the script is normalized to a common format.

e The findMac( ) routine makes use of the dotldTpFdbAddress, dotldTpFdbPort, and dotldBasePortlfindex OIDs. Here are
their MIB definitions:

dot 1dTpFdbAddr ess OBJECT- TYPE

SYNTAX MacAddr ess

ACCESS read-only

STATUS mandatory

DESCRI PTI ON
"A uni cast MAC address for which the bridge has
forwarding and/or filtering information."

REFERENCE
"1 EEE 802.1D-1990: Section 3.9.1, 3.9.2"

::= { dot 1dTpFdbEntry 1 }

dot 1dTpFdbPort OBJECT- TYPE

SYNTAX | NTEGER

ACCESS read-only

STATUS nandat ory

DESCRI PTI ON
"Ei ther the value '0', or the port nunber of the
port on which a frame having a source address
equal to the value of the corresponding instance
of dot 1dTpFdbAddress has been seen. A val ue of
'0" indicates that the port nunber has not been
| earned but that the bridge does have sone
forwarding/filtering information about this
address (e.g., in the dotldStaticTable).
I npl ementors are encouraged to assign the port
value to this object whenever it is |earned even
for addresses for which the correspondi ng val ue of
dot 1dTpFdbStatus is not |earned(3)."

;= { dot 1dTpFdbEntry 2 }

dot 1dBasePort | f 1 ndex OBJECT- TYPE
SYNTAX | NTEGER
ACCESS read-only
STATUS nmandatory

DESCRI PTI ON
"The value of the instance of the iflndex object,
defined in MB-11, for the interface corresponding

to this port."
;.= { dotldBasePortEntry 2 }

dotldTpFdbAddress gathers all the MAC addresses on the switch for which it has forwarding information. dotldTpFdbPort
gets the corresponding port number and dotldBasePortiIflndex is the port to ifindex mapping. fi ndvac( ) keeps going until
it finds a MAC address that matches the one specified on the command line. Once found, it looks to see if the
dotldBasePortlflndex value matches the one specified by the user. If it does, it performs the action. If it doesn't, it
displays a message and exits.

e The doAction( ) method performs the actual port control operation. It uses the ifAdminStatus OID to set the port to up or
down.



Here are some sample runs of the script:

$ ./swcontrol.pl --nac=00:11:43:17:06:8d --index=10 --action=up
Turning FastEthernet0/9 up (ifNumis 10)..

$ ./sweontrol.pl --mac=00:11:43:17:06: 8d --index=10 --acti on=down
Turni ng FastEthernet0/9 down (ifNumis 10)...

$ ./sweontrol.pl --nac=00:11:43:17:06:8d --index=11 --action=up
0:11:43:17:6:8d has noved to iflndex 10
$

The last run shows output when the wrong index is used on the command line. This index check is used as a safety since iflndex
values can shift or move at any time. When this happens, you may need to rerun Cammer to update your mappings.

Finally, here are some ways to enhance this script:

« Cammer needs to be run on a somewhat regular basis, since hosts can move (especially laptops).

« Cammer could be extended to store its results in a database. The switch control script could then be made to read from the
database to get the proper index information.

e prc |



e prcv |

11.11. Wireless Networking

This section will show how to gather management statistics from wireless access points using the 802.11 MIB. The IEEE 802.11
MIB is freely available from many sites, including http://www.cs.ucla.edu/~hywong1/doc/IEEE802dot11-MIB.my. The MIB itself
is pretty dense. A detailed discussion of this MIB is beyond the scope of this chapter. Instead, we will present a script that can
gather certain data points from your WAP. Consider the following script.

#!/ usr/ bi n/ perl

use SNWP;
$SNVP: : use_sprint_val ue = 1;
&SNWVP: : | oadMbdul es( ' | EEE802dot 11-M B' ) ;

ny $host = "192.168.1.4";
ny $sess = new SNVP: : Sessi on( Dest Host => $host,
Version => 2,
Conmmmunity => "public");
my %wapStats;
ny $var = new SNWVP:: Varbi nd([' dot 11Current Channel ']);
do {
$val = $sess->get next ($var);

ny $channel = $var->[ $SNVP: : Var bi nd: : val _f];
ny $iflndex = $var->[ $SNVP: : Varbind::iid_f];
ny($ssid, $nmac, $manufacturer, $nodel, $rtsFail ureCount,
$ackFai | ureCount, $fcsErrorCount) = $sess->get (][

['dot 11DesiredSSI D, $i f | ndex],

[' dot 11MACAddr ess' , $i f I ndex],

[' dot 11Manuf acturer!l D, $i f 1 ndex],

["dot 11Product| D, $i f I ndex],

[' dot 11RTSFai | ureCount ', $i f I ndex],

[" dot 11ACKFai | ureCount ', $i f I ndex],

[' dot 11FCSErr or Count ', $i f | ndex]

IR

$wapSt at s{$i f I ndex} = "S$channel, $ssi d, $mac, $Smanuf acturer, "
$wapSt at s{$i f I ndex} .= "$nodel, $rtsFail ureCount, $ackFai | ureCount, $f cs
Error Count™;

}Yunl ess($sess->{ErrorNunt);

foreach ny $key (sort keys %wapStats){
ny($channel, $ssid, $mac, $manufacturer, $nodel,
$rtsFail ureCount, $ackFailureCount, $fcsErrorCount) =
split(/,/,$wapSt at s{ $key});

print "WAP $ssid with MAC Address $mac (Manufacturer: $nanufacturer,
Model : $nodel, Channel: $channel, iflndex: $key)\n";

print "\tdot 11RTSFail ureCount: $rtsFailureCount\n";

print "\tdot 11ACKFai |l ureCount: $ackFail ureCount\n";

print "\tdot 11FCSError Count: $fcsErrorCount\n";

First, notice that we're using the Net-SNMP Perl module. Second, note the MIB module we load:

&SNWVP: : | oadMbdul es( ' | EEE802dot 11-M B' ) ;

This is critical. It allows us to use textual object names in the script as opposed to numeric OIDs. The first thing we do is set up
a variable binding for dotl1CurrentChannel. This is defined in the 802.11 MIB as:


http://www.cs.ucla.edu/~hywong1/doc/IEEE802dot11-MIB.my

dot 11Current Channel OBJECT- TYPE

SYNTAX | NTEGER (1..14)

MAX- ACCESS read-write

STATUS current

DESCRI PTI ON
"The current operating frequency channel of the DSSS
PHY. Valid channel nunbers are as defined in 15.4.6.2"

= | dot 11PhyDSSSEntry 1 }

This is the channel ID currently in use. This entry is in a table that contains other objects. We're concerned only with the
channel right now. Also note that this table is indexed by iflndex, which is the same object you might remember from the
interfaces subtree. We perform a getnext on this object that returns the channel and the ifindex. We then perform a get of
seven objects. The first four are the SSID, MAC address, manufacturer ID, and product ID, respectively. The remaining three
may seem obscure. It will become apparent why we chose these in a few moments. First, here are the last three objects from
the MIB:

dot 11RTSFai | ur eCount OBJECT- TYPE
SYNTAX Count er 32
MAX- ACCESS r ead-only
STATUS current
DESCRI PTI ON

"This counter shall increment when a CTS is not received in
response to an RTS."

::={ dotllCountersEntry 8 }

dot 11ACKFai | ur eCount OBJECT- TYPE
SYNTAX Count er 32
MAX- ACCESS read-only
STATUS current
DESCRI PTI ON

"This counter shall increnment when an ACK is not received
when expected."

2= { dotllCountersEntry 9 }

dot 11FCSEr r or Count OBJECT- TYPE
SYNTAX Count er 32
MAX- ACCESS r ead-only
STATUS current
DESCRI PTI ON

"This counter shall increment when an FCS error is
detected in a received MPDU."

::={ dotllCountersEntry 12 }

Before we expand on these objects, let's look at the output from this script:

$ . /wapstats.pl
WAP "t hehouse2" with MAC Address O:f:b5:3:fd:6f (Manufacturer: NETGEAR, Mbddel:
WE302, Channel: 10, iflndex: 1)

dot 11RTSFai | ureCount: 0

dot 11ACKFai | ureCount: 0

dot 11FCSError Count: 0

As you can see, we get some identifying information for WAP. Of course, you can expand on this script and gather other parts of



the 802.11 MIB or other statistics from the interfaces MIB.

Now, what about these three objects? The first one, dot11RTSFailureCount, basically means that a clear to send (CTS) was
never received when a ready to send (RTS) was sent. dot11ACKFailureCount, according to Matthew Gast, author of O'Reilly's
802.11 Wireless Networks: The Definitive Guide, "directly tracks the number of inbound acknowledgments lost. Whenever a
frame is transmitted that should be acknowledged, and the acknowledgment is not forthcoming, this counter is incremented."
dot1l1FCSErrorCount is the frame check sequence (FCS) error count. Basically, the FCS is extra padding in a frame for error
control. If this count ever goes up, it could be indicative of problems with the base station subsystem (BSS)i.e., the radio-
related functions of a WAP. As these descriptions imply, these three objects are indicators that something bad is happening.

While at the University of California, Santa Cruz, Max Baker proposed a way of automatically setting a WAP's channel based on
a score. The score is made up of the three aforementioned objects. The score he proposes is:

Score = .2 * FCS Errors + .4 * RTS Failures + .4 * ACK Failures

We can add that score to our script with the following subroutine:

sub scoreChannel {
ny($rtsFail ureCount, $ackFailureCount, $fcsErrorCount) = @;
return (.2 * $fcsErrorCount + .4 * $rtsFailureCount +
.4 * $ackFail ureCount);

Let's run the stats script again with that addition:

$ ./wapstats. pl
WAP "t hehouse2" with MAC Address 0:f:b5:3:fd:6f (Manufacturer: NETCEAR, Model:
WE302, Channel: 10, iflndex: 1)

dot 11RTSFai | ureCount: 0

dot 11ACKFai | ureCount: 0

dot 11FCSError Count: O

Channel score: 0

The lower the score, the better. We can find the lowest-scoring channel in one of two ways:

¢ Actively monitoring the WAP over time and noting the score for a given channel. The problem with this technique is that
you must periodically change the channel number so that other wireless devices can pick it up and begin using it. You then
need to monitor these error indicator variables for some period of time, change the channel setting, let people connect to
the new channel, gather error variables for a period of time, and keep doing this for as many channels as you can set on
your WAP. Changing the channel can also be done via SNMP (more on this in a second).

¢ Changing the channels, via SNMP, and sitting on each one for about a minute (this is the solution Max proposes). After the
minute is up, gather the stats, calculate the score, and move on to the next one. Once you are done, figure out which
channel has the lowest score and set the WAP to this channel. The issue with this approach is that you have to coordinate
the changing of the channels with someone or something finding the new channel setting and using it. It's similar to the
first approach, but since you are monitoring each channel for a brief period, you may want to somehow automate the
device that does the actual connection. Note that wireless cards are capable of finding a new channel automatically.

Once you find the lowest-scoring channel, you can force the WAP to use that channel by using the same object we used to
discover the channel in the first place: dotl1CurrentChannel. The following code can be used to set a new channel for a WAP:

$sess->set ([[' dot 11Current Channel ', $i f | ndex, $newChannel ," | NTEGER']]) ;

Even wireless devices can be managed via SNMP. With some creativity and thought, you can bring your WAPs into your network
management architecture and manage them effectively.

e roc |



e prcv |

11.12. SNMP: The Object-Oriented Way

The SNMP::Info Perl package was developed at the University of California, Santa Cruz. The official web site for this package is
http://snmp-info.sourceforge.net.

SNMP::Info is based on the Net-SNMP Perl module. It allows you to obtain various information from a device without having to
know any OIDs, MIBs, etc., and it does so with object orientation (OO). How does it do this? It supports a well-developed list of
MIBs, and it can discover the type of device you are trying to query. If it knows about the device, you can use predefined
methods to get interface information and other things. Here's an example script that gathers information about interfaces on a
switch:

#! [ usr/ bi n/ perl
use SNWP: : I nfo;
ny $info = new SNWP: : | nf o(

# Auto Di scover nore specific Device C ass
Aut oSpeci fy => 1,

Debug = 0,

# The rest is passed to SNWP:: Session
Dest Host => '192. 168. 0. 148",
Conmuni ty => 'public',

Ver si on = 2

) or die "Can't connect to device.\n";

ny $err = $info->error( );
die "SNWP Community or Version probably wong connecting to device. $err\n"
if defined $err;

$name = $info->nane( );
$class = $info->class( );
print "SNMP::Info is using this device class : $class\n";

# Find out the Duplex status for the ports
ny $interfaces = $info->interfaces( );
ny $i _duplex = $info->i _duplex( );

# Get CDP Nei ghbor info

ny $c_if = $info->c_if( );
ny $c_ip $info->c_ip( );
ny $c_port $info->c_port( );

# Print out data per port

foreach ny $iid (keys %binterfaces){
ny $dupl ex = $i _dupl ex->{$iid};
# Print out physical port name, not snnmp iid
ny $port = $interfaces->{$iid};

# The CDP Table has table entries different fromthe interface tables.
# So we use c_if to get the map fromthe cdp table to the interface table.

ny %_map = reverse %c_if;

ny $c_key = $c_map{$iid};

ny $nei ghbor _ip = $c_i p->{$c_key};
ny $nei ghbor_port = $c_port->{$c_key};

print "$port: $dupl ex duplex”;
print " connected to $nei ghbor_ip / $neighbor_port\n" if defined $renote_ip;
print "\n";


http://snmp-info.sourceforge.net

And here's the output:

$ ./getinterfaceinfo.pl

SNWP: :Info is using this device class : SNWP: :|nfo::Layer2::C2900

Fast Et hernet 0/ 5: hal f dupl ex
Fast Et hernet 0/ 10: hal f dupl ex
Fast Et hernet 0/ 2: full dupl ex
Fast Et hernet 0/ 6: hal f dupl ex
Fast Et hernet 0/ 8: hal f dupl ex
Fast Et hernet 0/ 1: hal f dupl ex
Fast Et hernet 0/ 11: hal f dupl ex
Nul 1 0:  dupl ex

VLAN2:  dupl ex

Fast Et hernet 0/ 7: hal f dupl ex
Fast Et hernet 0/ 3: hal f dupl ex
VLANL:  dupl ex

Fast Et hernet 0/ 9: hal f dupl ex
Fast Et hernet 0/ 12: hal f dupl ex
Fast Et hernet 0/ 4: hal f dupl ex

$

Let's talk a little bit about the script. First, we create an SNMP::Info object, with such typical parameters as the host we are
querying, community string, and SNMP version. The constructor for SNMP::Info also has an Aut oSpeci fy parameter, which
instructs the session we create to try and discover the device class. This code will get the specific device class:

$class = $info->class( );

The following code will get all the interfaces from the remote host:

ny $interfaces = $info->interfaces( );

It doesn't get any easier than that. Let's look at what each OO method does, according to the SNMP::Info documentation:

$i nfo->interfaces( )
Returns a reference to the map between ifindex in the interface subtree and the physical port. On the 2900 devices,
i _name isn't reliable, so we override it to just the description. Next, all dots are changed to forward slashes so that the
physical port name is the same as the broadcasted Cisco Discovery Protocol (CDP) port name (e.g., Ethernet0.1 becomes
Ethernet0/1).

$i nf o->i _dupl ex( )

Returns a reference to a map of ifindex IDs to the current link duplex.

$info->c_if( )
The CDP is a Layer 2 protocol that supplies topology information to other devices that also speak CDP (mostly switches
and routers). CDP is implemented in Cisco and some HP devices. c_i f ( ) returns the CDP interface mapping to the SNMP
Interface Table.

$info->c_ip( )

Returns a remote CDP IP address.

$i nfo->c_port( )



Returns a remote CDP port ID.

The rest of the program is just a f oreach loop that runs through all the data structures. Now let's look at another script:

#! [/ usr/ bi n/ perl
use SNWP: : I nfo;

ny $bridge = new SNWP::Info (
Aut oSpeci fy => 1,

Debug => 0,

Dest Host => '192.168.0. 148",
Communi ty => 'public',

Ver si on = 2

)

ny $class = $bridge->class( );
print " Using device sub class : $class\n";

# Grab Forwardi ng Tabl es

ny $interfaces = $bridge->interfaces( );
ny $f w_mac = $bridge->fw mac( );

ny $f w_port = $bridge->fw port( );

ny $bp_index = $bridge->bp_i ndex( );

foreach nmy $fw_ i ndex (keys %bfw nmac){
ny $mac = $fw_mac- >{$f w_i ndex};

ny $bp_id = $fw port->{$fw_ index};
my $iid = $bp_index->{$bp_id};
ny $port = $interfaces->{$iid};

print "Port:$port forwarding to $mac\n";

And its output:

$ ./bridge. pl

Usi ng device sub class : SNWP::Info::Layer2::C2900
Port: Fast Et hernet 0/ 12 forwarding to 00: 04: 9a: da: 5e: 4c
Port: Fast Et hernet 0/ 10 forwardi ng to 00: 04: 9a: da: 5e: 4a
Port: Fast Et hernet0/2 forwarding to 00:0f: 1f: d3: c6: 3a
Port: FastEthernet0/2 forwarding to 00: 11: 43: 04: a5: 25
Port: Fast Et hernet 0/ 11 forwardi ng to 00: 04: 9a: da: 5e: 4b
Port: Fast Et hernet0/2 forwarding to 00: Of : 20: 41: b8: ed
Port: FastEthernet0/2 forwarding to 00: 11:43:04:c2:e6
Port: Fast Et hernet 0/ 2 forwardi ng to 00: Ob: db: d2: d6: 10
Port: Fast Et hernet0/2 forwarding to 00:0f: 1f:df:ef:f9

This script prints port-forwarding information for a bridge. Let's look at some of the methods used in this script:

$bri dge->fw _nmac( )
Returns a reference to a hash of forwarding table MAC addresses as defined in the BRIDGE-MIB object
dotldTpFdbAddress.

$bridge->fw port( )

Returns a reference to a hash of learned bridge ports. See dotldTpFdbPort in the BRIDGE-MIB for more detail.



$bri dge->bp_i ndex( )
Returns a reference to a hash of bridge port table entries mapped back to ifindex entries.

Of course, once we've run these methods, we just use a foreach loop to access the data structures and print the forwarding
details.

11.12.1. Extending SNMP::Info

SNMP::Info is great for talking to network devices. But what if you want to, say, talk to Unix systems and obtain more
information than what is provided by RFC 1213 and other similar MIBs? Well, luckily the author of SNMP::Info has made it quite
easy to extend.

We decided to create a module called HostResources, which makes use of some of the Host Resources objects. Here's the entire
Perl module:

package SNWMP:: | nfo:: Host Resources;

$VERSI ON = 1. 0;

use strict;

use Exporter;
use SNWVP: : I nfo;

@NWVP: : | nf o: : Host Resources: : | SA = gqw SNVP: : I nfo Exporter/;
@NVP: : | nf 0: : Host Resour ces: : EXPORT_OK = qw/ /;

use vars gqw $VERSI ON %-UNCS %3ELOBALS %Vl BS %VIUNGE $AUTOLOAD $I NI T $DEBUG ;

%V BS = (Y8NWP: : I nfo: : M BS,
' HOST- RESOURCES-M B => 'host"',
)

YL OBALS = (%SNWVP: : | nfo: : GLOBALS,
"hr_users' => 'hrSystemNunisers',
"hr_processes' => 'hrSystenProcesses',
"hr_date' => 'hrSystenDate',

)

%UNCS = (%SNWP: : | nfo:: FUNCS,
# Host Resources M B objects
"hr_sindex' =>"hrStoragel ndex',
"hr_sdescr' =>"'hrStorageDescr',
"hr_sused" =>'hrStorageUsed',

)
YMUNGE = (Y%SNWVP: : | nfo:: MUNGE,

"hr_date' => \&mnge_hrdate,
)

sub munge_hrdate {

ny($oct) = @;

#

# hrSystenDate has a syntax of DateAndTine, which is defined in SNWPv2-TC as
#

#Dat eAndTi me :: = TEXTUAL- CONVENTI ON

# DI SPLAY-HI NT "2d-1d-1d, 1d: 1d: 1d. 1d, 1ald: 1d"

# STATUS current

# DESCRI PTI ON

# "A date-tinme specification.

#

# field octets contents range
=,

# 1 1-2  year* 0..65536
# 2 3 nont h 1..12

#

3 4 day 1..31



4 5 hour 0..23

5 6 m nut es 0..59
6 7 seconds 0..60
(use 60 for |eap-second)

7 8 deci - seconds 0..9
8 9 direction from UTC B
9 10 hours from UTC* 0..13

10 11 m nutes from UTC 0..59

* Not es

- the value of year is in network-byte order
- daylight savings tine in New Zealand is +13

For exanple, Tuesday May 26, 1992 at 1:30:15 PM EDT woul d be
di spl ayed as:

1992-5-26, 13: 30: 15.0,-4: 0
Note that if only local tinme is known, then tinmezone

information (fields 8-10) is not present."”
SYNTAX OCTET STRING (SIZE (8 | 11))

HFHIFHFHFHFHFFEFHFFEFRFEHFHRIFEFRHFRFEREHEH

ny ($yearl, S$year2, $nonth, $day, $hour, $nmin, $secs, $decisecs,
$di rection, $hoursFronJTC, $m nFronUTC) = split(/ /, sprintf ("%l

% % % % % %d %d %d %d %", unpack(' C*', $oct)));

ny $value = 0;

$direction = chr($direction);

$val ue = $value * 256 + $yearl;

$val ue = $val ue * 256 + $year2;

ny $year = $val ue;

return

"$year - $nont h- $day, $hour: $mi n: $secs: $deci secs, $di recti on$hour sFr onlUTC:

$m nFronUTC';
}

1, # don't forget this line

Let's take a look at this module. The first line (package SNWVP: : | nf o: : Host Resour ces; ) names the module and the package we are
going to be a part ofin this case, SNMP::Info. The %M BS hash configures SNMP::Info with a list of various MIBs you will use in
the module. Here we loaded HOST- RESOURCES- M B and gave it the name of the top-level OID in that MIB, host . “SNVP: : I nf o: : M BS

loads global SNMP::Info MIBs.

The %3LOBALS hash lists scalar OIDs that we plan to usei.e., OIDs that are not part of a column in a table. “SNVP: : | nf o: : GLOBALS

loads SNMP::Info globals. These globals include RFC 1213 objects sysUptime, sysDescr, etc. hrSystemNumuUsers is:

hr Syst emNunmJser s OBJECT- TYPE

SYNTAX Gauge32

MAX- ACCESS r ead-only

STATUS current

DESCRI PTI ON
"The nunber of user sessions for which this host is
storing state information. A session is a collection
of processes requiring a single act of user
aut henti cati on and possibly subject to collective job
control ."

::={ hrSystem5 }

hrSystemProcesses is:

hr Syst enProcesses OBJECT- TYPE
SYNTAX Gauge32
MAX- ACCESS r ead-only



STATUS current

DESCRI PTI ON
"The nunber of process contexts currently |oaded or
running on this system"

:={ hrSystem6 }

hrSystemDate is:

hr Syst enDat e OBJECT- TYPE

SYNTAX Dat eAndTi e
MAX- ACCESS read-wite
STATUS current
DESCRI PTI ON

"The host's notion of the |ocal date and tine of day."
::={ hrSystem2 }

The %UNCS hash lists columnar OIDs to query. In this example, we query two items from the hrStorageTable. hrStorageTable is
defined as:

hr St or ageTabl e OBJECT- TYPE

SYNTAX SEQUENCE OF Hr St orageEntry

MAX- ACCESS not - accessi bl e

STATUS current

DESCRI PTI ON
"The (conceptual) table of |ogical storage areas on
the host.

An entry shall be placed in the storage table for each
| ogi cal area of storage that is allocated and has
fixed resource limts. The anmpbunt of storage
represented in an entity is the amount actually usable
by the requesting entity, and excludes |oss due to
formatting or file systemreference information.

These entries are associated with |ogical storage
areas, as mght be seen by an application, rather than
physi cal storage entities which are typically seen by
an operating system Storage such as tapes and
floppies without file systens on themare typically
not allocated in chunks by the operating systemto
requesting applications, and therefore shouldn't

appear in this table. Exanples of valid storage for
this table include disk partitions, file systenms, ram
(for sone architectures this is further segnmented into
regul ar nenory, extended nenory, and so on), backing
store for virtual nenory ('swap space').

This table is intended to be a useful diagnostic for
"out of nmenory' and 'out of buffers' types of

failures. In addition, it can be a useful perfornance
monitoring tool for tracking nenory, disk, or buffer
usage. "

2= { hrStorage 3}

hrStoragelndex is:

hr St or agel ndex OBJECT- TYPE
SYNTAX I nteger32 (1..2147483647)
MAX- ACCESS read- only
STATUS current



DESCRI PTI ON
"A unique value for each |ogical storage area
contained by the host."

::={ hrStorageEntry 1 }

hrStorageDescr is:

hr St or ageDescr OBJECT- TYPE

SYNTAX Di spl ayString

MAX- ACCESS r ead-onl y

STATUS current

DESCRI PTI ON
"A description of the type and instance of the storage
described by this entry."

::={ hrStorageEntry 3 }

hrStorageUsed is:

hr St orageUsed OBJECT- TYPE

SYNTAX I nteger32 (0..2147483647)

MAX- ACCESS r ead-onl y

STATUS current

DESCRI PTI ON
"The anmpbunt of the storage represented by this entry
that is allocated, in units of
hr St orageAl | ocationUnits. "

::={ hrStorageEntry 6 }

We need hrStoragelndex as a way to access hrStorageDescr and hrStorageUsed, which will be indexed based on
hrStoragelndex.

9VUNGE lists methods, in your module, that will be called based on values in the %GLOBALS or %-UNCS hashes. For example, in the

initialization for %UNGE, we have:

"hr_date' => \&mnge_hrdate,

"hr_date' is also defined in %GLOBALS. Once SNMP::Info performs the actual SNMP operation on the OID for this identifier, it will
call munge_hrdat e and pass it the value that was retrieved.

The basic reason for having this %UNGE data structure is to allow for routines to be defined that can perform extended
processing. Take the hrSystemDate OID. Its SYNTAX is DateAndTime, which is a textual convention defined in the SNMPv2-TC
MIB. The actual definition for DateAndTime is provided in the subroutine in the module, but basically we are handed a raw
Cctet String and we must decode the string and format the date and time as specified by this textual convention for
DateAndTime. Note that the subroutine returns the converted value. This is an important step, so don't forget it.

Once your module is done, you need to modify some SNMP::Info files. First, copy your new module over to where SNMP::Info is
installed:

$ cp Host Resources. pm /usr/|ocal /share/perl/5.8.4/ SNWP/ | nf o/

Now edit /usr/local/share/perl/5.8.4/SNMP/Info.pm and find the following line in the devi ce_type( ) method:

return undef unless (defined $layers and | ength($l ayers));



now comment it out:

#return undef unless (defined $layers and | ength($layers));

The reason for this is that some host-based agents may not have sysServi ces set, which is what this is checking for. In the
same method, find the lines that look like this:

# These devices don't claimto have Layer1-3 but we |ike em anyway.
} else {
$obj type = ' SNWP: :Info::Layer2:: ZyXEL_DSLAM if ($desc =~ /8-port
.DSL Mbdul e\ (Annex .\)/i);
}

And make it look like this:

# These devices don't claimto have Layer1-3 but we |ike em anyway.

} elsif($desc =~ /linux|unix|w ndows/i){
$obj type = ' SNVP: : I nf 0: : Host Resour ces' ;
} else {

$objtype = ' SNWP: : Info::Layer2:: ZyXEL_DSLAM if ($desc =~ /8-port
. DSL Modul e\ (Annex .\)/i);
}

This allows SNMP::Info to create and return a proper Host Resour ces object. Here is an example script which uses this new
module:

#!/ usr/ bi n/ perl
use SNWP: : | nfo:: Host Resour ces;

ny $host = new SNVP::Info (
Aut oSpeci fy => 1,

Debug => 0,

Dest Host => '127.0.0.1",
Communi ty => 'public',
Ver si on = 2

)

ny $class = $host->class( );
print "Using device sub class : $class\n\n";

ny $users = $host->hr_users( );
ny $processes = $host->hr_processes( );
ny $date = $host->hr_date( );

print "(System date: $date) There are $users users running $processes processes
\n\n";

ny $storage_i ndex = $host->hr_sindex( );
ny $storage_descr = $host->hr_sdescr( );
ny $used = $host->hr_sused( );

foreach ny $index (keys %bstorage_i ndex) {
print "$storage_descr->{$index} is using $used->{S$i ndex}\n";

}



Note that $host - >hr _users( ) and $host - >hr _processes( ) are called out of %GLOBALS, and $host - >hr _si ndex( ) and $host -
>hr _sdescr( ) are called out of %FUNCS. And here is a sample run:

$ . /host. pl
Usi ng device sub class : SNWP::Info:: Host Resources

(System date: 2005-5-17,13:12:15:0,-4:0) There are 5 users running 85 processes

/hone is using 839925

/ is using 702477

Menmory Buffers is using 156044
Swap Space is using O

/ proc/bus/usb is using 0

Real Menory is using 909092
/sys is using O

$

SNMP::Info is a well-thought-out API. It is perfect for people who may not wish to think about the gory details of OIDs, MIBS,
etc. The downside is that if you are going to extend SNMP::Info, you need to know about these details. However, you may be in
a situation where you want to allow others to utilize SNMP to write scripts but aren't interested in spending a week teaching
people SNMP. You can instead hand someone this module with minimal instruction and they can become productive quite

quickly.

e prc |



e prcv |

11.13. Final Words

Our goal in this chapter was twofold: to provide both specific and generic scripts for system administration tasks. More to the
point, we wanted to show you what's possible and get you thinking about how you might write scripts that provide elaborate
custom monitoring features. If you're thinking creatively about what you can do with SNMP, we've succeeded.

e roc |



e prcv |

Chapter 12. MRTG

The Multi Router Traffic Grapher (MRTG) is a freely available and fully configurable trend analysis tool that's easy to configure
and use. It's a surprisingly small, lightweight package because it doesn't implement a heavyweight user interface. Instead, it
generates graphs in the form of GIF or PNG images; these graphs are embedded in standard HTML pages. Therefore, you can
view MRTG's output using any web browser and even make its reports visible across your network by using a web server.

Although MRTG is best at displaying usage graphs for router interfaces, it can be configured to graph things like memory usage,
load average, and disk usage on server equipment. MRTG is particularly useful for determining when something "peaks out" for
an extended period of time, which indicates that you have a capacity problem and need to upgrade. For example, you might find
that your T1 interface is maxed out during your peak business hours and you need to upgrade to a bigger circuit, or you might
find that you need to add more memory to a server. Likewise, MRTG may let you know that your network connections are
operating at a fraction of the available bandwidth and that you can therefore eliminate a few T1 circuits and reduce your
telecommunications costs.

Many sites that use MRTG use its default graphing capabilities for capacity planning and provisioning. MRTG doesn't provide the
fine-grained statistical tools you need to calculate baseline information or project when your network will need to be upgraded.
However, it can be a very useful tool for businesses that don't have the resources to purchase a full-fledged trend analysis
package. Baselines and projections are invaluable, but MRTG's graphs can give you similar behavior at a glance; your eyes are
very good at spotting typical behavior and trends, even if they can't give you the statistical analysis that managers might like.

MRTG has many options that allow you to customize how it operates. It is beyond the scope of this chapter to discuss every
option; instead, we will discuss how to install MRTG and use its default graphing capabilities. We'll also outline how you can
configure MRTG to gather system information from a server.

It's important to understand that MRTG is not an NMS solution. Although its graphing capabilities make it look superficially like
an NMS, it's really a simple polling engine that's very clever about the output it generates. It performs the same get functions
that an NMS would, but its job isn't problem detection and resolution. It doesn't have a facility for generating alarms or
processing traps, nor does it have the ability to set objects. It's simply designed to provide a graphical view of how your network
is performing. If you're interested in an open source NMS package, you should investigate OpenNMS
(http://www.opennms.org). This and other open source NMS packages are described in Appendix G.

e prc |



http://www.opennms.org

e prcv |

12.1. Using MRTG

Before using MRTG, you have to download and install the software. The primary MRTG web site is http://www.mrtg.org. The
download link takes you to a directory maintained by MRTG's inventor and primary developer, Tobias Oetiker
(http://people.ee.ethz.ch/~oetiker/webtools/mrtg/pub/). This directory contains some older MRTG releases, as well as the
current one. We downloaded the file mrtg-2.10.15.tar.gz (the Unix version) from the list. We will focus on that version in this
chapter.

MRTG requires four third-party packages to run: Perl Version 5.004_5 (or newer) and the gd, libpng, and zlib libraries. MRTG
comes with a Perl-based implementation of SNMP, so you don't have to worry about getting and installing any SNMP libraries.
You can determine what version of Perl you have (and whether it's installed) by typing the command perl -v. This may or may
not spit out a bunch of information. If it does, the first line will be the version of Perl you have installed. If you get some sort of
"command not found" error, Perl may not be installed. In any event, go to http://www.perl.com to get the latest version of Perl.

The gd library is used to generate the GIF images that MRTG displays. You can download it from http://www.boutell.com/qd/.
The other two packages, libpng and zlib, are also used for various aspects of graphic image creation. They are available from
http://sourceforge.net/projects/libpng/.

Once you have ensured that Perl, gd, libpng, and zlib are installed on your machine, download and unpack the Unix version of
MRTG with the following commands:

[root][linuxserver] > cd /usr/local
[root][linuxserver] > tar -zxvf mtg-2.10.15.tar.gz

Once it's unpacked, cd into the directory it created (which should be mrtg-2.10.15) and read the installation hints from the
README file. To build MRTG, you execute three commands:

[root][linuxserver] ~/nrtg-2.10.15> ./configure
[root][linuxserver] ~/nrtg-2.10.15> neke
[root][linuxserver] ~/nrtg-2.10.15> nmake install

All three of these commands produce a lot of output, which we have omitted. The configure command inspects your system for
tools it needs to build MRTG . It will tell you which items are missing and where to go to get them. Running make builds MRTG,
but don't bother running this if the configure command failed; MRTG will not build unless everything has been installed and
configured properly. Finally, make install installs MRTG and its associated files in the appropriate places. Again, don't bother
running make install if the previous make command terminated with errors. The default location for the MRTG executables is
/usr/local/mrtg-2/bin. You may want to add this directory to your search path.

Once you've built MRTG, you need to decide where to put the graphs it generates. Since MRTG's graphs are designed to be
viewed with a web browser, they're often stored in a directory that's visible to a web server. However, it really doesn't matter
where they go. What's more important is who you want to view the graphs. You probably don't want the world to see your
network statistics. On a small network, you can place the graphs in a directory that is out of view of the web server and then
use a web browser to view the HTML reports in the local filesystem. In a larger network, other people (e.g., other network staff
or management) may need to access the reports; to allow access without publishing your network statistics to the rest of the
world, you may want to set up some kind of a secure web server. At any rate, the next set of commands you'll want to execute
is something like this:

[root][linuxserver] ~/nrtg-2.10.15> nkdir -p /nrtg/inages
[root][linuxserver] ~/nrtg-2.10.15> cp ./images/nrtg*.gif /nrtg/inages/

The first command creates a directory for storing the graphs MRTG creates. The second command copies some MRTG images
into the newly created directory for later use in HTML files. For the remainder of this chapter, we will assume that graphs are
stored in /mrtg/images.

You're now ready to set up your first device to poll, which is called a target in MRTG. MRTG uses a configuration file to tell it


http://www.mrtg.org
http://people.ee.ethz.ch/~oetiker/webtools/mrtg/pub/
http://www.perl.com
http://www.boutell.com/gd/
http://sourceforge.net/projects/libpng/

what devices to poll and what options to apply to the creation of the graphs it will generate. The syntax of the configuration file
is complex, but MRTG provides a tool called cfgmaker to help you build it. You'll probably need to edit the file by hand, but it's
much easier to start with a working template. Here's how to execute cfgmaker:

[root][linuxserver] ~/nrtg-2.10.15> setenv PATH /usr/|ocal/nrtg-2/bin: $PATH
[root][linuxserver] ~/nrtg-2.10.15> nkdir /nrtg/run
[root][linuxserver] ~/nrtg-2.10.15> cfgmaker --global 'WorkDir: /nrtg/imges' \

--output /mrtg/run/nrtg.cfg public@0.0.0.1

The first argument to cfgmaker sets the Wr kDi r variable in the configuration file. This tells MRTG where to store any data it

gathers from the devices it's going to poll. The second argument specifies where we want cfgmaker's output sent; in this case
it's /mrtg/run/mrtg.cfg. The last argument specifies the device we want to poll and the community string to use when polling
that device; its format is community string@device.

The output from cfgmaker is a mix of commands and HTML. It performs getnext commands on the device you specified on the
command line to get an idea of how many interfaces your device has, which ones are up, which are down, etc. It walks the
iso.org.dod.internet.mgmt.mib-2.interfaces (1.3.6.1.2.1.2) tree to discover the total number of interfaces in this table. It then
creates logical entries that represent a list of devices to poll, except the list of devices is actually one device with each interface
number specified as a target. For example, TROOATL is in the second row of the interfaces table on our Cisco router, so
cfgmaker created a Target entry called 10.0.0.1_2. If this interface occupied the third row in the interfaces table, the Tar get
entry would be called 10.0.0.1_3.

