

Mastering the Microsoft
Deployment Toolkit

Take a deep dive into the world of Windows desktop
deployment using the Microsoft Deployment Toolkit

Jeff Stokes

Manuel Singer

BIRMINGHAM - MUMBAI

Mastering the Microsoft Deployment Toolkit

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2016

Production reference: 1260516

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78217-249-9

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Jeff Stokes

Manuel Singer

Copy Editor

Vibha Shukla

Reviewers

Florian Klaffenbach

Brian Mithen

Project Coordinator

 Nidhi Joshi

Commissioning Editor

Saleem Ahmed

Proofreader

Safis Editing

Acquisition Editors

Saleem Ahmed

Prachi Bisht

Indexer

Mariammal Chettiyar

Content Development Editor

Mayur Pawanikar

Graphics

Jason Monteiro

Technical Editor

Pranil Pathare

Production Coordinator

Arvindkumar Gupta

About the Authors
Jeff Stokes is a deployment and performance specialist for Windows operating systems.
Jeff has a passion for the user experience in enterprise environment. As an avid public
speaker, podcaster, blogger, and mentor, Jeff started his IT career at Digital in the 90s, and
has been hard at work ever since. Currently, employed at Microsoft, he is expanding his
horizons with projects in big data and data analytics.

When not working, he enjoys spending time with his family and friends. His hobbies are
gaming, music, and writing.

I'd like to thank my wife, Ana, for her continued support. I couldn't have done this without you! I
would also like to give a nod to Carl Luberti, Michael Niehaus, Aaron Margosis, Bill Curtis, and all
the other deployment folks I've learned so much about deployment from over the years.

Manuel Singer works as a Premier Field Engineer for Windows Client at Microsoft and is
based in Germany. He has more than 10 years of experience in system management and
deployment using Microsoft technologies. He specializes in client enterprise design,
deployment, performance, reliability, and Microsoft devices. Manuel works with local and
international top customers from the private and public sectors, providing professional,
technical, and technological support.

Additionally, he is an experienced Microsoft Certified Trainer and holds public and private
Microsoft workshops across Europe. He is also a speaker and ask the expert at various
Microsoft premier events.

First and foremost, my thanks goes out to my wife, Renate, who allowed me to follow my dreams and
make every day worth living, and my two wonderful children, Cornelius and Theresa, who
constantly remind me of what's important in my life. Furthermore, I would like to thank all the
people who have supported me throughout the writing of this book. Last but not least, I would like to
thank the team at Packt Publishing for their support throughout the process of writing this book.

About the Reviewers
Florian Klaffenbach started his IT career in 2004 as a first and second level IT support
technician and IT salesman trainee for a B2B online shop. Later, he moved to a small
company, working as an IT project manager, planning, implementing, and integrating
industrial plants and laundries into enterprise IT. In some time, he changed his path to Dell
Germany. There, he started from scratch as an enterprise technical support analyst and later
worked on a project to start Dell technical communities and support over social media in
Europe and outside of the US. Currently, he is working as a solutions architect and
consultant for Microsoft Infrastructure & Cloud, specializing in Microsoft Hyper-V, file
services, System Center Virtual Machine Manager, and Microsoft Azure IaaS.

Additionally, he is active as a Microsoft blogger and lecturer. He blogs, for example, on his
own page, Datacenter-Flo.de, or Azure Community Germany. Together with a very
good friend, he founded the Windows Server User Group Berlin to create a network of
Microsoft IT pros in Berlin. Florian maintains a very tight network with many vendors such
as Cisco, Dell, and Microsoft and communities. This helps him enhance his experience and
get the best solution for his customers. Since 2016, he is also the co-chairman of the Azure
Community Germany. In April 2016, Microsoft awarded Florian the Microsoft Most
Valuable Professional for Cloud and Datacenter Management.

Florian has worked for several companies, such as Dell Germany, CGI Germany, and his
first employer, TACK GmbH. Currently, he is working at msg services ag in the role of
senior consultant in Microsoft Cloud Infrastructure. He has worked on the books Learning
System Center App Controller, Microsoft Azure Storage Essentials, and Mastering Microsoft
Deployment Toolkit, all by Packt Publishing. He is also currently working on Mastering Cloud
Development using Microsoft Azure, by Packt Publishing.

I want to thank Packt Publishing for giving me a chance to review the book. I also want to thank my
employer and my girlfriend. Especially her, for not killing me because I spend so much of my spare
time on the community and work.

Brian Mithen is a systems and network administrator with the Topeka & Shawnee County
Public Library in Kansas. He maintains group policies and MDT deployment strategies for
over 400 computers in use by the staff and public. When not at work, he breeds and shows
American Bullies on the A.B.K.C. circuit with his kennel 8-Bit Bullies.

http://datacenter-flo.de/

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.packtpub.com
https://cdp.packtpub.com/endtoendtesting/wp-content/uploads/sites/52/2015/12/image_10_002.png
https://www2.packtpub.com/books/subscription/packtlib

Table of Contents
Preface 1

Chapter 1: Imaging Concepts and Theory 6
Imaging history 6
Imaging concepts 8
Imaging tools 10
Setup 10
Summary 11

Chapter 2: Setting Up Your Environment 12
Setting up MDT for the first time 12

Setting up the virtual machine 13
Downloading the MDT installer 14
Installing Windows ADK 16
Installing MDT 17
Setting up reference share and deployment share 17

Specifying a share name 18
Specifying a descriptive name 19
Modifying deployment options 19
Summary and confirmation 21

Exploring the completed reference share 22
Setting reference properties 24
Setting up our reference share task sequence 26

Increasing the scratch space 27
Including trace files in the boot WIM 27
Naming ISO-generated files 28

Updating up the deployment share 29
Automatic boot media creation 31

Importing an OS 33
Choosing the type of OS to add 35
Importing an OS from DVD media 36
Viewing image properties 38

Importing Hyper-V drivers 39
Importing patches 40

Downloading a hotfix 41
Setting up a packaged import 42

[ii]

Updating the deployment share to include the hotfix 44
Adding applications to our reference image 45