Here's a shortened version of our mrtg.cfg file:

Enabl el Pv6: no
WorkDir: /nrtg/inages

Target[10.0.0.1_2]: 2:public@O0.0.0.1:
Set Env[10.0.0.1_2]: MRTG_INT_I P="10.0.0.1" MRTG_| NT_DESCR="Seri al 0/ 1"
MaxByt es[ 10. 0. 0.1_2]: 192000
Title[10.0.0.1_2]: Traffic Analysis for 2 -- TROOATL
PageTop[10.0.0.1_2]: <H1>Traffic Analysis for 2 -- TROOATL</H1>
<TABLE>
<TR><TD>Syst em </ TD> <TD>TROOATL in </ TD></ TR>
<TR><TD>Mai nt ai ner: </ TD> <TD></ TD></ TR>
<TR><TD>Descri ption: </ TD><TD>Serial 0/1 [ TRANSIT] T1 to NewSouth - CI D unknown </

TD></ TR>
<TR><TD>i f Type: </ TD> <TD>frane-relay (32)</TD></TR>
<TR><TD>i f Nane: </ TD> <TD>Se0/ 1</ TD></ TR>
<TR><TD>Max Speed: </ TD> <TD>192.0 kBytes/s</ TD></ TR>
<TR><TD>| p: </ TD> <TD>r out er 1</ TD></ TR>

</ TABLE>

It's worth learning a bit about the format of the configuration file. Comment lines begin with #; in a real configuration file, you'll
see many of them. Most of the lines in the file are either commands or snippets of HTML that will be used in MRTG s output
files. MRTG commands take the form of conmand[ key] : options. For example, the command for the third line is Tar get, the key
is 10. 0. 0. 1_2, and the options are 2: publi c@O0.0.0. 1. The key is an identifying string that groups entries in the configuration
file and provides a base filename for MRTG to use when generating graphs and HTML files. At a complex site, MRTG might be
used to monitor dozens of pieces of equipment, with hundreds of interfaces; the key keeps the configuration file in some
semblance of order. The options provide the actual parameters to the command.

This should help you understand the configuration file. The first line specifies the working directory in which MRTG will place its
graphs and HTML files. This is a global command, so no key is needed. The working directory is typically somewhere under a
web server tree so that MRTG's reports can be visible from a web browser. We've set ours to / nrt g/ i nages/ . The third line

(Tar get) tells MRTG which device it should poll. The format for this option is interface: community string@levice, or in our case,
2:public@o0.0.0.1 The device is specified by its hostname or IP address; we already know about community strings. Since
MRTG is only a data-collection tool, the read-only community string will suffice. i nt er f ace specifies which interface on the
device to poll, according to the device's ifTable. In this case, we're polling interface 4 in the ifTable.

The MaxByt es line sets up the maximum value for the parameters MRTG is going to read from this interface. By default, MRTG
reads ifInOctets and ifOutOctets. It tries to pick a reasonable maximum value depending on the interface's type, which it should
be able to read from the device itself. Since this is an Ethernet interface, MRTG sets MaxByt es to 192000. The Ti t | e specifies the
title for the HTML page generated for the graph. Finally, PageTop and the following lines tell MRTG what kind of information to



place at the top of the HTML page containing the usage graphs. The command contains actual HTML code, which was generated
by cfgmaker.

Altogether, this entry tells MRTG to poll for the default objects (ifInOctets and ifOutOctets) on entry 2 in the interface table for
the device 10.0.0.1. Therefore, MRTG will issue get commands for the OIDs .1.3.6.1.2.1.2.2.1.10.2
(iso.org.dod.internet. mgmt.mib-2.interfaces.ifTable.ifEntry.ifInOctets.2) and .1.3.6.1.2.1.2.2.1.16.2
(iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifOutOctets.2). By default, MRTG will generate the following graphs:

e Daily graph with 5-minute averages

« Weekly graph with 30-minute averages
» Monthly graph with 2-hour averages

e Yearly graph with 1-day averages

Once you've finished, try running MRTG by hand to see if there are any problems with the configuration script:

[root][linuxserver] ~/nrtg-2.10.15> nrtg /nrtg/run/nrtg.cfg

If MRTG has no problems with your configuration file, it will run with no configuration-file errors. If it does have problems, it will
give you a fairly verbose description of the problem. The first time you run MRTG, it will complain about not being able to find
any lodfiles. If you run MRTG three times, you'll see messages similar to these:

[root][linuxserver] ~/nrtg-2.10.15> nrtg /nrtg/run/nrtg.cfg

Rat eup WARNI NG/ hone/ kschm dt/ nrtg-2. 10. 15/ bin/rateup could not read the primary log file
for 10.0.0.1_2

Rat eup WARNI NG/ home/ kschmi dt/ nrtg-2.10. 15/ bi n/rateup The backup log file for 10.0
.0.1_2 was invalid as well

Rat eup WARNI NG/ hone/ kschni dt/ nrtg-2.10. 15/ bin/rateup Can't renmove 10.0.0.1_2.old
updating log file

Rat eup WARNI NG/ hone/ kschmi dt/ nrtg-2.10.15/bin/rateup Can't renanme 10.0.0.1 2.log to
10.0.0.1_2.0ld updating log file

Rat eup WARNI NG/ hone/ kschmi dt/nrtg-2.10. 15/ bin/rateup could not read the primary |og
file for 10.0.0.1_3

Rat eup WARNI NG/ hone/ kschmi dt/nrtg-2.10. 15/ bi n/rateup The backup log file for 10.0.
0.1 3 was invalid as well

Rat eup WARNI NG/ hone/ kschmi dt/ nrtg-2.10.15/bin/rateup Can't renmove 10.0.0.1_3.o0ld
updating log file

Rat eup WARNI NG/ hone/ kschmi dt/ nrtg-2.10. 15/ bin/rateup Can't renanme 10.0.0.1_3.lo0g to
10.0.0.1 3.0l d updating log file

[root][linuxserver] ~/nrtg-2.10.15> nrtg /nrtg/run/nrtg.cfg

Rat eup WARNI NG/ hone/ kschmi dt/nrtg-2.10. 15/ bin/rateup Can't renpve 10.0.0.1_2.o0ld
updating log file

Rat eup WARNI NG/ hone/ kschni dt/ nrtg-2.10. 15/ bin/rateup Can't renmove 10.0.0.1_3.o0ld
updating log file

[root][linuxserver] ~/nrtg-2.10.15> nrtg /nrtg/run/nrtg.cfg
[root][linuxserver] ~/nrtg-2.10.15>

As you can see, the first time we ran the program it spat out some errors. The second run produced only two errors, and the
last time it ran with no errors. These errors are normal when you run MRTG for the first time; don't worry about them.

Note that you may see the following when you run MRTG from the command line:

ERROR. Mtg will nost likely not work properly when the environnment
variable LANG is set to UTF-8. Please run nrtg in an environnent
where this is not the case. Try the follow ng command to start:



env LANG=C ./nrtg /nrtg/run/nrtg.cfg

Just follow what it suggests and MRTG will run just fine.

The next step is to make sure MRTG runs every five minutes. There's no need for MRTG to be run by root; any user will do. Add
a line like the following to the crontab entry for the appropriate user:

*/5 * * * * [usr/local/mtg-2/bin/mtg /mtg/run/nmrtg.cfg

This runs MRTG every five minutes of every day. Note that the */5 notation is Linux-specific; on other Unix systems, you'll have
to specify the times explicitly (0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55). If your network is fairly large, you might run into problems
if MRTG does not finish all its polling duties before the next polling cycle starts. If this is the case, setting a five-minute poll
interval may not be a good idea. You may have to experiment to determine a good interval for your environment.

e rrcv |



e prcv |

12.2. Viewing Graphs

Once you've generated some graphs, you will want to look at them to see the results. To make it easier to view the graphs,
MRTG comes with an indexmaker script that generates HTML index pages. Here's how to run indexmaker for a typical set of
graphs:

[root][linuxserver] ~/nrtg-2.10.15> indexnaker --title "Cisco to Internet" \

--filter nane=~'10.0.0.1" --output /nrtg/inages/cisco.htm /nrtg/run/nrtg.cfg

This command creates one index page with the five-minute average graph for each target you've specified in your mrtg.cfg file.
Keep in mind that the target is the interface from which you're gathering data. If you have four targets for your router, there
will be four graphs in the index file, all pointing to the daily, weekly, monthly, and yearly summary graphs for that target. The
title option tells indexmaker what title to use for the index file. filter name=~10.0.0.1 allows you to select some of the targets
in the mrtg.cfg file by using a regular expression: we told indexmaker to find all targets that include the string 10. 0. 0. 1. The
output option is the name of the index file. The final argument on the command line is the full path to the configuration file.
Table 12-1 gives a synopsis of these options as well as some other useful options to indexmaker.

Table 12-1. Command-line options to indexmaker

Option Description
title Specify a title for the HTML page.

filter Specify the regular expression that will be used to find a specific target from the mrtg.cfg file. These matched targets
are used to create the HTML report files.

output Indicate the full pathname for the HTML file that is to be generated. The default is standard output.
sort Sort how the graphs show up on the index page.

columns Arrange the graphs on the index page by x columns. The default is 2.

width Set the width of the graphs. This is not set by default.

height Set the height of the graphs. This is not set by default.

show Pick which graph to show on the index page. The default is day. Other options include week, nont h, year, and none.

To display the entire list of options to indexmaker, run the command without any options. Figure 12-1 shows how the cisco.html
file generated by indexmaker looks when it's loaded into a web browser.

There are four graphs on the page, one for each of the operational interfaces (interfaces that were up and running when we ran
cfgmaker) on our router. This page includes links to other pages that have more detailed information about individual
interfaces; Figure 12-2 shows the daily, weekly, monthly, and yearly traffic graphs for the TROOATL interface.

The daily graph (which actually represents a 32-hour period) is the one that most people are interested in viewing. It shows the
five-minute average of the traffic on this particular interface. Incoming traffic (iflnOctets) is represented by a green line;
outgoing traffic (IfOutOctets) is represented by a blue line. If we had clicked on one of the other interfaces on the Cisco index
page (Figure 12-1), we would have seen a similar graph.

Figure 12-1. Cisco graph overview



LR - s R e ey ) =
1 Mor@s Firetesd Hely || User Sepoan Fonm h‘l'lﬂ | MDD e (apedcan . | oS ol O3] ) Ut Dosslosth || Svs Adesn Maparing -

Cisco to Internet

Trullic Ansbysis for 2~ TREATL Trulfic Amsbysis for 3 - TRSATL

- o =

ey nosnnnensanurnasussnenonnsein f | Fhabl nomr mnpnsan i TR
g @8 § W
=ah l ‘ + Eoma i

Rt 1971 |

L (¥

BEOBE 34 0 B 8§ 4§ 8 3 08§83 34 40 e 3 B 34 33 B0 8 & 4§ & 53 N 18 4 34 & 4

wwrmes 7101

kel ol ks
i Dy Band sl ¥ g omne

Lo — -

That's all there is to viewing the graphs. MRTG stores the raw data it collects in a flat text file but, due to its intelligent log
rolling capabilities, the logfiles don't grow out of control; their sizes remain quite manageable even if you use MRTG

extensively.

e prc |



e prcv |

12.3. Graphing Other Objects

MRTG polls and graphs the MIB variables ifiInOctets and ifOutOctets by default, but it is possible to poll and graph the values of
other objects in addition to polling different kinds of devices. First let's get MRTG collecting input and output octets from a
server. To do this, run the following command:

[root][linuxserver] ~/nrtg-2.10.15> cfgmaker public@?27.0.0.1 >> /nrtg2/run/nrtg.cfg

This is almost identical to the command we ran earlier in the chapter, except for the community string and target[*1
(public@127.0.0.1). We appended the output to the mrtg.cfg file, as opposed to specifying an output file with the output option;
this lets us add a new host to the existing configuration file, instead of starting a new file. Because the existing file already
specifies a working directory, we also omitted the working directory option (global ' WorkDir: ..."' ). This cfgmaker command
adds a number of lines like the following to the configuration file:

[1 Make sure that your target is running an SNMP agent. See Chapter 6 for a discussion of how to configure several SNMP agents for Unix and Windows.

Target[127.0.0.1_2]: 2:public@?27.0.0.1:

Set Env[127.0.0.1_2]: MRTG_INT_IP="" MRTG_| NT_DESCR="et h0"
MaxByt es[ 127.0.0.1_2]: 12500000

Title[127.0.0.1_2]: Traffic Analysis for 2 -- box

PageTop[ 127.0.0.1_2]: <H1>Traffic Analysis for 2 -- box</Hl>
<TABLE>

Figure 12-2. Daily, weekly, monthly, and yearly graphs for EthernetO



e 1 Vi Aralynds Bor 5 - | HORAGL - Mogslia Linrkex

=]
[ide [t view Go lockmaks Tods b |
Traffic Analysis for 2 -- TROOATL

S TROOATL =

Mo

Evmamygsiin: Tawtal ¥ | [TANKIT) T | e Mmooty - CHD sl
Myp L

L
Ban Spewil 120 WBywes
I sotan |

Thor st s, e e o Vv, 18 Norwermlis 30600 08 [0
o s WM W s haos o o el s, T

Thalhy* (lrnph ot Vlmale & vermges

6.8 b

¥ e
g
5 waw
ok
8O0 B4 12 46 8 & 4 T & O WO OIA AT 1S
M YR ANA AT g O] WARA I s o IR 8 Py

B 00 A L e L A A e A R

Wikl Erwph (6 Minhe A varmgh

LT
_%- Qe
i oAk
[ AR
il Med Tua  Mes Gan  Bet i i e
L L o Ik LL ok TR e T

i A R 0 A N B R R ) 8
Al dreph o 8 Pl dorage s

Mk

Jal

g e
E 34

O e 90 et 42 ors 4 ] w42
M e B AN TR ot G DB ERAS PR Caeens D 1

Pt 0 T A g U RIS B (LR L U AL I
“Wpnrk" Ciraph i1 Dy A vorsged

4.8

g LR

e

£ 18

1‘HL'h:mﬂc'l'-plnq).ulA.|1I'|-,Oq:—l|-f¢t:r-ﬁbtcll:l--&:l |

- o
<TR><TD>Syst em </ TD> <TD>box in Atlanta, GA</ TD></ TR>

<TR><TD>Mai nt ai ner: </ TD> <TD>"kj s@uar ded. net "</ TD></ TR>
<TR><TD>Descri ption: </ TD><TD>et h0 </ TD></ TR>

<TR><TD>i f Type: </ TD> <TD>et her net Csmacd (6) </ TD></ TR>
<TR><TD>i f Nane: </ TD> <TD></ TD></ TR>
<TR><TD>Max Speed: </ TD> <TD>12.5 MBytes/s</TD></ TR>

</ TABLE>

These lines tell MRTG how to poll the server's Ethernet interface. The key used for this interface is 127. 0. 0. 1, and the target
number is 2. Why 2? Remember that cfgmaker walks the interface table to determine what entries to add to the configuration
file. Therefore, you'll see a set of lines like this for each interface on the device, including the loopback interface. The target
numbers are actually indexes into the interface table; on this server, the loopback interface has the index 1.

Now let's create an entry to graph the number of users logged onto the server and the total number of processes running.
MRTG is capable of graphing these parameters, but you have to specify explicitly which MIB variables to graph. Furthermore,
you have to specify two variablesMRTG won't graph just one. (This is a rather strange limitation, but at least it's consistent:
remember that the default graphs show both input and output octets.)

First, let's look at the MIB variables we plan to graph. The two variables, hrSystemNumUsers and hrSystemProcesses, are
defined as OIDs 1.3.6.1.2.1.25.1.5.6.0 and 1.3.6.1.2.1.25.1.6.0, respectively. The .0 at the end of each OID indicates that
these two objects are both scalar variables, not part of a table. Both come from the Host Resources MIB (RFC 2790), which
defines a set of managed objects for system administration. (Some agents that run on server systems implement this MIB, but
unfortunately, the Microsoft and Solaris agents do not.) The definitions for these objects are:



hr Syst emNuniJser s OBJECT- TYPE
SYNTAX Gauge
ACCESS r ead-only
STATUS mandat ory
DESCRI PTI ON
"The nunber of user sessions for which this host is storing state
information. A session is a collection of processes requiring a
single act of user authentication and possibly subject to collective
job control."
= { hrSystem5 }

hr Syst enProcesses OBJECT- TYPE

SYNTAX Gauge

ACCESS read-only

STATUS mandat ory

DESCRI PTI ON
"The nunber of process contexts currently |oaded or running on
this system"

::={ hrSystem®6 }

The entry we added to our configuration file looks like this:

Target[127.0.0.1_3]: 1.3.6.1.2.1.25.1.5.0&1.3.6.1.2.1.25.1.6.0: public@ocal host
MaxByt es[ 127.0.0.1_3]: 512
3]

Options[127.0.0.1_3]: gauge
Title[127.0.0.1_3]: Number of Users and Processes on | ocal host
YLegend[ 127.0.0.1_3]: Users/Processes
Legendl [ 127.0.0.1_3]: Users:
Legend(f 127.0.0.1_3]: Processes:
PageTop[ 127.0.0.1_3]: <H1>Nunmber of Users and Processes on | ocal host </ H1>
<TABLE>
<TR><TD>Syst em </ TD> <TD>box in Atlanta, GA</ TD></ TR>
<TR><TD>Mai nt ai ner: </ TD> <TD>"Kkj s@uar ded. net "</ TD></ TR>
</ TABLE>

The first line specifies the device we want MRTG to poll, along with the two OIDs (hrSystemNumUsers and hrSystemProcessess)
we want to graph. This statement is obviously more complex than the Tar get statement we looked at earlier; its syntax is

O D1&Q D2:comuni ty_string@devi ce. The OIDs must be separated by an ampersand character (&). Using this syntax, you can
convince MRTG to graph any two scalar-valued MIB variables.

In the next line, we set MaxByt es to 512. This is the maximum value for the graph; values greater than 512 are set to 512.
(Forget about bytes; MaxByt es simply defines a maximum value.) For the number of users logged in, this is a high number;
there should never be this many people logged onto our system at once. The same goes for the total number of processes
running on the system. You can choose values that make sense for your particular environment. If you need separate maximum
values for each object, replace MaxByt es with two lines setting MaxByt es1 and MaxByt es2.

The Opti ons command is a new one; it allows you to change how MRTG treats the data it gathers. The only option we have
specified is gauge. This instructs MRTG to treat the gathered data as Gauge data, not Count er data. Recall that Count er data is
monotonically increasing while Gauge data is not. Since the MIB definitions for both objects specify the Gauge datatype, this
option makes sense.

The YLegend, Legendl , and LegendO options are also new. YLegend simply changes the label that is placed on the Y-axis of the
graph itself. Since we're graphing the number of users and processes, we set the legend to Users/ Processes. It's important for
the legend to be short; if it's too long, MRTG silently ignores it and doesn't print anything for the label. Legendl changes the
legend used below the graph for the so-called "input variable" (in this case, the number of users logged into the
systemremember that MRTG expects to be graphing input and output octets). LegendO changes the legend for the "output
variable" (the total number of processes running on the system). The terminology is unfortunate; just remember that MRTG
always graphs a pair of objects and that the input legend always refers to the first object and the output legend refers to the
second.

Once you have added this entry to your configuration file and saved it, MRTG will start gathering data from the device every
time it runs. If you have added the appropriate entry in your crontab file, you're all set. Now we'll use indexmaker to create
intuitive index files for the server graphs, just as we did for the router graphs. The command to create a new index file is
similar to the one we used to create the Cisco index file:



[root][linuxserver] ~/nrtg-2.10.15> indexnaker --title "Linux Server" \

--filter name=~'127.0.0.1" --output /nrtg/images/linux.htm /mtg/run/nrtg.cfg

Figure 12-3 shows the index page for the server graphs. It contains only two graphs: one shows traffic on the Ethernet
interface and the other shows the number of running processes versus the number of users logged onto the system.

Figure 12-3. Linux server overview graphs

g i Servee o vaurdla 8 ineken

s BAF View Go Backeads  Toak  Help o ’
@ O B [ s rmagimges i et I+
Mo Fassbend etp ) e Supoon Fonen BPg e FAG () BRI GppRCEL. [ 0 ot CRA01 [ Libun 490 Doeisnts (] s Ao Magasee -
Linux Server
Traife Sambain b ! - Sambr B ers g Py s s b gBn
LS N - ta X
i (T T !‘:14 t
l TN E =] |I
; (T i 1T t i - "
- L B BN NN N RN o I8 M MO R 2 8 I MM M M DR

L= -

Figure 12-4 shows the daily, weekly, monthly, and yearly graphs for the number of users and processes logged into the system.

e prc |



e prcv |

12.4. Other Data-Gathering Applications

What if you need to monitor devices on your network that don't support SNMP? MRTG is up to the task. For example, you may
have a Perl script that gathers usage statistics from some device that doesn't support SNMP. How can you collect and graph this
data? Let's make this more concrete. Assume that you have the following script, /usr/local/scripts/hostinfo.pl, which reports the
number of users and the number of processes on the system:

#!/ usr/ bi n/ perl

$who = "/usr/bin/who | w -1";
$ps = "/bin/ps -ef h | w -1";

chonp($nunmUsers = int( '$who' ));
chonmp($nunProcesses = int( '$ps' ));

print "$numlsers\n";

print "$nunProcesses\n";

#

# The follow ng code prints the systemuptinme and the hostnane. These two

# itenms need to be included in every script that you wite and should be the
# very last thing that is printed.

#

Figure 12-4. Daily, weekly, monthly, and yearly graphs for number of users and processes



B Fuimbes of Laers snd Pigrioes o botalbosd ko

B S Yew (o [ockmadn  Joos  Heip L B
Number of Users and Processes on loealhost

T .
[ e

Pl s woms bt sl Bibifidtng, 18 Seriemibey Sl of §0: %
= i s " el s e T B

s e - [ e a0

™ T [— PR LTS T 100 WA
L L L T . BT 1 e P S04 B 0 T

Vemrh Cruph o) Duy A verege

PR
*

[ e
"
*

- s
W

M ol D ey Bal e Bay B R Pk Jan Do W el

e LE] T VR WA e L
Vi P 111 Bt 41500 g e 5.8 65070 b 5 B 978

i bty Tra o W o

BLUN o9 Oy Tl i Biyom oo e

Ln—-

L

chonp($uptinme = '/usr/bin/uptinme' );
print "$uptinme\n";

chonmp($hostname = '/bin/hostnane' );
print "$hostnane\n";

This script prints four variables: the number of users and the number of processes (the data we want MRTG to collect), and the
system uptime and hostname (required by MRTG). To get MRTG to run this script, we'll have to edit mrtg.cfg by hand. The
modification is actually simpler than our previous example. Here's the new entry to mrtg.cfg, with the changes shown in bold:

Target[linuxserver.users]: '/usr/bin/perl /usr/local/bin/hostinfo.pl'
MaxByt es[ | i nuxserver.users]: 512

Options[linuxserver.users]: gauge

Title[linuxserver.users]: linuxserver (linuxserver): Number of

users and processes

YLegend[ | i nuxserver.users]: Users/Processes

Legendl [ i nuxserver.users]: &nbsp; Users:

Legend( | i nuxserver. users]: &nbsp; Processes:

PageTop[ | i nuxserver. users]: <HL>Nunber of users and processes

</ H1>
<TABLE>
<TR><TD>Syst em </ TD> <TD>box in Atlanta, GA</ TD></ TR>
<TR><TD>Mai nt ai ner: </ TD> <TD>"kj s@uar ded. net "</ TD></ TR>
</ TABLE>

Note the addition of ' /usr/bin/perl /usr/local/bin/hostinfo.pl' to the Target command. This line tells MRTG to run the script
or program between the backticks. The rest should be familiar. MRTG interprets the first value that the script prints (the



number of users) as its input data; the second value (the number of processes) is the output data. When it generates graphs, it
applies the appropriate input and output legends (Legendl and LegendO).

e rrcv |



e prcv |

12.5. Pitfalls

Many SNMP-capable devices change the order of interfaces in the interfaces table whenever a new interface card is inserted or
an old one is removed. If you run a fairly static router environment (i.e., you hardly ever add or remove cards from your
routers), the configuration examples we've shown should work well for you. But in today's fast-paced network environments,
stability is rare. MRTG's cfgmaker command provides a command-line option, ifref, to help with this problem. It doesn't solve
the problem, but it does allow you to generate graphs in which interfaces are labeled with their addresses, descriptions, or
names; with this information, you don't have to remember whether interface 1 is your local network interface or your T1
connection. Table 12-2 summarizes the usage of ifref.

Table 12-2. Summary of --ifref options

Option Description

ifref=ip Identify each interface by its IP address.

ifref=eth Use the Ethernet address to identify the interface.
ifref=descr Use the interface description to identify the interface.

ifref=name Use the interface name to identify the interface.

Thus, to label interfaces with their IP addresses, run cfgmaker like so:

[root][linuxserver] ~/nrtg-2.10.15> cfgmaker --global 'WorkDir: /nrtg/imges’ \

--output /mrtg/run/nmrtg.cfg --ifref=ip public@outer

Be sure to read the cfgmaker manual that comes with the MRTG documentation.

e rrc |



e prcv |

12.6. Getting Help

The MRTG web site, http://www.mrtg.org, offers a great deal of information and help. You can subscribe to the MRTG mailing
list from this page. MRTG is also discussed frequently in the Usenet newsgroup comp.dcom.net-management. Finally, don't
ignore MRTG's documentation, which is located in the doc subdirectory of the MRTG distribution. The documentation is included
in both text and HTML form and is fairly complete and comprehensive.



http://www.mrtg.org

e prcv |

Chapter 13. RRDtool and Cricket

This chapter discusses RRDtool and Cricket. RRDtool, written by the author of MRTG, was meant to be a replacement for MRTG.
Instead, MRTG lived on and RRDtool found a place all its own in the world of network performance management. Unlike MRTG,
RRDtool has a plethora of frontends written by people all over the world. One of the first and most widely known is Cricket. This
chapter shows how to install RRDtool and Cricket on Unix. RRDtool can certainly be used alone, but the goal of this chapter is to
demonstrate the easiest and quickest way to get up and running with both tools.

e Py



e prcv |

13.1. RRDtool

RRDtool is the Round Robin Database Tool. Round robin is a technique that works with a fixed amount of data and a pointer to
the current element. Think of a circle with some dots plotted on the edgethese dots are the places where data can be stored.
Draw an arrow from the center of the circle to one of the dotsthis is the pointer. When the current data is read or written, the
pointer moves to the next element. After a while, all the available places are used and the process automatically reuses old
locations. This way, the dataset does not grow in size and therefore requires no maintenance. RRDtool works with Round Robin
Databases (RRDs). It stores and retrieves data from them.

RRDtool originated from MRTG, which we cover in Chapter 12. MRTG started as a tiny little script for graphing the use of a
university's connection to the Internet. MRTG was later used (some might say abused) as a tool for graphing other data sources,
including temperature, speed, voltage, number of printouts, and the like.

Most likely you will start to use RRDtool to store and process data collected via SNMP. The data will probably be bytes (or bits)
transferred from and to a network or a computer. But it can also be used to display tidal waves, solar radiation, power
consumption, the number of visitors at an exhibition, the noise levels near an airport, the temperature at your favorite holiday
location, the temperature in the fridge, or whatever your imagination can come up with. It's incredibly flexible.

You need only a sensor to measure the data, and the ability to feed the numbers into RRDtool . RRDtool then lets you create a
database, store data in it, retrieve that data, and create graphs in PNG format for display on a web browser. The PNG images
are dependent on the data you collect, and they could represent, for instance, an overview of the average network usage, or
the peaks that occur.

This chapter focuses on installing RRDtool and Cricket. Cricket is used to gather SNMP data points, store the data in RRDtool,
and display the data in graphs.

13.1.1. Installing RRDtool

The latest version of the software can be found at http://www.rrdtool.org. RRDtool requires that you install several third-party
libraries, including libart, libpng, zlib, freetype, and cgilib. Luckily, you can find copies of these packages at
http://people.ee.ethz.ch/—oetiker/webtools/rrdtool/pub/libs. However, if you wish to go directly to home pages for these
packages and download them from the source, when you run RRDtool's configure script it will tell you what packages you don't
have installed and where you can obtain them. You will need Perl installed (if it isn't already) and a C compiler like gcc. Once
you have downloaded and untarred the RRDtool distribution, use these three commands to build and install it:

[root @machine rrdtool -1.2.9]# ./configure --enable-perl-site-install
[root @machi ne rrdtool -1.2.9]# nmake
[root @mchine rrdtool -1.2.9]# naeke install

Note the option passed to the configure command. This installs the RRDtool Perl modules, used by Cricket, in the normal Perl
site location. These commands produce a good amount of output. Once installed, RRDtool will be, by default, stored in
/usr/local/rrdtool-1.2.9. If you wish to change this directory, run configure like this:

[root @mchine rrdtool -1.2.9]# ./configure --prefix= /path/to/install

That's all you need to do. Next we show how to install, configure, and use Cricket.

e rrcv |


http://www.rrdtool.org
http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/pub/libs

e prcv |

13.2. Cricket

Cricket can be loosely associated with MRTG because it is an interface to RRDtool. It facilitates the following:

« Data gathering (using SNMP, command-line tools, and so on)

« Creating RRDtool database(s)

- Updating data points in the RRDtool database

e Presenting accumulated data (over time) as graphs in a web page

Cricket allows users to view graphs over the following time periods:

e Daily

- Weekly
- Monthly
e Yearly

The main web site for Cricket is http://cricket.sourceforge.net.

13.2.1. Cricket's History

While working for WebTVZ1 in 1998, Jeff Allen originally conceived of Cricket. Jeff wanted to find a way to reduce the
complexity of WebTV's MRTG configuration and deployment. At that time, Tobias Oetiker, author of MRTG, released RRDtool.
Once Jeff saw RRDtool, he began to see how its design could aid in solving many of WebTV's MRTG woes. MRTG had been known
as the tool used for graphing router data. Jeff wanted a new way to graph other things as well, like data from servers.

[TWebTVis now MSN TV.

13.2.2. Cricket's Config Tree

Understanding the config tree is critical to understanding how to use and modify Cricket. Everything Cricket knows it learns
from the config tree. That includes things like which variables to fetch for a certain type of device, how to fetch those variables,
which devices to talk to, and the device types. The inheritance property of the config tree applies equally to all types of data,
making it possible to create a concise description of a large, complicated set of monitored devices.

At the top of the config tree is a file called Defaults. It contains default values for things like OIDs Cricket polls frequently. The
config tree is made up of subdirectories which create logical devices, systems, and so on, from which Cricket may be asked to
gather data. An example config tree might look like Figure 13-1.

In this tree, we have two subtrees systemperf and routers. These two subtrees represent groups of targets that are interesting.
For example, systemperf may be Unix systems from which we wish to gather CPU and disk information, and routers may contain
Cisco devices for which we want to gather per-interface usage statistics.

Each subtree has a file called Targets. This file contains information about what devices Cricket will actually poll. The filename
used is arbitrary since Cricket will discover the file and the contents on its own. Also notice how the systemperf subtree has a
Defaults file and the routers subtree does not. This means the systemperf subtree can override default values found in the top-
level Defaults file. Since it has no specialized Defaults file, the routers subtree uses the top-level default values.

Figure 13-1. Sample config tree


http://cricket.sourceforge.net

| cricket-config/ i

This config tree also allows Cricket to parallelize its data-gathering techniques. We'll discuss Cricket parallelization in a little
more detail later in the chapter.

13.2.3. Installing Cricket

Cricket requires some Perl modules to be in place before you can begin using it. A list of these modules can be found at
http://cricket.sourceforge.net/support/doc/beginner.html. Once you have downloaded Cricket, create a user on the system on
which you plan to run Cricket. We will use cricket as the username in all of the examples. Here are the initial steps to install
Cricket:

cd ~cricket

tar zxvf cricket-1.0.5.tar.gz
cd ~cricket/cricket-1.0.5

sh configure

cd ~cricket

$In -s cricket-1.0.5 cricket

* BB BB

The sh configure command updates the Perl scripts to point to where your Perl interpreter is installed. The symbolic link makes
it easier to install future versions. If you always reference ~cricket/cricket, nothing should break.

Next, copy the sample Cricket configuration file and edit it:

$ cd ~cricket/cricket
$ cp cricket-conf.pl.sanmple cricket-conf.pl

When you edit the file, make sure the variable $gCri cket Home points to the home directory for the Cricket user, in our case,
/home/cricket. Next, make sure $gl nst al | Root points to the location where you installed Cricket. Here's what our file contains:

$gCri cket Home = "/ hone/cricket”;
$gl nstal | Root = "$gCri cket Hone/ cricket";

We show how to configure Cricket to gather information on a Unix host. To set up the initial config tree to accomplish this, do
the following:

$ nkdir cricket-config
$ cp -r cricket/sanple-config/systenperf/ cricket-config/
$ cp cricket/sanpl e-config/Defaults cricket-config/


http://cricket.sourceforge.net/support/doc/beginner.html

Later we'll talk about how to add other devices for Cricket to monitor.

Now we need to get the graphing component of Cricket set up. This requires a running instance of Apache. We created a
public_html subdirectory in the Cricket user's directory. From there, we need to set up the environment:

$ cd ~cricket/public_htm

$ nkdir cricket

$ cd cricket

$In -s ~cricket/cricket/VERSION .

$ In -s ~cricket/cricket/grapher.cgi
$In -s ~cricket/cricket/nni-graph.cgi
$1n -s ~cricket/cricket/lib .

$ In -s ~cricket/cricket/images .

That's it. We are now ready to configure and begin using Cricket.

13.2.4. Configuring and Using Cricket

Since we will be monitoring a Unix system, we need to set up the Cricket configuration properly. Luckily, Cricket comes with
several scripts that make it easy to set up various configurations to monitor many types of devices. Let's look at one we can use
to set up our Unix box (assume we are in /home/cricket):

$ cricket/util/systenPerfConf.pl --host 192.168.1.69 \

--comunity public --auto > cricket-config/systenperf/Targets

This command uses SNMP to gather various bits of information about the host and stores these details in cricket-
config/systemperf/Targets. The - -auto configuration switch instructs the script to discover what it can with regard to what MIBs
the box may support.

The next step is to compile the configuration into a format that both Cricket and RRDtool can use:

$ cricket/conpile

[ 05-Jun-2005 17:39:40 ] Log level changed fromwarn to info.

[05-Jun-2005 17:39:40 ] Starting conpile: Cricket version 1.0.5 (2004-03-28)
[05-Jun-2005 17:39:40 ] Config directory is /home/cricket/cricket-config

[ 05-Jun-2005 17:39:40 ] Processed 13 nodes (in 3 files) in 0 seconds.

This sets the stage for actually gathering data. We can do a quick trial run of the collector by running the following command:

$ cricket/collector /systenperf
[05-Jun-2005 17:39:58 ] Log |l evel changed fromwarn to info.
[05-Jun-2005 17:39:58 ] Starting collector: Cricket version 1.0.5 (2004-03-28)

[05-Jun-2005 17:39:58 ] Retrieved data for hr_sys (0): 60,5
[05-Jun-2005 17:39:58 ] Retrieved data for ucd_sys ( )

455947, 168, 74908, 10090430, 24148, 522072, 546220, 0. 11, 0. 08, 0. 02
[05-Jun-2005 17:39:58 ] Retrieved data for if_lo (1)
15722669, 15722669, 0, 0, 93777, 93777

[05-Jun-2005 17:39:58 ] Retrieved data for if_ethO (2)

52684451, 22813456, 0, 0, 129146, 115315

[05-Jun-2005 17:39:58 ] Retrieved data for if_ethl (3): 0,0,0,0,0,0
[05-Jun-2005 17:39:58 ] Retrieved data for disk_root (4): 225570, 381139
[05-Jun-2005 17:39:58 ] Retrieved data for disk_boot (5): 5912, 46636
[05-Jun-2005 17:39:58 ] Retrieved data for disk_honme (6): 101004, 507980
[05-Jun-2005 17:39:58 ] Retrieved data for disk_usr (7): 242226,1393492
[05-Jun-2005 17:39:58 ] Retrieved data for disk_var (8): 34853, 256667



[ 05-Jun-2005 17:39:58 ] Processed 10 targets in 0 seconds.

Notice the argument passed to the collector: / syst enperf. This is the directory name under ~cricket/cricket-config/ where the
configuration for our Unix box is stored. Now we want to set up the interval at which we will poll our Unix system. Edit the file
~cricket/cricket/subtree-sets. It should look like the following:

# This file lists the subtrees that will be processed together in one
# set. See the comrents at the beginning of collect-subtrees for nore info.

# This will be passed to collector so it can find the Config Tree.
# |If this directory does not start with a slash, it wll

# have $HOVE prepended.

base: cricket-config

# this is where logs will be put. (The $HOVE rul e applies here too.)
logdir: cricket-Iogs

set nornmal :
/routers
/router-interfaces

Change the end of the file so that it looks like this:

# This file lists the subtrees that will be processed together in one
# set. See the comments at the beginning of collect-subtrees for nore info.

# This will be passed to collector so it can find the Config Tree.
# |If this directory does not start with a slash, it wll

# have $HOVE prepended.

base: cricket-config

# this is where logs will be put. (The $HOVE rul e applies here too.)
logdir: cricket-1ogs

set nornmal :
/ syst enper f
#/routers
#/ router-interfaces

We'll talk about the /routers and /router-interfaces subtrees in a moment. Now, as your Cricket user, run crontab -e and add
the following entry:

*/5 * * * * [home/cricket/cricket/collect-subtrees nornal

This notation works on Linux systems and will run the collect-subtrees command every five minutes. The argument passed to
this command (normal) corresponds to the subtree-set in the subtree-sets file we just edited. The collect-subtrees command
gathers data for all the subtrees configured beneath normal.