Automating image updates 45
Finding .msi files with the ITNinja repository 46
Placing the .msi file 46

Setting up a new application 47
Specifying application details 48
Finding the .msi source directory 49
Specifying the destination directory 50
Entering command details 51

Summary 52
Chapter 3: Creating Reference Images 53

Creating a reference image in the management console 54
Specifying the general settings 54
Selecting the template and the OS 55
Specifying a product key and OS settings 56
Passwords and security 57
Summarising our entries 58
Finalising the task sequence 58
Observing the task sequence 61
Making configuration changes 62
Creating an application bundle 63

Making an application bundle object 66
Installing the bundle 68
Modifying the bundle 68

Managing updates 69
Sysprep run supportability 69
Boot media for the reference task sequence 71
Summary 72

Chapter 4: Default User Profile Customization 73
Customizing the image 73

Checking out the customization documentation 73
Accessing Windows System Information Manager 74
Adding games to our Enterprise image 76

Analyzing our changes 80
Leveraging the Audit mode 81
Local Policy Object Customizations and SCM 84
Shell customizations 86

Windows 7 Start menu and taskbar 86

[iii]

Windows 7 background, logon screen, and user tiles 88
Windows 8 customizations 90

Summary 92
Chapter 5: CustomSettings.ini and Task Sequence 93

The structure of the CustomSettings.ini file 93
The Unattend.xml structure 99
The variables.dat structure 102

CustomSettings.ini and the Unattend.xml file 104
Dynamic modification 104
Task sequence structure 105

Initialization 105
Validation 106
State capture 107
Preinstall 108
Install 110
Postinstall 111
State restore 111

Logging 111
Summary 113

Chapter 6: Drivers 114
Understanding offline servicing 115
The MDT method of driver detection and injection 115
Populating the Out-of-Box Drivers node of MDT 116
Utilizing model variable to control what drivers are installed 120
Drivers as applications 123
Win PE drivers 125
Summary 129

Chapter 7: Image Deployment 130
Reference image deployment 131

Thick image 131
Thin image 132
Hybrid image 132

Virtual machine creation 133
Deployment 139
Deployment share 144
Deployment scenarios and network considerations 150

Deployment networks 150
Configuration of the deployment network 151
Geographical considerations 151

[iv]

Summary 152
Chapter 8: USMT – The User State Migration Tool 153

History 153
Supported scenarios and minimum requirements 155
What USMT will migrate and won't migrate 156
Where to download 159
How USMT works 159

USMT basics 159
The ScanState process 161
The LoadState process 163

ScanState and LoadState syntax 164
UsmtUtils tool 167

Delete hard-link migration store 167
Verify compressed migration store 167
Recover files from a compressed migration store 168
Supported cryptographic algorithms on the current system 169

Customization of XML files 169
Migrate registry keys 170
Migrate a folder from a specific drive 170

Including subdirectories 170
Excluding subdirectories 171

Migration options 172
PC Refresh scenario 172
PC Replacement scenario 173
Online versus offline migration 175
File copy versus hard-link 175
Using Windows XP with ADK 8.1 176

Best practices 177
Troubleshooting USMT 181
GUI wrappers for USMT 188
Summary 189

Chapter 9: Troubleshooting Deployment Logs 190
Delving into Windows logs 191
Microsoft deployment toolkit logs and task sequencer logs 194

Getting CMTrace 197
Clearing a failed (dirty) MDT deployment 199
Look up error codes 201

Common errors and frequent pitfalls 203

[v]

Further help 211
User state migration tool logs 211

Summary 212
Chapter 10: Validating the Image 213

Driver Verifier 214
Windows Performance Toolkit 216
Windows Assessment Toolkit 217

Windows Assessment Toolkit example 1 – verifying drivers 219
Windows Assessment Services 226

Summary 250
Chapter 11: Database, UserExit Scripts, and Web Services 251

MDT Configuration Database step by step 251
Supported versions of SQL Server 252
Configuring the SQL Server 253
Creating a MDT database 264
Configuring permission of the MDT database 270
Using the MDT database 275

Applying customizations to individual computers 281
Applying customizations to roles 286
Applying customizations to locations 288
Applying customizations to computers based on their manufacturer and model 290

Considerations on MDT database usage 292
UserExit script 293
Web services 297
Summary 299

Chapter 12: Additional Enterprise Configuration Items 300
Reference VM configuration 300
Securing the MDT process 301
Windows Imaging and Configuration Designer 302

Index 305

Preface
Microsoft Deployment Toolkit (MDT) 2013 is a lightweight task sequencing environment
and has a well-established community of IT professionals that use it. It's fully supported by
Microsoft and is available for free.

"Q: Why is it still "MDT 2013" when the year is almost 2016? Two primary reasons.
First, we have only made minor changes to MDT which in our opinion does not constitute
a major version revision. Second, per the MDT support lifecycle, a new major version will
drop support for MDT 2012 Update 1 which still supports legacy platforms."
 – Aaron Czechowski, Senior Program Manager

With its support for Windows 7 and higher versions, including Windows 10 and Windows
Server 2008 R2 and higher versions, it is the ideal tool for golden image creation and image
deployment. This article will help you understand the important imaging techniques and
build up your own MDT 2013 environment.

What this book covers
Chapter 1, Imaging Concepts and Theory, covers the basic terminology of imaging, when to
use thick versus thin versus hybrid images, and why deployment changed in Vista and
higher versions. Furthermore, the reader will learn the concepts behind reference image
versus deployment image, where to integrate patches and why, and what apps and drivers
are from the MDT perspective.

Chapter 2, Setting Up Your Environment, explains how to construct an MDT environment
from scratch. This chapter will be a walkthrough of the different installation options and
will explain why I recommend a particular configuration for production environments.

Chapter 3, Creating Reference Images, helps to understand the principles of a reference
image and how it applies to the organization. Sysprep practices, patching, maintenance, and
bitness will be covered in depth.

Chapter 4, Default User Profile Customization, covers the intricacies of customizing the
default user profile from version to version of Windows. Tools and concepts available to
brand the image, tweaking settings prior to deployment, and supported methods of doing
so will be discussed in this chapter.

Preface

[2]

Chapter 5, CustomSettings.ini and Task Sequence, covers the CustomSettings.ini file and
task sequence engine in detail and depth. Tips for customizing the deployment share,
enabling logging, branding, and more will be covered here.

Chapter 6, Drivers, explains how driver handling can be a challenge for larger
organizations. We’ll cover driver concepts, when drivers are applications and when they
are drivers and how to handle both scenarios, and also mandatory driver profiles.

Chapter 7, Image Deployment, focuses on the deployment share configuration, deployment
best practices, and guidelines on securing the deployment share.

Chapter 8, USMT - The User State Migration Tool, covers USMT in depth, configuration of
XML files, walkthroughs of the process, and troubleshooting. This also includes XML
configuration and customization, USMT process top to bottom, and troubleshooting.

Chapter 9, Troubleshooting Deployment Logs, shows what to do when things go wrong.
How to read MDT logs, which log file contains what data, how to interpret the binary error
codes, and frequent pitfalls will be covered as well. We will also cover error code resolution,
MDT log files, Trace32, and error messages.

Chapter 10, Validating the Image, covers Driver Verifier and Windows Performance Toolkit
for image validation scenarios. We will talk about different tools that can be used to validate
the image, check for bad drivers and poor performance, articulate the cost of purchasing
lower-end hardware for management, and the operational and performance costs of anti-
malware, antivirus, and other security-auditing software.

Chapter 11, Database, UserExit Scripts, and Web Services, explains the ability to web
frontend the MDT implementation, as well as how to utilize the database capabilities of
MDT for deeper deployment options. Also, we’ll discuss a little about UserExit scripts.
We’ll get into the whys and hows of UserExit scripts, what options are available, and when
to use them.

Appendix, Additional Enterprise Configuration Items, discusses some considerations of the
Windows 10 tool set, as well as some configuration suggestions for secure environments.

What you need for this book
MDT 2013 Update 2 (6.3.8330), Windows Assessment and Deployment Kit (ADK) for
Windows 10, Windows Server 2012 R2 x64 or Windows 10 installation with Hyper-V
enabled, and ISOs of the OS and software you want to image/deploy will be required for
this book.

Preface

[3]

Who this book is for
This book is for IT professionals who want to take a deeper look into imaging techniques
and setting up a MDT 2013 environment.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The ADK
comes as a web installer, adksetup.exe, by the way."

A block of code is set as follows:

[Default]
DeployRoot=\\mdt-share\Reference Share
UserID=< >
UserDomain=< >
UserPassword=< >
SkipBDDWelcome=YES

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 <var name="ISDESKTOP">
 <![CDATA[True]]>
 </var>

Any command-line input or output is written as follows:

msiexec /i EnterpriseFoxitReader605.0618_enu.msi /qn

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "The primary area we are
concerned with is the Deployment Shares line, which we will select with the mouse, and
then right-click to select New Deployment Share."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s : / / w w w . p a c k t p u b . c o m / s i t e s / d e f a u l t / f i l e s /
d o w n l o a d s / M a s t e r i n g T h e M i c r o s o f t D e p l o y m e n t T o o l k i t _ C o l o r I m a g e s . p d f.

http://www.packtpub.com/authors
https://www.packtpub.com/sites/default/files/downloads/MasteringTheMicrosoftDeploymentToolkit_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTheMicrosoftDeploymentToolkit_ColorImages.pdf

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n
t e n t / s u p p o r t and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Imaging Concepts and Theory

In this chapter, you'll learn the concepts and best practices of Microsoft Windows imaging
techniques and in doing so learn the terminology associated with deployment. You will also
become familiar with the different approaches to imaging and when each approach is
generally regarded as the best in show for a given scenario. Finally, you'll learn some history
on how things have changed in imaging from the old Windows XP style deployment to
Windows 7, Windows 8, and now Windows 10. The solutions accelerator from Microsoft,
the Microsoft Deployment Toolkit (MDT), is the answer to a lot of the deployment
problems facing deployment projects and will be the focus of this book.

Imaging history
In the beginning there was DOS, and it was good. But then there was a need for more and
Windows came into being. At first, it was OK to pop the floppy disks that contained
Windows for Workgroups into machines one by one on each computer individually in an
enterprise environment. But soon, businesses started asking for things such as configuration
settings for deploying Windows en masse.

And so, Unattend.txt and Sysdiff.exe and other fun things were created, where the
intrepid NT 3.5 admin could build a machine, tweak it, and run Sysdiff to create a template
with which other installations could follow and be identical, more or less. Later, as things
progressed, the need was strong for a way to really clone machines!

Imaging Concepts and Theory

[7]

And so, in the distant past (10+ years ago), the world of imaging and deploying the
Windows Client came to be ruled by disk sector duplication deployments. This process was
fairly involved, in that a technician would install a copy of Windows XP, patch it, install
updated drivers, configure Windows XP's look and feel, install applications, patch the
applications and finally configure the applications. After that was done (a process that
could take a day or more) it was captured with a tool in a sector-by-sector fashion into a file
for later deployment over network or media, again, sector-by-sector. Thus the technician
would have an image, for a single model of computer, with a single set of applications.

So imagine an enterprise-level environment with say, 10 models of computers (I've seen
some with over 100 models so 10 is a good example) and 1-3 sets of applications installed
per model. Now the technician (or now it's most likely technicians at this point) is patching
and managing roughly 10-30 images in our conservatively estimated enterprise
environment. We didn't even throw 32 bit versus 64 bit into the equation.

So this poses a few problems for deployment projects that may not be readily apparent:

Each image is say 15-20 GB in size post-compression. Particularly in computing
ages past, maintaining a library of images of this size was a daunting proposition.
Each image needs to be updated on a semi-regular basis to take into account
service packs, OS patches, application patches, driver updates, and random
configuration tweaks requested by management and marketing departments. Not
doing so increases the deployment time as all the work of applying updates and
patches then occurs at every deployment process instead of once before capture.
Each machine had the same globally unique identifier (GUID), because it was in
fact a clone of another machine. So when you joined both to the same Windows
domain (even with different names) hilarity ensued. Tools were created, such as
NewSID and Sysprep's /generalize switch, which helped get around this.