Now, you should be ready to access the main Cricket screen. The URL we used is
http://192.168.1.69/~cricket/cricket/grapher.cgi. Of course, you'll need to insert your own IP address and username in the
URL. Figure 13-2 shows the main Cricket screen.

Figure 13-2. Main Cricket screen


http://192.168.1.69/~cricket/cricket/grapher.cgi

X Cliuse o Laigeet : - Mugilla Flisfux E
Ble E# Yew Gn Bwkmwds ok e Qo
o - o - B P T |1 Hmine.ian safeerickstiiciotionscher ro G e

& Frofon el %8 Frefon Support [ g FAQ [ Cot FAQUITE [ Sofan TechBocke 0., 57 SecurityFocus HOME. .. "

Choose a target :

Directories yon can jump to:

WNams DF.;’!'I'![II‘JI‘III
svstemperf
Tag search |
Crncket For questions or comments about thie dats, contact the Cnclest
Version 105 Admms
B [ — | rrdnet G Fed e (2] Ha ] match ease
-t.-l.'lli

Clicking on the systemperf link takes you to a page that looks like Figure 13-3.

What we see here are various links to things like the number of users and processes on the system, traffic statistics for the
various network interfaces, and other system-specific variables.

Figure 13-3. Data variables captured for Unix system



e O fon G0 (edwads Jxb Lo Qo
G-y - B D O U rennse 1001660 cicketioichetiorscher cotarget < sytemoet

Qmm:mw.mm o e FRQUITE ] Salen Techbocks 0 B Sacunyfoos o

Targets that are avallable:

Namw

br_sysen 192 168 169
[Droccascs [ Uaces |

ucd oy om 192 168169
Lepu ) [ Memmory 1 Load |
o Jo on 192 168.1.69

£_ctil on 192 163169

LCxtets | | UeuniPackets | [ Esposy

|# o system processes mnd users
|CPY, bemory. and Load

btk acinaty om bo

L Ostets ] [ Ucan? [Emrors ] |network actaey on cth0
o ethl on 152168165 |
[ Octete 1 VeastPackens [ Ervors ) [Pe70ork 3ctey ca el
{dakee_sll cm 197 168 1 69 (aggregated
tayris) | Doeide, ervager (il dives)
[ S |
dite_rack cn 192 163 | 69 |
=i | donl
LS i Eytes used on
dack. booton 192168163 |
[ Searaae | |Byter wied on fbost
Ihh;-;:? on 192 168 1 &9 :Itybum.'hmlhm
duk,\_wmlﬁi: 168. 1.6% :T:‘mr:uud.uhﬂ
desk. var om 192 168.1.65 1
[ Storage 1 | Byt ured on ivat
Tageewreke | 0 Ruthemil Tumry:
< Crcket

For apeestons on commemends shoul ey data, contact the Crchort Adnon

Verpon 103

=

Y rels

Bre] IO
e

t € ped s [ Matetcame

Let's now look at some
users on the system.

of the graphs that the /systemperf subtree has created. Figure 13-4 shows a graph of the number of

This sort of graph can be useful because it shows, over time, how many users are logged onto the system. Let's say you come
into the office on Monday morning and notice that on Saturday night the number of users jumped from its normal number of 5
to 10 for a 15-minute period. No one was supposed to be on the system over the weekend beyond the five you already know
about. This could tip you off that your system has been compromised and that you should investigate immediately.

Figure 13-5 shows a graph of processes running on the system.

Figure 13-4. Number of users on the system

6.0
= |
= 5.0
=2
4.6
00:00 06:00 12:00 18:00 00:00 06:00 12:00
@ # of Users




Figure 13-5. Number of processes on the system

Processes

ad:00 08:00 12:00 18:00 o0:00 a6:00 12:08
B # of system Processes

Figure 13-5 can be useful to watch how a critical server is utilized. If you are routinely seeing your web server's process load
spike very high in the middle of the day, this graph can help pinpoint contributing suspects. Perhaps you are running a database
on the server as well and certain users are generating routine reports at that time of the day. This could be your first clue that
it is time to move the database off the web server.

Figure 13-6 shows CPU utilization.

Watching CPU utilization can also be very telling. If you see spikes in utilization that remain high for periods of time, you can
use the time axis to cross-reference system logs to identify which processes are impacting the system.

Figure 13-6. CPU utilization

0ot
s | |
ae
70
60
50
40
EL)
20
1a

Lu_ - : Ly

00:00 06:90 12:00 18:00 00:00 06:00 12:00
B ucd_rawcpuuser [lucd_rawcpunice [@ucd rawcpusystem

Figure 13-7 shows bits in and out on the system's Ethernet interface. This can be useful, for example, to determine when your
system is saturating its connection to the Internet. If the time that the traffic surge occurs is questionable, you might look into
whether someone is performing illegal file transfers at 2 a.m.

Figure 13-7. Ethernet utilization



bits per second
W
L'
x

ao:00 Q6:00 12:00 18:00 oo:00 Q6:00 12:90
@ Average bits in W Average bits out

13.2.5. Gathering Router Data

A discussion about Cricket wouldn't be complete without explaining how to configure it to gather data from your Cisco routers.
We need to set up our config tree:

$ cd ~cricket
$ cp -r cricket/sanple-config/routers/ ./cricket-config/
$ cp -r cricket/sanple-config/router-interfaces/ cricket-config/

First, the routers subtree gathers variables such as temperature, CPU utilization, and so on. You will most certainly want to edit
the default values in cricket-config/routers/Targets. Here is a sample from this file:

target nmin-router
target-type=Ci sco- 7500- Rout er
short-desc = "Main router”

The target clause is the hostname of the router from which you wish to gather data. t ar get - t ype is the type of Cisco device.
Cricket currently supports the following:

» Cisco-2500-Router

« Cisco-3600-Router

e Cisco-7200-Router

» Cisco-7500-Router

It supports only these routers because Cricket uses Cisco-specific private MIB objects to gather temperature, CPU information,
and so on.

Finally, short-desc is as the name implies: a short description of the device. Try to make this as meaningful as possible in case
other people have to interpret this device's graphs. If you have other routers you wish to add to this file, go ahead.

Next we will want to configure the router-interfaces subtree. This tree does not have the Cisco-specific version restriction, so
most any router can reside under this subtree. The file we are concerned with is cricket-config/router-interfaces/interfaces. Here
is a sample from this file:

target --default--
router = bsn-router

target Serial0 0 5
interface-nane = Serial 0/0/5
short-desc = "T1l to Nebraska"



The line router = bsn-router tells the collector that a router target is defined and each subsequent target configuration denotes
an interface on the routerin our case, bsn-rout er about which Cricket should gather interface statistics. It may seem like a
daunting task to keep this file up-to-date. Well, don't fear. As with the systemperf example, there is a tool to help gather
interface configurations from your routers. Here's a sample run:

$ cd ~cricket
$ cricket/util/listlnterfaces router public > cricket-config/router-interfaces/ \
interfaces

The listinterfaces command discovers all interfaces on the router and creates configurations for each of them. The downside to
this is you may end up with router interfaces you don't care to graph. If this is the case, just edit the interfaces file and remove
the entries you don't want.

Now that we have changed the config tree, we must recompile it:

$ cricket/conpile

"_} This is important to note. Each time you change the config tree, you must recompile it. Otherwise, your
s changes will not take effect.
N
!

The final step is to edit the subtree-sets file and reinstate these two subtrees:

# This file lists the subtrees that will be processed together in one
# set. See the comments at the beginning of collect-subtrees for nore info.

# This will be passed to collector so it can find the Config Tree.
# |If this directory does not start with a slash, it wll

# have $HOME prepended.

base: cricket-config

# this is where logs will be put. (The $HOVE rule applies here too.)
logdir: cricket-1ogs

set nornal:
/ syst enper f
/routers
/router-interfaces

Here we have uncommented the /routers and /router-interfaces subtrees. The next time the collect-subtrees command runs, it
will begin gathering data for these two new trees.

Figure 13-8 and Figure 13-9 show two router interface graphs.

Figure 13-8. Fast Ethernet routing instability during peer handoff



48 M

S niih b A E S |

bits per second

i@ H

| Bfvarage bits in B Average bits out

The two graphs show router instability occurring in a service provider's peer network. During the event, about 10 Mb/sec of
traffic shifted over to the second peer.

Figure 13-9. Handoff to another peer during router instability

S o i S |

lE 15 H
E
E en

| sH

2R e 2s:02 12100 18500 ea e L 12109

| O fverage bits in Il Average bits out

Cricket helped discover the nature of the problem. The outbound traffic failed over to a nonoptimal but functional link. After the
instability passed, the traffic returned to normal.

13.2.6. Command-Line Data Sources

Cricket is capable of executing commands instead of issuing SNMP queries. To help you to understand how Cricket does this, we
will show how to switch one of the systemperf data sources from using SNMP to using a command-line tool.

First, let's look at the cricket-config/systemperf/Defaults file. Ellipses (...) show where we truncated the file for brevity.

target --default--

server =
snnp- host = Userver%
di spl ay-name = "%auto-target-nanme% on %erver%
m n-size =0
nex- si ze = undef

abD hr Syst emNuniJser s 1.3.6.1.2.1.25.1.5.0

##### Dat asour ces #H#H#HH#HH

dat asour ce hr Syst emNunisers
ds-source = snnp: // ¥%snnp% hr Syst enNuniJser s
rrd-ds-type = GAUGE



#i### Target Types #H##H#H#H#HH
target Type hr_System
ds = "hr Syst enProcesses, hrSystem\uniJsers"
view = "Processes: hrSystenProcesses, Users: hrSystenmNunisers”

####H O aphs #####HH#H#H#HH TR
graph hr Syst emNuniJser s

col or = dark-green
dr aw as = AREA

y-axis = "Users"
units = "Users"

| egend = "# of Users"
precision = integer

The first configuration block is a default setting for target. Cricket uses target as a generic term for a variable or set of variables
that will be gathered and/or graphed for a device. The default target sets snnp- host to %erver % which is defined in our Targets
file. The di spl ay- nane is set to "%aut o- t ar get - nane% on Y%erver % . The aut o-t ar get - nane is set to the target name (more on
this in a moment). The ni n-si ze and max- si ze are used later in the Defaults file for graph configuration.

The next section of the Defaults file sets various OIDs we wish to use in our data sources. The data sources section sets up each
piece of data we wish to gather. Here we show the data source for the number of users on the system. The line:

ds-source = snnp: // ¥%snnp% hr Syst enNuniJser s

shows the basic syntax for SNMP polling. The convention used is specific to Cricket and resembles a URL. Basically, Cricket will
SNMP poll hr Syst emNunUser s. But how does it know what community string to use? Recall that the top level of the config tree
has a Defaults file. Looking near the top of the file reveals:

Tar get --defaul t--
dataDi r = %ut o- base% ../ cricket-data/ ¥%aut o-t ar get - pat h%
emai | - program [ usr/bin/ mail x
rrd-datafile %lat aDi r % %aut o-t ar get - nane% rrd

rrd-poll-interval = 300

persi stent-al arnms = fal se

snnp- host = %aut o-t ar get - nane%

snnp- conmuni ty = public

snnp- port = 161

snnp-ti meout =20

snnp-retries =5

snnp- backof f =1.0

snnp- ver si on =1

snnp = %snnp- communi t y%@snnp- host % %snnp- port % ¥%snnp- ti neout %
osnnp-retries% %snnp- backof f % % nnp- ver si on%

sumrary- 1| oc = top

show- pat h = no

The Defaults file configures variables like community string, port, and version. Set these defaults to suit your requirements. But
what if you need to use different community strings, for example, for different config subtrees? If this is the case, you can
replicate variables like snnp- communi ty in the particular subtree's Defaults file and Cricket will use them instead of the top-level
defaults.

The next section of the systemperf Defaults file sets the target types. The target type in the example configuration is hr _System
The line:

ds = "hr Syst enProcesses, hrSystem\uniJsers"



defines the data sources that make up this target type: hr Syst enProcesses and hr Syst emNuniJser s.
Finally, the graph configuration for hr Syst enNuniJser s is shown.

Running a command to gather hr Syst emNuniser s instead of using SNMP is as easy as changing the following line of code:

ds-source = snnp: // ¥%snnp% hr Syst enNuniJser s
to this:
ds-source = "exec:0:/usr/bin/who | /usr/bin/wc -1"

Cricket supports the exec option for the ds- sour ce identifier. Basically, it is interpreted like this:

exec:out put _|ine_to_grab: command

The out put _I i ne_t o_grab argument is meant for commands that may return multiple lines of output. The first line starts at O,
the second line at 1, and so on. The who command returns only one line of output, but notice how the data is returned:

$ /usr/bin/who | /usr/bin/we -I|
5

There is whitespace before the 5. This is alright since Cricket will ignore leading whitespace until it finds a floating-point (or
integer) number.

e If your Cricket instance will be managing remote devices, running a command like who won't work at
P all. It is presented here merely as an example of how to configure Cricket to run commands. Of course,
W . . . . -
*. 4. you can execute scripts or programs that work over a network, which is really the point of allowing

arbitrary programs to be run.

13.2.7. Parallelizing Cricket

One advantage to Cricket's config tree is that you can break the tree into logical groupings and have Cricket gather data from
each tree (or groups of trees) in parallel. Recall our subtree-sets file:

# This file lists the subtrees that will be processed together in one
# set. See the commrents at the beginning of collect-subtrees for nore info.

# This will be passed to collector so it can find the Config Tree.
# |If this directory does not start with a slash, it wll

# have $HOVE prepended.

base: cricket-config

# this is where logs will be put. (The $HOVE rul e applies here too.)
logdir: cricket-Iogs

set nornmal :
/ syst enper f
/routers
/router-interfaces



If we change the end like this:

# This file lists the subtrees that will be processed together in one
# set. See the comments at the beginning of collect-subtrees for nore info.

# This will be passed to collector so it can find the Config Tree.
# |If this directory does not start with a slash, it wll

# have $HOME prepended.

base: cricket-config

# this is where logs will be put. (The $HOVE rule applies here too.)
logdir: cricket-1ogs

set servers:
/ syst enper f

set routers:
/routers
/router-interfaces

we have created two separate subtree sets: one for servers and the other for routers. The next step is to edit our crontab file
and change it like this:

*/5 * *x * * [home/cricket/cricket/collect-subtrees servers
*/5 * * * * [home/cricket/cricket/collect-subtrees routers

This will cause two separate collect-subtree commands to run. The first one will collect data for the /systemperf subtree and the
other will collect for the /routers and /router-interfaces subtrees.

If you have a machine that is underpowered with respect to CPU and memory, you will want to limit how many of these collect-
subtrees you configure. At the very least, try to stagger the times when each one begins. For example, one can start every five
minutes, the next every six minutes, and so forth. This technique is also not foolproof, however. Because of variations in how
operating systems perform with respect to clock-based activities, you are not guaranteed that something in cron that is
scheduled to start every five minutes will start precisely 300 seconds after the last crontab entry. It could be off by a few
microseconds, a few milliseconds, or even a few seconds. Depending on how many such activities you have scheduled and the
limitations of the hardware in question, this could make a difference in performance.

13.2.8. Help with Cricket

This chapter only briefly described how to use Cricket. To learn more about Cricket, check out the following web pages:

http://cricket.sourceforge.net/support/doc/reference.html

The Cricket Reference Guide describes in detail how to configure Cricket.

http://cricket.sourceforge.net/support/doc/new-devices.html

This page shows how to add new devices to Cricket.

http://cricket.sourceforge.net/support/doc/

The main source for Cricket documentation.

e prcv |


http://cricket.sourceforge.net/support/doc/reference.html
http://cricket.sourceforge.net/support/doc/new-devices.html
http://cricket.sourceforge.net/support/doc/

e prcv |

Chapter 14. Java and SNMP

So far, we have shown how to use Perl scripts to perform SNMP tasks. In this chapter, we will show how to use Java to create
SNMP applications. Java is not widely used in system and network administration circles, but there are those who have made
the leap from scripting language to object-oriented language. While Java is an object-oriented language, you don't have to be
an object guru to use Java.

Java has similar advantages to Perl. It's platform independent with built-in support for network sockets and threading. One
advantage that Java has over Perl is that it can outperform Perl for certain types of tasks. Perl is commonly regarded as being
well suited for processing text since its regular expression handling is very good. Java also has regular expression support and
can generally outperform Perl in this regard. Java also has the advantage of the HotSpot compiler. HotSpot allows for a long-
running Java program to be self-optimized over time. This is something that traditional compiled languages like C and C++ do
not have and is also not found in Perl. Another advantage to Java is that creating multithreaded applications is very easy.

e rrc |



e prcv |

14.1. SNMP4J

The SNMP API presented in this chapter is SNMP4J. The current version is 1.5 and it works with Java 1.4.1 or later. It is
released for free under the Apache software license. You can obtain a copy of SNMP4J from http://www.snmp4j.org. The
library's design is patterned after the successful SNMP++ C++ library whose early versions were developed by HP.I*1 Because
of its roots, SNMP4J has a clean and easy-to-use APl. SNMP4J's features include:

[THP no longer develops or supports SNMP++. Frank Fock and Jochen Katz have taken SNMP++ and added SNMPv3 support. See http://www.agentpp.com for details.

« SNMPv3 with MD5 and SHA authentication and DES and AES 128, AES 192, and AES 256 privacy.
¢ Pluggable Message Processing Models with implementations for MPv1, MPv2c, and MPv3.
« All PDU types.

« Pluggable transport mappings. UDP and TCP are supported out of the box.

¢ Pluggable timeout model.

¢ Synchronous and asynchronous requests.

-« Command generator as well as command responder support.

« Java 1.4.1 or later.

e Logging based on Log4J but supports other logging APIs like Java 1.4 Logging.

« Row-based efficient asynchronous table retrieval with GETBULK.

« Multithreading support.

¢ JUnit tests (coming in release 2.0).

SNMP4J has a built-in thread pool model. This means that you can specify the number of threads that respond to and process
incoming requests, making your SNMP applications highly efficient.

At this writing, the maintainers of SNMP4J have released an SNMP agent APl based on SNMP4J. It is currently in the early alpha
stage, so we will not discuss it in this chapter. But for those of you who are interested, keep an eye on the SNMP4J web site to
track its development.

A detailed discussion of SNMP4J's APl is beyond the scope of this chapter. Instead, we present examples of how to use the
library to perform various SNMP operations. You will see that creating SNMP applications is quite easy and requires minimal
programming. As a result, you don't have to think as much about using the API and can focus more on creating useful
applications that solve whatever problems you face.

Example source code is provided on this book's web site, at http://www.oreilly.com/catalog/esnmp2/. The example sources were

built using a command-line tool that is available as a separate download from the SNMP4J web site. Each section in this chapter
discusses pertinent aspects of the SNMP operation it is implementing as it pertains to SNMP4J.

e prc |



http://www.snmp4j.org
http://www.agentpp.com
http://www.oreilly.com/catalog/esnmp2/

e prcv |

14.2. SNMP getnext

The SNMP getnext operation is commonly referred to as "walking a MIB." The example source implements a command-line
snmpwalk tool similar to that of Net-SNMP's snmpwalk:

public class SnmpWal k i npl enents PDUFactory {

}..

Our Snnpwal k class implements PDUFact ory. This means we must implement a method with the following signature:

public PDU createPDU( Target target) {

}

The creat ePDU method is responsible for creating the proper PDU, either an SNMPv2c or SNMPv3 PDU. The type of PDU (the
particular SNMP operation) is also configured as part of the version-specific PDU. This is accomplished by setting a member
variable that is used when createPDU( ) is called:

private int _pduType = PDU. GETNEXT;

The class has two different constructors:
public SnmpWal k(String host, String oid){

public Snmpwal k(String host, String oid, String user, String authProtocol,
String aut hPassphrase, String privProtocol, String privPassphrase) {

The first constructor creates an SNMPv2c walk command. The arguments are the host on which an agent is running and the
prefix of the OIDs we want to walk. The community string is hardcoded in the application, but ordinarily you will want to pass
this as a constructor or expose a setter. The second constructor creates an SNMPv3 walk command. The first two arguments are
the same as the first constructor, but the other arguments deal with setting up SNMPv3 security.

Each constructor sets the particular version of SNMP by using one of the following predefined constants:

e SnnpConst ants. versionl
e SnnpConst ant s. ver si on2c
¢ SnnpConstants. versi on3

The following sequence of code sets up the security name (user), authentication protocol, authentication passphrase, privacy
protocol, and privacy passphrase:

_privPassphrase = new CctetString(privPassphrase);
_aut hPassphrase = new Cctet String(aut hPassphrase);
_securityNanme = new CctetString(user);



if (authProtocol.equal s("MX5")) {
_authProtocol = Aut hMD5. | D;

} else if (authProtocol.equal s("SHA")) {
_authProtocol = AuthSHA. I D,

}
if (privProtocol.equal s("DES")) {

_privProtocol = PrivDES. D,
} else if ((privProtocol.equal s("AES128")) || (privProtocol.equal s("AES"))) {
_privProtocol = PrivAES128.1D;
} else if (privProtocol.equal s("AES192")) {
_privProtocol = PrivAES192. 1D
} else if (privProtocol.equal s("AES256")) {
_privProtocol = PrivAES256.1D;

The privacy passphrase, authentication passphrase, and user are all stored internally as an Cct et Stri ng, which, in contrast with
a String, implements a character-set-independent 8-bit byte string. The authentication and privacy protocols are stored
internally as OIDs. SNMP4J includes constants for all the various protocols and their respective OID value. They are:

e Aut hMD5. | D

¢ Aut hSHA. I D

e PrivDES.ID

e PrivAES128.1D

e PrivAES192.1D

e PrivAES256.1D

The next step is to add the OID for walking a Vect or of Vari abl eBi ndi ngs:

_vbs. add(new Vari abl eBi ndi ng(new O D(oid)));

Next we create an instance of UdpAddr ess, which represents the host and port we plan to communicate with:

_address = new UdpAddress(host+"/161");

The format that is passed to the constructor is host/port .
Now that we have the preliminaries set up, the user of the Snnpwal k class calls doval k( ) to initiate the process. The call to

send( ) sets up all the internals of SNMP:

PDU response = send( );

Here is the sequence of calls that occurs before a response PDU is returned:

1. createSnnpSession( )
2. createTarget( )

3. createPDU( )

4. valk(...)

5. processVal k( )



Let's look at each of these method calls. The call to creat eSnnpSessi on( ) creates the underlying SNMP session. If SNMPv3 is
used, we add a user to this session with a call to addUsnser (snnp) . This method looks like the following:

private void addUsmser (Snnp snnp) {
snnp. get USM ). addUser (_securi t yNane,
new Usnlser (_securityNane,
_aut hProtocol,
_aut hPassphr ase,
_privProtocol,
_privPassphrase));

Here we call the get USM ) method for the SNMP session that was created. This in turn allows us to call addUser, where we
create a new user entry, with _securityNane, followed by a new instance of Usnmser and all the SNMPv3 security-specific
parameters passed to the constructor. If you want to create multiple users for this SNMP session, you would repeat these steps
until you have added all the users for your session.

Next we create a target by calling creat eTarget ( ). This creates either a User Tar get (SNMPv3) or a Communi t yTarget (SNMPv1
and SNMPv2c). Depending on the version used, either the _securityNane or the _community variables are set for the respective
target. If SNMPv3 is used, the security level is also specified and is set to one of the following constants:

e SecurityLevel . NOAUTH_NOPRI V

e SecuritylLevel . AUTH_NOPRI V

e SecuritylLevel . AUTH PRIV
Once we return from createTarget ( ), the send( ) method sets the version, address, timeout, and retries for the target. It also

places all transport mappings into listen mode:

snnp. listen( );

This ensures that we respond to SNMP engine discovery requests.

createPDU( ) creates either a ScopedPDU for SNMPv3 or a PDU for SNMPv1 and SNMPv2c. The context name and context engine
ID are set for the ScopedPDU. The resulting PDU is returned as the variable request and is used later on by other methods.

Now the wal k( ) method is invoked. One of the first things it does is to get the root OID:

O DrootOD = request.get(0).getQd( );

Since request is a PDU instance, calling get (0) returns a Vari abl eBi ndi ng. Calling get G d( ) on a Vari abl eBi ndi ng gets its OID
for the Vari abl eBi ndi ng.

ResponseEvent responseEvent = snnp.send(request, target);
response = responseEvent. get Response( );

This code fragment retrieves the lexicographically next object in the MIB tree we wish to walk and gets the response from the
target. If the response is null, we never received a response. The pseudocode for walking a MIB tree follows:

do {
Send request to target for top-level OD of where you want to start

Check for response fromtarget
} while(!processValk( ));

function processVal k( ){



if we have reached the end of the MB, received an error, or received a
response which isn't |exicographically in the MB we are wal king, then
return true

else print the result fromthe target. Now encode the

received O D in the request object, so when we send the next request, the
target will send us the next O D (lexicographically) in the tree, if
there is one.

Once we've processed the target's MIB tree, we print some statistics on how many requests were sent, how many objects were
received, and the total walk time.

That's it in a nutshell. Let's look at a run of the Shnmpwal k application. Here's our nai n program for exercising the class:

public class Main{

public Main( ){
}

public static void main(String[] args){

System out. println("Doing SNVPv2 wal k. .");

Snnpval k wal k = new SnnpWal k("127.0.0.1","1.3.6.1.2.1.1");
wal k. doval k( );

System out. println("Doing SNWPv3 wal k. .");
wal k = new SnnpWal k("127.0.0.1","1.3.6.1.2.1.1",
"kschm dt", "MD5", "nysecret pass", "DES", "nypassphrase");
wal k. doval k( );
}
}

The first constructor creates an SNMPv2c PDU, which starts at the system (1.3.6.1.2.1.1) OID and walks from there. The second
constructor creates an SNMPv3 PDU with kschni dt as the security name, MD5 as the authentication protocol, nysecr et pass as the
authentication passphrase, DES as the privacy protocol, and nypassphr ase as the privacy passphrase. Here is the command for
running this program, along with its output:

$ java -cp SNWP4J.jar:.Min
Doi ng SNWPv2 wal k. .

1.3.6.1.2.1.1.1.0 = Linux dhcp48 2.6.8-2-686 #1 Mon Jan 24 03:58:38 EST 2005 i 686
1.3.6.1.2.1.1.2.0 = 1.3.6.1.4.1.8072.3.2.10

1.3.6.1.2.1.1.3.0 = 4 days, 4:47:17.53

1.3.6.1.2.1.1.4.0 = nyself

1.3.6.1.2.1.1.5.0 = dhcp48

1.3.6.1.2.1.1.6.0 = A bld JM 10119 floor 7

1.3.6.1.2.1.1.8.0 = 0:00: 00.08

1.3.6.1.2.1.1.9.1.2.1 = 1.3.6.1.2.1.31

1.3.6.1.2.1.1.9.1.2.2 = 1.3.6.1.6.3. 1

1.3.6.1.2.1.1.9.1.2.3 1.3.6.1.2.1.49

1.3.6.1.2.1.1.9.1.2.4 = 1.3.6.1.2.1. 4

1.3.6.1.2.1.1.9.1.2.5 = 1.3.6.1.2.1.50

1.3.6.1.2.1.1.9.1.2.6 = 1.3.6.1.6.3.16.2.2.1

1.3.6.1.2.1.1.9.1.2.7 = 1.3.6.1.6.3.10.3.1. 1

1.3.6.1.2.1.1.9.1.2.8 = 1.3.6.1.6.3.11.3. 1.1

1.3.6.1.2.1.1.9.1.2.9 1.3.6.1.6.3.15.2.1. 1

1.3.6.1.2.1.1.9.1.3.1 = The MB npdule to describe generic objects for network
interface sub-layers

1.3.6.1.2.1.1.9.1.3.2 = The MB nodule for SNWPv2 entities
1.3.6.1.2.1.1.9.1.3.3 = The M B nodul e for managi ng TCP i npl enent ati ons
1.3.6.1.2.1.1.9.1.3.4 = The MB nodule for managing |P and | CVMP inpl ementations
1.3.6.1.2.1.1.9.1.3.5 = The M B nodul e for managi ng UDP i npl enentations
1.3.6.1.2.1.1.9.1.3.6 = View based Access Control Mdel for SNWP.



The SNVP Managenent Architecture MB
The M B for Message Processing and Di spatching
The managenent information definitions for the SNWP User-

© © ©
© o~
1l

o

QD
O R NN

WWWwwwwwewsowww

0020000022000
PrRrePpRrRrRRPRoRRE
NNNNNDNNNNDNNO NDNNDN
NESESESESESESESESE-SSESE,

PRRPRPRPRPPRPPRPPRIRER

<

1 00: 00. 00
: 00: 00. 00
: 00: 00. 00
1 00: 00. 00
: 00: 00. 00
1 00: 00. 00
: 00: 00. 08
: 00: 00. 08
: 00: 00. 08

PRPERPRPPPPRPPOTRPER

PRPRPRPRPRRoREE
PrrrpRrrRrRERep

© O OO OOoOowoo

©CoO~NOOULA WNBRE
1

[eNeolNeoNeoNoNoNoNoNol

Total requests sent: 35

Total objects received: 35

Total wal k tinme: 55 m|liseconds

End of wal ked subtree '1.3.6.1.2.1.1" reached at:
1.3.6.1.2.1.2.1.0 = 3

Doi ng SNWPv3 wal k.

1.3.6.1.2.1.1.1.0 = Linux dhcp48 2.6.8-2-686 #1 Mn Jan 24 03:58:38 EST 2005 i 686
1.3.6.1.2.1.1.2.0 = 1.3.6.1.4.1.8072.3.2.10

1.3.6.1.2.1.1.3.0 = 4 days, 4:47:18.21

1.3.6.1.2.1.1.4.0 = nyself

1.3.6.1.2.1.1.5.0 = dhcp48

1.3.6.1.2.1.1.6.0 = A bld JM 10119 floor 7

1.3.6.1.2.1.1.8.0 = 0:00: 00. 08

1.3.6.1.2.1.1.9.1.2.1 = 1.3.6.1.2.1.31

1.3.6.1.2.1.1.9.1.2.2 = 1.3.6.1.6.3. 1

1.3.6.1.2.1.1.9.1.2.3 = 1.3.6.1.2.1.49

1.3.6.1.2.1.1.9.1.2.4 = 1.3.6.1.2.1. 4

1.3.6.1.2.1.1.9.1.2.5 = 1.3.6.1.2.1.50

1.3.6.1.2.1.1.9.1.2.6 = 1.3.6.1.6.3.16.2. 2.1

1.3.6.1.2.1.1.9.1.2.7 = 1.3.6.1.6.3.10.3. 1.1

1.3.6.1.2.1.1.9.1.2.8 = 1.3.6.1.6.3.11.3.1. 1

1.3.6.1.2.1.1.9.1.2.9 = 1.3.6.1.6.3.15.2. 1.1

1.3.6.1.2.1.1.9.1.3.1 = The MB nodule to describe generic objects for network
interface sub-layers

1.3.6.1.2.1.1.9.1.3.2 = The MB nodule for SNWPv2 entities
1.3.6.1.2.1.1.9.1.3.3 = The MB nodul e for managi ng TCP i npl enentations
1.3.6.1.2.1.1.9.1.3.4 = The MB nodule for nmanaging |IP and | CVWP inpl enentations
1.3.6.1.2.1.1.9.1.3.5 = The MB nodul e for managi ng UDP i npl enentati ons
1.3.6.1.2.1.1.9.1.3.6 = View based Access Control Mdel for SNW
1.3.6.1.2.1.1.9.1.3.7 = The SNWP Managenent Architecture MB
1.3.6.1.2.1.1.9.1.3.8 = The MB for Message Processing and Di spatching
1.3.6.1.2.1.1.9.1.3.9 = The nanagenent information definitions for the SNWP User-
based Security Model.

1.3.6.1.2.1.1.9.1.4.1 = 0:00: 00. 00

1.3.6.1.2.1.1.9.1.4.2 = 0:00: 00. 00

1.3.6.1.2.1.1.9.1.4.3 = 0:00: 00. 00

1.3.6.1.2.1.1.9.1.4. 4 0: 00: 00. 00

1.3.6.1.2.1.1.9.1.4.5 0: 00: 00. 00

1.3.6.1.2.1.1.9.1.4.6 = 0:00:00.00

1.3.6.1.2.1.1.9.1.4.7 = 0:00: 00. 08

1.3.6.1.2.1.1.9.1.4.8 = 0:00: 00.08

1.3.6.1.2.1.1.9.1.4.9 = 0:00:00.08

Total requests sent: 35

Total objects received: 35

Total wal k tine: 741 mlliseconds

End of wal ked subtree '"1.3.6.1.2.1.1" reached at:
1.3.6.1.2.1.2.1.0 = 3

That's it. We've covered a lot of ground in a small space, so let's summarize the pertinent parts of what we've accomplished:



e Our SNMP application class implements PDUFact ory by implementing a creat ePDU( ) method.

- The version of SNMP is set, and based on the version, we either use a community string or create a USM entry with a
security name and no authentication and privacy, authentication and no privacy, or authentication and privacy.

- The address and port of the target we communicate with is used to create a UdpAddr ess.
« The SNMP request is sent.
¢ We create the SNMP session and add the USM user to the session if SNMPv3 is used.

- A target is created. If SNMPv2c is used, a Communi t yTar get is created with the community string. Otherwise, a User Tar get
is created with the value of _securityNane and the proper security level is ascertained and set.

e The createPDY( ) method creates either a ScopedPDU for SNMPv3 or a PDU otherwise.
« From here on out, we walk the MIB tree using the pseudocode algorithm presented earlier.

Each of the remaining examples uses the same basic code for configuring SNMPv2c or SNMPv3. We will point out where the
application differs with respect to the actual SNMP operation it implements.

e prc |



e prcv |

14.3. SNMP set

The SnnpSet class looks very similar to the SnnpWal k class. As with the Snnpwal k class, _pduType is set to the appropriate SNMP
operation we plan to perform:

private int _pduType = PDU. SET;

We've introduced a doSet ( ) method that operates in a similar manner to the doval k( ) method of the Shnpwal k class. An SNMP
set has the following components:

¢ An OID

e The syntax for the OID

* A new or different value you wish the OID to take on in the target's SNMP stack
The difference between these classes lies in that third element, the new value you are setting to.
Let's look at the Mai n class, which uses SnnpSet :

public class Min{
public Min( ){

}

public static void nain(String[] args){
Systemout. println("Doing SNMPv2 set..");
SnnpSet set = new SnnpSet ("127.0.0.1",
"1.3.6.1.2.1.1. 6. 0={s}Right here, right
now. ") ;
set.doSet( );

Systemout. println("Doing SNMPv3 set..");
set = new SnmpSet ("127.0.0. 1",
"1.3.6.1.2.1. 1. 6. 0={s} Sone place else..",

"kschm dt", " MD5", "mysecr et pass", "DES", "nypassphrase") ;
set.doSet( );

The notation we are using to specify the OID, syntax, and value is the same as the notation for the SNMP4J command-line tool.
It has the following format:

O D={syntax}val ue_for_Q D

Table 14-1 lists the different values that syntax can take on, along with the corresponding SNMP4J class that is used to encode
val ue_f or _Q D into that type.

Table 14-1. Syntax values with SNMP4J class names

Syntax value SNMP4J class Meaning



Syntax value SNMP4J class Meaning

i Integer32 Signed 32-bit integer

u Unsignedinteger32 Unsigned 32-bit integer

S OctetString Octet string

X OctetString.fromString(value, ':*, 16); Octet string specified as a hex value with bytes separated by colons

d OctetString.fromString(value, '.", 10); Octet string specified as a decimal value with bytes separated with dots
b OctetString.fromString(value, ", 2); Octet string specified as a binary value with bytes separated with spaces
n Null Null value

o OID OID value

t TimeTicks TimeTicks value

a IpAddress IP Address

The get Vari abl eBi ndi ng( ) method parses the OID, syntax, and value and encodes the value based on the syntax. Consider the
following code:

Vari abl eBi nding vb = new Vari abl eBi ndi ng(new O D{oid));

.V.a.ri abl e vari abl e;

.v.a-ri abl e = new I nteger32(lnteger. parselnt(value));

.v.b'. set Vari abl e(vari abl e);

v. add(vb);

This sequence, taken from get Vari abl eBi ndi ng( ), shows how to create a new Vari abl eBi ndi ng from the OID we want to set,
create a new Vari abl e encoded with the proper syntax and value for the OID, and set it within the Vari abl eBi ndi ng. The
Vari abl eBi ndi ng is then added to a Vect or, which was created earlier.

The following code shows how the Vect or containing the Vari abl eBi ndi ng is placed into the request.

PDU request = createPDU(_target);
for (int i=0; i<_vbs.size( ); i++) {

request . add((Vari abl eBi ndi ng) _vbs. get(i));
}

Since we loop over the Vector, you can add as many Vari abl eBi ndi ngs as desired to the Vect or and they will all get placed in
the PDU.

Finally, the SET request is now ready to send:

responseEvent = snnp.send(request, _target);

When we run the program, the output looks like this:

$ java -classpath SNWP4J
.jar:. Min
Doi ng SNWPVv2 set. .
Recei ved response after 18 mllis
Recei ved response: request!|D=1713864373, errorlndex=0, errorStatus=Success(0)
1.3.6.1.2.1.1.6.0 = Right here, right now
Doi ng SNWPv3 set . .



Recei ved response after 618 mllis

Recei ved response: requestl|D=1705592271, errorlndex=0, errorStatus=Success(0)
1.3.6.1.2.1.1. 6.0 = Sonepl ace el se.