But around 2006, with the release of Windows Vista, things changed. There was a new
paradigm in image deployment that would change everything: the Windows Imaging
Format (WIM) format. The WIM format is essentially a container for an image. With it, and
some tools from the Assessment and Deployment Kit (ADK), one can service the Windows
image offline, which allows us to add patches, drivers, and remove components such as
games from our image, all without having to install it first on bare-metal hardware.

An example of this would be something like the Deployment Image Servicing and
Management (DISM) command (in an elevated command prompt) to remove a hotfix from
your running system:

DISM /online /remove-package
 /packagename:Package_for_KB2868623~31bf3856ad364e35~amd64~~6.1.1.1

Imaging Concepts and Theory

[8]

Around this same time enters a tool known as BDD. The Business Desktop Deployment
(BDD) toolkit was a set of scripts that could be used to customize, configure, and deploy
the Windows image in the enterprise environment. BDD 2.5 was released in August 2005,
prior to the RTM of Vista.

BDD had several iterations and even had a Microsoft Certified Professional Exam created
for one of its versions. These iterations were each an improvement upon the last until
finally, in November 2007, the MDT was released.

Fast forward to the present, and MDT 2013 Update 2 is current at the time of writing. At
this point, MDT is essentially System Center Configuration Manager (SCCM) “lite”. You
can backend it with a database, put a web frontend on it, do dynamic actions based on
hardware make and model, install previous applications, and much more.

This tool, the MDT, will be the focus of this book. There are other (typically more expensive)
solutions out there to be sure, but if one is preparing to perform deployments at scale, MDT
should be looked at as it can easily do a lot of manual work and, while it costs nothing, it is
supported by Microsoft Support.

Imaging concepts
When we look at utilizing the WIM format and MDT, there are essentially three schools of
thought in building what is commonly termed a golden image in deployment. These are
the thick, thin, and hybrid images. They each have their merits and rather than adhere to a
single one, I tend to view each as a tool in the deployment toolbox. So depending on the
situation and customer needs, I would recommend one over another:

Thick Image: A thick image is an image that contains a patched operating system
plus all applications used in the environment. It is large, sometimes problematic
to deploy, and has some interesting licensing implications as well in that every
deployed system has every piece of software installed.

Sometimes a thick image is the best option due to logistics. Imagine you need
to deploy Windows to systems on a submarine or a cruise ship. Sending
media containing a thick image by freight/helicopter might be an answer
versus deployment from a share.

Imaging Concepts and Theory

[9]

Thin Image: A thin image is (as one might assume) an image that contains
nothing except a patched operating system. It is quick to deploy, but
customization post-deployment can take quite some time, even by automated
scripts. This is a minimalist approach but has merit when you need an image of
the smallest size or only a few diverging applications from a golden base image.
Hybrid Image: A hybrid image is an image that contains a patched operating
system and core business applications, typically applications for which the
business has a site license. Typically, some limited customizations occur post
deployment with these images as part of a task sequence.

Applications, drivers and packages are three components that can be included in the image,
depending on type of image. These are defined clearly in the MDT documentation and UI,
but need introduction here:

Applications: Applications are usually software installation packages one wants
to place into the image or deploy as part of the task sequence itself. Sometimes
driver packages can fall into this category as well. The Hewlett-Packard ProLiant
Support Pack is a great example of a bundled offering of driver and firmware
updates for systems that work best when run as an installation (application in
MDT) rather than as a Plug and Play (PnP) operation. Further, many Bluetooth
driver stacks, network teaming software, and video graphics driver packs fall
into this grouping. They may install in PnP, but do not behave properly unless
run as a packaged installation. Generally, this is a result of the installer
checking/updating firmware as part of the installation, and PnP just adds the
driver and moves on.
Drivers: Drivers are components usually provided by the hardware
manufacturer (hopefully in concentrated CAB files for ease of deployment, we
will discuss it later). These drivers can (and usually should) be provisioned using
mandatory driver profiles, but for small scale or single model deployments, the
natural PnP feature of Windows can be used to select and install drivers from
MDT.
Packages: Packages are updates from Microsoft to address a problem or defect in
the operating system. Typically, these are pulled from the Microsoft Update
Catalog and then imported into the MDT console for application to Windows PE
or the image itself.

Imaging Concepts and Theory

[10]

Imaging tools
The following tools are used for imaging:

MDT: The toolset covered in this book. MDT is a collection of visual basic and
PowerShell scripts used for different deployment tasks all wrapped together in a
management console UI and sequencing engine used to call the scripts in stages
for deploying Windows or performing other tasks related to Windows imaging
(such as patching or servicing a current installation, capturing an image for later
deployment, or modifying the image in some manner).
Task Sequence: A task sequence is a series of commands executed by MDT's task
sequencer. This is the heart of MDT, where the administrator can configure
deployment steps, capturing the user state for later migration, servicing, and
patching and other tasks.
Task Sequencer: The name of the process MDT uses to manage its tasks. This is
almost analogous to a computer virus in that the task sequencer, depending on
the commands being performed, can modify the boot environment, boot over a
network, collect additional task sequence commands from a central remote share,
and boot off of media. It keeps track of a task's progress in a central store known
as variables.dat and logs to a set of log files for troubleshooting and audit
purposes.
variables.dat: A flat file db format used to store data for an executing task
sequence. It will contain metadata such as the chassis type of the machine the
task is executing, how much RAM is installed, and many other variables that are
queried to the hardware, PnP bus, and BIOS/firmware.

Setup
For most Windows users, the setup process is something of a black box. You run setup and
stuff happens and then voilá, you have a Windows installation. For the deployment engineer
however, the setup process is where the magic happens. MDT manipulates the setup by
providing variables along the process, to customize the resulting image for the target
machine.