Here we set the sysLocation (1.3.6.1.2.1.1.6)*1 to "Right here, right now." using SNMPv2c and then set it to "Someplace
else..." using SNMPv3. We also see the errorlndex and error St atus, which both confirm that the set operations succeeded.

[1 Recall that since sysNane is a scalar object and not a columnar object, we use the OID 1.3.6.1.2.1.1.6.0 and not 1.3.6.1.2.1.1.6.

e prc |



e prcv |

14.4. Sending Traps and Informs

Now we know how to encode OIDs and their respective syntax and values. This is exactly what we need to send SNMP traps and
informs. The SnnpTrap application is capable of sending either SNMP traps or informs, depending on the value type of the
parameter passed to the constructor. The PDU type is set to PDU. TRAP by default. If an inform is to be sent, the PDU type is set

to PDU. | NFORM

The doTrap( ) method is invoked and we operate in much the same manner as the ShnpSet application. We get the variable
binding that is sent in the trap or inform. After get Vari abl eBi ndi ng( ) is called, checkTrapVari abl es( ) is called. Since the first
variable binding in a trap or inform is sysUpTime and the second variable binding is snmpTrapOID for the particular trap or
inform we are sending, this method ensures that these two variables appear before any other bindings we wish to send. Note
that we created a _TRapO D member variable for the SnnpTrap class:

private OD _trapOD = new OD("1.3.6.1.4.1.2789.2005");

Now let's look at the Mai n class that sends two traps and two informs:

public class Main{
public Main( ){

}

public static void main(String[] args){
Systemout. println("Doing SNWPV2 trap..");
SnnpTrap trap = new SnnpTrap("127.0.0. 1",
"1.3.6.1.4.1.2789. 2005. 1={s} WAV Server Has Been Restarted",1);

trap.doTrap( );

Systemout. println("Doing SNVPv3 trap..");
trap =
new SnnpTrap("127.0.0. 1",
"1.3.6.1.4.1.2789. 2005. 1={ s} WAV Server Has Been Restarted",
1, "kschm dt", "MD5", "nysecr et pass"”, "DES", "nypassphrase");
trap.doTrap( );

Systemout. println("Doing SNMPv2 inform.");
trap = new SnnpTrap("127.0.0.1",
"1.3.6.1.4.1.2789. 2005. 1={ s} WAV Server Has Been Restarted", 2);

trap.doTrap( );

Systemout. println("Doing SNMPv3 inform.");
trap =
new SnnpTrap("127.0.0.1",
"1.3.6.1.4.1.2789. 2005. 1={ s} WW Server Has Been Restarted",
2,"kschm dt", "MD5", "nmysecr et pass”, "DES", "nypassphrase");
trap.doTrap( );

Note that if you pass an integer value 1 to the third parameter of the constructor, a trap is sent. If you pass the value 2, an
inform is sent. Here's the output from this application:

% java -classpath SNWP4J

.jar:. Main
Doi ng SNWPV2 trap..
TRAP sent successfully



Doi ng SNMPv3 trap..

TRAP sent successfully

Doi ng SNWVPv2 inform.

Recei ved response after 9 millis

Recei ved response: request|D=1332193165, errorlndex=0, errorStatus=Success(0)
1.3.6.1.4.1.2789.2005.1 = WAV Server Has Been Restarted

1.3.6.1.6.3.1.1.4.1.0 = 1.3.6.1.4.1.2789. 2005

Doi ng SNVPv3 inform.

Recei ved response after 115 mllis

Recei ved response: requestl| D=1931824326, errorlndex=0, errorStatus=Success(0)
1.3.6.1.4.1.2789. 2005.1 = WAN Server Has Been Restarted

1.3.6.1.6.3.1.1.4.1.0 = 1.3.6.1.4.1.2789. 2005

Note that when an inform is sent, a response is received. Recall that SNMP informs are basically traps where the receiver sends
an acknowledgement when it receives the PDU.

e rrc |



14.5. Receiving Traps and Informs

We've split up the SNMPv2c and SNMPv3 trap receivers into two separate classes, V2TRapRecei ver and V3TRapRecei ver . These
classes implement CommandResponder . This means that we must implement a method that has the following signature:

public synchroni zed void processPdu( CommandResponder Event e) {

The processPdu method is responsible for handling incoming requests. Since SnnmpWal k supports SNMPv3, we have to be able to
respond to discovery requests from an authoritative SNMP engine.

- With the other SNMP applications, we created transport objects that were a combination of the IP
as address and port on a remote machine. With a trap or inform receiver, we create a target object, but
. @ the IP address is the IP of the local Ethernet interface we wish to bind to, along with the port (default

for traps is 162).

Consider the following code sequence:

_threadPool = ThreadPool . create("Di spatcherPool ", _nunThreads);
MessageDi spat cher nt Di spatcher =
new Mil ti Thr eadedMessageDi spat cher (_t hreadPool, new MessageDi spat cherlnpl ( ));

/1 add nessage processing nodels
nt Di spat cher. addMessagePr ocessi nghbdel (new MPv2c( ));

// add all security protocols
SecurityProtocol s. getlnstance().addDef aul t Protocol s( );

Communi tyTarget target = new ConmmunityTarget( );
if(target !'= null) {
target.set Conmuni ty(_conm;
_target = target;
} else {
Systemout.println("Unable to create Target object");
Systemexit(-1);
}

_snnp = new Snnp(nt Di spatcher, _transport);

if(_snnmp !'= null){
_snnp. addCommandResponder (t hi s);

} else {
Systemout. printin("Unable to create Snnp object");
Systemexit(-1);

}

This example does the following:

Creates a thread pool with _nuniThr eads that can respond to incoming traps
Adds an SNMPv2c message processing model to the MessageDi spat cher
Adds all security protocols by default

Creates a Communi t yTarget and sets the community string



- Creates a new SNMP instance by passing it the nt di spat cher instance
* Adds the class's instance as a CommandResponder to the SNMP instance

Now let's look at the same sequence for SNMPv3:

_threadPool = ThreadPool . create("Di spatcherPool ", _nunThreads);

MessageDi spat cher nt Di spatcher =
new Mil ti Thr eadedMessageDi spat cher (_t hreadPool , new MessageDi spatcherlnpl ( ));

/1 add nessage processing nodels

nt Di spat cher. addMessagePr ocessi nghbdel (new MPv1( ));

nt Di spat cher. addMessagePr ocessi nghbdel (new MPv2c( ));
nt Di spat cher. addMessagePr ocessi nghbdel (new MPv3( ));

// add all security protocols
SecurityProtocol s. getlnstance().addDefaul t Protocol s( );
_snnp = new Snnp(nt Di spatcher, _transport);
if(_snnmp !'= null){
_snnp. addCommandResponder (t hi s);
} else {
Systemout.println("Unable to create Target object");
Systemexit(-1);
}

MPV3 nmpv3 =

(MPv3) _snnp. get MessagePr ocessi nghbdel ( MessagePr ocessi nghbdel . MPv3) ;
USM usm = new USM SecurityProtocol s. getlnstance( ),

new Cctet String(npv3.createlLocal EnginelD( )), 0);
SecurityMdel s. getlnstance( ).addSecurityMdel (usn;

No surprises here. We do basically the same operations for SNMPv3, except that we also create a USM entry and a local engine
ID in case we receive a discovery request.

The client of this class calls i sten( ) to begin the session:

public synchronized void listen( ) {
try {
_transport.listen( );
} catch(l OCException ioex) {
Systemout.printin("Unable to listen:
Systemexit(-1);

+ ioex);

}

Systemout.println("Waiting for traps..");

try {
this.wait( );//Vait for traps to conme in

} catch (InterruptedException ex) {
Systemout.printin("Interrupted while waiting for traps:
Systemexit(-1);

+ ex);

}
}

We place the transport into listen mode by calling _TRansport.listen( ). If this succeeds, this.wait( ) is called and we block
until a trap or inform comes in. When one does, processPdu( ) is invoked and we handle the request since we created our own
implementation of this method.

Since listen( ) is blocked when called, here are two similar Mai n classes, one for an SNMPv2c receiver and one for an SNMPv3
receiver:

public class Min{



public Main( ){
}

public static void main(String[] args){
V2Tr apRecei ver v2 = new V2TrapReceiver( );
v2.listen( );
}
}

public class Main{
public Main( ){
}

public static void main(String[] args){
V3Tr apRecei ver v3 = new V3TrapReceiver( );
v3.listen( );
}
}

When sending an SNMPv3 trap (we're using the Net-SNMP command-line tools to send traps and informs), use a command like
this:

$ snnptrap -v3 -u kjs -a MD5 -A "this is private" -x DES -X "this is nme" \

127.0.0.1 ' .1.3.6.1.6.3.1.1.5.3 iflndex i 2 ifAdm nStatus i 1 ifQOperStatus i 1
Waiting for traps..

TRAP[ r egest | D=769359741, errorStatus=0, errorlndex=0, VBS[1l.3.6.1.2.1.
days, 22:53:05.51; 1.3.6.1.6.3.1.1.4.1.0 = 1.3.6.1.6.3.1.1.5.3; 1.3.6.
2; 1.3.6.1.2.1.2.2.1.7 =1; 1.3.6.1.2.1.2.2.1.8 = 1]]

1.3.0 64
1.2.1.2.2.

NIl

1.1 =

We see basically the same output when sending an SNMPv2c trap:

$ snnptrap -v2c -c¢ public 127.0.0.1 "' .1.3.6.1.6.3.1.1.5.3 \

iflndex i 2 ifAdminStatus i 1 ifOperStatus i 1
Waiting for traps..

TRAP[ reqgest | D=1476119517, error Status=Success(0),
= 64 days, 22:56:04.20; 1.3.6.1.6.3.1.1.4.1.0 = 1.
1.1 =2; 1.3.6.1.2.1.2.2.1.7 =1; 1.3.6.1.2.1.2.2.

errorlndex=0, VBS[1.3.6.1.2.1.1.3.0
3.6.1.6.3.1.1.5.3; 1.3.6.1.2.1.2.2.
1.8 = 1]]

Receiving informs produces, as you might imagine, similar output to traps:

$ snnpinform-v2c -c public 127.0.0.1 '' .1.3.6.1.6.3.1.1.5.3 \

iflndex i 2 ifAdm nStatus i 1 ifQperStatus i 1
Waiting for traps..

| NFORM r eqest | D=2056364955, error Status=Success(0),
3.0 = 65 days, 23:41:40.60; 1.3.6.1.6.3.1.1.4.1.0 =
2,2.1.1=2; 1.3.6.1.2.1.2.2.1.7 =1; 1.3.6.1.2.1.2.

errorlndex=0, VBS[1.3.6.1.2.1.1.
1.3.6.1.6.3.1.1.5.3; 1.3.6.1.2.1.
2.1.8 = 1]]

—

And finally an SNMPv3 inform:

$ snmpinform-v3 -u kjs -a M5 -A "this is private" -x DES \

-X "this is me" 127.0.0.1 "' .1.3.6.1.6.3.1.1.5.3 iflndex i 2\
ifAdm nStatus i 1 ifOperStatus i 1



Waiting for traps..

| NFORM r eqest | D=648331621, errorStatus=0, errorlndex=0, VBS[1.3
days, 23:44:40.18; 1.3.6.1.6.3.1.1.4.1.0 = 1.3.6.1.6.3.1.1.5.3;
2, 1.3.6.1.2.1.2.2.1.7 =1; 1.3.6.1.2.1.2.2.1.8 = 1]]

5

.6.1.2.1.1.3.0 6
1.3.6.1.2.1.2.2.1.1 =

NIl

One final note: recall that our SnnpTrap class had to encode sysUpTime and snmpTrapOID as the first two variable bindings in
the trap we created. Notice how all the output includes this information, as encoded from the Net-SNMP command-line tools:

...VBS[1.3.6.1.2.1.1.3.0 = 65 days, 23:44:40.18;
1.3.6.1.6.3.1.1.4.1.0 = 1.3.6.1.6.3.1.1.5. 3;
11

e roc |



e prcv |

14.6. Resources

The SNMP4J web site, http://www.snmp4j.org, has Javadoc (http://www.snmp4j.org/doc/index.html) for all the classes in this
package. There is also an active mailing list where newcomers can ask questions and get answers to issues that may arise when

using this library.

e roc |


http://www.snmp4j.org
http://www.snmp4j.org/doc/index.html

e prcv |

Appendix A. Using Input and Output Octets

To be SNMP-compatible, an IP device must support MIB-I1 (iso.org.dod.internet.mgmt.mib-2) objects. MIB-I1 contains the
interfaces table (mib-2.interfaces.ifTable.ifEntry), which is one of the most useful objects for network monitoring. This table
contains information about the system's network interfaces. Some of its objects are:

ifDescr

A user-provided description of the interface

ifType

The interface's type (token ring, Ethernet, etc.)

ifOperStatus

Whether the interface is up, down, or in some kind of test mode

ifMtu

The size of the largest packet that can be sent over the interface

ifSpeed

The maximum bandwidth of the interface

ifPhysAddress

The low-level (hardware) address of the interface

ifInOctets

The number of octets received by the interface

ifOutOctets
The number of octets sent by the interface

We explored various parts of this table in other chapters, but avoided saying too much about ifinOctets and ifOutOctets. RFC
1213 states that ifOutOctets and ifInOctets are the total number of octets sent and received on an interface, including framing
characters.

In many environments, this information is crucial. Companies such as ISPs make their livelihoods by providing usable
bandwidth to their customers, and thus spend huge amounts of time and money monitoring and measuring their interfaces,
circuits, etc. When these pipes fill up or get clogged, customers get upset. So, the big question is, how can you monitor
bandwidth effectively? Being able to answer this question is often a life-or-death issue.

The information you need to answer this question comes in a few parts. First, you must know what type of line you are trying to
monitor. Without this information, the numbers don't mean much. Then you must find the line's maximum speed and determine
whether it is used in full-or half-duplex mode. In most cases, you can find both of these pieces of information using SNMP. The
ifSpeed object defined in MIB-I11's interfaces table provides "an estimate of the interface's current bandwidth in bits per second.”
You can poll this object to find the line's maximum speed, or at least what the agent thinks the line's maximum speed should
be. Note, though, that you must watch for some pitfalls. For example, Cisco routers have default maximum bandwidths for
various types of links, but these defaults may not have much to do with reality: for instance, the default bandwidth for a serial
line is 1.544 Mbps, regardless of the actual line speed. To get meaningful data, you must configure the router to report the
maximum bandwidth correctly. (Sometimes, network administrators intentionally set the interface bandwidth to an incorrect
number to nudge routing paths a different way. If this is the case, you're going to have trouble getting meaningful data out of



SNMP.)

It's easier to get reliable information about the line's duplex mode. Serial lines operate in full-duplex mode. This means they
can send and receive information at the same time (e.g., a 56 Kbps serial line can upload and download at 56 Kbps
simultaneously, for a total of 112 Kbps). Other types of lines, such as 10-baseT Ethernet, can handle only half duplex. In a
typical 10-baseT environment, the distinction between uploading and downloading data is meaningless; total bandwidth through
the line is limited to 10 Mbps of input and output combined. Some devices have 10/100 cards in them, which makes
identification even harder.

Many vendors have private MIBs that return the duplex state. For example, the following Cisco object returns the duplex state
for an interface on the model 2900 switch:

iso.org.dod.internet.private.enterprises.cisco.ciscoMgmt.ciscoC2900MIB.c2900MIBObjects.
€c2900Port.c2900PortTable.c2900PortEntry.c2900PortDuplexStatus.

The table to which this object belongs also contains an object that can be used to switch an interface's duplex state. This object
is useful if you have a device that is incorrectly negotiating half duplex instead of full duplex; you can use it to force the port
into the correct duplex state.

Once you find the line's maximum speed and duplex mode, you can calculate its utilization percentage. Many NMS products let
you create expressions, which are named formulas that use MIB objects as variables. OpenView allows you to define
expressions in the file $O0V_CONF/mibExpr.conf. The syntax used in this file is complicated. Expressions are written in postfix
notation.[*1 The file contains some entries by default; these expressions are often useful, and may not need any tweakingl 1to
work for your environment. Here is the default definition of the expression | f Yutil :

[T Also referred to as "reverse Polish notation.” Instead of writing "1 + 2", you would write "1 2 +".

[ 1The recommended way to modify $OV_CONF/mibExpr.conf is to use xnmcollect with the -delExpr or -loadExpr switch.

Ifomtil \
"Percent of available bandwi dth utilized on an interface\n\
Conput ed by:\n\

(Received byte rate + transnitted byte rate) * 8\n\

interface |ink speed\n\

then converted to a percentage."\
.1.3.6.1.2.1.2.2.1.10. \
.1.3.6.1.2.1.2.2.1.16. \

+\

8\

* o\

.1.3.6.1.2.1.2.2.1.5. \

This expression is broken up into three parts: an expression name, comments, and the expression itself. We will use the
expression name within xnmgraph for our data-collection definitions. The comments will help us understand what this
expression really does. The syntax of the expression is defined in the mibExpr.conf (4) manpage. In short, it adds the values of
two MIB objects (ifInOctets and ifOutOctets), multiplies by 8 to get the number of bits traveling through the interface, divides by
the interface speed (ifSpeed), and converts the result to a percentage. As you can see here, you can break expressions into
several lines by using the familiar Unix backslash-escape at the end of each line.

Once we have defined | f%uti |, we can use it to plot utilization with xnmgraph:

$ /opt/ OV/ bi n/ xnmgr aph -nonochronme -c¢ public -poll 5 -title Ifutil_Fornmula -mb \
Ifoutil:C scoRouterla::::.1.3.6.1.2.1.2.2.1.2:::" CiscoRouterl4a

This displays a graph of the percent utilization for every interface on the device CiscoRouter14a. Note that you can use an
expression name as the first of the colon-separated arguments in the xnmgraph command.

Before you start using | f%ti| to measure your entire organization, notice that this expression measures only half-duplex
linesthat is, it compares the sum of the input and output octets to the line's capacity. Any full-duplex line graphed with this
calculation will look wrong. To prove this point, consider a full-duplex serial line with a maximum speed of 500 Kbps in each



direction that is currently sending 125 Kbps and receiving 125 Kbps. The formula for | f%uti| gives us a utilization of 50%,
which is incorrect: the line is really at 25% of capacity. For a full-duplex line, it makes more sense to make separate
computations for incoming and outgoing data. This gives you a better representation of what your network is doing, since in
full-duplex mode the incoming data rate isn't affected by the outgoing data. Here are revised expressions for send utilization
(WANI FosendUt i | ) and receive utilization (WANI F94RecvUti | ):

WANI f %8endUt il \

"% interface utilization from (ifQutCctets * 8 * 100) / if Speed"\
.1.3.6.1.2.1.2.2.1.16. \

8

\

\
00 \

\

*

.1.3.6.1.2.1.2.2.1.5. \
/

WANI f %RecvUtil \
"% interface utilization from (iflnCctets * 8 * 100) / ifSpeed"\
.1.3.6.1.2.1.2.2.1.10. \

.1.3.6.1.2.1.2.2.1.5. \
/

Now let's take a look at some actual graphs. We graphed different expressions and MIB objects at the same time for a 10-baseT
(half-duplex) Ethernet interface. We then created some traffic on the interface and captured the results. Here is the script that
generates the graphs:

/ opt / OV/ bi n/ xnngr aph - nmonochronme -c public -poll 5 -title \
Cisco_Private Local _Mb -mb \

".1.3.6.1.4.1.9.2.2.1.1.6:C scoRouterla:4:::.1.3.6.1.2.1.2.2.1.2:::,\
.1.3.6.1.4.1.9.2.2.1.1.8: CiscoRouterla:4:::.1.3.6.1.2.1.2.2. 1. 2:::" \
Ci scoRouterla &

/ opt/ OV/ bi n/ xnmgr aph - monochronme -c public -poll 5 -title I[futil_Formula \
-mib "Ifo%til:C scoRouterla:4:::.1.3.6.1.2.1.2.2.1.2:::" Ci scoRouterla &

/ opt/ OV/ bi n/ xnngr aph - monochronme -c public -poll 5 -title \
WANI f RecvUWtil _Formula -mb \
"WANI f 9%RecvUtil: CiscoRouterla:4:::.1.3.6.1.2.1.2.2.1.2:::" CiscoRouterla &

/ opt/ OV/ bi n/ xnmgr aph - nonochronme -c public -poll 5 -title
WANI f SendUti | _Fornula -mib \
"WANI f %BendUti | : C scoRouterla:4:::.1.3.6.1.2.1.2.2.1.2:::" CiscoRouterla &

/ opt / OV/ bi n/ xnngr aph - nonochrone -c public -poll 5 -title iflnCctets -mb \
".1.3.6.1.2.1.2.2.1.10: CiscoRouterla:4:::.1.3.6.1.2.1.2.2.1.2:::" \
Ci scoRouterla &

/ opt/ OV/ bi n/ xnmgr aph - monochrome -c public -poll 5 -title ifQutCQctets -mb \
".1.3.6.1.2.1.2.2.1.16: CiscoRouterla:4:::.1.3.6.1.2.1.2.2.1.2:::" \
Ci scoRouterla &

Figure A-1 shows the MIB objects .iso.org.dod.internet.private.enterprises.cisco.local.linterfaces.lifTable.lifEntry.locIfInBitsSec
and .iso.org.dod.internet.private.enterprises.cisco.local.linterfaces.lifTable.lifEntry.loclfOutBitsSec. These are private Cisco MIB
objects that report the data rate in and out of an interface, in bits per second.

Figure A-1. Graph of Cisco private MIB objects



= Cascoflouterla, PthemotD (81} sewaces Qi poofouter la, Fthernetl (82)
1100000 7 T T T T T

100000 T
FO00N0 T
B0 |
100000 1
GO0 T
500000 T

SOCHON0R)

D8:57: M oE:59:11 09:00: 48

The next graph, shown in Figure A-2, shows the expression | futi | . It's surprisingly different. The difference arises because
Cisco uses a five-minute decaying average for these two objects. This can be both good and bad. The decaying average can
prevent you from seeing local peaks and valleys in usage. In this example, we see two usage peaks, which the decaying average
smears over a longer period of time. When using vendors' private MIBs, be sure to find out how they calculate their numbers.

Figure A-3 and Figure A-4 show the WANI f %RecvUti | and WANI f 9%8endUti | expressions. Since this is a half-duplex interface, we
don't need to look at each direction (in and out) separately, but it may help to verify whether the receive path or the send path
is maxed out. Comparing Figure A-3 with Figure A-4 shows that we are sending a bit more traffic than we are receiving.

The standard MIB-I1 objects ifInOctets and ifOutOctets are graphed in Figure A-5 and Figure A-6. Remember that these do not
show bits per second. Again, these graphs show that we are sending more traffic than we are receiving. The octet graphs

Figure A-2. Graph of 1f%butil

: ’ + :
08 :57:25 08:58:59 09:00:33 09:02:07 09:03:41

Figure A-3. Graph of WANIf%oRecvUtil



|
|

(] T | | T T
09:52:42 08:54:17 0B :55:52 085727 09:00: 37 09:02:12 0r9:03:47

in Figure A-5 and Figure A-6 show a real-time picture, like the WAN expressions but unlike Cisco's private MIB objects.

Figure A-4. Graph of WANIf26SendUtil

|
|

1 1 T 1
0857 : 26 68: 59:01 09:00: 36 09:02:11 0r9:03: 46

Figure A-5. Graph of ifInOctets



-
0r9:00:39 09:02:14

Try to get a feel for what you are looking for before you start writing expressions. Are you trying to find someone who is
flooding the network, or are you just looking for a

Figure A-6. Graph of ifOutOctets

|
180000

1RANNA-T

140000 |
120000+
Touu
f0000 +
0000
40000 ;

1

0 1
0B:52: 47 (5422 08:55:57 0 :57: 32

weekly average? No matter what you are graphing, be sure to research the device's MIB objects before you start generating
graphs that may look good but contain meaningless data. Recheck the variables each time you create new graphs.

Keep in mind that some devices have the ability to switch from full to half duplex automatically. You should be aware of your
interface's saturation point, which is the point at which no more traffic can be sent or received. This saturation point is indicated
in your graphs by a sustained horizontal ceiling line and can really be seen only over extended periods of time. Thus, while
there are some horizontal lines in the graphs in this appendix, we are obviously not close to the interface's capacity.

If you plan to use graphs like these, be sure to plan for the average and not for the exceptions (peaks). All networks have

traffic spikes here and there; unless you like spending a lot more on telecommunications than you need to, you should plan
your network so that it is geared toward servicing your average day-to-day activities, not the occasional peak.

e rrc |



e prcv |

Appendix B. More on OpenView's NNM

By now, you should be familiar with OpenView's NNM and its supporting utilities. Even though many network administrators can
get by with the basic OpenView information provided in this book, there is much more to learn. Configuring NNM with your own
custom tools makes using it that much better.

While we can't cover all the features of NNM in this appendix, we'll discuss each of the following:

¢ Using external data with xnmgraph
« Inserting additional menu items into NNM's menu
- Creating NNM profiles for different users

¢ Using NNM as a centralized communication device

e roc |



e prcv |

B.1. Using External Data

Chapter 8 introduced the xnmgraph command, but only touched on its features. One particularly useful feature is the ability to
graph data from external sources. To see how you might graph external data, first generate a graph of any typeone of the
graphs we created in Chapter 8 will doand save the data to a file. Then examine the contents of the file. Each output file
contains a short tutorial showing how to reshow the graph. Be sure to look at $APP_DEFS/Xnmgraph, which contains
xnmgraph's default settings.

Here's a table we created by hand, copying the format of a standard xnmgraph datafile. The data points are organized into
streams. A stream is a set of data that will be plotted as a single curve on the graph. All the streams in the file will be combined
into a single graph with multiple curves. The Start Ti me is ignored. The St opTi ne provides the value for the X (horizontal) axis
and the Val ue provides the value for the Y (vertical) axis:

# /tnp/ datal

#

# Stream Nunber StartTinme St opTi ne Val ue

- S

#

# Start of Stream 1

#
1 0 04. 28. 2001-12: 32: 16 7
1 0 04. 28. 2001-12: 32: 20 3
1 0 04.28. 2001-12: 32: 24 23
1 0 04. 28. 2001-12: 32: 28 4
1 0 04.28. 2001-12: 32: 31 7
1 0 04.28. 2001-12: 32: 35 12
1 0 04. 28. 2001-12: 32: 39 1

#

# Start of Stream 2

#
2 0 04. 28.2001- 12: 32: 16 17
2 0 04.28. 2001-12: 32: 20 21
2 0 04. 28. 2001-12: 32: 24 8
2 0 04. 28. 2001- 12: 32: 28 28
2 0 04.28. 2001-12: 32: 31 2
2 0 04.28. 2001-12: 32: 35 22
2 0 04. 28. 2001- 12: 32: 39 9

The following xnmgraph command displays our datafile. Notice that we use stream numbers, preceded by minus signs, instead
of object IDs. The minus sign indicates that the stream can take on negative values. If the stream number is preceded by a + or
= sign, xnmgraph will take the absolute value of all negative nhumbers in the datafile.

cat /tnp/datal | xnmgraph -mb "-1:Stream One:::::::,-2:Stream Two:::::::"

Figure B-1 shows the result of this command. If your graph looks squished, right-click on it and then left-click on Show All. An
option under the View menu lets you generate a black-and-white graph, which is often more effective if you have only a small
number of streams.

Now that we can get data into a format that xnmgraph can display, let's see if we can generate some graphs from the output of
the Unix vmstat utility. vmstat should be familiar to all Unix administrators; it provides a lot of information about your memory
system, in a cumbersome format. Here's the kind of output vmstat produces:

procs nenory page di sk faults cpu

swap free re nf pi po fr de sr s6 s2 s2 sd in sy cs us sy id
5431056 33672 1 2371 0 8 8 0 O 0 18 18 2 2161 5583 4490 17 14 69
5430912 33576 1 2499 02020 0 O O 1 1 0 2997 8374 7030 25 18 58

NS OTO
ocos



0 2 0 5431296 33824 0179 4 0 0O O O O O O 1 2587 3990 6379 18 8 74
0 O 0 5431240 33792 1 24604 8 8 0 O O 1 1 0 2909 7768 7080 25 18 57
0 3 0 5431216 33768 1 2359 012 12 0 O O 2 2 0 1934 5057 3818 18 13 70
0 O 0 5431288 33824 0136 0 0O O O O O O O 1 1842 2190 3803 13 5 82
0 2 0 5431216 32920 2 1189 0 3196 3176 0 0 0 O 0O 4 2734 9980 5642 24 11 65
0 4 0 5431032 32352 8 1571 O 3100 3044 0 0 0 2 2 5 2763 7767 5817 22 15 63

Figure B-1. Sample OpenView graph

12:32:15 12:32:19 12:32:23

Imagine taking 10,000 lines of this output and trying to figure out the trends (min/avg/max) in any given parameter. It's not
easy. But with some help from a Perl script, we can massage this data into an xnmgraph input file. Here is what our Perl script
looks like:

#!/usr/ 1 ocal / bin/perl
# Filenane: /usr/local/bin/perl_scripts/cputines

$| ++; # Unbuffer the output!

open( VMSTAT, "/ bin/vimstat 2 |") || die "Can't Open VMstat";
whi | e( $CLI NE=<VMSTAT>)

{
($nul 1, $r, $b, $w, $swap, $free, $re, $nf, $pi, $po, $fr, $de, $sr, $aa, $dd1,\
$dd2, $f 0, $i n, $sy, $cs, $us, $sycpu, $id) = split(/\s+/,$CLINE);

if (($id) & ($id ne "id"))

{
$DATE = 'date +%n %d. %- % %Vt ¥&' ;
chonp $DATE;
print "1 0 $DATE $us \n";
print "2 0 $DATE $sycpu \n";
print "3 0 $DATE $id \n";
}
sleep 2;

This script prints the current CPU usage, as a percentage, in the User ($us), System ($sycpu), and ldle ($i de) states; stream 1 is



the User percentage, stream 2 is the System percentage, and stream 3 is the ldle percentage. The first item on each line is the
stream number; note that we can interleave the data from the three streams:

t][nns] /> /usr/local/bin/perl_scripts/cputinmes
8.14.99-21:00:22 6
8.14.99-21:00:22 3
8. 14.99-21: 00: 22 92
8.14.99-21:00:24 0
8.14.99-21:00:24 0
8.14.99-21: 00: 24 100
8.14.99-21:00:26 1
8.14.99-21:00:26 0
8.14.99-21: 00: 26 98
8.14.99-21:00:28 1
8.14.99-21:00:28 0
8.14.99-21: 00: 28 99

The following command generates a graph from the script's output:

/usr/local/bin/perl_scripts/cputinmes | xnngraph -title "CPU Tinme" -mb \
"+1:User:::::i:,+2:System ;i +3i0dleriiii "

While this graph is based on live data, it's trivial to save data in an appropriate format and write a script that pulls historical
data from your logs and plots it with xnmgraph.

e roc |



e prcv |

B.2. Adding a Menu to NNM

Once you have a toolbox of scripts, adding them to an NNM menu makes them easier to access and execute. This trick can be
especially useful if you prefer to use NNM's graphical interface.

The key to adding custom menus is the directory $OV_REGISTRATION/C. ($OV_REGISTRATION contains directories for all the
languages available on your system; C is the directory for the default language and is probably where you should start.) The C
directory contains all the files that make up the menu system you see when you run NNM. For example, the file ovw contains

the familiar options from the main window (New, Open, Refresh, etc.).

Let's look at the $OV_REGISTRATION/C/ovsnmp/xnmloadmib file. It's fairly easy to see how to hook an external command into
a menu. Let's jump right in and create a menu that is two levels deep with two menu choices:

Application "Graph Menu"

{
Menubar <100> "Local _Graphs" _p
<100> " Net wor k" _N f.nmenu "network_nenu";
}
Menu " net wor k_nenu"
{
<90> "5 M nute CPU' _Mf.action "5m ncpu”;
<90> "Bits In and Qut For Al Up Interfaces" \
_B f.action "bit_for_all _up";
}
Action "5m ncpu” {
Conmand "/ opt/ OV/local /scripts/Ci sco_5mn_cpu \
\"${OwSel ections}\"";
M nSel ect ed 1;
MaxSel ect ed 7;
Sel ecti onRul e (i sSNVMPSupported || i sSSNVPProxied) ;
}
Action "bit_for_all _up" {
Command "/opt/ OV/ 1 ocal /scripts/C sco_Line_Up Bits \
\"${OvnSel ections}\"";
M nSel ect ed 1;
MaxSel ect ed 3;
Sel ectionRul e (i sSNMPSupported || isSNVPProxied) ;
}
}

Create a file within $OV_REGISTRATION/C and insert the previous code listing. Once this is done, run ovw with the -verify
switch, which checks for errors.I*l You may see errors or warnings about your new menu item, but if you're successful, you'll
see an item that looks like the menu in Figure B-2.

[1Do not leave any backup files within any of the directories, because NNM takes each file seriously. Backup or redundant files will produce warnings when you run ovw.

NNM can be picky with registration files. If you can't see your menu, try the ovw -verify trick. If it
'@ reveals no errors, take some entries out and restart ovw. Keep doing this until your items appear. You
should also break up your menu items into multiple files. Do not put all your menus and actions into
one file. The more files you have, the easier it will be to diagnose and troubleshoot your new menu
items.

Figure B-2. A new menu



Let's talk about some commonalties within our registration file:

« Each menu and menu item is associated with a keyboard shortcut that allows the user to access it. The trigger character is
preceded by an underscore. For example, from the Local_Graphs Network menu, you can press M to go to the 5 Minute
CPU item.

Each menu item has a precedence number within angle brackets. This allows you to control the order in which items
appear. Items with the highest precedence appear first in a menu; items with the same precedence are listed in the order
in which they appear in the file. For example, if we reduce the precedence of the 5 Minute CPU menu item from <90> to
<80>, it will appear after the Bits In and Out menu item because the higher-precedence item comes first.

The Menubar enTRy contains the menus that will appear in the top NNM menu bar. We used the function f. nenu to call a
submenu. The following code shows how we could have used f. acti on to call an action directly:

Menubar <precedence> "nenubar Label" _Menoni cChar

{

<precedence> "SubMenu Label " _NMnhenoni cChar f.nenu "nenu-nanme"
<precedence> "Action Nanme" _Menoni cChar f.action "action-nane"

A Menu looks and behaves like the menu bar (or menu) that contains it, with a few differences. Menus don't declare mnemonic
characters or precedence; these are defined by the containing menu or menu bar. The nenu- nane is the linking name that

appears after f. menu:

Menu " menu- name"

{

<precedence> "SubMenu Label" _Mhenoni cChar f.nmenu "nenu-nane"
<precedence> "Action Nanme" _WMenoni cChar f.action "action-nane"

Acti ons are called just like Menus. The acti on- name is the linking name of an action that gets called when selected from a
previous item (either a Menu or a Menubar):

Action "action-nane"

{
Conmand "/ opt/OV/local /scripts/Cisco_5mn_cpu \"${OwSel ections}\"";
M nSel ect ed 1,
MaxSel ect ed 7,
Sel ecti onRul e (1 sSN\VPSupported || isSSNVPProxied) ;
}

There are a few additional parameters in our Acti on declaration:

- Comand specifies which program or script should be executed. At the end of the command string, the \ " ${ OvwSel ecti ons}\"
passes all currently selected objects to the program as arguments.

e M nSel ect ed declares how many nodes must be selected before this item becomes available. If nothing is selected, the
corresponding menu choice will be grayed out and unclickable.

- MaxSel ect ed works the same way, but declares the maximum number of objects that can be selected.



- Sel ectionRul e uses capability fields[*1 within a logical statement. These rules declare what is necessary for the selection to
be deemed a "good selection."

[ Check out $OV_FIELDS for more definitions of capability fields.

Act i on declarations can contain many additional parameters, as can registration files. The examples we've given should be
enough to get you going in the right direction. The OVwReglntro (5) manpage defines the syntax of the registration files in
detail; read this page carefully if you're serious about adding custom menu items.

e prc |



e prcv |

B.3. Profiles for Different Users

Some users may have specific ways in which they want to use NNM. For example, an operator who is watching the network for
problems may need a fairly limited set of menus and tools; a senior network engineer might want a substantially larger set of
options. You can use the $OV_REGISTRATION directory and the $OVwRegDir environment variable to customize NNM on a per-
user basis.

The previous section showed how to add menus bT modifying files in the $OV_REGISTRATION/C directory. By default, this is the
directory NNM uses when it starts. However, you can create as many profiles as you need under the $OV_REGISTRATION
directory. Once you have created another profile directory, you can change the $OVwRegDir environment variable to point to

that new directory. Then, when NNM starts, it will use the new profile. i

One way to set up user-specific profiles is to create an account that anyone can use for starting an NNM session. With this
account, the network map is opened in read-onlyl 1 mode and has only the minimal menus (File = Exit, Map = Refresh,
Fault 1'-) Alarms, etc.). Create a new profile for this account in the directory $OV_REGISTRATION/skel by copying all the files
in the default profile $OV_REGISTRATION/C to the new skel directory. Then modify this profile by removing most of the menu
choices, thus preventing the operator from being able to run any external commands.L 1 To start NNM using this profile, you
must oint the $OVwRegDir environment variable to the new profile directory. To test the new profile, give the following
Bourne shell commands:

[ IWhen starting NNM via the command line, use $OV_BIN/ovw -ro to open the default map in read-only mode. This will prevent the user from making any map changes
(moves, adds, deletes, etc.).

[ 1Just because a map is opened in read-only mode does not mean that users cannot make changes to the back end of NNM. A user who has the ability to launch the
menu items can make changes just like the superuser can. The best way to prevent these changes is to take out all configuration menu options.

[root][nn8] /> OVvwRegDir=/etc/opt/OV/share/registration/skel
[root][nnB] /> export OVwRegDir
[root][nnms] /> $OV_BI N ovw

Once you're confident that this new profile works, create an account for running NNM with minimal permissions, and in the
startup script for that account, set $OVwRegDir appropriately (i.e., to point to your skeleton configuration). Then make sure
that users can't run NNM from their normal accountsperhaps by limiting execute access for NNM to a particular group, which will
force users not in that group to use the special account when they want to run NNM. You should also make sure that the users
you don't trust can't modify the $OV_REGISTRATION directory or its subdirectories.

e prc |



e prcv |

B.4. Using NNM for Communications

One of the more exotic ways to use SNMP is as a tool for passing messages back and forth. For example, it's certainly useful to
know that the Oracle database has gone down, but it's even more useful to send messages to key users notifying them that the
database has crashed or that it's going down for maintenance at the end of the day. In a small environment, it's easy to come
up with hacks that provide various kinds of notification. But in a large company with many offices, it's useful to have a standard
way for communicating with other departments. NNM's Event Categories is the perfect tool to use as a centralized
communication device.

Imagine a web interface that allows you to send traps to Event Categories. Filling out a simple form in a browser automatically
generates a trap that is posted to the appropriate categories. Figure B-3 shows such an interface.

What types of questions does everyone (you, managers, users, etc.) ask when there's a problem? The most typical ones are:
Who is in charge?
Name, phone, pager

What is going on?

Reboot, upgrade, failure

What servers are affected?

Production, test, development

What services are affected?

Mail, news, database, web server

When did this happen?

e.g., 10 minutes ago, 4 days from now

Figure B-3. SNMP web interface

[ E

[Seloct Severis) Atectes 5] (Other.

I
!Splpcl Desc OF Action .-m I
1
I

[Setect Senaces Afected i-u




When will this be fixed?

e.g., immediately, tomorrow

What is the severity?
Normal, Warning, Minor, Major, Critical

All these questions can be answered using the HTML form in Figure B-3. The CGI script or Java servlet that processes the form
can refuse to accept the form until the user has filled in all the fields, guaranteeing that you have complete and consistent
information.

Setting up a reporting system like this is not very difficult. You can use any standard web server, a little HTML, and your
favorite language for processing the form. Once you parse the output from the form, you can use any of the trap-generation
programs we've discussed to send the trap. This trap will then show up in one of NNM's Event Categories. (If you're not using
NNM, we've discussed other trap daemons that can be used to receive the trap and notify users. However, NNM is convenient
because it will do everything for you.)

The key to this whole setup is getting people to use and watch NNM. If it isn't used by everyone, this mechanism really doesn't

accomplish anything. Training users in nontechnical departments to watch NNM for important notifications may not be easy, but
if you succeed, you'll have created an elegant mechanism for getting important information to users.

e prc |



e prcv |

Appendix C. Net-SNMP Tools

This appendix provides brief summaries of the command-line tools included in Version 5.2.1 of the Net-SNMP package (available
from http://net-snmp.sourceforge.net).

Instead of trying to describe all the options to all the commands, we've focused on those that are most important and useful.

We have also pointed out a few cases in which the behavior of the commands differs from the behavior that's described in the
manual pages.

e prc |


http://net-snmp.sourceforge.net

e prcv |

C.1. Net-SNMP and MIB Files

By default, Net-SNMP reads the MIB files in the directory /usr/local/share/snmp/mibs. When you install Net-SNMP, it populates
this directory with a few dozen MIB files, including the UCD MIB (Net-SNMP used to be called UCD-SNMP) and the RFC 1213
MIB (MIB-I11). Net-SNMP uses the MIB files to translate between numeric object IDs and their textual representations. The MIB
files also give the tools access to information about each object (its syntax, the type of access allowed, its description, etc.).
Adding a vendor-specific MIB file to Net-SNMP is as simple as placing it in the mibs directory and setting the environment
variable $MIBS to ALL, as discussed in the next section.

e rrc |



e prcv |

C.2. Common Command-Line Arguments

For the most part, the Net-SNMP commands follow a similar command structure; they share many options and use roughly the
same syntax. For example, in the abstract, an snmpget command looks like this:

snnpget options hostnanme objectlID...

In other words, the command name is followed by a series of options, the hostname of the system you want to poll, and one or
more object IDs. (Note that if you use SNMPv1 or SNMPv2, you can use the -c community option to specify the community
string. You can also provide a default hostname in your snmp.conf file.) The syntax of snmpset is only slightly different; because
snmpset changes object values, it requires you to specify the object's datatype and the new value:

snnpset options hostname object!D type val ue...

Table C-1 summarizes some of the most useful options common to all Net-SNMP commands. See the snmpcmd(1) manpage for
a complete list.

Table C-1. Summary of command-line options

Option Description

-m Specifies which MIB modules you would like the command to load. If you want the command to parse the MIB file for a
particular vendor, copy the MIB file to /usr/local/share/snmp/mibs and invoke the command with the option -m ALL.
The argument ALL forces the command to read all the MIB files in the directory. Setting the environment variable
$MIBS to ALL achieves the same thing. If you don't want the command to read all the MIB files, you can follow the -m
option with a colon-separated list of the MIB files you want parsed.

-M Allows you to specify a colon-separated list of directories to search for MIB files. This option is useful if you don't want
to copy MIB files into the default MIB location. Setting the shell variable $MIBDIRS has the same effect.

-IR Performs a random-access search through the MIB database for an OID label. By default, the commands assume that
you specify an object ID relative to .iso.org.dod.internet.mgmt.mib-2. In practice, this option allows you to avoid
typing long OIDs for objects that aren't under the mib-2 subtree. For example, there's a group of objects in the Cisco
MIB named Icpu. If you use the -IR option, you can retrieve objects in this group without typing the entire OID; the
following command is sufficient: snnpget -1 R hostname community | cpu. 2

-On Prints OIDs numerically (e.g., .1.3.6.1.2.1.1.3.0)

-Of Prints full textual OIDs.

-Os Prints the entire OID (i.e., starting with .1).

-0S Displays only the final part of the OID, in symbolic form (e.g., sysUpTime.0).

-v Specifies which version of SNMP to use: -v1, -v2c, and -v3 for SNMPv1, SNMPv2 and SNMPv3 respectively.
-h Displays a help message.
-C Specifies the community string for SNMPv1 or SNMPv2c.

e roc |



e prcv |

C.3. Net-SNMP Command-Line Tools

This section briefly describes each of the Net-SNMP tools. By default, installing Net-SNMP places all these commands in
/usr/local/bin. All the examples in this section assume that /usr/local/bin is in your path.

C.3.1. snmpwalk

snmpwalk performs the getnext operation. We've used it throughout the book, so it should be familiar; in this section, we'll use
it to demonstrate some of the options introduced in Table C-1.

Let's say you want to perform an snmpwalk against a Cisco router. If you don't have any Cisco MIBs installed, here's what you
will see:

$ snnpwal k -v2c -c public cisco.oreilly.com.1.3.6.1.4.1.9
SNWPv2-SM ::enterprises.9.2.1.1.0 = "

System Bootstrap, Version 12.2(6r), RELEASE SOFTWARE (fcl)
TAC Support: http://wwmu ci sco.conftac

Copyright (c) 2001 by cisco Systens, Inc."

SNVPv2-SM : :enterprises.9.2.1.2.0 = "rel oad"

SNVPv2-SM : :enterprises.9.2.1.3.0 = "cisco"

SNMPv2-SM ::enterprises.9.2.1.4.0 = "oreilly.conf
SNWPv2-SM : :enterprises.9.2.1.5.0 = | pAddress: 127.45.23.1
SNVPv2-SM ::enterprises.9.2.1.6.0 = | pAddress: 0.0.0.0
SNVMPv2-SM : :enterprises.9.2.1.8.0 = 131890952
SNVPv2-SM : :enterprises.9.2.1.9.0 = 456

SNVPv2-SM : :enterprises.9.2.1.10.0 = 500

SNVMPv2-SM ::enterprises.9.2.1.11.0 = 17767568
SNVPv2-SM ::enterprises.9.2.1.12.0 = 0

SNVPv2-SM : :enterprises.9.2.1.13.0 = 0

SNVPv2-SM : :enterprises.9.2.1.14.0 = 104

SNMPv2-SM : :enterprises.9.2.1.15.0 = 600

Recall that .1.3.6.1.4.1 is .iso.org.dod.internet.private.enterprises, and 9 is Cisco's private enterprise number. Therefore, the
previous command is walking the entire Cisco subtree, which is very large; we've deleted most of its output. The output you see
isn't very readable because we haven't yet installed the Cisco MIBs, so the snmpwalk command has no way of providing human-
readable object names. We just have to guess what these objects are.

This problem is easy to solve. Copy the Cisco MIBsL*1 to the main Net-SNMP repository (/usr/local/share/snmp/mibs) and use
the -m ALL command-line option. With this option, snmpwalk parses all the files in the MIB repository. As a result, we get the
object IDs in string (human-readable) form, and we can walk the cisco subtree by name instead of specifying its complete
numeric object ID (.1.3.6.1.4.1.9):

[1You can find many Cisco MIBs at ftp://ftp.cisco.com/pub/mibs/.

$ snmpwal k -m ALL -v2c -c public cisco.oreilly.comcisco

CI SCO-SM : :enterprises.cisco.local.lcpu.1.0 ="

System Bootstrap, Version 12.2(6r), RELEASE SOFTWARE (fcl)
TAC Support: http://ww. cisco.conftac

Copyright (c) 2001 by cisco Systens, Inc."
CISCO-SM::local.lcpu.2.0 = "rel oad"

CISCO-SM::local.lcpu.3.0 = "cisco"
CISCO-SM::local.lcpu.4.0 = "oreilly.cont
CISCO-SM::local.lcpu.5.0 = | pAddress: 127.45.23.1
CISCO-SM::local.lcpu.6.0 = | pAddress: 0.0.0.0



CISCO-SM::local.lcpu.8.0 = 131888844
0 =

8

Cl SCO-SM : : 1l ocal .l cpu.9. 456
Cl SCO-SM ::local .l cpu.10.0 = 500
CISCO-SM ::local.lcpu.11.0 = 17767568
CISCO-SM::local.lcpu.12.0 = 0
CISCOSM::local.lcpu.13.0 =0
CISCO-SM::local.lcpu.14.0 = 104

0 = 600

Cl SCO-SM : : | ocal . | cpu. 15.

Now let's trim the output by adding the -Os option, which omits the initial part of each OID:

$ snnpwal k -v2c -m ALL -Os -c public cisco.oreilly.comcisco
lcpu.1.0 ="

System Bootstrap, Version 12.2(6r), RELEASE SOFTWARE (fcl)
TAC Support: http://wwm. ci sco.conftac

Copyright (c) 2001 by cisco Systens, Inc."

lcpu.2.0 = "rel oad"
I cpu.3.0 = "cisco"
lcpu.4.0 = "oreilly.cont
I cpu.5.0 = I pAddress: 127.45.23.1
| cpu.6.0 = | pAddress: 0.0.0.0
I cpu.8.0 = 131888844
lcpu.9.0 = 456
| cpu.10.0 = 500
| cpu.11.0 = 17767568
lcpu.12.0 = 0
lcpu.13.0 = 0
I cpu.14.0 = 104
0 = 600

| cpu. 15.

This output is a little easier to read since it cuts off the redundant part of each OID. Let's take this command one step further:

$ snnpwal k -v2c -c public cisco.oreilly.com system

SNWPv2- M B: : sysDescr.0 = " Cisco | 0S Software, C2600 Software (C2600-|PBASE-M,

Version 12.3(8) T3, RELEASE SOFTWARE (fcl)

Techni cal Support: http://wwm. cisco.conm techsupport

Copyright (c) 1986-2004 by Cisco Systems, Inc.

Conpi | ed Tue 20-Jul -04 17: 03 by eaar mas"

SNVPv2- M B: : sysCbjectI D.O = O D: DTRConcentratorM B:: cat Prod. 182

EXPRESSI ON- M B: : sysUpTi nel nstance = Tineticks: (344626986) 39 days, 21:17:49.86

SNVPv2- M B: : sysContact.0 = "O Reilly Data Center"
SNVPv2- M B: : sysNane.0 = "cisco.oreilly.conf

SNWPv2- M B: : sysLocation.0 = "Atlanta, GA"

SNVPv2- M B: : sysServices.0 = 6

SNVPv2- M B: : system 8.0 = Tineticks: (0) 0:00:00.00

This command walks the system subtree. Since the system group falls under mib-2, there is no need to use -m ALL; mib-2 is
one of the MIBs the Net-SNMP tools load automatically. We see that each line begins with SNMPv2-MIB, which is the name of
the MIB which describes the system tree in SNMPv2. This is the default output for Net-SNMP commands.

C.3.2. snmpget

The snmpget command issues a single get operation. Its syntax is:

snnpget options hostnanme objectlID...



C.3.3. snmpbulkget

SNMPV2 provides an operation called getbulk, which is implemented by the snmpbulkget command. getbulk allows you to
retrieve a chunk of information in one operation, as opposed to a single get or sequence of getnext operations. The syntax of
snmpbulkget is:

snnpbul kget -v2c options hostnane objectlD

-v2c is required because getbulk is defined by SNMP Version 2.

There are two command-specific options, -Cnnonr ep and -Crr ep. nonr ep is the number of scalar objects that this command
returns; rep is the number of instances of each nonscalar object that the command returns. If you omit this option, the default
values of nonrep and rep, O and 10, respectively, are used.

C.3.4. snmpbulkwalk

The snmpbulkwalk command uses the getbulk command sequence to retrieve parts of a MIB. This command differs from
snmpbulkget in that you can tell it to ignore OIDs that are not increasing. This can be useful because some SNMP agents return
OIDs out of order. Use -Cc to specify this behavior. Its syntax is:

snnpbul kwal k -v2c options hostnane objectlD

C.3.5. snmpset

The snmpset command is used to change, or set, the value of a MIB object. The command looks like this:

snnpset options hostnanme objectlD type val ue...

You can provide any number of objectID/type/value triples; the command executes set operations for all the objects you give it.
type is a single-character abbreviation that indicates the datatype of the object you're setting. Table C-2 lists the valid types.

Table C-2. snmpset object types

Abbreviation Type

IP address
a

Bits
b

Decimal string

Double



Abbreviation Type

Float
F
) Integer
i
Signed int64
|
Object ID
o}
String
s
Time ticks
t
Unsigned integer
u
Unsigned int64
U
Hexadecimal string
X

C.3.6. snmptrap
To send a trap, use the snmptrap command. The syntax for this command is:

snnptrap options hostname trap paraneters. ..

For Version 1, the following trap parameters are required:

enterprise-oid agent trap-type specific-type uptinme objectlD type value...

This command is discussed in detail in Chapter 9. Each object ID/type/value triplet specifies a variable binding to be included
with the trap; you may include any number of variable bindings. Note that agent and upti ne are not optional; however, if you
provide an empty string ("") as a placeholder, they default to the IP address of the system sending the trap and the system's
current uptime.

The parameters are simpler for Version 2 traps, largely because traps (now called notifications) are full-fledged MIB objects in

their own right. The following parameters are required:

snnptrap -v2c options hostnane uptine trapoid objectlD type value...

C.3.7. snmpdelta



The snmpdelta command monitors OIDs and tracks changes in OID values over time. Its syntax is:

snnpdel ta options hostnane objectlID...

snmpdelta requires you to specify the OID of an integer-valued scalar objectit can't monitor tables. For example, if you want to
watch the octets arriving on an interface, you can't just specify ifInOctets; you must specify the interface number in addition to
the object name (e.g., ifInOctets.3). By default, snmpdelta polls the given object every second.

Table C-3 lists some of the snmpdelta-specific options. The documentation for this command has many problems, but if you stick
to the options listed here you should be on firm ground.

Table C-3. snmpdelta options

Option Description

-Cs Display a timestamp with every set of results.
-Cm Print the maximum value obtained.
-Cl Write the output to a file. The filename is in the form hostname-OID. For example, if you want to monitor the

variables ifInOctets.3 and ifOutOctets.3 on the host router, the -Cl option will create two files, hostname-ifInOctets.3
and hostname-ifOutOctets.3, where the output of snmpdelta will be written. (Note that this output has no apparent
connection to the configuration, as the documentation claims.)

-Cp Specify the polling interval (the default is one second).
-CT Print output in tabular format.
C.3.8. snmpdf

snmpdf works exactly like the Unix df command, except it uses SNMP to query hosts on a network. Its syntax is:

snmpdf [-Cu] options... hostnane

The -Cu option tells the command to consult the old UCD-SNMP private MIB. The Host Resources MIB is used by default.

C.3.9. snmpgetnext

The snmpgetnext command uses the getnext operation to retrieve the next object from a host. For example, if you ask it to
perform a getnext for ifOutOctets.4, it will retrieve the next object in the MIB tree, which will probably be ifOutOctets.5. (If the
machine you're polling has only four interfaces, you'll get the next object in the MIB, whatever that happens to be. You should
also be aware that there are some obscure situations that create a "hole" in the interface table, so the interface following .4
might be .6 or .7.) You can use this command to implement your own version of snmpwalk. The syntax is:

snnpget next options... hostnanme objectlD...

There are no options specific to snmpgetnext.

C.3.10. snmpstatus

The snmpstatus command retrieves status information from a host. It prints the following information:



e The IP address of the entity

¢ A textual description of the entity (sysDescr.0)

« The uptime of the entity (sysUpTime.0)

« The sum of received packets on all interfaces (iflInUcastPkts.* + ifInNUcastPkts.* )

¢ The sum of transmitted packets on all interfaces (ifOutUcastPkts.* + ifOutNUcastPkts.* )
« The number of IP input packets (ipIlnReceives.0)

« The number of IP output packets (ipOutRequests.0)

The syntax of snmpstatus is straightforward, and there are no command-specific options:

snnpstatus options... hostnane

C.3.11. snmptable

The snmptable command uses getnext commands to print the contents of a table in tabular form. Its syntax is:

snnpt abl e options... hostnane objectID

The obj ect | D must be the ID of a table (e.g., ifTable), not of an object within a table. Table C-4 lists some of the snmptable-
specific options.

Table C-4. snmptable options

Option Description

-CfF Separate table columns with the string F. For example, -Cf : separates columns with a colon, which might make it
easier to import the output from snmptable into another program.

-Cw W Set the maximum width of the table to W If the lines are longer than W the table is split into sections. Since tables can
have many columns, you almost certainly want to use this option.

-Ci Prepend the index of the entry to all printed lines.
-Cb Display a brief heading.
-Ch Print only column headers.

-CH Suppress column headers.

C.3.12. snmpusm

The snmpusm command provides simple access to the agent's USM table. This is primarily used for configuring the agent's
SNMPv3 features (managing users, setting and changing passphrases, etc.). This command is discussed in Chapter 6.

C.3.13. snmpconf

This command is an interactive Perl script used to create and maintain the Net-SNMP configuration files, snmp.conf and
snmpd.conf. Its syntax is:

snnpconf fil enanme



fil enane must be either snmp.conf or snmpd.conf.

C.3.14. snmpinform

This command can be used to send an SNMPv2 trap. If you send a trap with snmpinform , it will wait for a response from the
recipient. Note that you can send an inform using the snmptrap command if you specify -Ci. The options for snmpinform are
identical to those for snmptrap.

C.3.15. snmptranslate

The Net-SNMP package comes with a handy tool called snmptranslate that translates between numerical and human-readable
object names. More generally, it can be used to look up information from MIB files. Its syntax is:

snnptransl ate options objectlD

snmptranslate does not perform queries against any device, so it doesn't need the hostname or community parameters. Its sole
purpose is to read MIB files and produce output about specific objects. Before looking at examples, it's worth noting that
snmptranslate's interpretations of the -O options are, to be kind, interesting. To speak more plainly, they're just plain wrong.
The following examples show what actually happens when you use these optionswe'll leave the rationalization to you.

Let's say you want to know the enterprise OID for Cisco Systems. The following command does the trick:

$ snnptranslate -m ALL -IR -On cisco
.1.3.6.1.4.1.9

This tells us that Cisco's enterprise OID is .1.3.6.1.4.1.9. Note the use of the -IR option, which tells snmptranslate to do a
random-access search for an object named cisco. If you leave this option out, snmptranslate will fail because it will try to locate
cisco under the mib-2 tree.

Let's say you want to take .1.3.6.1.4.1.9 and convert it to its full symbolic name. That's easy:

$ snnptranslate -mALL -OF .1.3.6.1.4.1.9
.iso.org.dod.internet.private.enterprises.cisco

In this case, -IR isn't needed because we're not performing a random-access search. -Of ensures that we print the full object ID,
in symbolic (text) form.

Now, let's say you want to know a little more information about a particular object. The -Td option displays the object's
definition as it appears in the MIB file:

$ snnptranslate -1R -Td system sysLocation
SNWPv2- M B: : sysLocati on
sysLocati on OBJECT- TYPE

-- FROM SNVPv2- M B, RFC1213-M B
-- TEXTUAL CONVENTI ON Di spl ayString
SYNTAX OCTET STRING (0. .255)

DI SPLAY-HI NT "255a"
MAX- ACCESS read-wite

STATUS current
DESCRI PTION  "The physical |ocation of this node (e.g., 'tel ephone
closet, 3rd floor'). If the location is unknown, the

value is the zero-length string."
::={ iso(1) org(3) dod(6) internet(1l) mgnt(2) mb-2(1) system(1l) 6 }



-Td can save you a lot of work poking through MIB files to find an appropriate definition, particularly when combined with -IR.
Furthermore, the last line shows you the entire object ID in both numeric and string forms, not just the object's parent.

The -Tp option prints an entire OID tree. The best way to understand this is to see it:

$ snnptranslate -1R -Tp system

+--systen(1)
|
+-- -R--
I
I
+-- -R--
+-- -R--

String sysDescr (1)

Textual Convention: DisplayString
Size: 0..255

oj I D sysChj ect | D(2)

Ti meTi cks sysUpTi ne(3)

+--sysUpTi nel nst ance(0)

- RW

String sysCont act (4)

Textual Convention: DisplayString
Size: 0..255

String sysNane(5)

Textual Convention: DisplayString
Si ze: 0..255

String sysLocati on(6)

Textual Convention: DisplayString
Size: 0..255

I NTEGER  sysServices(7)

Range: 0..127

Ti meTi cks sysORLast Change( 8)
Textual Convention: TinmeStanp

+- - sysORTabl e(9)

+--sysOREntry(1)

I ndex: sysORI ndex

---- INTEGER  sysORI ndex(1)
Range: 1..2147483647

-R-- bjID sysORI [ 2)

-R-- String sysORDescr ( 3)

Textual Convention: DisplayString

Size: 0..255
-R-- TimeTi cks sysORUpTi ne(4)

Textual Convention: TineStanp

We displayed the system subtree because it's fairly short. From this output, it's relatively easy to see all the objects underneath
system, together with their types and textual conventions. This is a great way to see what objects are defined in a MIB as well

as their relationships to other objects. The output can be voluminous, but it's still a convenient way to get a map and figure out
what objects are likely to be useful.



e prcv |

Appendix D. SNMP RFCs

This appendix provides a brief list of all the SNMP RFCs , along with the status of each RFC. This list (often referred to as the
Standards Summary) was taken from The Simple Times, an online publication that should be familiar to anyone working with
SNMP. It is used with their permission.

e roc |



e prcv |

D.1. SMIvl Data Definition Language

Full Standards:

RFC 1155Structure of Management Information
RFC 1212Concise MIB Definitions

Informational:

RFC 1215A Convention for Defining Traps

e prc |



e prcv |

D.2. SMIv2 Data Definition Language

Full Standards:
RFC 2578Structure of Management Information

RFC 2579Textual Conventions
RFC 2580Conformance Statements

e rrcv |



e prcv |

D.3. SNMPv3 Protocol

Draft Standards:

RFC 3411Architecture for SNMP Frameworks
RFC 3412Message Processing and Dispatching
RFC 3413SNMP Applications

RFC 3414User-Based Security Model

RFC 3415View-Based Access Control Model
RFC 3416Protocol Operations for SNMPv2
RFC 3417Transport Mappings for SNMPv2
RFC 3418MIB for SNMPv2

Proposed Standard:

RFC 2576Coexistence Between SNMP Versions
Informational:

RFC 3410Internet Management Framework
Experimental:

RFC 2786Diffie-Hellman USM Key Management
RFC 3430SNMP over TCP

e prc |



D.4. SNMP Agent Extensibility

Proposed Standards:

RFC 2741AgentX Protocol Version 1
RFC 2742AgentX MIB



D.5. SMiIvl MIB Modules

Full Standards:

RFC
RFC

1213Management Information Base Il
1643Ethernet-Like Interface Types MIB

Draft Standards:

RFC
RFC

1493Bridge MIB
1559DECnet phase 1V MIB

Proposed Standards:

RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC

1285FDDI Interface Type (SMT 6.2) MIB
1381X.25 LAPB MIB

1382X.25 Packet Layer MIB
1414ldentification MIB

1461X.25 Multiprotocol Interconnect MIB
1471PPP Link Control Protocol MIB
1472PPP Security Protocol MIB

1473PPP IP NCP MIB

1474PPP Bridge NCP MIB

1512FDDI Interface Type (SMT 7.3) MIB
1513RMON Token Ring Extensions MIB
1515IEEE 802.3 MAU MIB

1525Source Routing Bridge MIB
1742AppleTalk MIB



D.6. SMIv2 MIB Modules

Full Standards:

RFC
RFC
RFC
RFC
RFC
RFC
RFC

2819Remote Network Monitoring MIB
3411SNMP Framework MIB
3412SNMPv3 MPD MIB

3413SNMP Applications MIBs
3414SNMPv3 USM MIB

3415SNMP VACM MIB

3418SNMP MIB

Draft Standards:

RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC

1657BGP Version 4 MIB

1658Character Device MIB
1659RS-232 Interface Type MIB
1660Parallel Printer Interface Type MIB
1694SMDS Interface Type MIB
1724RIP Version 2 MIB

1748IEEE 802.5 Interface Type MIB
18500SPF Version 2 MIB

2115Frame Relay DTE Interface Type MIB
2742AgentX MIB

2790Host Resources MIB
2863Interfaces Group MIB

Proposed Standards:

RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC
RFC

1666SNA NAU MIB

1696Modem MIB

1697RDBMS MIB

1747SNA Data Link Control MIB
1749802.5 Station Source Routing MIB
1759Printer MIB

2006Internet Protocol Mobility MIB
2011Internet Protocol MIB
2012Transmission Control Protocol MIB
2013User Datagram Protocol MIB
2020IEEE 802.12 Interfaces MIB
2021RMON Version 2 MIB

2024Data Link Switching MIB
2051APPC MIB

2096IP Forwarding Table MIB

2108IEEE 802.3 Repeater MIB
21271SDN MIB

2128Dial Control MIB

2206Resource Reservation Protocol MIB
2213Integrated Services MIB
2214Guaranteed Service MIB
2232Dependent LU Requester MIB
2238High Performance Routing MIB
22661EEE 802.12 Repeater MIB
2287System-Level Application Mgmt MIB
2320Classical IP and ARP over ATM MIB
2417Multicast over UNI 3.0/3.1/ATM MIB
24521Pv6 UDP MIB

24541Pv6 TCP MIB

2455APPN MIB

2456APPN Trap MIB

2457APPN Extended Border Node MIB
24651Pv6 Textual Conventions MIB
24661CMPv6 MIB

249315 Minute Performance History TCs



RFC 2494DS0, DSO Bundle Interface Type MIB
RFC 2495DS1, E1, DS2, E2 Interface Type MIB
RFC 2496DS3/E3 Interface Type MIB

RFC 2512Accounting MIB for ATM Networks
RFC 2513Accounting Control MIB

RFC 2514ATM Textual Conventions and OIDs
RFC 2515ATM MIB

RFC 2558SONET/SDH Interface Type MIB
RFC 2561TN3270E MIB

RFC 2562TN3270E Response Time MIB

RFC 2564Application Management MIB

RFC 2576SNMP Community MIB

RFC 2584APPN/HPR in IP Networks

RFC 2594WWW Services MIB

RFC 2605Directory Server MIB

RFC 2613RMON for Switched Networks MIB
RFC 2618RADIUS Authentication Client MIB
RFC 2619RADIUS Authentication Server MIB
RFC 2667IP Tunnel MIB

RFC 2662ADSL MIB

RFC 2665Ethernet-Like Interface Type MIB
RFC 2668IEEE 802.3 MAU MIB

RFC 2669DOCSIS Cable Device MIB

RFC 2670DOCSIS RF Interface MIB

RFC 2677Next Hop Resolution Protocol MIB
RFC 2720Traffic Flow Measurement Meter MIB
RFC 2737Entity MIB

RFC 2787Virtual Router Redundancy Protocol MIB
RFC 2788Network Services Monitoring MIB
RFC 2789Mail Monitoring MIB

RFC 2873Fibre Channel Fabric Element MIB
RFC 2856High Capacity Data Type TCs

RFC 2864Interfaces Group Inverted Stack MIB
RFC 2895RMON Protocol Identifier

RFC 2925Ping, Traceroute, Lookup MIBs

RFC 2932IPv4 Multicast Routing MIB

RFC 2933IGMP MIB

RFC 2940COPS Client MIB

RFC 2954Frame Relay Service MIB

RFC 2955Frame Relay/ATM PVC MIB

RFC 2959Real-Time Transport Protocol MIB
RFC 2981Event MIB

RFC 2982Expression MIB

RFC 3014Notification Log MIB

RFC 3019Multicast Listener Discovery MIB
RFC 3020Frame Relay UNI/NNI Multilink MIB
RFC 3055PSTN/Internet Interworking MIB
RFC 3083DOCSIS Baseline Privacy Interface MIB
RFC 3144RMON Interface Monitoring MIB
RFC 3165Scripting MIB

RFC 3201Circuit Interface MIB

RFC 3202Frame Relay Service Level MIB

RFC 3231Scheduling MIB

RFC 3273RMON High Capacity MIB

RFC 3276HDSL2/SHDSL Line MIB

RFC 3291Internet Network Address TCs

RFC 3287RMON Differentiated Services MIB
RFC 3289DiffServ MIB

RFC 3295General Switch Mgmt Protocol MIB
RFC 3371Layer Two Tunneling Protocol MIB
RFC 3395RMON Protocol Identifier Extensions
RFC 3419Transport Address TCs

RFC 3433Entity Sensor MIB

RFC 3434RMON High Capacity Alarms MIB
RFC 3440ADSL Extension MIB

Informational:

RFC 1628Uninterruptible Power Supply MIB



RFC 2620RADIUS Accounting Client MIB
RFC 2621RADIUS Accounting Server MIB
RFC 2666Ethernet Chip Set Identifiers
RFC 2707Print Job Monitoring MIB

RFC 2896RMON Protocol Identifier Macros
RFC 2922Physical Topology MIB

Experimental:
RFC 2758SLA Performance Monitoring MIB

RFC 2786Diffie-Hellman USM Key MIB
RFC 29341Pv4 PIM MIB

e roc |



e prcv |

D.7. IANA-Maintained MIB Modules

Interface Type Textual Convention

ftp://ftp.iana.org/mib/iana.mib/ianaiftype.mib

Address Family Numbers Textual Convention

ftp://ftp.iana.org/mib/iana.mib/ianaaddressfamilynumbers.mib

TN3270E Textual Conventions

ftp://ftp.iana.org/mib/iana.mib/ianatn3270etc.mib

Language ldentifiers

ftp://ftp.iana.org/mib/iana.mib/ianalanguage.mib

IP Routing Protocol Textual Conventions

ftp://ftp.iana.org/mib/iana.mib/ianaiprouteprotocol.mib

e rrc |




e prcv |

D.8. Related Documents

Informational:

RFC 1270SNMP Communication Services

RFC 1321MD5 Message-Digest Algorithm

RFC 1470Network Management Tool Catalog

RFC 2039Applicability of Standard MIBs to WWW Server Management

RFC 2962SNMP Application Level Gateway for Payload Address Translation
RFC 2975Introduction to Accounting Management

RFC 3052Service Management Architectures Issues and Review

RFC 3198Terminology for Policy-Based Management

RFC 3216SMIng Objectives

RFC 3387Considerations on IP Quality of Service

Experimental:

RFC 1187Bulk Table Retrieval with the SNMP

RFC 1224Techniques for Managing Asynchronously Generated Alerts

RFC 1238CLNS MIB

RFC 1592SNMP Distributed Program Interface

RFC 1792TCP/IPX Connection MIB Specification

RFC 3139Requirements for Configuration Management of IP-based Networks
RFC 3179Script MIB Extensibility Protocol 1.1

e prc |



e prcv |

Appendix E. SNMP Support for Perl

This appendix summarizes two SNMP Perl modules. The first is Mike Mitchell's SNMP_ut i | module, which we have used in most of
our Perl scripts throughout this book. This module is distributed with Simon Leinen's SNMP Perl module; Mike's module,
together with Simon's, can make SNMP programming a snap. You can get these modules from
http://www.switch.ch/misc/leinen/snmp/perl or http://www.cpan.org.

The second module is the one that comes with Net-SNMP. It allows you to write SNMPv1, SNMPv2, and SNMPv3 Perl scripts
since it basically wraps the Net-SNMP C libraries. It comes with the Net-SNMP distribution at http://www.net-snmp.org.

For those of you who wish to review the Perl language, you can find an excellent introduction to the language at
http://search.cpan.org/~rgarcia/perl-5.9.2/pod/perlintro.pod.

e prc |


http://www.switch.ch/misc/leinen/snmp/perl
http://www.cpan.org
http://www.net-snmp.org
http://search.cpan.org/~rgarcia/perl-5.9.2/pod/perlintro.pod

e prcv |

E.1. SNMP_Util

Perl scripts need two use statements to take advantage of the SNMP Perl module:

use BER
use SNWVP_Sessi on;

The BER and SNVP_Sessi on modules make up the core of Simon's package. The SNWP_uti | module discussed in this appendix
makes using this package a little easier. It requires only one use statement:

use SNWVP_util;

Mike's package uses the other two modules, so it's not necessary to include all three in your scripts.

E.1.1. MIB Management Routines

The following sections describe a set of routines for working with MIBs.

E.1.1.1. snmpmapOID()
The MIB objects in RFC 1213 (MIB-11) and RFC 2955 (Frame Relay) are preloaded by the routines in this package. This means

that you can refer to a symbolic name like sysLocation.O rather than to its numeric OID (.1.3.6.1.2.1.1.6 ). The snnpmapQ D( )
routine allows you to add name-OID pairs to this map. The routine is used as follows:

snnpmapO D(text, O D, [text, OD. ..])

All the parameters are strings. text is the textual (or symbolic) nhame that you want to use and O D is the numeric object ID of
the object to which the name refers. A single call to this routine may specify any number of name-OID pairs.

If snmpmapQ D( ) fails, it returns undef, so you can test for errors like this:

@eturn = snmpnapd (. .);
if(!@eturn) {

# error
}

E.1.1.2. snmpMIB_to_OID()

This routine takes the filename of a MIB as an argument. It reads and parses the MIB file and associates the object IDs defined
by the MIB with their textual names. It returns the number of mappings it created. A return value of 0 means that no mappings
were created; -1 means an error occurred (i.e., it was unable to open the file). The routine is used as follows:

snnpM B_to_QO D(fil enane)



E.1.1.3.snmpLoad_OID_Cache()

This routine allows you to map textual names to object IDs using a file. The file should consist of a number of lines in the form:

textual _nane O D

This is much faster than calling snnpM B_to_O D( ) because it doesn't require parsing a MIB file. The only argument to this
routine is the name of the file that contains the preparsed data:

snnpLoad_O D_Cache(fil enane)

snnpLoad_QO D _Cache( ) returns -1 if it can't open the file; a return value of O indicates success.

E.1.1.4.snmpQueue_MIB_File()

This routine specifies a list of MIB files that will be used for mapping textual names to object IDs. If a name or OID can't be
found in the internal map, each MIB file is parsed in turn until a match is found. The routine is used as follows:

snnmpQueue_M B_Fil e(filenane, [filenane])

E.1.2. SNMP Operations

The routines for performing SNMP operations correspond to the standard SNMP Version 1 operations*1 and have the following
parameters in common:

[1Simon Leinen's package supports both SNMPv1 and v2; Mike Mitchell's SNMP_ut i | module supports only v1.

communi ty (optional)

The community string. If no community string is specified, public is used.

host (required)

The hostname or IP address of the device you want to query.

port (optional)
The port number to which to send the query or trap. The default for all routines except snnptrap( ) is 161. The default for
snnptrap( ) is 162.

ti meout (optional)
The timeout in seconds; if no response is received within this period, the operation is considered to have failed and is
retried. The default is 2 seconds.

retries (optional)

The number of retries before the routine returns failure. The default is 5.

backof f (optional)

The backoff value; for each successive retry, the new timeout period is obtained by multiplying the current timeout with



the backoff. The default is 1.

QO D (required)

The object ID or textual name of the object you are querying.

E.1.2.1. snmpget()

The syntax of the snnpget ( ) routine is:

snnpget (communi ty@ost: port:tineout:retries:backoff, OD, [AD...])

If snnpget ( ) fails, it returns undef .