Imaging Concepts and Theory

[11]

MDT does this by inserting variables into the Unattend.xml file for Windows setup. Some
of these variables can even be provided dynamically based on queries using a technique
known as UserExit scripts. These are used to determine a variables property based on
something such as the organizational unit (OU) of a user account, the location of the
machine on the network (usually determined by what the default gateway value is), or a
hardware query such as chassis type=laptop to specify that the machine is a laptop and
therefore needs a VPN client installed.

The options available to the engineer are detailed in depth in the technical documents of the
MDT word documents available on the Microsoft download site at h t t p s : / / t e c h n e t . m i c
r o s o f t . c o m / e n - u s / l i b r a r y / d n 7 8 1 2 9 2 . a s p x. Some are documented in MSDN as well
in further detail.

Troubleshooting in the setup isn't generally considered an easy thing to work on in IT. MDT
makes it somewhat more straightforward for engineers by centralizing a logging directory
for the administrator. A master smsts.log file logs the activity of the task sequencer and
will indicate which sublog is needed to review for additional information if needed.

Summary
By now, you should have a grasp of what imaging is about and why it is needed. In
addition, you can see the history of why we are where we are in the technology space of
deployment. Chapter 2, Setting Up Your Environment, will walk you through building out
your deployment system using the MDT and Windows ADK. You'll learn some best
practices to set up your deployment share and imaging practices and get some
configuration guidance on modifying the ADK/MDT scripts.

https://technet.microsoft.com/en-us/library/dn781292.aspx
https://technet.microsoft.com/en-us/library/dn781292.aspx

2
Setting Up Your Environment

In this chapter, we will cover setting up the basic environment:

Hosting OS configuration
Installing the Workbench
Discussing VM creation principles
Discussing general customizations of the share

Setting up MDT for the first time
To implement Microsoft Deployment Toolkit (MDT), one must have a properly
provisioned system on which we can lay down the Windows Assessment and Deployment
Kit (Windows ADK) and MDT install files. It must have space, CPUs, some amount of
RAM, and most importantly, quick network links to other systems.

All the particulars around these requirements of course depend on what you are using
MDT for. Are you building a golden image with which you will deploy via another
deployment system? Are you implementing a deployment scenario where you need to
deploy to laptops, desktops, medical imaging systems, and point-of-sale devices at multiple
sites around the world, all from one infrastructure?

Setting Up Your Environment

[13]

Setting up the virtual machine
So, for the sake of moving things along, we'll start small—with nothing. In this chapter,
we'll get started with a single system. In order to illustrate, we will be using Windows
Server 2012 R2, so transfers will be faster over the new Server Message Block (SMB)
improvements. It's a virtual machine that is configured as shown in the following
screenshot:

For Windows 8(.1) and Windows 10 guest

Setting Up Your Environment

[14]

The specification settings for the virtual machine are described as follows:

1,024 MB of RAM as a floor, autoscaling to 2,048 MB as the OS demands it.
2 core—as that's my preference in a virtual machine guest for anything I want to
be fairly productive from a performance perspective.
The only real consideration for an MDT installation is disk space. I've allotted 300
GB in the example, but this number is primarily up to the deployment engineer.
The number of images and applications will generally drive the need for space.
Using a disk system that allows for easy growth (SAN or NAS environment) or
even a RAID array of local disks would work well.

Downloading the MDT installer
I recommend, for the purpose of this book, downloading the MDT installer for 2013. As of
this printing, it is located here at h t t p s : / / w w w . m i c r o s o f t . c o m / e n - u s / d o w n l o a d / d e t a
i l s . a s p x ? i d = 5 0 4 0 7.

Also, you will need the Windows ADK, which is located at h t t p : / / w w w . m i c r o s o f t . c o m /
e n - u s / d o w n l o a d / c o n f i r m a t i o n . a s p x ? i d = 3 9 9 8 2.

https://www.microsoft.com/en-us/download/details.aspx?id=50407
https://www.microsoft.com/en-us/download/details.aspx?id=50407
http://www.microsoft.com/en-us/download/confirmation.aspx?id=39982
http://www.microsoft.com/en-us/download/confirmation.aspx?id=39982

Setting Up Your Environment

[15]

The ADK comes as a web installer, adksetup.exe, by the way. For serious work,
download the complete ISO by first downloading adksetup.exe and then selecting the
Download the Windows Assessment and Deployment Kit option:

This option stores all the ADK setup files so that the following installations won't require a
potentially lengthy download and can even be done on machines that don't have the
Internet access going forward.

Setting Up Your Environment

[16]

Installing Windows ADK
Once you have the files, simply run adksetup.exe. For the purpose of this work, you'll
want to tick the following boxes in the installer:

Deployment Tools
Windows Preinstallation Environment (Windows PE)
User State Migration Tool (USMT)
Volume Activation Management Tool (VAMT)

Setting Up Your Environment

[17]

Installing MDT
After the ADK for Windows 8.1 is installed, we can get started with installing the actual
MDT. As my virtual machine is Windows Server 2012 R2, it is a 64-bit machine, so I will
download and install the MicrosoftDeploymentToolkit2013_x64.msi MDT 2013 and
run it:

So, we're installing the 6.2.5019.0 version of MDT 2013. Install it to C:\, along with the ADK
as done previously, and then we are ready to set up the reference share and the deployment
share.

Setting up reference share and deployment share
Let'slaunchtheMDT:

Setting Up Your Environment

[18]

We are presented with a console that should look similar to a typical Microsoft
Management Console (MMC):

Feel free to poke at the console. The primary area we are concerned with is the Deployment
Shares line, which we will select with the mouse, and then right-click to select New
Deployment Share. Make sure to change the Deployment share path to reflect this as a
reference share, not a deployment share.

In the next window, as shown in the following image, the wizard puts up a window to
create the deployment share. In this case, we will name it ReferenceShare and place it on
our C: drive, which has plenty of space allocated in the virtual machine:

Now, keep in mind, this can be pretty much anywhere. It's a filesystem-based
directory/share here. We aren't doing complex DB work like Microsoft Exchange; we are
creating a file share at this point, that's it. If you have a volume for this, fine, you can put it
here. No problem. Antivirus can cause some issues while hitting the Next button though,
especially, if the filter driver is set to prevent the creation of autorun.inf files.

Setting Up Your Environment

[19]

Specifying a share name
The Share screen is to set the actual share for the reference share that we will use to create
the reference image.

Specifying a descriptive name
On the Descriptive Name screen, specify the reference rather than deployment in
the Deployment share description box:

Modifying deployment options
We are going to utilize this reference share as a workshop of sorts; it isn't going to be
utilized in a traditional deployment sense. As such, we don't need it to do a lot of default
actions that are available on the Options screen, except Ask if an image should be
captured.

Setting Up Your Environment

[20]

What the following checkboxes are doing is setting properties in the CustomSettings.ini
file, also known as the Rules section of the share:

Setting Up Your Environment

[21]

Summary and confirmation
The Summary screen shows the options that have been previously selected for
confirmation.

After you click on Next, you are provided with a Confirmation screen that shows a few
interesting options. The first is the Save Output… box, which will save the output of what
was just done for logging purposes:

The next is the View Script button that does just that, reveals the PowerShell script that was
run with the variables you provided. This is handy if you need to document what was done
and be able to reproduce it at will for change control, versioning, disaster recovery, or any
other reason.

Setting Up Your Environment

[22]

So, once you finish running the wizard, click on the View Script button. It will
open Notepad, where the script is present in raw text, as shown in the following screenshot:

Exploring the completed reference share
If we've completed the previous steps, we'll be rewarded with a reference share as shown in
the following image, under Deployment Shares:

Setting Up Your Environment

[23]

Clicking on MDT Reference Share will give us a view of some folders. These mirror, to
some extent, is the flat filesystem that we have created:

As opposed to the filesystem shown in the following screenshot:

Setting Up Your Environment

[24]

Note the presence of or absence of an attribute, depending on your scenario requirements,
matching folders. MDT is keeping some records out of the user interface (UI) for us. This is
quite intentional.

For typical best practice, one does not have to go into the actual filesystem
for anything. In fact, all the times I've had to modify the filesystem rather
than the UI, I was doing something I either shouldn't have been doing
(we'll call it experimenting) or trying to fix something someone else had
done (by their experimenting).

Setting reference properties
The first thing to do with our reference share is to open the properties and set some items.
Getting into the share properties is quite easy; right-click on MDT Reference Share and
select Properties:

Setting Up Your Environment

[25]

This will bring up the MDT Reference Share Properties window. Go to the Rules tab,
where there are several Skip properties. These are used to skip past the MDT wizard that
runs during a task sequence.

Think practically; what would you want to skip to make this an automated process, and
what are your options? The MDT Print Ready Documentation Pack has a list of all the
Skips. You will download the pack at the same location used for MDT 2013. Open the
Toolkit Reference.docx document and use the Navigation pane view to search for
Skips in order to find all the Skips headings in the document-simply type Skip in the
Search document field:

The Toolkit Reference document can also be directly accessed at h t t p s : / /
t e c h n e t . m i c r o s o f t . c o m / e n - u s / l i b r a r y / d n 7 8 1 0 9 1 . a s p x

https://technet.microsoft.com/en-us/library/dn781091.aspx
https://technet.microsoft.com/en-us/library/dn781091.aspx

Setting Up Your Environment

[26]

Setting up our reference share task sequence
We will want to skip things for a reference share that are different than things skipped for a
deployment share. The reason for this is that in a reference share task sequence, we will
typically want this to run in a fully automated fashion (Zero Touch-Lite Touch, if you will).
So when we need to rerun the task sequence in the future, we can simply apply a change,
fire up the virtual machine targeted to be run, run the task sequence, and off we go.

Therefore, the Rules section can look similar to the following code. This is properly
formatted and skips many steps, which in a reference image task sequence, would be
considered superfluous. Note that UserID, UserDomain, and UserPassword will be
dependent on your configuration. In the following example, I am using a domain user
account with rights to the share (read and write, as the reference image has to be written as
a WIM file into this share using the ID):

[Settings]
Priority=Default
Properties=MyCustomProperty

[Default]
OSInstall=Y
SkipAppsOnUpgrade=YES
SkipCapture=NO
SkipAdminPassword=YES
SkipProductKey=YES
_SMSTSOrgName=MDT Reference Task Sequence
SkipBitLocker=YES
SkipDomainMembership=YES
JoinWorkgroup=Workgroup
SkipFinalSummary=YES
SkipLocaleSelection=YES
SkipSummary=YES
SkipTimeZone=YES
SkipUserData=YES
TimeZoneName=Eastern Standard Time
UserID=<account with rights to the MDT share>
UserDomain=<domain>
UserPassword=<password>
FinishAction=SHUTDOWN

Setting Up Your Environment

[27]

Next, you will click on Apply and then click on the Edit Bootstrap.ini button shown in the
following screenshot, as we have more customization to do:

I will add some items here to speed the task sequence along. Your UserID, UserDomain,
and UserPassword are all similar to the ones in the Rules section:

[Settings]
Priority=Default

[Default]
DeployRoot=\\mdt-share\Reference Share
UserID=< >
UserDomain=< >
UserPassword=< >
SkipBDDWelcome=YES

The reason for these Skip commands is to skip parts of the MDT wizard. As we're setting
up a reference image, we don't need to be prompted for things such as time zone or fluffy
welcome screens.

Increasing the scratch space
Some driver installations have a problem with low memory availability. Increasing scratch
space is the best way to avoid these issues. Click on the Windows PE tab and then increase
the scratch space to 128.

Including trace files in the boot WIM
A general troubleshooting best practice is to include trace32.exe in the boot WIM. This
tool is part of the System Center Configuration Manager (SCCM) tools and can be used to
interpret the .log files that are produced by the task sequence engine in a much more
legible manner.

Setting Up Your Environment

[28]

To do this, you will install Trace32 from the SCCM tools and then copy trace32.exe into a
directory. In this case, I have placed it in a directory named Trace32 on the Desktop. Then
just specify this directory for inclusion in the WinPE WIM generation.