Recall that all the MIB-I11 objects are preloaded into this Perl module, so the following code is legal:

@ysDescr = snnpget ("public\@isco.ora.coni, "sysDescr");

We did not specify any of the optional parameters (ti neout, backof f, etc.); the default values will be used. This routine lets us
request "sysDescr" as shorthand for sysDescr.0. When the Perl module builds its mappings of names to object IDs, it
automatically appends the trailing .0 to any scalar objects it finds. Because sysDescr is a scalar object defined by MIB-I1, and
because the MIB-I11 objects are preloaded, sysDescr is mapped to .1.3.6.1.2.1.1.1.0. If you request a scalar object from a private
MIB, you must append .0 to the OID.

Since one call to snnpget ( ) can retrieve many objects, the return values are stored in an array. For example:

@i ds = snnpget (" public\ @i sco.ora.cont', "sysDescr", "sysNane");

When this function call executes, the value for sysDescr will be stored in $oi ds[ 0] ; the value for sysName will be stored in
$oi ds[ 1] . All the routines in this package share this behavior.

E.1.2.2. snmpgetnext()

The snnpget next () routine performs a getnext operation to retrieve the value of the MIB object that follows the object you
pass to it. Its syntax is:

snnpget next (conmuni ty@ost: port:timeout:retries: backoff, OD [OD..])

If snnpget next () fails, it returns undef .
As with snnpget (), you can request many OIDs; the return value from snnpget next ( ) is an array, with the result of each

getnext operation in each successive position in the array. The array you get back from snnpget next ( ) differs from the array
returned by snnpget ( ) in that the value of each object is preceded by the object's ID, in the form:

A D: val ue

This routine returns both the OID and the value because with the getnext operation, you don't necessarily know what the next
object in the MIB tree is.



E.1.2.3. snmpwalk()

The snmpwal k( ) routine could easily be implemented with repeated calls to snnpget next ( ) ; it traverses the entire object tree,
starting with the object passed to it. Its syntax is:

snnpwal k(conmmuni ty@ost: port:timeout:retries: backoff, QD

If snmpwal k( ) fails, it returns undef .

Unlike many of the routines in this module, snnpwal k( ) allows only one OID as an argument. Like the other routines, it returns
an array of values; each element of the array consists of an object's ID followed by its value, separated by a colon. For example,
after executing the following code:

@ystem = snnmpwal k(" public\ @i sco. ora. cont', "systeni);

the contents of the array @yst emwould be something like:

:cisco.ora.com Ci sco
01.3.6.1.4.1.0

: 23 days, 11:01:57

Ora Network Admin Staff
:cisco.ora.com

:Atlanta, GA

4

Noeo kol =
cooooooO

Note that the array doesn't include the entire object ID. We've told snnpwal k( ) to walk the tree starting at the system object,
which has the OID .1.3.6.1.2.1.1. The first child object, and the first item in the array, is sysName, which is .1.3.6.1.2.1.1.1.0.
snmpwal k( ) returns 1. 0: ci sco. ora. combecause it omits the generic part of the OID (in this case, system) and prints only the
instance-specific part (1. 0). Similarly, the next item in the array is system.2.0, or system.sysObjectID.O; its value is Cisco's
enterprise ID.

E.1.2.4. snmpset()

The snnpset ( ) routine allows you to set the value of an object on an SNMP-managed device. In addition to the standard
arguments (hostname, community, etc.), this routine expects three arguments for each object you want it to set: the object's
ID, datatype, and value. The syntax for this routine is:

snnpset (comuni t y@ost: port:timeout:retries: backoff,
aD, type, value, [OD, type, value...])

The type argument must be one of the following strings:

string

Represents the string type

i nt

Represents the 32-bit integer type



i paddr

Represents the IP address type

oid
Represents the object identifier (OID) type
If snnpset () fails, it returns undef .
Performing a set from a script is straightforward. The following code sets the value of sysContact to "Joe@Ora". If the operation

succeeds, snnpset () returns the new value for sysContact. If the operation fails, the fs variable is not set and snnpset ( )
prints an error message:

$set Response =

snnpset (" private\ @i sco. ora.cont, sysContact,"string","Joe\@ra");
if ($set Response) {

print "SET: sysContact: $setResponse\n";
} else {

print "No response from ci sco.ora.comn";

}

The most common reasons for an snnpset () to fail are that the host isn't up, the host isn't running an SNMP agent, or the
community string is wrong.

E.1.2.5. snmptrap()

The snnptrap( ) routine generates an SNMPv1 trap. Most of the arguments are familiar:

snnpt rap(communi ty@ost: port:timeout:retries: backoff,
enterprised D, agent, general D, specificlD,
O D, type, value, [OD type, value...])

The enterprised D, agent, general | D, and speci fi cl D arguments are discussed in Chapter 9. Each OID/type/value triplet defines
a data binding to be included in the trap. O D is the object ID of the variable you want to send, val ue is the value you want to
send for this object, and t ype is the object's datatype. t ype must be one of the following three strings:

string
Represents the string type
int
Represents the 32-bit integer type
oid
Represents the object identifier (OID) type

If snnptrap( ) fails, it returns undef. See Chapter 9 for a more detailed discussion of SNMP traps.

e prc |



e prcv |

E.2. Net-SNMP

Note that when you download and build the source distribution for Net-SNMP, you must explicitly tell the configure command to
install the Perl modules as well. You do so like this:

$ ./configure --wth-perl-nodul es

The use statement for this module looks like the following:

use SNWVP;

Beyond this, the actual usage of the Net-SNMP Perl module is broken into two categories, which are discussed next.

E.2.1. MIB Management Routines

By default, when you use this Perl module it will load all the MIB files located in the default location,
/usr/local/share/snmp/mibs. This means you can use names like sysDescr and not have to remember the OIDs for these objects.
But if you want to use some private MIB, there are routines that can help you with this. We'll discuss the two more commonly
used ones.

E.2.1.1. &SNMP::loadModules(<mod>,...)

The &SNWP: : | oadMbdul es( ) method is used to load a particular MIB file. If you simply copy your MIB file to the normal location
(/usr/local/share/snmp/mibs), the Net-SNMP library will not automatically load it. It has an internal list of MIB files it knows
about (these are installed when you build the Net-SNMP package). This routine can be used to load a specific MIB, list of MIBs,
or all MIBs. For example, this line of code will load all MIB files, including any you copied to the default location:

&SNWP: : | oadModul es( " ALL");

Alternatively, you could have invoked this routine like so:

&SNWP: : | oadMbdul es( ' | EEE802dot 11-M B' ) ;

This loads the 802.11 MIB we installed. How did we know to use | EEE802dot 11- M B? If you look at the top of any MIB file, you
will see the BEG N clause. For example, this line is at the top of the 802.11 MIB file:

| EEE802dot 11-M B DEFI NI TIONS ::= BEG N

You just use the name of the MIB definition as the argument to the | oadMVbdul es routine.

E.2.1.2.&SNMP::addMibDirs(<dir>,...)

The &SNWP: : addM bDi rs( ) routine allows you to add directories to be searched where other MIB files may belong. This is



advantageous if you have private MIBs and either you want to store them in the default location, or you don't have write
permission for the directory.

E.2.2. SNMP Operations

Unlike SNMP_Uti |, the Net-SNMP library requires a little more work to achieve the same goal. However, it is a flexible package
that allows you a full range of control over your application. We'll present several SNMP applications that will highlight the basic
usage of this package. To learn more about this module, you can install the Net-SNMP package and read the manual page for
the module by running man SNMP.

E.2.2.1.snmpwalk

The following is a simple implementation of the snmpwalk command:

#! [/ usr/ bi n/ perl

use SNWP;
$SNWVP: : use_sprint_val ue = 1;
ny $host = "local host";

$sess = new SNVP: : Session( DestHost => $host,
Version => 3,
SecNane => "kjs",
Aut hProto => "MD5",
Aut hPass => "nypassword",
PrivProto => "DES",
PrivPass => "nyot her password",
SecLevel => "authPriv");

ny $var = new SNWVP: : Var bi nd([]);

do {
ny $val = $sess->getnext ($var);
print "$var->[ $SNVP: : Varbi nd: : tag_f]. $var->[ $SNVP: : Varbind: :iid_f] =",
"$var - >[ $SNVP: : Var bi nd: : val _f]\n";
} until ($sess->{ErrorNun});

First off, we set $SNVP: : use_sprint _val ue to 1. This forces the module to use Net-SNMP 's snpri nt _val ue library function, which
helps make output a little more user friendly. Next we create a new SNMP session. There are many options you can pass to the
constructor. In this example, we're creating an SNMPv3 session. If you wanted to use just SNMPv2, you could simply do the
following:

$sess = new SNVP: : Session( Dest Host => $host,
Communi ty => $conm
Version => 2);

The line $var = new SNMP: : Varbind([]); creates an empty variable binding. This means we want to walk the entire MIB tree on
the host. Next we go into a loop where we call get next ( ) on the newly created variable binding. We print the tag name for the
OID we retrieved, its instance identifier (always O for scalar objects), and the value itself. We check to see if $sess- >{ Error Nunt
is set (which means we have reached the end of the MIB or some other failure has occurred). If no error has occurred, we do
the getnext ( ) again.

Here is a sample run of this program:

$ ./ m bwal k. pl

sysDescr.0 = Linux snort 2.4.7-10 #1 Thu Sep 6 17:27:27 EDT 2001 i 686
sysObjectID.0 = |inux

sysUpTi nel nstance. = 0:0:51:06. 71



sysContact.0 = Root <root @ ocal host>
sysNane. 0 = machi ne
sysLocation.0 = Kevin J. Schm dt

Note that the output has been cut short.

E.2.2.2. snmpget

Now let's look at how the simple SNMP get operation is implemented:

#!/ usr/ bi n/ perl

use SNWVP;
$SNVP: : use_sprint_val ue = 1;

nmy $host = "l ocal host";

$sess = new SNVP: : Session( DestHost => $host,
Versi on => 3,
SecNane => "kjs",
Aut hProto => "MD5",
Aut hPass => "nypassword",
PrivProto => "DES",
PrivPass => "nyot her password"”,
SecLevel => "authPriv");

$var = new SNWVP:: VarList (['sysDescr',0],[' sysUpTine',0]);
ny @ars = $sess->get($var);
foreach (@ars) {
print "$_\n";
}

The main difference here is the use of the SNVP: : Var Li st command:

$var = new SNWVP:: VarList (['sysDescr',0],[' sysUpTine',0]);

This allows us to specify one or more OIDs we wish to get. The format of each OID you pass to this routine is as follows:

[object, iid]

The value for ii d depends on what the object is. If it's a simple scalar, use 0. Otherwise, you have a columnar object andiid
will need to be the identifier or index for the object.

The call $sess- >get ($var); returns an array with each respective bucket set to the return value for each object in the order you
specified them with the call to VarLi st .

E.2.2.3.snmpset

Here's a script that sets the sysNane OID:

#! [/ usr/ bi n/ perl



use SNWVP;
$SNVP: : use_sprint_val ue = 1;
ny $host = "local host";
$sess = new SNVP: : Session( DestHost => $host,
Version => 3,
SecNane => "kjs",
Aut hProto => "NMD5",
Aut hPass => "nypassword",
PrivProto => "DES",
PrivPass => "nyot her password"”,
SecLevel => "authPriv");
$var = new SNWP: : Varbi nd([' sysNane', 0]);
ny ($sysDescr) = $sess->get ($var);
print "Ad nane: $sysDescr\n";
$sess->set ([' sysNane', 0, "New Nane", " OCTETSTR']);
ny ($newSysDescr) = $sess->get ($var);
print "New nane: $newSysDescr\n";
ny $setter = new SNWVP:: Varbi nd([' sysNane', 0, $sysDescr, "OCTETSTR']) ;
$sess->set ($setter);

ny ($newSysDescr) = $sess->get($var);
print "Back to old nane: $newSysDescr\n";

Note the line:

$sess->set ([ sysNane', 0, "New Nane", " OCTETSTR']);

Here we change sysNane to the value "New Name". The set routine takes an extended form of the format we pass to the Var bi nd
routine:

[oid, iid, value, type]

The oid and iid we already know about. val ue is whatever you want the oi d to be changed to. t ype must be one of the
following:

OBJECTI D

Dotted-decimal (e.g., .1.3.6.1.2.1.1.1)

OCTETSTR

Perl scalar containing octets

I NTEGER

Decimal signed integer (or enum)

NETADDR

Dotted-decimal

| PADDR

Dotted-decimal



COUNTER

Decimal unsigned integer

COUNTERG4

Decimal unsigned integer

GAUGE

Decimal unsigned integer

U NTEGER

Decimal unsigned integer

TI CKS

Decimal unsigned integer

OPAQUE

Perl scalar containing octets

NULL
Perl scalar containing nothing

Also note the lines:

ny $setter = new SNWVP:: Varbi nd([' sysNane', 0, $sysDescr, "OCTETSTR"] ) ;
$sess- >set ($setter);

This just shows that a Var bi nd object can be used as an argument to the set routine. Finally, here is the output from this script:

$ ./set.pl

a d nanme: nachi ne

New nane: New Nane

Back to old nane: nachine

e roc |



e prcv |

Appendix F. Network Management Software

Many SNMP software packages are available, ranging from programming libraries that let you build your own utilities (using
Perl, C/C++, or Java) to expensive, complete network management platforms. This chapter presents a small sampling of some
of the more commonly used packages. This should not only give you an idea of what types of packages are out there, but also
introduce you to the different levels of packages (from freeware up to enterprise-class software). Management software falls
into five categories:

¢ SNMP agents

« NMS suites

« Element managers (vendor-specific management)

¢ Trend analysis software

e Supporting software
Unfortunately, deciding what you need isn't as simple as picking one program from each category. If you have a small network
and are interested in building your own tools, you probably don't need a complex NMS suite. Whether you need trend analysis
software depends, obviously, on whether you're interested in analyzing trends in your network usage. The products available
depend in part on the platforms in which you're interested. The minimum you can get by with is an SNMP agent on a device and
some software that can retrieve a value from that device (using an SNMP get). Although this is minimal, it's enough to start

working, and you can get the software for free.

This appendix presents a broad sampling of some of the leading products in each of these categories. Since there are more
packages than we can cover in this book, be sure to check the SNMPLink.org web site (http://www.snmplink.org/Tools.html) for
network management product listings.

e roc |



http://www.snmplink.org/Tools.html

F.1. SNMP Agents

As we explained in Chapter 1, the agent is the software that controls all the SNMP communication to and from any SNMP-
compatible device. In some devices, such as Cisco routers, the agent software is built into the device itself and requires no
installation. On other platforms, you may have to install the agent as an additional software package.

Before you can look at what types of agents you need, you must research what types of devices you have on your network and
what types of information you would like to receive from each. Some agents are very basic and return only a limited amount of
information, and others can return a wealth of information. To start, determine whether you need to receive information from
servers (Unix, Windows, etc.) or network devices (routers, switches, etc.). Generally, out-of-the-box network-type devices
provide more information than their server counterparts. On the other hand, network devices do not extend very easily, if at
all, in part because network hardware usually doesn't have a disk-based operating environment.L*1 This keeps the end user
from accessing the agent to make modifications or extend it. Table F-1 lists some SNMP agents .

[1 See Chapter 11 for a discussion of extensible agents.

software suite.

- Make sure that you understand what kind of software is running on your servers (email systems,
an accounting packages, etc.). Many applications will not listen for or respond to SNMP requests but will
*. 4. send out traps. Traps can be very useful for monitoring some of these applications. Also, there are

applications for virus scanners, remote logins (pcAnywhere), and UPSs that will send informative traps
when an error has been found. Look for this feature the next time you purchase any package or

AdventNet SNMP Agent(s)

Concord eHealth SystemEDGE

HP Extensible SNMP Agent

MG-SOFT Master Agent

Microsoft

Net-SNMP (formerly the UCD-SNMP project)
Sun Microsystems

SNMP Research International

Table F-1. SNMP agents

http://www.adventnet.com

http://www.concord.com

http://www.openview.hp.com

http://www.mg-soft.com

http://www.microsoft.com

http://net-snmp.sourceforge.net

http://www.sun.com

http://www.int.snmp.com



http://www.adventnet.com
http://www.concord.com
http://www.openview.hp.com
http://www.mg-soft.com
http://www.microsoft.com
http://net-snmp.sourceforge.net
http://www.sun.com
http://www.int.snmp.com

F.2. NMS Suites

We use the term suite to mean a software package that bundles multiple applications into one convenient product. In this
section, we discuss NMS software, which is one of the more important pieces of the network management picture. Without it,
the agent software in the previous section is virtually useless. NMS products allow you to have a total view of your network,
including all the servers, routers, switches, and desktops. In most cases, this view is a graphical representation of your network,
with lots of neat labels and icons. These are highly configurable packages and work in almost any network environment. This
freedom often comes with a big price tag and a confusing setup process. Some of the products focus more on the network side
of management (i.e., devices such as routers, hubs, and switches). Others go a step beyond this and allow you to customize
server and workstation agents to integrate nicely into your NMSs. Keep in mind that the bigger packages are for larger, more
complicated networks and require extensive training. Be sure to take some time to research the packages before purchasing; if
at all possible, get trial versions. Table F-2 lists both commercial and open source NMS suites .

HP OpenView

SolarWinds

IBM Tivoli

Castle Rock SNMPc

BMC Software

Computer Associates Unicenter
Veritas NerveCenter
Micromuse Netcool

GXSNMP

Tkined

OpenNMS

SNMPSTAT monitoring system
Big Brother

Mercury SiteScope

Ipswitch WhatsUp

Just For Fun (JFF) NMS
Nagios

NagMIN

Table F-2. NMS suites

http://www.openview.hp.com

http://www.solarwinds.net

http://www.ibm.com/software/tivoli

http://www.castlerock.com

http://www.bmc.com

http://www.ca.com

http://www.veritas.com

http://www.micromuse.com

http://www.gxsnmp.org

http://wwwhome.cs.utwente.nl/—~schoenw/scotty

http://www.opennms.org

http://snmpstat.sourceforge.net

http://www.bb4.org

http://www.mercury.com

http://www.ipswitch.com/products/whatsup/index.html

http://www.jffnms.org

http://www.nagios.org

http://nagmin.sourceforge.net



http://www.openview.hp.com
http://www.solarwinds.net
http://www.ibm.com/software/tivoli
http://www.castlerock.com
http://www.bmc.com
http://www.ca.com
http://www.veritas.com
http://www.micromuse.com
http://www.gxsnmp.org
http://wwwhome.cs.utwente.nl/~schoenw/scotty
http://www.opennms.org
http://snmpstat.sourceforge.net
http://www.bb4.org
http://www.mercury.com
http://www.ipswitch.com/products/whatsup/index.html
http://www.jffnms.org
http://www.nagios.org
http://nagmin.sourceforge.net

e prcv |

F.3. Element Managers (Vendor-Specific Management)

These software packages are geared toward a certain type of vendor or function; for example, an element manager might be a
product that focuses on managing a modem rack. Before purchasing such a package, take a good look at your present
environment, how it's likely to grow, and what vendors you are currently using or are likely to use in the future. Because many
of these products are vendor specific, it's easy to buy something that turns out to be less useful than you expect. For example,
CiscoView (part of the CiscoWorks suite) is a great piece of software; it does lots of fancy things, such as showing you the backs
of your routers. However, if you purchase a number of Nortel devices a few months after installing this product, it won't be able
to give you a unified view of your network. Some packages do allow you to manage their competitors' equipment; for example,
an element manager that monitors switches may be able to handle switches from competing vendors. Before buying any of
these products, research where your network is headed, and be sure to ask hard questions about the product's capabilities.
Table F-3 lists some of the available element managers .

Table F-3. Element managers

Sun Management Center http://www.sun.com/sunmanagementcenter
CiscoWorks 2000 http://www.cisco.com

3Com Total Control http://www.3com.com

Aprisma (now owned by Concord) http://www.aprisma.com

Nortel http://www.nortelnetworks.com/solutions/net _mang

e rrc |


http://www.sun.com/sunmanagementcenter
http://www.cisco.com
http://www.3com.com
http://www.aprisma.com
http://www.nortelnetworks.com/solutions/net_mang

e prcv |

F.4. Trend Analysis

When faced with most network problems, it's nice to have some kind of historical record to give you an idea of when things
started going wrong. This allows you to go back and review what happened before a problem appeared, and possibly prevent it
from recurring. If you want to be proactive about diagnosing problems before they appear, it is essential to know what "normal”
means for your networkyou need a set of baseline statistics that show you how your network normally behaves. While many of
the bigger packages do some trend reporting, they can be clunky and hard to use. They might not even provide you with the
kind of information you need. Once you see what a dedicated trend analysis system can do, you will see why it might be worth
the time, energy, and money to integrate one into your network monitoring scheme.

If your environment calls for some serious monitoring, you should look into getting RMON probes. RMON probes are a great

addition to trend analysis packages, since most trend packages can make use of the kind of data these probes gather. Table F-4
lists some trend analysis packages.

Table F-4. Trend analysis

Concord eHealth http://www.concord.com
Trinagy (formerly DeskTalk Systems, Inc.) TREND http://www.desktalk.com
MRTG http://www.mrtg.org

Cricket http://cricket.sourceforge.net
InfoVista http://www.infovista.com
RTG

http://rtg.sourceforge.net

SNARLSNMP http://snarl-snmp.sourceforge.net

e prcv |


http://www.concord.com
http://www.desktalk.com
http://www.mrtg.org
http://cricket.sourceforge.net
http://www.infovista.com
http://rtg.sourceforge.net
http://snarl-snmp.sourceforge.net

F.5. Supporting Software

Supporting software is a grab bag that includes all sorts of things that are used in conjunction with the software packages listed
earlier. Some of these packages can be used to write standalone SNMP applications. Table F-5 lists several supporting software
packages. Most of these are freely available and can be used with little or no previous experience.

Table F-5. Supporting software

Perl

SNMP framework for Python
SNMP Support for Perl

pwWSNMP Visual Basic
WILMA

Net-SNMP C Library
Net-SNMP Perl Module
A3Com

SNMP++

Netcool

Network Computing Technologies Trap Receiver

http://www.perl.com

http://www.perl.org

http://pysnmp.sourceforge.net

http://www.switch.ch/misc/leinen/snmp/perl

http://www.cpan.org

http://sourceforge.net/projects/websignoff

ftp://ftp.ldv.e-technik.tu-muenchen.de/dist/WILMA/INDEX.html

http://net-snmp.sourceforge.net

http://www.cpan.org/authors/id/GSM

http://www.kernel.org/software/A3Com

http://www.agentpp.com

http://www.micromuse.com

http://www.ncomtech.com



http://www.perl.com
http://www.perl.org
http://pysnmp.sourceforge.net
http://www.switch.ch/misc/leinen/snmp/perl
http://www.cpan.org
http://sourceforge.net/projects/websignoff
http://net-snmp.sourceforge.net
http://www.cpan.org/authors/id/GSM
http://www.kernel.org/software/A3Com
http://www.agentpp.com
http://www.micromuse.com
http://www.ncomtech.com

e prcv |

Appendix G. Open Source Monitoring Software

In this book, we describe various software applications and suites that give us the ability to monitor our networks. Increasingly,
open source software is appearing in today's enterprises in place of or in addition to commercial network management software.

When we refer to open source software, we mean that it's free to download and use. While this sounds like shareware or even
freeware, it's not. Take some time to review the General Public License (GPL), available at
http://www.gnu.org/copyleft/gpl.html as well as the Open Source Initiative's site at http://www.opensource.org. Furthermore,
licenses have many variations; sometimes a project creates its own specific license that you must review (for example, Big
Brother 's "Better Than Free" license).

All of the software we describe in this appendix is available from SourceForge (http://www.sourceforge.net). Additional open
source SNMP tools can be found on sites like http://freshmeat.net.

Table G-1 lists the applications we discuss in this appendix.

Table G-1. Summary of software covered

Application URL

Big Brother http://sourceforge.net/projects/big-brother
Nagios http://sourceforge.net/projects/nagios
JFENMS http://sourceforge.net/projects/jffnms
NINO http://sourceforge.net/projects/nino
OpenNMS http://sourceforge.net/projects/opennms

e prc |


http://www.gnu.org/copyleft/gpl.html
http://www.opensource.org
http://www.sourceforge.net
http://freshmeat.net
http://sourceforge.net/projects/big-brother
http://sourceforge.net/projects/nagios
http://sourceforge.net/projects/jffnms
http://sourceforge.net/projects/nino
http://sourceforge.net/projects/opennms

e prcv |

G-1. Big Brother

Big Brother is one of the most established and popular web-based console monitoring packages available. It gives the user a
console or dashboard look-and-feel with typical green, yellow, and red dots indicating system status. Big Brother can monitor
information such as connectivity (ping), DNS, FTP, and HTTP, to name a few. Additional (free and commercial) plug-ins and
agents (with prewritten samples) are also available.

Availability reporting can help you quickly assess a server's or service's uptime. Notifications are somewhat complex and can be
based on machine name, time of day, or event or test that failed. There's even support for delaying alerts (to allow nuisance
alarms to resolve themselves) and email paging.

A commercial version, Big Brother Professional Edition (PE), that offers encryption and compiled versions for certain platforms is
also available.

We recommend running through the demo at http://demo.bb4.com/bb. Although the demo shows the Professional Edition, it
gives you a good sense of the overall look-and-feel of the application.

The main Big Brother PE screen is a top-level dashboard that displays a grid of green, yellow, and red icons that assess system
status. The left column lists the servers and the top row lists various tests and conditions. In short, when things are running
well, square green icons display. Otherwise, you might see a flashing red X for a system in trouble, a yellow circle for something
that needs attention, a pink swirling icon for a system for which there is no report, a white icon for a system that is unavailable,
or a blue circle for a system that is offline.

The column names on the grid (bkp, conn, cont, cpu, dig, disk, and so on) are abbreviations for various tests. Clicking on an
icon drills down into the test and shows the results since the last poll.

While test results are important, the time the test was last taken is more important. Depending on the
'@ polling interval, you could be looking at data that is a few seconds old or a few days old. Every system
and test can be set up differently. Before you react to any alert, check the live system.

Clicking on the HISTORY button will take you to a screen that shows the historical data for that server and test. It shows a
graphical timeline for the last 24 hours (if the system was in trouble for part of that time, the timeline shows various colors).
Below that is a table that displays system state by percentage for the last 24 hours. The bottom table shows the last 50 log
entries for this test.

Big Brother has come a long way, and now it does even more with the advent of the Professional Edition. The documentation,
FAQs, and support list make this a great application to use. Table G-2 summarizes the details about Big Brother.

Table G-2. Big Brother

URL http://www.bb4.org

http://www.quest.com/bigbrother

License Better Than Free (http://www.bb4.org/license-text.html)

Operating systems Unix, Linux, and Windows (WS 2003, Windows 2000, and NT 4.0 with SP3)

Written in Java, JavaScript
User interface Web-based
Additional A C compiler and a web server

requirements

Notes Be sure to check out http://www.deadcat.net (sponsored by Quest Software) for a wealth of add-ons and
plug-ins to help you customize Big Brother for your environment.

e prcy |


http://demo.bb4.com/bb
http://www.bb4.org
http://www.quest.com/bigbrother
http://www.bb4.org/license-text.html
http://www.deadcat.net

e prcv |

G-2. Nagios

Nagios is a comprehensive monitoring software package that, if installed and configured properly, can work nicely for many
small to large companies. It has all the typical features like status overview, map view, and an alerts screen (just to name a
few), but it goes a step further to give you sections on trends, a tactical overview, and process and performance data. Beyond
that, Nagios offers some rather advanced features such as 3D maps of your network (using Virtual Reality Markup Language or
VRML) and a WAP interface for cell phones.

Nagios is pretty easy to download and compile. The online docs are useful and easy to read. Experienced users recommended
that | download and install the Nagios plug-ins as well. These plug-ins are little pieces of software (which must also be
compiled) that do most of the actual monitoring checks (check_pop, check_ssh, etc.). In my setup, | used the check_ssh
program to ensure that the SSH port (22) was open and available. Before installing Nagios, you must have the Apache web
server installed and configured.

While many packages give you the ability to monitor and show typical alerts, Nagios has the ability to monitor servers and
services and group them efficiently to generate a variety of related notifications.

After installation, configuring the product took some time. | had to trudge through numerous configuration files (with the help
of the documentation) to get everything up and running. Even with the example files, it took a few hours to get a single host
and service (check_ssh) working. Despite this, | enjoyed the fact that | could define and customize a wide variety of
parameters. Although during installation | was somewhat frustrated to discover that | must modify yet another definition file, |
applaud Nagios for its extensibility.

Overall, Nagios does not provide an easy setup and requires some planning and thought. Once that is done, however, Nagios
can provide a wealth of information.

Here's a quick sample of what a configuration file might contain. Please keep in mind that this is not a complete configuration
but simply a snippet from the one that | used during my setup, excerpted here to give you a feel for Nagios's configuration:

define tineperiod{

timeperiod_nane 24x7
alias 24x7
sunday 00: 00- 24: 00
nonday 00: 00- 24: 00
t uesday 00: 00- 24: 00
wednesday 00: 00- 24: 00
t hur sday 00: 00- 24: 00
friday 00: 00- 24: 00
sat ur day 00: 00- 24: 00
}
define command{
comrend_nane go_Il ogger
command_| i ne /usr/bin/logger "Nagi os MSG $HOSTADDRESSS$"
}
define command{
comrand_nane check_ssh
command_l i ne /usr/ |l ocal / nagi os/ | i bexec/ check_ssh -H $HOSTADDRESS$
}
define service{
host _nane nmyhost
servi ce_description check_ssh_for _nyhost
check_command check_ssh
max_check_attenpts 5
normal _check_i nterval 5
retry_check_interval 3
check_peri od 24x7
notification_interval 30
notification_options W, C, r

define contact{
cont act _nane r oot
al i as Dougl as Maur o



service_notification_period 24x7

host _notification_period 24x7
service_notification_options W, u,c,r
host _notification_options d,u,r
service_notificati on_commands go_| ogger
host _noti ficati on_conmands go_| ogger
emai | root @ ocal host
}
define contact group{
cont act gr oup_nane nylstgroup
alias nmy_1st _group
menber s r oot
}
define hostgroup{
host gr oup_nane al | host's
alias all ny hosts
nenber s nmyhost
}
define host{
host _nane nyhost
al i as ny_l ocal _host
addr ess 192. 168. 40. 130
max_check_attenpts 5
cont act _groups nylst group
notification_interval 30
notification_period 24x7
notification_options d,u,r

All of the Nagios screenshots shown here come from the online docs available at http://www.nagios.org/about/screenshots.php.

Figure G-1 shows the status overview. It gives a quick look at host and service status totals along with a service overview for all
the different host groups (which you can define).

Figure G-1. Nagios - status overview

_Taua-n-c.—_ﬂ.
2 O B RO
=] " s Rkt
. . Mast S Totls Sarvics Kaenn Tansks S
Nagios B ME=CmET  [—————
Gamarai e e e ~ i - 1 T
Iilﬂum:.l:ll_i:ﬂ-;& ¥ - - [
e
Barvica Cwaiviiw Foi Ad Hesl Grougs
= i N .- |2, ST
o bamiesis acnaim. ¢ e =
- e
N = e T0
- .= e
e | R Bl
[ Rf
Wk Barmmer makaereen ] 167 e ey (5 e porrang)
O i = | ua [@5 e | @
p—— Tl ﬁﬁ o w= wfp s

Figure G-2 shows a high-level color-coded status map. Hovering the mouse over a node pops up detailed information about that


http://www.nagios.org/about/screenshots.php

particular node. Clicking on a host forwards you to the host's Service Status Details page. The top-right section of the page
gives you additional layout options.

Figure G-2. Nagios status map

Figure G-3 shows the Trends page, which you can see by clicking on the Trends link (on the left) and filling out a report form
page. This area allows you to create different reports based on hosts, services, and groups over a given interval (today, the last
three months, and so on). The upper-left section of the window links to related reports. This allows you to quickly jump to an
availability report for the same object (node, service, etc.) right from this page.

For big shops with strapped budgets and little shops with some extra time on their hands, Nagios is a tool worth looking into. All
of the features that Nagios offers (for free) are the same as (if not more than) those in the commercial packages available
today.

One feature that would be nice is a live graphing area. Nagios can be forced to immediately poll an object (node, service, and so
on), but a live, scrolling graph of something is critical when troubleshooting. Table G-3 summarizes information about Nagios.

Figure G-3. Nagios trends



. L fe= b= Cewemer S
D S e L. =
i - o] T okt
[ Earvice Preter Statuy” On Mamt faa om o Bk -
e e et et Py’ =& =3
e e o | —
e s LR i T TR IRTE ) i s
lsmms mame muamp saams e b . - =T -
1]

Zrate Eruah isern.

Table G-3. Nagios

URL http://www.nagios.org

http://nagiosplug.sourceforge.net

License GPL

Operating systems Unix, Linux

Written in C
Web-based

User interface

Additional requirements/notes C compiler, web server (Nagios is set up to install with Apache)

e prc |


http://www.nagios.org
http://nagiosplug.sourceforge.net

e prcv |

G-3. JFFNMS

| enjoyed working through the JFFNMS (Just For Fun NMS) demowithout reading through any documentation first. Intuitive
features and navigation make this monitoring package stand out from the crowd.

Supported operating systems include Windows 2000, Windows Server 2003, Windows XP, and, of course, Unix and Linux.
JFFNMS is web-based and is written in PHP. It contains typical features such as a status map, events console, and performance
graphs (using RRDtool).

The Hosts map view allows you to break down the display into hosts for different customers. A pull-down menu lets you select a
single customer's data, further refining the view.

The Performance view shows thumbnail graphs of all the different objects. This screen could serve as a morning wake-up call; it
provides a quick way to get a broad view of the health of all your devices.

A few features stand out; the database backend uses MySQL. It has an integrated syslog monitoring facility. JJFNMS provides
auto discovery and monitoring capabilities for real-world environments, including APC UPS, Apache and IIS monitoring, and
Compag Insight Manager Monitoring, just to name a few.

JFFNMS offers the ability to set up SLA thresholds. It comes with some useful presets such as logging an event when memory
usage goes above 80%.

The maps display the various monitored components with mouse-over pop ups that lead you right to the graphs while
continuing to display the events page below.

Another nice feature is the ability to choose different display outputs. You can view the page in HTML, DHTML, graphs, or even
plain text! Table G-4 summarizes information about JFFNMS.

Table G-4. JFFNMS

URL http://www.jffnms.org

License GPL
Operating systems Unix, Linux, BSD (including Mac OS X), Windows (Server 2003, 2000, XP, 95, 98)
Written in Perl, PHP, Unix shell

User interface Web based
Additional Apache, MySQL, RRDtool, PHP (with the following extensions: snmp, ssl, gd, sockets, mysql or pgsqgl, pcre,
requirements posix, ob, and session), NET-SNMP, GNU Diff, Fping (Unix only)

Optional packages Graphviz & WebFonts, NMAP PortScanner, JFFNMS Integration Packages, TFTP server

e rrc |


http://www.jffnms.org

e prcv |

G-4. OpenNMS

This web-based management solution focuses on three main areas: polling, performance, and event management. It leverages
some other important open source packages, including RRDtool, Tomcat, and Curl (to name a few).

All of the images and screenshots in this section can be found at the OpenNMS web site located at http://www.opennms.org.

Figure G-4 shows the main OpenNMS web interface screen. This is the starting area, providing a high-level view into which
areas of the network, if any, are experiencing outages. It also serves as a launching area for a variety of reports.

Figure G-4. OpenNMSmain web console screen

Opened Web Contale

| Faraew o e sed lanmudems foneni,_eoll_main_view i

(olcil+]
Clims ——

Search | Duteoes | Eveols | Motfceiion | Assets | Beoods | Admin | beio
opymght © 20027001 S o o Pactn Cagrynight B 145920003 (oglys G, Poets Capymght B8 0000 M5 com,
O e UL s b tadamark of Sopeva Cotvalling Groug.doc.

One nice feature that OpenNMS provides is notification escalations. Users state that they want to be notified about certain
events. When the event occurs, an alert is sent out and the event is set as "outstanding.” The user can then log in to the web
interface and acknowledge that particular event. If after some (preset) time, the user does not acknowledge the event,
OpenNMS escalates the event to another user or group.

Events are displayed in a table format, as shown in Figure G-5. Checkboxes make it easy to acknowledge an event. Admins can
raise or lower an event's severity or drill down into more detail about the event.

Reports are displayed in the typical RRDtool fashion (as shown in Figure G-6). There's a report search section that you can use
to find reports based on certain criteria as well as the ability to create a list of standard and custom reports for quick execution.

OpenNMS has some great documentation in the form of How-To guides, available on its SourceForge site at
https://sourceforge.net/docman/?group id=4141. For example, take a look at these titles:

* How-To Configure OpenNMS Discovery
« How-To Configure Service Level Polling
* How-To Configure SNMP Data Collection

¢« How-To Configure Events


http://www.opennms.org

Figure G-5. OpenNMS events screen

111 23 22 | Interface | OprenhiMS “m =

oo

[ & [ + 11 hrip 1 /wwe openams orgfonmademo/onms. 6. in.view hem © BlQ- Gougie
Wb consobe demo - [wdimin]
vonveried lo pure hitml Soathees Uhn
il Intexthece by Lauri Laukkarinen Jan 13, 2004
Nared puhtl.com) 137 Pl
Homae > Boaroh > Mode > imorace ESoorch | Outagos | Evonts | Motification | Assots | Fopons | Admin | Hoip

Interface: 111.222.111.222 (demonode.demodomain.com)

— = "
Em. m;:_::.mg:

NMP data collection on
> |Warning [iserface 111.222.111.222
failed.
E:hmn.
Warning e 111.222.111.222
[(ackrmwireige ) ( #etas ) |203 mons

el

I also recommend the OpenNMS Installation Guide. OpenNMS has quite a few prerequisite packages to install, which might
deter some admins from trying the application (see Table G-5 for details).