Naming ISO-generated files
In the Windows PE tab, name your ISO-generated files something logical. For the purpose
of this example, we'll be naming them Reference_LiteTouchPE_x86.iso. Right now,
your Windows PE tab should look similar to the following image:

Setting Up Your Environment

[29]

Don't forget that you must modify the x86 and x64 media separately!

Updating up the deployment share
Next we're going to walk through updating the deployment share. Right-click on the
reference share that we've just set up, and select Update Deployment Share:

Setting Up Your Environment

[30]

The Update Deployment Share Wizard dialog box will appear, as shown in the following
image:

The defaults, as shown in the previous image, are fine here. You will typically only select
the compress checkbox when you have retired a model of hardware and want to reclaim
this driver whitespace out of the WinPE build. If you don't do this, it'll be consumed as you
add newer drivers to the WinPE image. Click on Next.

The Completely regenerate the boot images option is typically used as a
troubleshooting step when your boot media appears confused and it is
best to rebuild from a known good set of settings rather than try to figure
out what went wrong.

Setting Up Your Environment

[31]

Automatic boot media creation
In the following screenshot of the Progress screen, MDT indicates that no existing boot
image exists, so it is creating a new image. This is correct and expected. After you have
created boot media once, and a change is made that requires a media rebuild, the verbiage
will be different, but it has the same type of indication that something has changed and an
update to the media is needed. Note that it is updating x86 here; it'll update x64 later. If you
had unchecked one of the architectures, it would only update the one selected here:

Setting Up Your Environment

[32]

After the process is complete, you should be rewarded with boot media, as shown in the
following screenshot:

Note that we have WIM and ISO format files, so we can use these in WDS or mount the ISO
to a virtual machine (which is the plan in this book), or even write the ISO to a USB stick or
CD/DVD for boot media.

Setting Up Your Environment

[33]

Importing an OS
Next we will be importing our OS. Create a folder structure in the Operating Systems area.
This helps with the organization of selection profiles, which are a tool for driver
organization we will get into later. It also looks better and is easier to logically manage, as
shown in the following image:

Setting Up Your Environment

[34]

Right-click on the appropriate folder for the OS that you wish to import and click on Import
Operating System. We need the ISO for media for this. I downloaded mine from MSDN
and then mounted the ISO in Hyper-V so that it is presented to the MDT Server as a DVD:

Setting Up Your Environment

[35]

Choosing the type of OS to add
After selecting Import Operating System, you'll be asked something that probably doesn't
make a lot of sense, Choose the type of operating system to add, as shown in the following
screenshot:

For a reference image, we'd pretty much always start with a base OS DVD and use the top
radio button for Full set of source files. However, the options are there to import a custom
WIM that is already captured, or a WDS image as well.

Setting Up Your Environment

[36]

Importing an OS from DVD media
In the Source screen, which is shown in the following image, point the import wizard to the
root of the DVD media:

Setting Up Your Environment

[37]

The wizard will read the media and autofills the window with the media to be imported, as
shown in the following image:

Click on Next and then the job will import the media files into the specified OS folder and
you'll be rewarded with an OS in your share, as shown in the following screenshot:

Setting Up Your Environment

[38]

Viewing image properties
If there is ever a question on what the image is, a simple right-click and selecting Properties
will reveal a lot of details, which we can see in the following image:

Setting Up Your Environment

[39]

Importing Hyper-V drivers
Our next step is to include the new Hyper-V additions in WinPE and the OS.

We would use this, for example, if we are capturing and deploying Windows 7, but are
using Windows Server 2012 or 2012 R2 to run the capture from. The same process applies
for physical drivers, but remember that we are only capturing a reference image into a VM,
not physical. The drivers for actual model numbers will come later, in our deployment
share. So in the Hyper-V Virtual Machine Connection, I selected Action and then Insert
Integration Components. This causes the Hyper-V host to mount the ISO for the current
Hyper-V additions for the system on to the CD-ROM, D:, so now I can import these into the
Out-of-Box Drivers area and update my WinPE media.

Importing drivers is as simple as putting the drivers into a directory and right-clicking on
Out-of-Box Drivers and selecting Import Drivers. Point the wizard at the root folder where
the driver is located and it'll crawl the directory's tree and import all the drivers it can, as
shown in the following image:

Setting Up Your Environment

[40]

Then your share will reflect drivers in it, as shown in the following image:

These drivers will auto apply to WinPE base images when you update the deployment
share, and they will also be injected (by default) into Windows installations as required by
Plug and Play, as part of the task sequence. We will cover this in greater depth in Chapter
6, Drivers.

Importing patches
Now that we have imported Hyper-V drivers, let's move on to importing patches. In the
following example, I am going to include the 2775511 hotfix in my base Windows 7 image
(and 2008 R2 when I get around to importing the Server SKUs as well). The 2775511 hotfix
is an enterprise hotfix rollup, which is available for Windows 7 SP1 and Windows Server
2008 R2 SP1.

Setting Up Your Environment

[41]

Downloading a hotfix
First we must acquire the file. This is done by downloading it from Windows Catalog rather
than registering and pulling down a hotfix link over e-mail:

In the catalog engine, put the hotfix ID (2775511) into the search bar and click on Search.

Then, you will get the results that hopefully look like the following image:

Add (in this example) all but the Itanium option, click on view basket, and then
select Download. Choose a location to download them in a folder on your local system.

Setting Up Your Environment

[42]

Then they will download it in a folder per hotfix in the specified directory:

Setting up a packaged import
Point the MDT wizard to the location where you downloaded the hotfix for a package
import:

Setting Up Your Environment

[43]

Use the wizard to import the packages:

This process is quite easy. For Windows 7, we'll want to add some additional hotfixes, and
do the same for 2008 R2. Windows 8, 2012, and higher versions have introduced a servicing
stack change that makes it less likely for us to need to pull down one-off hotfixes, but the
capability is still here.

Setting Up Your Environment

[44]

Updating the deployment share to include the
hotfix
Now that we have added a hotfix, it is time to update the deployment share so that
the hotfix can be included in WinPE if needed.