It seems like OpenNMS has been around forever. | think it's safe to say that this group is one of the first (if not the first) to
provide a truly open NMS solution. While it doesn't have some of the fancier bells and whistles seen in other packages, it truly
makes up for it in the documentation and cross-platform release files. The OpenNMS team has done a very good job at
providing an NMS package that is simple yet powerful.

Figure G-6. OpenNMS reporting



Tilals Beuhs | Performance | Repors | CpenNMS Web Cons
[« »Nafcl+] 4 b1 feewen oo g o dermd fonmm.ex L day htm @ B0 Gougle
Web ennsale dema - Isdmin]
converted 1s pure himl Mothees Om
Ms" erhemancs Keats by Lawri Laukkarinen dan 13, 2004
[lare@ pubiticom]

Home = Ruporty = Perfmarce = Rewuis Swarch | Owimpes | Everds | Nofificaton | Aswels | Fepots | Admin | Heip

Node: demonode.demodomain .com
Interface: ethl (111.222.111.222, 10 Mbps)

Last Dy Last Week  Last Momth  Last Year
a o (8] (5]
Interface Performance Data

From Maon Jan 12 18:2%:1 | EET 204
To Tae fan |3 18:29:11 EET 2004

Teaffic Utiliration

e
L [ r-1 u.;w = 12300 -
Wimilirakion ey 1 Ll fHEe 0 e R 1 ML L
Bits In/kat :
ELE
Table G-5. OpenNMS
URL http://www.opennms.org
License GPL
Operating systems Solaris 8 and Solaris 9 (SPARC and x86), Mac OS X (Panther), Linux (see site for specific
distributions)
Written in Java
User interface Web-based
Additional Java, Tomcat 4, RRDtool, PostgreSQL, Curl, Metamail (optional)

requirements

e rrcv |


http://www.opennms.org

e prcv |

G-5. NINO

If you're looking for a product that is rich in features and glitz, look no further. NINO (which stands for Nino Is Not OpenView)
contains the usual features you've come to expect from NMS software: polling, event console, auto-discovery, support for
MySQL databases, reports, and more. However, we'll discuss some standout features that set NINO apart.

You'll find a demo at the NINO web site, http://nino.sourceforge.net/nino/index.html. Though it is not all live, it gives a nice
overview of all the features and allows you to work with a few active items. Most of the screenshots were captured on a test
network.

Most NMS graphs that we've seen are flat images. Some allow you to change the date/time (and click submit), which can be a
bit clunky when you are trying to poke around. NINO offers an interactive Java graph that allows you to click and drag the time
interval, not only to the left and right, but also up and down to change the scale.

NINO's hostmeter gives you a great view of the status of an object (don't let the host in hostmeter fool you; it can monitor
routers and other devices as well). Using gauges, dials, and graphs, the hostmeter displays disk levels, processes, and CPU
usage, among other things.

NINO includes an interactive 3D map of your objects. Using your mouse, you can rotate the collection for a better view; you can
also zoom in or out. An auto-rotate feature slowly spins the map, allowing you to see it from every perspective.

Some default sounds come with NINO (and they are on by default). These can be configured to go off when a node goes down or
some other important event occurs, to alert you when you are not looking at the screen.

NINO offers a nice MIB search tool that allows you to find keywords within your loaded MIB database. Once keywords are found,
the program displays the results within the MIB browser with each hit expanded for easy access.

NINO has still more features worth mentioning:

Service response

The ability to check the status of services such as FTP, HTTP, and so on.

Easy-to-configure reports

Reports can be edited with little knowledge of HTML and SQL. In no time | had some custom reports up and running.

Process watching and reporting

Inside and outside of NINO, you can set watch points on numerous processes.

Skins
Like many applications today, NINO has skins so that you can change the look-and-feel of the program.

NINO has its share of prerequisite software (see Table G-6). However, on Windows, the installation adds the prerequisites along
with the NINO executables. On Linux, admins are expected to install the required packages separately.

Overall, NINO is a great tool for people looking for an NMS with some eye candy. As with many open source tools, a few areas

need to be polished. For more in-depth reporting, | had to reference the online guide to understand the relationships between
nodes, charts, files, and so on. Nonetheless, NINO is a flexible tool that can make a boring NMS project a lot more fun.

Table G-6. NINO


http://nino.sourceforge.net/nino/index.html

URL http://nino.sourceforge.net/nino/index.html

License GPL, Artistic License

Operating Windows (2000, NT, XP, 95, 98), Linux, BSD, Unix, Solaris
systems

Written in Java, Perl

User interface Web-based

Additional Perl 5.8 or higher, MySQL database client and server, Net-SNMP, Apache, Apache mod_perl, Perl DBD/DBI
requirements (MySQL) modules, Perl Time Hires module, Perl Net-SNMP modules. On Windows, the install includes all this
software.

e rrc |


http://nino.sourceforge.net/nino/index.html

e prcv |

Appendix H. Network Troubleshooting Primer

SNMP is very good at helping you know when faults occur in your network. For example, if an interface on your router is down
or malfunctioning, you may still have network connectivity to the router, so you can use SNMP to further discover what the
problem may be.

Sometimes when something bad happens, however, you may only know that some network or system is unreachable. When this
happens, it is good to know how to use a few tools of the trade to help diagnose and resolve the issue.

The following points detail the concepts involved in network troubleshooting:

* The process of troubleshooting is systematic in that one must be methodical to properly solve the problem at hand. It
requires skills and knowledge including an understanding of your environment, problem-solving skills, and an ability to
accurately communicate with others.

= As you begin your troubleshooting task, be sure to change one thing at a time as you test to see whether the problem is
resolved. Not doing so can possibly obscure the actual step that resolved the problem, making it difficult to accurately and
quickly resolve the same problem when it happens again.

« Documentation is a key step in the process. If you document exactly what the symptoms were, as well as the resolution
steps (including any tools that you used in the process), others can learn from this. The next time someone has to solve
the same problem, they can do so more quickly and help minimize downtime.

« Don't assume that the problem is due to some convoluted set of circumstances. Always check the obvious first. | cannot
count the times when | was a NOC engineer that the problem ended up being a bad cable or something simple.

* Keep in mind that things like firewalls and other security systems can hinder your ability to accurately troubleshoot. For
example, a firewall may be configured to disallow packets to the host you are troubleshooting. It pays to understand the
security architecture in your environment.

- It is always best to know a few tools well rather than a bunch of tools not so well.

« Testing after the problem is fixed is sometimes overlooked in the frenzy to get something back to operational status. Do
not overlook this step.

The remainder of this appendix focuses on some general-purpose tools used in network troubleshooting. Covering these tools in

detail is beyond the scope of this appendix. For an excellent treatment of network troubleshooting, see Network Troubleshooting
Tools by Joseph Sloan (O'Reilly).

e prcv |



e prcv |

H-1. ping

ping is probably the most widely used tool for network troubleshooting. It uses ICMP packets to measure how long it takes to
send a packet to a remote host and receive a response. ECHO_REQUEST and ECHO_REPLY are used by ping for this purpose.
ECHO_REQUEST is used to indicate that a host requests an ICMP reply, and ECHO_REPLY is used to denote a reply to an ICMP
request. In theory, all TCP/IP-based devices should respond to an ECHO_REQUEST. In practice, this is not always the case.

ping can be viewed as a layer-three testing tool. If ping doesn't work, suspect layers three and below. If it does work, suspect
layers four and higher.

Note that some routers can be configured to block ICMP responses to ICMP packets, so be aware of this.

Here are some general ping error messages you should know about, and an explanation of what they indicate:

¢ A message similar to "Unknown Host" is usually indicative of a DNS problem. If this type of message is received, try to use
the IP address of the remote host you are trying to reach.

e If you receive a host or network unreachable message, it could be due to networking problems like a missing router or
misconfigured gateway. A router will respond with an ICMP DESTINATION_HOST_UNREACHABLE message if it has no path
to the host.

« If a timeout message is displayed by ping, any number of problems could be to blame, including the simple case that the
remote host is not turned on.

Here is some ping output from Windows:

C:\> ping ww. yahoo.com
Pi ngi ng ww. yahoo. akadns. net [68.142.226.49] with 32 bytes of data:

Reply from 68.142.226.49: bytes=32 tinme=34ns TTL=47
Reply from 68.142.226.49: bytes=32 tine=26ns TTL=47
Reply from 68.142.226.49: bytes=32 tinme=29ns TTL=47
Reply from 68.142.226.49: bytes=32 tinme=27ns TTL=47

Ping statistics for 68.142.226.49:

Packets: Sent = 4, Received = 4, Lost = 0 (0% oss),
Approxi mate round trip tines in mlli-seconds:

M ni mum = 26ms, Maxi mum = 34ns, Average = 29ns

The ping times look pretty good. Now look at the ping output from Unix:

$ ping ww. yahoo.com

PI NG www. yahoo. akadns. net (68.142. 226. 46) 56(84) bytes of data.

64 bytes from pl5. ww. re2. yahoo. com (68. 142. 226. 46): icnp_seq=1 ttl=52
time=18.7 ns

64 bytes from pl5. ww. re2. yahoo.com (68. 142. 226.46): icnp_seq=2 ttl=53
time=19.8 ns

64 bytes from pl5. ww. re2. yahoo.com (68. 142. 226.46): icnp_seq=3 ttl=53
time=19.3 ns

64 bytes from pl5. ww. re2. yahoo.com (68. 142. 226.46): icnp_seq=4 ttl=53
time=19.5 ns

~C

--- www. yahoo. akadns. net ping statistics ---

4 packets transmitted, 4 received, 0% packet |oss, tine 3002ns

rtt mn/avg/ max/ mlev = 18.724/19.342/19.820/0.412 ns

$



This set of ping times is higher than the one we saw from Windows. Could this be a problem? Not necessarily. It could be that
someone was transferring a large file on the network when we decided to perform our test. Also, some network devices may
place ICMP at a lower priority than other protocols, so the response you get may look delayed, but in reality, it was a victim of
priority scheduling.

You may be tempted to use the TTL to estimate hop counts, but it isn't an accurate measurement because it may be reset along
the path to prevent routing loops.

Finally, here are the basic steps for using ping to troubleshoot network problems:
« Repeatedly run ping to isolate problems. Change the destination IP address as you work your way through each
intermediate device between you and the destination.

« Next, to rule out problems with your network interface, your network cable, or the switch or hub you are connected to, try
to ping an IP address on your local network.

¢ Next, to rule out DNS name resolution problems, try to ping the destination by name. If this fails, you can continue to use
ping, but you must use the destination's IP address.

* Use traceroute (described later in this appendix) to determine the IP addresses of the intermediate hosts between you and
the destination host.

« Responding to a failure at this point depends on who is responsible for the systems beyond your router. If you are
responsible, you will need to test the machines beyond the router and work back in your direction from behind the router.

« Running ping over a time interval can help diagnose problems that seem to come and go, for example.

e If you are looking at performance over a long period of time, you will almost certainly want to use the -i option to space
your packets in a more network-friendly manner. This is a reasonable approach to take if you are experiencing occasional
outages and need to document the time and duration of the outages. You should also be aware that over extended periods
of time, you may see changes in the paths the packets follow.

e roc |



e prcv |

H-2. ipconfig and ifconfig

On Unix, you can obtain the machine's network configuration using ifconfig. The command on Windows is ipconfig. To
summarize the command:

« Use this tool to obtain the IP address, subnet mask, and default gateway.
e On Windows, use i pconfig /? for help.
« On Unix, use man ifconfig for help.

* Note that on Linux systems, you may not have permission to run ifconfig. It also may be in a location that isn't in your
pathe.g., /sbin/ifconfig.

Here's a run of ifconfig on a Unix system:

$ /shin/ifconfig -a
et hO Li nk encap: Et hernet HWAddr 00: 11: 43: 17: 06: 8D
inet addr: 192.168.0.48 Bcast:192.168.0.255 Mask: 255.255.255.0
inet6 addr: fe80::211:43ff:fel7:68d/ 64 Scope: Link
UP BROADCAST RUNNI NG MULTI CAST MrU: 1500 Metric:1
RX packets: 282499 errors: 0 dropped: 0 overruns: 0 frame: 15
TX packets: 33484 errors: 0 dropped: 0 overruns:0 carrier:0
col l'i sions: 550 txqueuel en: 1000
RX byt es: 43199045 (41.1 MB) TX bytes: 6730704 (6.4 M B)
Interrupt: 169

lo Li nk encap: Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope: Host
UP LOOPBACK RUNNING MIU: 16436 Metric:1
RX packets: 304 errors: 0 dropped: 0 overruns:0 frane: 0
TX packets: 304 errors: 0 dropped: 0 overruns:0 carrier:0
col lisions: 0 txqueuel en: 0
RX bytes: 26811 (26.1 KiB) TX bytes:26811 (26.1 KiB)

sit0 Li nk encap: | Pv6-in-1Pv4
NOARP MTU: 1480 Metric:1
RX packets: 0 errors: 0 dropped: 0 overruns:0 frane: 0
TX packets:0 errors:0 dropped: 0 overruns:0 carrier:0

col lisions:0 txqueuel en: 0
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Note that along with the IP address and other related information, we see the MAC address, labeled as ether.

Windows output looks like the following:

C:\>i pconfig

W ndows | P Configuration

Et hernet adapter Local Area Connection:
Media State . . . . . . . . . . . : Media disconnected
Et hernet adapter Wrel ess Network Connection 2:

Connection-specific DNS Suffix . : hsdl.ga.contast.nnet.



IP Address. . . . . . . . . . . . : 192.168.1.120
Subnet Mask . . . . . . . . . . . : 255.255.255.0
Default Gateway . . . . . . . . . : 192.168.1.3

e roc |



H-3. arp

The ARP table maps MAC addresses to IP addresses. In other words, it maps layer two to layer three. Only directly connected
devicesi.e., on the local networkappear in this table. The arp command found on Windows and Unix systems allows for the

addition and deletion of entries. Here is output from the Windows command:

C\> arp -a

Interface: 192.168.1.120 --- 0x10004
I nternet Address Physi cal Address Type
192.168.1.3 00- 09- 5b-51- 38- 26 dynami c

Here is output from a Unix system:

$ /usr/sbhin/arp -a

kahl ua.reflex 192.168.0.6) at 00: 30:48: 20: 92: 47 [ether] on ethO
barton.reflex (192.168.0.3) at 00:B0: DO: 3D: D4: 9A [ether] on ethO
nyic (192.168.0.147) at 00:OF: 1F: 04: 71: 79 [ether] on ethO
jameson.reflex (192.168.0.1) at 00:60: F5: 08: 4E: 3C [ether] on ethO
$

Note that on Unix systems, the format of the output from arp can differ.



e prcv |

H-4. netstat

This program obtains network information from kernel data structures. The following command displays the routing table on
Windows:

C. \>netstat -rn

Route Tabl e

Interface List

OX1 .o M5 TCP Loopback interface

Ox2 ...00 03 47 b8 9d 10 ...... Intel (R} PRO 100 SP Mobile Conbo Adapter - SecuR
enote M ni port

0x10004 ...00 09 5b e6 cd 6d ...... NETGEAR WG611 54 Mops Wrel ess PC Card

Active Routes:

Net wor k Desti nation Net mask Gat eway Interface Metric
0.0.0.0 0.0.0.0 192.168.1.3 192.168. 1. 120 25
127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
192.168.1.0 255. 255. 255. 0 192.168. 1. 120 192. 168. 1. 120 25
192.168.1. 120 255. 255. 255. 255 127.0.0.1 127.0.0.1 25
192.168. 1. 255 255. 255, 255. 255 192.168. 1. 120 192.168.1. 120 25
224.0.0.0 240.0.0.0 192. 168. 1. 120 192.168. 1. 120 25
255. 255. 255. 255  255. 255. 255. 255 192.168. 1. 120 2 1
255, 255, 255. 255  255. 255, 255. 255 192.168. 1. 120 192. 168. 1. 120 1
Default Gateway: 192.168.1.3
Per si stent Routes:
None
And the same command on a Unix system:
$ netstat -rn
Kernel |P routing table
Destination Gat eway Genmask FI ags MSS Wndow irtt I|face
192.168.0.0 0.0.0.0 255. 255. 255.0 u 00 0 etho
0.0.0.0 192.168.0.1 0.0.0.0 uG 00 0 ethO

$

Note the third column, Flags. A U indicates the path is up or available, an H indicates the destination is a host rather than a
network, and a G indicates a gateway or router. These are the most useful. Others include b, indicating a broadcast address; S,
indicating a static or manual addition; and W and c, indicating a route that was generated as a result of cloning. (See the
manpage for netstat for more information.)

To display all connections and listening ports, run netstat -a. On Unix, this looks like:

$ netstat -a
Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address For ei gn Address State

tcp 0 0 | ocal host. | ocal doma: 705 *: * LI STEN

tcp 0 0 *:sunrpc *ox LI STEN

tcp 0 0 *:ww ok LI STEN

tcp 0 0 *:ipp *ox LI STEN

tcp 0 0 |l ocal host. |l ocal domsntp *:* LI STEN

tcp 0 0 | ocal host. | ocal doma: i pp | ocal host. | ocal do: 33628 ESTABLI SHED
tcp 0 0 dhcp48: 33630 64.233.171. 107: ww ESTABLI SHED



tcp 0 0 dhcp48: 33631 crown: nnt p ESTABLI SHED
tcp 0 0 dhcp48: 33557 crown: nnt p ESTABLI SHED
tcp 1 0 dhcp48: 33487 65. 39. 248. 92: ww CLOSE_WAI'T
tcp 0 0 dhcp48: 33562 65. 161. 97. 185: ww ESTABLI SHED
tep 0 0 dhcp48: 33561 65.161. 97. 185: www ESTABLI| SHED
tcp 0 0 dhcp48: 33560 65.161. 97. 167: wwwv ESTABLI| SHED
tcp 0 0 dhcp48: 33559 65. 161. 97. 167: ww ESTABLI SHED
tcp 0 0 dhcp48: 33455 crown: i maps ESTABLI SHED
tcp 0 0 | ocal host. | ocal do: 33628 | ocal host. | ocal doma: i pp ESTABLI SHED
tcp 0 0 dhcp48: 33606 66. 28. 46. 137: ww ESTABLI SHED
tep 1 0 dhcp48: 33475 69. 8. 203. 74: www CLOSE_WAI'T
tcp 0 0 dhcp48: 33115 nmyi c: ssh ESTABLI SHED
tcp6 0 0 *:ssh *ox LI STEN

udp 0 0 *:boot pc *ox

udp 0 0 *:sunrpc *ox

udp 0 0 *:ipp *ox

Active UN X domain sockets (servers and established)

Proto RefCnt Fl ags Type State | - Node Path

uni x 2 [ ACC ] STREAM LI STENI NG 7619
/var/run/ dbus/ syst em bus_socket

unix 2 [ ACC ] STREAM LI STENI NG 7895 /tp/ . X11-uni x/ X64
uni x 2 [ ACC ] STREAM LI STENI NG 8270 /tp/ . X11-uni x/ X0
unix 2 [ ACC ] STREAM LI STENI NG 8399

/ t np/ ssh-wPdEoj 4981/ agent . 4981

uni x 2 [ ACC ] STREAM LI STENI NG 8413
/tnp/orbit-kjs/linc-139f-0-4b8cc076635e7

unix 2 [ ACC ] STREAM LI STENI NG 8423
/tnp/orbit-kjs/linc-1375-0-7bd6e96e75bf 2

uni x 2 [ ACC ] STREAM LI STENI NG 8579 /tnp/ . | CE-uni x/ 4981
unix 2 [ ACC ] STREAM LI STENI NG 8587

[t np/ keyri ng- 7Snf Py/ socket

$

The following line from the output shows an HTTP connection between dhcp48 and 66.28.46.137.

tcp 0 0 dhcp48: 33606 66. 28. 46. 137: www ESTABLI SHED

When a connection is in CLOSE_WAIT, it indicates a recently terminated session:

tcp 1 0 dhcp48: 33475 69. 8. 203. 74: www CLOSE_WAI'T

e prc |



e prcv |

H-5. traceroute and tracert

The traceroute command traces paths through routers. Depending on the system you're using, the name of this command may
vary. On the Linux system we used, it's called tcptraceroute:

$ /usr/bin/tcptraceroute ww.yahoo.com

Sel ected device ethO, address 192.168.0.48, port 33633 for outgoing packets
Tracing the path to www yahoo.com (68. 142.226.56) on TCP port 80

(ww) , 30 hops max

1 192.168.0.1 11.811 ns 0.372 ns 0.352 ns

2 69.15.40.49 1.623 ns 1.331 ns 1.331 ns

3 172.16.141.177 3.371 nms 3.314 ns 3.216 ns

4 192.168.14.21 3.629 nms 3.599 ns 3.703 ns

5 192.168.34.10 4.491 nms 4.395 ns 4.447 ns

6 ge-9-0-133. hsal. Atl antal. Level 3. net (209.246.169.33) 4.745 ns

5.025 ms  4.472 s

7 ge-6-1-0.bbrl. Atlantal. Level 3. net (64.159.3.5) 9.875 ns 5.234 ns 4.710 ns
8 ae-0-0.bbr1. Washi ngtonl. Level 3. net (64.159.0.229) 17.875 s

18. 737 ns  17.529 s

9 ge-3-0-0-55.garl. Washi ngtonl. Level 3. net (4.68.121.130) 17.824 ns

17.813 ms 18.275 ns

10 63.210.29.230 18.314 ns 18.504 nms 18.742 ns

11 vl 4.basl.re2.yahoo.com (206.190.33.10) 18.549 ns 18.577 ns 18.305 n®
12 p25. ww. re2. yahoo. com (68. 142. 226.56) [open] 18.596 ms 18.499 ns
18.783 ns

$

Windows' tracert is identical to traceroute, except it uses ICMP packets rather than UDP packets to discover the paths between
routers:

C.\>tracert www. yahoo.com

Tracing route to ww. yahoo. akadns. net [216.109.117.108]
over a maxi mum of 30 hops:

1 10 s 7 s 9 ns 10.239.230.1

2 10 s 8 s 9 ms 68.86.109. 157

3 10 ns 10 ns 8 ns 68.86.106.178

4 9 ns 9 s 9 ns 68.86.106. 182

5 10 ns 9 ns 10 ns 68.86. 106. 186

6 15 s 17 s 9 ns 68.86.106.190

7 10 s 10 ns 9 ns 68.86.106. 158

8 10 s 10 s 8 nms 68.86.107.13

9 10 ns 9 ns 10 ms  12.124.64.21
10 11 s 11 s 11 ms thbr1-p013701. attga.ip.att.net [12.123.21.98]
11 24 s 24 s 24 ns tbr2-cll.wswdc.ip.att.net [12.122.10.69]
12 24 s 24 s 23 ns gar1l-p390.ascva.ip.att.net [12.123.8.53]

13 * * * Request tined out.

14 32 ns 25 ns 24 nms ael. p400. nsrl. dcn. yahoo. com [ 216. 115. 96. 181]
15 25 ns 23 ns 25 ns ge7-1. basl-m dcn. yahoo.com [ 216. 109. 120. 205]
16 25 ns 25 ns 25 ns  p23. ww. dcn. yahoo. com [ 216. 109. 117. 108]

Trace conpl ete.

Here are some points to remember when using traceroute:



¢ In the output from both traceroute and tracert, the path was 16 hops.
- Times are printed for each of the three probes sent.
« An asterisk is printed in place of the time when a packet is lost.

« Additional messages can be appended to the end of each line: 'H, IN, and IP indicate, respectively, that the host, network,
or protocol is unreachable. !F indicates that fragmentation is needed. !S indicates a source route failure.

¢ The path taken from destination to source may not be the same path taken from source to destination, due to different
path routes.

e rrc |



e prcv |

H-6. nslookup and dig

nslookup, found on Unix and Windows systems, is used to get IP address information on a host, and vice versa:

C:\ >nsl ookup www. yahoo. com
Server: nsl.m ndspring.com
Address:  207.69.188. 185

Non- aut horitative answer:

Nane: www. yahoo. akadns. net

Addresses:  216.109.118.75, 216.109.118.77, 216.109.118.78, 216.109.118.79
216.109. 118. 65, 216.109.118.66, 216.109.118.69, 216.109.118.73

Aliases: www. yahoo. com

C:\ >nsl ookup 216.109. 118.75
Server: nsl.mndspring.com
Address:  207.69.188. 185

Nane: pl2. ww. dcn. yahoo. com
Address: 216.109.118.75

While nslookup has been widely used on Unix systems for many, many years, nslookup is being deprecated on Linux systems.
Instead of nslookup, Linux systems now make use of a command called dig (dig stands for Domain Internet Groper).

Let's look at some example usage of dig:

$ dig @9.15.40.52 ww. yahoo. com

; <<>> DiG 9.2.4 <<>> @9. 15.40.52 www. yahoo. com

;7 global options: printcnd

;. Cot answer:

;- >>HEADER<<- opcode: QUERY, status: NOERROR, id: 7406

;; flags: gqr rd ra; QUERY: 1, ANSWER 9, AUTHORITY: 0O, ADDI TIONAL: O

;. QUESTI ON SECTI ON:

; Wwww. yahoo. com I'N A

;5 ANSWER SECTI ON:

www. yahoo. com 300 I'N CNAME  www. yahoo. akadns. net .
www. yahoo. akadns. net . 60 I'N A 68. 142. 226. 34
www. yahoo. akadns. net . 60 I'N A 68. 142. 226. 56
ww. yahoo. akadns. net . 60 I'N A 68. 142. 226. 44
www. yahoo. akadns. net . 60 I'N A 68. 142. 226. 45
www. yahoo. akadns. net . 60 I'N A 68. 142. 226. 38
ww. yahoo. akadns. net . 60 I'N A 68. 142. 226. 47
www. yahoo. akadns. net . 60 I'N A 68. 142. 226. 39
www. yahoo. akadns. net . 60 I'N A 68. 142. 226. 43

;; Query tine: 239 nsec

;7 SERVER  69.15. 40. 52#53( 69. 15. 40. 52)
;. WHEN: Mon May 16 08:13: 18 2005

;. MSG SIZE rcvd: 193

The @ value is optional. You could use a domain name or, as we did, an IP address. It specifies the name server to be queried.



The second option is the host we want to look up.

Using the -x option with dig, you can get reverse name lookup:

$ dig -x 68.142.226.34

; <<>> DiG 9.2.4 <<>> -x 68.142.226. 34

;7 global options: printcnd

;; Got answer:

i ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 51297

;; flags: gr rd ra; QUERY: 1, ANSWER 1, AUTHORITY: 0O, ADDI TIONAL: O

; QUESTI ON SECTI ON:
; 34.226. 142. 68. i n-addr. ar pa. I'N PTR

i ANSWER SECTI ON:
34.226.142. 68.in-addr.arpa. 1200 IN PTR p3. www. r e2. yahoo. com

; Query time: 79 msec

; SERVER 69.15. 40. 52#53( 69. 15. 40. 52)
;o WHEN: Mon May 16 08:13:47 2005

; MBG SIZE rcvd: 78

With the mx option, dig can be used to obtain the mail exchanger information for a domain:

$ dig nx yahoo.com

; <<>> DiG 9.2.4 <<>> nx yahoo.com

;7 global options: printcnd

;; Cot answer:

;7 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 25

;; flags: gqr rd ra; QUERY: 1, ANSWER 4, AUTHORITY: 0, ADDI TIONAL: O

;. QUESTI ON SECTI ON:

; yahoo. com I'N MX

;5 ANSWER SECTI ON:

yahoo. com 6557 I'N MX 1 nx3.nail.yahoo. com
yahoo. com 6557 I'N WX 5 mx4. mai | . yahoo. com
yahoo. com 6557 I'N MX 1 nx1.nmil.yahoo.com
yahoo. com 6557 I'N MX 1 nx2.nuil.yahoo.com

;; Query time: 1 nsec

;5 SERVER:  69.15. 40. 52#53(69. 15. 40. 52)
;. WHEN: Mon May 16 08:14: 26 2005

;o MBG SIZE rcevd: 112

The soa option can be used to obtain zone authority information:

$ dig soa yahoo.com

; <<>> DiG 9.2.4 <<>> soa yahoo.com

;7 global options: printcnd

;. Cot answer:

;- >>HEADER<<- opcode: QUERY, status: NOERROR, id: 41407

;; flags: gqr rd ra; QUERY: 1, ANSWER 1, AUTHORITY: 0O, ADDI TIONAL: O

;5 QUESTI ON SECTI ON:
; yahoo. com I'N SOA

;o ANSWER SECTI ON:
yahoo. com 1800 I'N SOA nsl. yahoo.com



host mast er . yahoo-i nc. com 2005051609 3600 300 604800 600
7, Query time: 21 msec
;5 SERVER  69. 15. 40. 52#53( 69. 15. 40. 52)

;7 WHEN: Mon May 16 08:14: 45 2005
;. MSG SIZE rcvd: 88

See the manual page for more details on this powerful tool.



e prcv |

H-7. whois

The whois command is used to obtain domain name registrar information:

$ jwhois yahoo.com
Regi strant:
Yahoo! | nc.
( DOVt 272993)
701 First Avenue Sunnyval e
CA
94089 US

Donei n Nanme: yahoo.com

Regi strar Nane: All domai ns. com
Regi strar Whoi s: whoi s. al | domai ns. com
Regi strar Honmepage: http://ww. al | domai ns. com

Admi ni strative Contact:

Domai n Admi ni strat or

(NI G- 1382062)

Yahoo! Inc.

701 First Avenue Sunnyval e

CA

94089 US

domai nadnm n@ahoo-i nc. com +1. 4083493300 Fax- +1.4083493301
Techni cal Contact, Zone Contact:

Domai n Admi ni strator

(NI G 1372925)

Yahoo! Inc.

701 First Avenue Sunnyval e

CA

94089 US

domeai nadnmi n@ahoo-i nc. com +1. 4083493300 Fax- +1.4083493301
Created on..............: 1995-Jan-18.
Expires on..............: 2012-Jan-19.

Record | ast updated on..: 2005-Apr-05 16: 34: 22.

Dormei n servers in listed order:

NS4. YAHOO. COM 63. 250. 206. 138
NS5. YAHOO. COM 216. 109. 116. 17
NS1. YAHOO. COM 66.218. 71. 63
NS2. YAHOO. COM 66. 163. 169. 170
NS3. YAHOO. COM 217.12.4.104

If you are troubleshooting and the path takes you across a network that you have no control over, you can use whois to find out
whom to contact for a domain. While this isn't 100% accurate, it is better than nothing.

e prc |



e prcv |

H-8. Ethereal

Finally, we come to Ethereal. This tool is used to capture network packets. It runs on both Unix and Windows. It is intended to
run as a GUI application. Figure H-1 shows the packet capture window.

Figure H-1. Ethereal packet capture window

B (& B o Lehie e e 30

Fadiee o8l RevsoF i 6 A0 @PEX 3

AT TS ] IF -mIn: Wy, § 17

1.8% TRITAALT 1M SHI
1.3 1081, 0% THw 1 prapm i VPType. L DF-MIBIL
1,65 168.1,121 P TACCTETE. L IFSRINIIAPTIPE L 16
%0 gear_gdrodadd  ape
21 1687, &4 wnr 1Al
3J3 190, 100, 1. 4% T VPInGStatd, 3 IF-MEB; 2 0fTyee. 1 IF-MIN;)
L 19,1041, 141 T8 RETRONTE IF-MIN:TFOLTOTats. 0 TF-RIRCITFIAOSRatd.]l IF-Sm;  iFmppe. 1 IF4

Frase 3 (JL)

Pl b Pt

(=
o

Erterret P o B0 AT 107.06R.1,8% (197, 184.1,80)

- .

Ty: pul
P typec Al (0
meguat 1d: CQOUblile
Erroc Statws: no DuAce (o)
Frrac Trdes: B -
2 3 1T IV B0 il 00 6
o e

0 B
10

It displays such information as source and destination IP addresses and ports, protocols, and payload data. Each level of the OSI
model is represented here, and you can drill down into each layer for further inspection. To learn more about Ethereal, visit

http://www.ethereal.com.

e roc |


http://www.ethereal.com

e prcv |

About the Authors

Douglas R. Mauro received his bachelor's degree from the University of Albany, New York, and worked as a system
administrator for several years before becoming a project engineer with Sun Microsystems, Inc. In addition to his consulting
duties with Sun, he authors their internal OneStop Sun Management Center page and has published several InfoDocs with
them.

Kevin J. Schmidt currently lives in Lilburn, Georgia. He is a senior software developer at Reflex Security, Inc.
(http://www.reflexsecurity.com), where he gets to develop software in both Java and C. Prior to Reflex, Kevin spent four years
at GuardedNet, Inc. (http://www.qguarded.net) as a senior software developer and team lead.

Originally from Pensacola, Florida, Kevin moved to Atlanta in late 1996 to work for MindSpring Enterprises (now known as
Earthlink, Inc.), a national ISP. He spent four years in network management and was the senior network management architect
for Earthlink. He left Earthlink to work at Netrail, a tier-1 Internet backbone provider. While at Netrail, Kevin was in charge of
the company's network management architecture.

Kevin's first computer was a Commodore 64. He began running Bulletin Board Systems (BBSs) at age 11 and later became

interested in computer networking in general. His other computing interests include Linux, MySQL, programming languages,
and theoretical computer science.

e roc | et


http://www.reflexsecurity.com
http://www.guarded.net

e prcv |

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution channels. Distinctive
covers complement our distinctive approach to technical topics, breathing personality and life into potentially dry subjects.

The animals on the cover of Essential SNMP, Second Edition are red deer (Cervus elaphus). Male red deer, also known as stags
or harts, can grow to over 400 pounds. and stand 4254 inches tall at the shoulder. Females, or hinds, are more slightly built
and usually reach a weight of only about 200 pounds. The color of the red deer's coat ranges from a warm reddish-brown in the
summer to a darker grayish-brown in winter. Calves are spotted at birth, but the spots fade after about two months.

The typical family group consists of a hind, a new calf, a yearling calf, and perhaps a two- or three-year-old stag. Mature stags
and hinds live in separate groups for most of the year, with the hinds tending to monopolize the better, more grassy habitats.
At the start of the mating season (the rut) in the early fall, the stags split up and join the females. Each eligible stag establishes
a harem of up to 20 or more hinds, which he defends vigorously during the rut. During this period, which typically lasts 68
weeks, the stags often forego eating and can lose as much as 15% of their body mass.

Red deer are one of the most widely distributed deer species: although they are native to Europe, today they can be found
everywhere from New Zealand to North America. They are herbivores, feeding mainly on rough grasses, young tree shoots, and
shrubs. Forest-dwellers by nature, they can adapt easily to different climates and terrain. In many of the areas in which they
were introduced, red deer are commercially farmed for venison and antler velvet, which has been used in traditional Chinese
medicine for over 2,000 years to treat a broad range of ailments, including anemia, arthritic pain and rheumatism, kidney
disorders, and stress.

Darren Kelly was the production editor, and Audrey Doyle was the copyeditor for Essential SNMP, Second Edition. Carol Marti
proofread the book. Genevieve d'Entremont and Colleen Gorman provided quality control. Lydia Onofrei provided production
assistance. Johnna VanHoose Dinse wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The cover image is a 19th-
century engraving from the Dover Pictorial Archive. Karen Montgomery produced the cover layout with Adobe InDesign CS
using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Andrew Savikas to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason Mclntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed.
The illustrations that appear in the book were produced by Robert Romano, Jessamyn Read, and Lesley Borash using
Macromedia FreeHand MX and Adobe Photoshop CS. The tip and warning icons were drawn by Christopher Bing. This colophon
was written by Rachel Wheeler.

e roc |



e prcv | =y

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T [ [L] (M [NI [O] [P] [Q1 [RI [S] 01 (Y] V] (W1 [X] [Z]

e prc | =



Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] H] [T [31 [L] (Ml INT [9] [P] [Q] [RI [S] M U M W] [X] 2]

! (exclamation points) in logical NOT symbols
# (comment line indicators) 2nd
& (ampersands)

in MRTG target statements

logical AND symbols
&SNMP::addMibDirs() method
&SNMP::loadModules() method
* (asterisks), as wildcards
. (dots), separating names with
I/ (forward slashes), comment lines in filters
128-bitIPv6 addresses
32-bit IPv4 addresses
::= (definition operators)

? (question marks), in router commands

(logical OR symbols)

=y

=



e prcv | =y

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T [ [L] (M [NI [O] [P] [Q1 [RI [S] 01 (Y] V] (W1 [X] [Z]

Abstract Syntax Notation One
access
access lists 2nd
UPSs
blocking SNMP packets
disallowing
Access Control Subsystem
SNMPv3
accounting management
activity levels
addresses
agents
access lists 2nd
as monitors
community names
configuration

APC Symetra

Cisco devices

Concord SystemEDGE

HP OpenView Agent for HP-UX and Solaris

Net-SNMP for Unix

parameters

security

walkthroughs
Windows

entities
extensibility
RFCs
in protocol stack
limiting requests 2nd
listing managed objects
master and subagents
memory types in
message-size capabilities
MiBs
Net-SNMP
OpenView
parameter settings
Perl SNMP agent creation
security concerns
sending traps
SNMPv3
trap operations
SNMPv3
software
SystemEDGE
UPSs
writing
alarm correlation
alarms
secondary failures
thresholds
Alarms browser (NNM)
Apache web server
APC Symetra
configuration
applications
OpenView NNM
SNMPc Enterprise Edition




SNMPv3
architecture, NMSs
arp, troubleshooting and
ASN.1
authentication
SNMPv3
encryption
levels
methods and algorithms 2nd 3rd
authentication-failure traps
Cisco devices
generic authenticationFailure traps
incorrect community strings
Net-SNMP

SystemEDGE

e prc |



e prcv | =y

Index

[SYMBOL] [A] [B] [€] [D] [E] [F] [G] H] [T [31 [L] (M1 INT [9] [P] [Q] [RI [S] [T Ul M W] [X] 2]

BER (Basic Encoding Rules)

Big Brother open source monitoring software
Bluebird

BOOTPfilters

branches

business cases

e prc | =



e prcv | =y

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T [ [L] (M [NI [O] [P] [Q1 [RI [S] 01 (Y] V] (W1 [X] [Z]

Cammer, switch ports and

capacity planning (MRTG)
Castle Rock, SNMPc Enterprise Edition

categories, events
CCITT (International Telegraph and Telephone Consultative Committee)
NNM
displaying
OpenView
cfgmakertool (MRTG)
CGI (Common Gateway Interface)
change controller
change management
change controller
communication
emergency
implementation team
planning for change
process flow
risk assessment
scope
team
testing
validation
changing keys, SNMPv3
Cisco
agent configuration
configuring devices
disabling shutdowns
enable mode
envmon option
pinging
ping MIB
trap generation and
private enterprise number
cloning users
coldStarttraps
columnsintables
command generator (SNMPv3)
commandresponder (SNMPv3)

command-line

arguments, Net-SNMP
Cricket data sources

NMS applications
command-line tools
Net-SNMP
snmpbulkget
snmpbulkwalk
snmpconf
snmpdelta
snmpdf
snmpget
snmpgetnext
snmpinform
snmpset
snmpstatus
snmptable
snmptranslate
snmptrap
snmpusm




snmpwalk
commentlines

in configuration files
in filters
in MRTG
Common Gateway Interface (CGI)
communication
change management
NNMand
communities
agent community names
best practices for strings
configuring
for Cisco devices
for OpenView
for SNMPc
multiple 2nd
SNMPv1
community strings
as parameter settings
authentication-failure traps 2nd
changing 2nd
choosing 2nd
communities
defaults
error messages
MRTG 2nd
Net-SNMP
NNM
security concerns
SNMPc
SNMPv2and
UPSs
vendor customizations
Concise MIB Definition
Concord Communications, Empire MIB
Concord SystemEDGE agent, configuration
config tree, Cricket
configuration
agents
APC Symetra
Cisco devices
Concord SystemEDGE
HP OpenView Agent for HP-UX and Solaris
Net-SNMP for Unix
parameters
security
walkthroughs
Windows
Cisco agents in devices
Cricket
MRTG
Net-SNMP
parameter settings
RMON
SNMPc
SNMPv3 2nd
SystemEDGE
UPSs
configuration management
connectionless protocols
contacts for devices
setting, Net-SNMP
sysContact
core dumps, traps and
CPUs
NMS requirements

nonidle percentages
Cricket




command execution
command-line data sources

config tree
configuration

history of
inheritance

installation

introduction

MRTG and

parallelism

resources

routers, data gathering

subtrees
router-interfaces
routers

cron jobs

core dumps and
running MRTG with

e prc |



Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T [ [L] (M [NI [O] [P] [Q1 [RI [S] 01 (Y] V] (W1 [X] [Z]

daemons as agents

data collection
hardware requirements
open source tools

OpenView
thresholds and

SNMPc
datadisplay, OpenView
data storage requirements
datagrams
datatypes
decimal values in
importing from other MIBs
managed objects and
supported types
SMIvl
SMIv2
dates

DateAndTime convention
system dates
deltavalues
DES algorithm 2nd 3rd
devices
discovering with SNMPc
locations
MRTG and 2nd
non-SNMP devices
parameter settings
security 2nd 3rd
SNMP management
staffing resources for maintenance
df command (Unix), snmpdf
DHCP
filters
polling options
dig, troubleshooting and
directories, structure in OpenView
directory branch, OIDs
discovery
SNMPc Enterprise Edition
run-through

discovery intervals, fixed
discovery process

OpenView (netmon) 2nd
filters
pollingintervals
seed files
SNMPc
seed devices 2nd
discovery, USM
disk space
checking, trap generation
graphing usage
host resources information
NMS requirements
Dispatcher (SNMPv3 engine)
Distributed Management Task Force
distributed systems, NMS architecture
DNS monitoring, trap generation and

=y



dotted-decimal notation (.), in OIDs
draft RFCs 2nd

e prcv |



e prcv | =y

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T [ [L] (M [NI [O] [P] [Q1 [RI [S] 01 (Y] V] (W1 [X] [Z]

EGP neighbortables
egp subtree (MIB-I1)
egpNeighborLosstrap
elementmanagers (software
emergency change management
encoding

BER

error messages
encryption

DES algorithm 2nd 3rd

engine IDs and
lack of in SNMP

SNMPv3 2nd
Virtual Private Networks
engine (SNMPv3)
engine IDs
encryption and
engines, USM and
enterprise numbers, private
IANA
managing
enterprise-specific traps 2nd
enterprises branch
entities
composition
SNMPv3 2nd
uUsm
enumerated types
error messages
SMivl
SMiv2
environmentvariablesin OpenView
envmon option (Cisco)
error messages
SNMPv1 messages
SNMPv2 messages
error responses
get operation
getbulk operation
getnextoperation
set operation

errors, polling and
Ethereal, troubleshooting and

Ethernet
addresses
ifref options
polling interfaces with MRTG
RMON statistics
Event Categories (OpenView NNM), map colors and
Event Categories window, NNM
events
forwarding
NNM
Alarms browser
automatic actions
categories, setting
category display
forwarding
incoming traps and




log messages
notifications
severity
sources
OpenView
categories, custom
creating
protocol stack
RMON
EXAMPLE.conffile
exceptions, settingin NNM
expermiental branch, OIDs
extensibility, OpenViewtables
extensible agents
Net-SNMP
OpenView 2nd 3rd
RFCs
security and
SystemEDGE 2nd
Unix and
Windows and
externaldata, NNM
external polling
OpenView and

data collection and display
graphing

e rrcv |



e prcv | =y

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T [ [L] (M [NI [O] [P] [Q1 [RI [S] 01 (Y] V] (W1 [X] [Z]

FAQs for SNMP
faultmanagement
files
configuration files, reloading
filter files
HTML files
log files 2nd 3rd
MIB files
seed files
FilterExpressions (OpenView) 2nd
filters
attributes
combining
configuring in NNM
DHCP polling options
discovery process
OpenView
FilterExpressions
sets
reducing traffic with

SNMPc Enterprise Edition
SNMPc filters 2nd

firewalls 2nd
formulas

get-bulk requests

NMS RAM requirements
forwarding events, NNM
EQDN (fully qualified domain name)
future

e rrc | =3



e prcv | =y

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [HI [ [31 [L] (M1 INT [O] [P] [Q [RI [S] [T Ul M W] [X] 2]

gateways
as seed devices
in seed files
qd library, JFEFNMS
adlibrary, MRTG
generating traps
disk-space checking
DNS monitoring and
logins
pinging with Cisco
POP3 monitoring
port monitoring and
service monitoring
SMTP monitoring
Veritas
generic trap numbers
getoperations 2nd 3rd 4th
error messages
error responses
polling and
snmpget (Net-SNMP)
SNMPv3
using with set command
get-response operations
getand
get-nextand
getbulk operations
error messages
error responses
snmpbulkget (Net-SNMP)
SNMPv3
getnextoperations 2nd 3rd
error messages
error responses
MRTG
snmpgetnext (Net-SNMP)
SNMPv3
snmpwalk (Net-SNMP)
GIFimages
graphical interfaces, NMS applications
graphs
index pages for
open source tools
OpenView
parameters

e rrcv | =



e prcv | =y

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [ [31 [L] (M1 INT [9] [P] [Q [RI [S] M Ul M W] [X] 2]

hardware considerations, NMSs
Home map (NNM)
hoods
hostmanagement 2nd
HostResources MIB 2nd
hosts and hostmanagement 2nd
host OIDs
in protocol stack
HP OpenView Agent for HP-UX and Solaris, configuration
HP OpenView NNM
HP-UX operating system, OpenView and
HTML (HyperTextMarkup Language)
in MRTG output 2nd
paths for files

titles on pages
HTTP (HyperText Transfer Protocol)

discovering support for (SNMPc)
future and
web-based NMSs and

HUP signals
hybrid NMS architectures

e prc | =y



e prcv | =y

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T [ [L] (M [NI [O] [P] [Q1 [RI [S] 01 (Y] V] (W1 [X] [Z]

IANA (Internet Assigned Numbers Authority)
enterprise number assignments
MIB vendor lists
IANA-maintained MIB modules
IETF (Internet Engineering Task Force)
RFCs
SNMPv3group

ifconfig, troubleshooting and
IfEntry sequence (MIB

iflnOctets object (MIB)
graphing
MRTG and
ifOutOctets object (MIB)
graphing
MRTG and
ifTable object (MIB) 2nd
incoming traps
Net-SNMP
NNM event configurations
OpenView and
SNMP4J
SNMPc
xnmeventsand
xnmtrap
indexesin process-monitoring table
indexmaker (MRTG) 2nd
informmessages

inform operations
installation
Cricket
MRTG
Net-SNMP
RRDtool
SNMPc
installed software, tracking 2nd
interfaces
calculating data-storage requirements
MRTG and 2nd
sending traps with (Cisco)
statistics, MIB-II
tables for managed objects
trap information
internal polling
RMON and
International Organization for Standardization
International Telegraph and Telephone Consultative Committee (CCITT)
Internet
polling over
security issues and 2nd
Internet Assigned Numbers Authority
Internet Engineering Task Force
Internet Protocol devices
internetsubtree 2nd
intervals
calculating data-storage requirements
discovery 2nd
polling
OpenView
SNMPc




SystemEDGE
Timelnterval convention

intruders, preventing
10S operating system, Cisco devices and
IP addresses
configuring properties in NNM
filtering
for seed devices
in access lists
in seed files
SMI issues
spoofing
UPSs
IP devices
agents
managing with SNMP
IP Discovery
IP filters
ipconfig, troubleshooting and
I1SO (International Organization for Standardization)
subtree administration

e prc |



e prcv | =y

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T [ [L] (M [NI [O] [P] [Q1 [RI [S] 01 (Y] V] (W1 [X] [Z]

Java
SNMP4J
sending traps
versus Perl for SNMP tasks
JFENMS (Just For Fun NMS) software

e prcv | =y



Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] T 31 [L] M1 INT [9] [P] [Q [RI [S] [T U1 M W] [X] 2]

labels, in graphs
leafnodes
levels of activity
levels of security
libpng library
licensing

excess objects and

OpenView NNM
SNMPc

linkDown notification or trap (SNMPv2)

linkUp notification or trap (SNMPv2)

Linux operating system

SystemEDGE
listing

managed objects

trap types
load averages, graphing
loadhosts utility (NNM
Local Registration Files (LRF)
localized keys, SNMPv3
log messages, NNM events
logging

MRTG log files 2nd

Net-SNMP log files
logical symbols

AND (&&)

NOT (1)

OR (1)

logintraps
lostdatagrams
LRF (Local Registration Files)

=y

=



e prcv | =y

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T [ [L] (M [NI [O] [P] [Q1 [RI [S] 01 (Y] V] (W1 [X] [Z]

MAC (Media Access Control), protocol stack and

MAC layer in protocol stack
managed objects 2nd
datatypes, SMivl
hierarchy
MIB extensions in SMIv2
Olbs
defining
naming
scalar and tabular objects
SMIv2 datatypes
variable bindings 2nd
managementbranch, OIDs
managementgroups (MIB-11)
managementinformation
structure
managementsoftware
elementmanagers
NMS suites
SNMP agents
supporting software
trend analysis
vendor-specific
managementstations
manager-to-manager communication

managers
SNMPv3

managing networks
monitoring
SNMP role in
staffing considerations
maps
OpenView
colors
Home map
of unmanaged objects
removing nodes
Root map
zooming
SNMPc
Root map
submaps
zooming
master agents, stopping and starting
max-repetitions fields (get-bulk operations)
MD5 algorithm 2nd 3rd
Medium Access Control (MAC) layer in protocol stack
memory
graphing usage
NMS requirements 2nd
SNMP management
system totals
types for agents
Message Processing Model
Message Processing Subsystem (SNMPv3 engine)
Message Processing System, SNMPv3
messages
log events, NNM
size capabilities of agents




SNMPv3
USM
mib-2 subtree
MiB-Il
MIBs (Management Information Bases), x
Cisco ping MIB
components of
Concise MIB Definition
draft and proposed standards
Host Resources MIB 2nd
loading
into OpenView
SNMPc Enterprise Edition
managed objects and datatypes in
media-specific
MIB-II
components of files
subtrees in
modules
IANA-maintained
SMIv2 RFCs
multiple value retrieval
Net-SNMP and
objects
scalar
snmpsetcommand
varbinds
OIDs and instance identifiers
OpenView and
Perl and
Perl routines

private
proprietary
RMON MIB 2nd
sequences in

single, retrieving values
SMIV1RFCs

tree, Net-SNMP

value setting
vendor lists

vendor-specific
monitoring
DNS, trap generation and
POP3, trap generation and
ports
netcat
trap generation and
services, trap generation and

SMTP, trap generation and
web content

monitoring networks
NMSs, polling
RMON
staffing considerations
MRTG (Multi Router Traffic Grapher)
Cricket and
data-gathering applications and
downloading
features
gd library
graphs
defaults 2nd 3rd
displaying 2nd
filter options
indexmaker
legend options
output files

parameters 2nd
routers




servers
specifying variables
storage
viewing
installing and running
introduction
log files 2nd
Perl and
pitfalls
polling non-SNMP devices
polling with
problems with changing interfaces
resources and help
RRDtooland
targets
third-party packages
multiple values, retrieving

e roc |



e prcv | =y

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] T 3 [L] [M] [N [O] [P] [Q [RI [S] [T Ul M W] [X] 2]

Nagios open source monitoring software
Net-SNMP
command-line arguments
command-line tools
snmpbulkget
snmpbulkwalk
snmpconf
snmpdelta
snmpdf
snmpget
snmpgetnext
snmpinform
snmpset
snmpstatus
snmptable
snmptranslate
snmptrap
snmpusm
snmpwalk
configuration 2nd
files 2nd 3rd 4th
extensible agent

getbulk queries
installation

MIB files and
MIB tree
Perl agent creation
Perl and
polling and
SNMP operations
snmpget
snmpset
snmpusm
snmpwalk
traps
receiving
sending
snmptrap datatypes
Net-SNMP for Unix, configuration
netcat, port monitoring and
netmon
filters
nodes
overview
pollingintervals

polling problems
seed files

switches in

testing routers
netstat, troubleshootingand
Network Computing Technologies' Trap Generator
Network Computing Technologies' Trap Receiver
networkmanagement

accounting management

activity levels

alarm correlation
before-and-after scenarios
business cases
configuration management




faultmanagement

introduction

response time, reporting

security management

staffing and

trend analysis

trouble resolution
Network Node Manager

Network Operations Centers (NOCs)
NetworkAddress datatype (SMIv1)

networks
networks, managing
newsgroups, Usenet 2nd
NINO open source monitoring software
NMS (Network Monitoring Stations) 2nd
applications
OpenView Network Node Manager

SNMPc Enterprise Edition
architecture 2nd 3rd

graphical vs. command-line applications
hardware

hardware considerations
manager-to-manager communication

open source packages
OpenView Network Node Manager

ports
preventing changes by two stations

private links and
receiving and handling traps
trap-directed polling
trap-generation sequence and
role in protocol stack
shutting down routers
SNMP operations
SNMPc Enterprise Edition
SNMPv3 command generator and
staffing and 2nd
Suites
traps, incoming
web-based
NNM (Network Node Manager)
Alarms browser
communication and
Event Categories window
events
automatic actions
categories, setting
category display
forwarding
incoming traps and
log messages
notifications
severity
sources
externaldata

graphs, vmstat output
loadhosts

map colors
menus
netmon
running 2nd

user profiles
NOCs (Network Operations Centers)

nodes
adding to NNM maps
data-collection storage requirements

discovering with netmon
in filters 2nd

in hierarchies




OpenView polling
configuring intervals
netmon 2nd

removing from NNM maps

SNMPc polling

unreachable nodes 2nd 3rd

non-trap-directed polling
nonrepeater fields (SNMPv2)
NOTIFICATION-TYPE objects (SNMPv2)
notifications

events, NNM

SNMPv3
notification originator
notification receiver

nslookup, troubleshooting and
numeric OIDs 2nd

e roc |



e prcv | =y

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] T 3 [L] [M] NI [O] [P] [Q [RI [S] [T Ul M W] [X] 2]

object IDs
objecttrees
objects, scalar (MIB)
octets
graphs
MIB-II information
Oetiker, Tobias
OIDs (object identifiers)
defining
definitions
directory branch
errors in searches
experimental branch
managementbranch
naming
private branch
SMIv1 datatype
SMIv2 extensions
snmpdelta (Net-SNMP)

variable bindings
onlineresources

open source
data collection tools
graphing tools
monitoring software
Big Brother
JFENMS
Nagios
NINO
OpenNMS
OpenNMS open source monitoring software
OpenView
configuring
data collection, thresholds and
events

categories, custom
creating

extensible agent
lables

external polling and
data collection and display
graphing

fileSystemTable object

filters
FilterExpressions
sets

graphing, parameters

incoming traps and

MIB tree

MIBs, loading

polling and

pollingintervals

traps, sending
web-based GUlin

OpenView NNM (Network Node Manager)
directory structure
ilters
Instant-Onlicense

loadhosts utility




maps 2nd
netmon daemon process
pollingintervals
scripts
starting and running
operating systems
agents in
names of specific OS packages
NMS support for
operations
_get
error respones
getbulk
error responses
getnext 2nd
error respones
inform
notifications
parameters
report
set 2nd
error respones
SNMP4J
SNMP
snmpget()
snmpgetnext()
snmpset()
snmptrap()
snmpwalk()
traps
walk
output, MRTG
ovfiltercheck utility (OpenView)
ovtrapd trap-handling daemon

e prc |



e prcv | =y

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T [ [L] (M [NI [O] [P] [Q1 [RI [S] 01 (Y] V] (W1 [X] [Z]

packet sniffers 2nd
packets
blocking
datagrams in UDP
encrypting
parallelism, Cricket
parameters

agent configuration
MRTG 2nd 3rd
OpenView graphing
operations
read-only
read-write
SNMP settings
SystemEDGE
passphrases 2nd
passwords
community strings
creating in SNMPv3 2nd
encrypting
PDUs (Protocol Data Units)
formats
SNMP operations
traps
performance management
performance statistics (MIB-II groups)
Perl
identifying version of
MIBs and 2nd
monitoring users and processes
MRTG and
Net-SNMP and
SNMP agent creation
SNMP::Info Perl package
SNMP_Utilmodule
snmpLoad OID_Cache() and
snmpmapOID() and
snmpMIB_to OID() and

snmpQueue MIB_File() and
traps
monitoring
sending
physical-leveladdresses
ping
Cisco
MiBs
trap generation and
polling with
SNMPc usage
troubleshootingand
PiXfirewalls
plain text (clear text) strings
planning for change
plug-ins, SystemEDGE
polling
agents and
calculating data-storage requirements
DHCP options
error responses




external polling
OpenView and
OpenView graphing

falling behind

filters in NNM

get command and

get operations 2nd

internal polling
RMON and

intervals
NNM
OpenViewNNM
SNMPc
SystemEDGE

MIBs, retrieving multiple values
MRTG 2nd

Net-SNMP and
non-SNMP devices
OpenView
intervals
netmon
over the Internet
pinging, Cisco
ports
single MIB values and
SNMPc
traffic and
trap-directed
POP3 monitoring, trap generation and
portmonitoring
netcat
trap generation and
ports
management ports on UPSs
NNM Port settings
switch ports
_ubp
privacy services
configuring 2nd
keys
SNMPv3 2nd 3rd
private branch, OIDs
private enterprise numbers 2nd
private links in NMS architecture
private MIBs
processes
graphing
managing 2nd
monitoring (SystemEDGE)
proprietary MIBs
protecting networks
Protocol Data Units
protocol stack
protocol support in devices
proxy forwarder

e prcv |



e prcv | =y

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] T (3 [L] [M] NI [O] [P [Q] [RI [S] [T Ul M W] [X] 2]

quick navigator (NNM)

e rrc | =3



e prcv | =y

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T (31 [L] (M NI [O] [P] [Q] [R] [S] M U M W] [X] 2]

RAM requirements for NMSs 2nd
read-only access
_users

read-only community strings 2nd
read-only parameter
read-write access 2nd
read-write community strings 2nd
read-write parameter
rebooting, trap information
receiving traps

Net-SNMP

SNMPv3
regular expressions, indexmaker option
reinitialization trap information
remote monitoring, RMON MIB
Remote Network Monitoring
remote-location staffing
reportoperations
reports

response time

trend analysis
Requests for Comments

response time, reporting
retransmissions, overhead and

retrieving values, OpenView and

Retry settings (NNM)

reverse engineering
RECs (Requests for Comments)

documentation
draft status
experimental 2nd
historical standards
list
process for
SMIv1 Data Definition Language

SMIv2 Data Definition Language
SMIv2 MIB modules

SNMIv1 MIB modules

SNMP agent extensibility

SNMP versions

SNMPv3

SNMPv3 protocol

standard status
risk assessment, chanage managementand
RMON (Remote Network Monitoring) 2nd 3rd

configuration

events

groups

internal polling and
RMON MIB 2nd

versions
Rootmap

NNM

SNMPc
roots in object tree
router-interfaces subtree (Cricket)

routers
access lists
Cricket, data gathering




listing commands
shutting down
testing

routers subtree (Cricket)

rows in tables 2nd

RRDtool (Round Robin Database Tool)
installation
introduction
MRTG and

e prc |



Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T [ [L] (M [NI [O] [P] [Q1 [RI [S] 01 (Y] V] (W1 [X] [Z]

scalar objects

graphing in MRTG

MIB objects

Olbs
scope, change management
security

access

agent configuration

authentication-failure traps

community strings 2nd

events, NNM

firewalls

limiting requests to agents 2nd

polling over the Internet

SNMP weaknesses and 2nd

SNMPv3and 2nd

Cisco routers
encryption 2nd
levels
Usm

Security Subsystem, SNMPv3
seed devices 2nd
seed files
sendingtraps

Cisco devices

forcing hardware

Net-SNMP

OpenView

Perl

snmptrap (Net-SNMP)

SNMPv3

Trap Generator (Network Computing Technologies)

sendmail process, monitoring
servers

graphing parameters

web servers
service monitoring, trap generation and
setoperations 2nd 3rd 4th

error messages

error responses

SNMP4J

SNMPv3
sets in filters 2nd
setting MIB values
SGMP (Simple Gateway Management Protocol
SHAalgorithm 2nd
shell scripts, OpenView
shutting down routers
Simple Gateway Management Protocol (SGMP)
SimpleWeb
single MIBs, value retrieval
SMI (Structure of Management Information)

SMI Next Generation (SMING)

SMivl

datatypes
defining OIDs

naming OIDs
RFC standards
SMIv2 2nd

=y



datatypes

object definition enhancements
object tree
RFC standards
textual conventions
SMIv1 Data Definition Language RFCs
SMIv1MIB module RFCs
SMIv2
extensions
MIB Modules, RFCs
object definitions, syntax
SMIv2 Data Definition Lanquage RFCs
SMTP monitoring, trap generation and
SMTP supportin devices
SNMP (Simple Network Management Protocol), ix
communities
error messages
FAQs
history
hostmanagement 2nd

in protocol stack
information and resources

introduction
management groups (MIB-I1)
MiBs
network management
online resources
operations overview
RFC standards 2nd
security weaknesses 2nd
SMI
SMIv.
SMIv2
staffing considerations
UDP and
versions, RFCs and
web-based interfaces
SNMP Link
SNMP4J
getnextoperation
introduction
set operation
traps, incoming
SNMP::Info Perl package
SNMP_Utilmodule (Perl)
snmpbulkget, Net-SNMP
snmpbulkwalk, Net-SNMP
SNMPc
configuration
installation
node discovery
seed devices 2nd
traps, incoming
trend reporting
SNMPc Enterprise Edition
discovery
run-through
filters
MIBs, loading
snmpconf utility (Net-SNMP) 2nd
snmpd log files
snmpdelta, Net-SNMP
snmpdf, Net-SNMP
SnmpEnginelD, USM
snmpgetcommand
confirming set commands
get operations
Net-SNMP 2nd
snmpget() operation

=




snmpgetbulk command

get-bulk operations
snmpgetnext

Net-SNMP
snmpinform (Net-SNMP)
snmpLoad OID Cache(), Perland
snmpmapOID(), Perl and
snmpMIB_to OID(), Perland
snmpQueue MIB File(), Perland
snmpset 2nd

Net-SNMP 2nd

set operations
snmpstatus, Net-SNMP
snmptable, Net-SNMP
snmptranslate, Net-SNMP
snmptrap() operation
snmptrap, Net-SNMP
snmpusm utility 2nd
SNMPv1 2nd

error messages
SNMPv2 2nd
error messages
snmpV2 branch
textual conventions
traps
SNMPv2branch
SNMPv3
Access Control Subsystem
applications
authentication 2nd
changes in
changing keys
cloning users
configuration
options
creating users
engine
entities 2nd 3rd
groups
IETF working group site
localized keys
Message Processing Subsystem
messages
Net-SNMP configuration
privacy 2nd 3rd 4th
RFCs 2nd
security

Security Subsystem
textual conventions

USM (User-based Security Model)
VACM (View Access Control Model)
views

snmpwalk 2nd

get-nextoperations, walk operations
Net-SNMP 2nd

software

agents

management software
agents
elementsoftware
NMS suites
supporting software
trend analysis
vendor-specific

open source monitoring software
Big Brother
JFENMS
Nagios
NINO




OpenNMS
Solaris operating system
agent software
OpenView and

staffing
considerations

NMS architecture and
status source (OpenView)
status, snmpstatus (Net-SNMP)
storage requirements for data
streams, NNM external data
subagents
subtrees

Cricket

router-interfaces
routers

MIB-II
supporting software
switch ports, controlling
Symetra
sysContact parameter
sysLocation parameter

configuring in Net-SNMP

retrieving

setting values
syslog records
sysNames parameter
system contacts
systemlocations
system uptime, polling
SystemEDGE

configuring

configuration file

plug-ins
extensibility 2nd

Unix and

Windows and
parameters
self-monitoring capabilities

e prcy |



Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] T (31 [L] (M NI [O] [P [Q] [R] [S] [T] Ul M) W] [X] 2]

tables

adding columns
get-bulk operations and
ifTable 2nd
OpenView
printing, snmptable (Net-SNMP)
rows in 2nd
tabular objects, OIDs
targets (MRTG) 2nd
TCP (Transmission Control Protocol)
compared to UDP
SNMP over
TCP/IP, MIB-Il information
TCP/IP protocol suite
testing
change managementand
routers
TextUser Interface (TUI)
text, SNMPv3 conventions
textual conventions
SMIv2
SNMPv2
SNMPv3

third-party software, MRTG and
thresholds

alarm setting
OpenView data collection
SNMPc
throw core
Timeoutsettings (NNM)
times
DateAndTime convention
Timelnterval convention
TimeStamp convention
timestamps, TimeStamp textual convention
traceroute, troubleshooting and

tracert, troubleshooting and
traffic

filters and
graphing with MRTG
Transmission Control Protocol

transportservices

Trap Generator (Network Computing Technologies)

trap operations

Trap Receiver (Network Computing Technologies)

traps 2nd 3rd
acknowledging receipt
authentication-failure
core dumps and
destinations, configuration of
_Cisco
Net-SNMP
OpenView
SystemEDGE
Ups
enterprise-specific 2nd
environmental monitor traps (Cisco)
generating
disk-space checking

=y



DNS monitoring and

general program
logins

pinging with Cisco
POP3 monitoring

port monitoring and

service monitoring
SMTP monitoring
Veritas
generation sequence
generic numbers
incoming
Net-SNMP
NNM events and
SNMP4J
SNMPc
inform mechanism
overview
PDU format
Perl and
ports
receiving
Net-SNMP
SNMPv3
sending
Cisco devices
forcing hardware
Net-SNMP
OpenView
Perl
SNMP4J

snmptrap (Net-SNMP)

SNMPvV3

Trap Generator (Network Computing Technologies)

sequence of events in
SMIv2 extensions to

SNMPv2

SNMPv3

trap-directed polling

_UDP

unreceived traps 2nd

variable bindings
trend analysis

reporting

software
trend reporting, SNMPc
trouble resolution
troubleshooting

arp and

dig and

Ethereal and

guidelines

ifconfig

ipconfig

netstat and

nslookup and

ping and

traceroute

tracert and

whois and

TUI (TextUser Interface)



e prcv | =y

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] T (31 [L] (M (NI (O] [P [Q] [R] [S] [T (V] V] W] [X] 2]

UCD-SNMP 2nd
UDP (User Datagram Protocol)
in protocol stack
limiting traffic
low overhead
ports 161 and 162
SNMP and
traps and unreliability of 2nd
uninterruptible power supplies (UPSs)
Unix
MRTG
SystemEDGE extensibilty
unreachable nodes 2nd 3rd
UPSs (uninterruptible power supplies)
APC
Usenet 2nd
User Datagram Protocol

user profiles, NNM
user-based authenticationin SNMPv3

User-based Security Model (USM)
users
graphing number logged in (MRTG)
managing
SNMPV3
cloning
creating 2nd
maintaining with snmpusm
USM (User-based Security Model)
discovery
engines and
entities
messages
SnmpEnginelD
SNMPv3
USMtables, snmpusm (Net-SNMP)
USMTimeliness Module
USMUser Table
elements

e roc | et



e prcv | =y

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T [ [L] (M [NI [O] [P] [Q1 [RI [S] 01 (Y] V] (W1 [X] [Z]

VACM (View Access Control Model)
access table
contexttable
security to group table
SNMPv3
View Tree Family Table
validation, change managementand
values
MIBs
multiple, retreival
setting
retrieval, OpenView
single MIBs, retrieving
varbinds
variable bindings
formulas for get-bulk requests

in traps
variables

environment, in OpenView

error messages
vendor definitions in MIBs

vendor-specific management software
vendors
default community strings
enterprise number assignments
vendor-specific MIBs 2nd
Veritas Volume Manager
views in SNMPv3
Virtual Private Networks (VPNs) 2nd
vmstat, graphing output
VPNSs (Virtual Private Networks) 2nd
vxprint utility, Veritas

e roc | =



Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T [ [L] (M [NI [O] [P] [Q1 [RI [S] 01 (Y] V] (W1 [X] [Z]

walk operations 2nd 3rd
WAP, data point gathering

WBEM (Web-Based Enterprise Management)
web content, monitoring
Web-Based Enterprise Management (WBEM) consortium
web-based network management 2nd
whois, troubleshooting and
wildcards
filters
NNM settings
UPS configuration
Windows
agents, configuration

SystemEDGE, extensibility
wireless networks, WAP data point gathering

working directories (MRTG)
write-only access

=y

=



e prcv | =y

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] H] [0 (2] [L] M] [N] [O] [P] [Q] [RI [S] (M1 (VI V] (W] [X] (2]

XML (eXtensible Markup Language)
xnmbrowser (OpenView)
xnmevents, incoming traps

xnmtrap, incoming traps and

e rrc | =3



Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T [ [L] (M [NI [O] [P] [Q1 [RI [S] 01 (Y] V] (W1 [X] [Z]

zlib library
zooming in maps 2nd



	Essential SNMP, 2nd Edition
	Table of Contents
	Copyright
	Preface
	Audience for This Book
	Organization
	What's New in This Edition
	Example Programs
	Using Code Examples
	Conventions Used in This Book
	Comments and Questions
	Safari&#174; Enabled
	Acknowledgments for the Second Edition
	Acknowledgments for the First Edition

	Chapter 1.  Introduction to SNMP and Network Management
	Section 1.1.  What Is SNMP?
	Section 1.2.  The Concept of Network Management
	Section 1.3.  Applying the Concepts of Network Management
	Section 1.4.  Change Management
	Section 1.5.  Getting More Information

	Chapter 2.  SNMPv1 and SNMPv2
	Section 2.1.  SNMP and UDP
	Section 2.2.  SNMP Communities
	Section 2.3.  The Structure of Management Information
	Section 2.4.  Extensions to the SMI in Version 2
	Section 2.5.  A Closer Look at MIB-II
	Section 2.6.  SNMP Operations
	Section 2.7.  Host Management Revisited
	Section 2.8.  Remote Monitoring Revisited
	Section 2.9.  Reverse Engineering SNMP

	Chapter 3.  SNMPv3
	Section 3.1.  Changes in SNMPv3
	Section 3.2.  USM
	Section 3.3.  VACM
	Section 3.4.  SNMPv3 in the Real World

	Chapter 4.  NMS Architectures
	Section 4.1.  Hardware Considerations
	Section 4.2.  NMS Architectures
	Section 4.3.  A Look Ahead

	Chapter 5.  Configuring Your NMS
	Section 5.1.  HP's OpenView Network Node Manager
	Section 5.2.  Castle Rock's SNMPc Enterprise Edition

	Chapter 6.  Configuring SNMP Agents
	Section 6.1.  Parameter Settings
	Section 6.2.  Security Concerns
	Section 6.3.  Agent Configuration Walkthroughs

	Chapter 7.  Polling and Setting
	Section 7.1.  Retrieving a Single MIB Value
	Section 7.2.  Retrieving Multiple MIB Values
	Section 7.3.  Setting a MIB Value
	Section 7.4.  Error Responses

	Chapter 8.  Polling and Thresholds
	Section 8.1.  Internal Polling
	Section 8.2.  External Polling

	Chapter 9.  Traps
	Section 9.1.  Understanding Traps
	Section 9.2.  Receiving Traps
	Section 9.3.  Sending Traps

	Chapter 10.  Extensible SNMP Agents
	Section 10.1.  Net-SNMP
	Section 10.2.  SystemEDGE
	Section 10.3.  OpenView's Extensible Agent

	Chapter 11.  Adapting SNMP to Fit Your Environment
	Section 11.1.  General Trap-Generation Program
	Section 11.2.  Who's Logging into My Machine? (I-Am-In)
	Section 11.3.  Throw Core
	Section 11.4.  Veritas Disk Check
	Section 11.5.  Disk-Space Checker
	Section 11.6.  Port Monitor
	Section 11.7.  Service Monitoring
	Section 11.8.  Pinging with Cisco
	Section 11.9.  Simple SNMP Agent
	Section 11.10.  Switch Port Control
	Section 11.11.  Wireless Networking
	Section 11.12.  SNMP: The Object-Oriented Way
	Section 11.13.  Final Words

	Chapter 12.  MRTG
	Section 12.1.  Using MRTG
	Section 12.2.  Viewing Graphs
	Section 12.3.  Graphing Other Objects
	Section 12.4.  Other Data-Gathering Applications
	Section 12.5.  Pitfalls
	Section 12.6.  Getting Help

	Chapter 13.  RRDtool and Cricket
	Section 13.1.  RRDtool
	Section 13.2.  Cricket

	Chapter 14.  Java and SNMP
	Section 14.1.  SNMP4J
	Section 14.2.  SNMP getnext
	Section 14.3.  SNMP set
	Section 14.4.  Sending Traps and Informs
	Section 14.5.  Receiving Traps and Informs
	Section 14.6.  Resources

	Appendix A.  Using Input and Output Octets
	Appendix B.  More on OpenView's NNM
	Section B.1.  Using External Data
	Section B.2.  Adding a Menu to NNM
	Section B.3.  Profiles for Different Users
	Section B.4.  Using NNM for Communications

	Appendix C.  Net-SNMP Tools
	Section C.1.  Net-SNMP and MIB Files
	Section C.2.  Common Command-Line Arguments
	Section C.3.  Net-SNMP Command-Line Tools

	Appendix D.  SNMP RFCs
	Section D.1.  SMIv1 Data Definition Language
	Section D.2.  SMIv2 Data Definition Language
	Section D.3.  SNMPv3 Protocol
	Section D.4.  SNMP Agent Extensibility
	Section D.5.  SMIv1 MIB Modules
	Section D.6.  SMIv2 MIB Modules
	Section D.7.  IANA-Maintained MIB Modules
	Section D.8.  Related Documents

	Appendix E.  SNMP Support for Perl
	Section E.1.  SNMP_Util
	Section E.2.  Net-SNMP

	Appendix F.  Network Management Software
	Section F.1.  SNMP Agents
	Section F.2.  NMS Suites
	Section F.3.  Element Managers (Vendor-Specific Management)
	Section F.4.  Trend Analysis
	Section F.5.  Supporting Software

	Appendix G.  Open Source Monitoring Software
	Section G-1.  Big Brother
	Section G-2.  Nagios
	Section G-3.  JFFNMS
	Section G-4.  OpenNMS
	Section G-5.  NINO

	Appendix H.  Network Troubleshooting Primer
	Section H-1.  ping
	Section H-2.  ipconfig and ifconfig
	Section H-3.  arp
	Section H-4.  netstat
	Section H-5.  traceroute and tracert
	Section H-6.  nslookup and dig
	Section H-7.  whois
	Section H-8.  Ethereal

	About the Authors
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z