Right-click on MDT Reference Share under Deployment Shares and select Update
Deployment Share. You should be able to see a screen similar to the following:

Setting Up Your Environment

[45]

Adding applications to our reference image
Now that we've added patches and drivers, let's add a few applications to our reference
image, taking us from a thin image to a hybrid image.

First, we will make a directory structure, as seen in the following image:

Automating image updates
Now, we can just put setup.exe for each of these into the folders and say that we're done.
However, you don't want to walk through the installer for each application manually every
time we capture a reference image. You want this process to be automated so that when
new patches are released, we can just fire off a task sequence and let it update the image
automatically.

Setting Up Your Environment

[46]

Finding .msi files with the ITNinja repository
To tweak the setup to be automatic for all your different applications, I would recommend
checking h t t p : / / w w w . i t n i n j a . c o m /. ITNinja is a repository of automatic installation
experiences from your peers, which are documented for all time.

So, for Foxit Reader, I went through some gyrations and form filling on Foxit's site, as
documented at the ITNinja site, and was rewarded with a .msi, which ITNinja says, can be
silently installed using the following command:

msiexec /i EnterpriseFoxitReader605.0618_enu.msi /qn

Your version may change as the product is updated, but this is the general idea.

Placing the .msi file
Place the .msi file that we downloaded in its own individual directory, as shown in the
following screenshot. This directory needs to be unique to the .msi file as we'll be
navigating to it later:

http://www.itninja.com/

Setting Up Your Environment

[47]

Setting up a new application
To set up our new application in MDT, just like for drivers or patches, we will right-click on
the application folder, and select New Application. This generates the New Application
Wizard window, as shown in the following image:

In this particular case, we'll select the first option, as we have the source files (.msi). If one
had a lot of packaged applications on a network Distributed File System (DFS) or filer
scenario, the second option is perfectly viable as well.

Setting Up Your Environment

[48]

Specifying application details
Once we've selected the option that best suits our application, click on Next. In the
following window, we will fill in the form to specify our application's details:

Once you're done, click on Next.

Setting Up Your Environment

[49]

Finding the .msi source directory
On the Source page, we simply browse to the unique directory that we created previously
for our .msi file. Since I have no real need for the .msi file after this action, I will check the
box to Move the files to the deployment share instead of copying them, as shown in the
following screenshot:

Setting Up Your Environment

[50]

In an enterprise environment, it may be better to leave this unchecked so
that you have a library of the .msi files that you have used in the past.

Specifying the destination directory
In the following screen, the directory to be created to move the .msi files to is
autogenerated based on the information we previously provided:

Setting Up Your Environment

[51]

Entering command details
The Command Details screen is where the magic happens. We enter the commands to
automatically install the application here. For example, Foxit silent install will be configured
as msiexec /i EnterpriseFoxitReader605.0618_enu.msi /qn:

Setting Up Your Environment

[52]

Click on Next, confirm whether your settings are correct, and away we go. The application
will be created, and then we can use it in a task sequence to essentially embed the
application to Windows at deployment time.

I will repeat the process we went through just now for the other two applications (Java and
7-Zip), and now it's time to proceed with creating a task sequence to capture this reference
image.

Windows 10
All the concepts shown in this chapter are still valid for Windows 10
image creation. In addition the following information is relevant to
Windows 10 specifically:

Windows 10 enables sideloading for enterprises in a managable
fashion. Therefore you can unlock a device for sideloading
using an enterprise policy, or through the settings of the
machine. License keys are not required for Windows 10
application sideloading and domain join is not required for
sideloading to work properly anymore.
Windows 10 as guest VM is only supported on Hyper-V on
Server 2012 R2 or newer or Hyper-V on Windows 10. You will
need minimum MDT 2013 Update 1. I recommend using newest
available MDT (at time of printing this was MDT 2013 Update
2). Please use Windows 10 ADK version 1507 or newer.

Summary
So far, we have created an MDT reference image, downloaded hotfixes, copied Hyper-V
drivers, and configured applications for automated installation. In the next chapter, we will
be creating our task sequence for a reference image job that we can then use in a repeatable,
automated fashion.

3
Creating Reference Images

In the previous chapter, we constructed a reference share on our deployment host. This
chapter utilizes this share to craft a task sequence that will be used to create a golden image
for later deployment.

In this chapter, we will cover the following topics:

Task sequence concepts
Image customizations that can be carried on to the default user profile
The image factory that will keep reference images up to date with the latest
Windows Updates via a Windows Server Update Services configuration
Sysprep and its run support
Reference task sequence boot media

Creating Reference Images

[54]

Creating a reference image in the
management console
In this chapter, we'll spend most of our time modifying the task sequence for reference
image creation. To create one in the management console, select Task Sequences, as shown
in the following image, and then select New Task Sequence:

Specifying the general settings
Generally speaking, I recommend Task sequence ID to be specified as numerical values.
This suites well when we force task sequences based on things such as model number, for
instance. Task sequence name is better suited for a longer description of what the task
sequences' purpose is. Comments, of course, can contain entries such as version control,
author, and other operational details, as shown in the following screenshot:

Creating Reference Images

[55]

Selecting the template and the OS
On the following screen, Standard Client Task Sequence works very well for our
intentions here. In fact, the built-in task sequences have a lot of logic built into them, which
is hard to reproduce. I recommend always using these as building blocks, instead of
building your own from scratch:

Creating Reference Images

[56]

In the following window, we will select our base OS used for the task sequence. On our
General Settings screen, I indicated this would be a Windows 7 SP1 x64 Reference build, so
let's select Windows 7 from the provided options:

Specifying a product key and OS settings
As we are not building a system per se, but rather constructing a reference image for future
use, we do not need to specify a product key at this time:

Creating Reference Images

[57]

Then, on the next page of the wizard, simply fill in the provided blanks. These are not
permanent selections, they can be modified later, so do not worry about them at this point:

Passwords and security
On the next screen, we specify an administrator account password for the reference image.
Make this a fairly simply password, as the password is obfuscated, not encrypted in any
strong way; mine will be P@ssword1, for example:

Incidentally, if you chose the other radio button option here, instead of having the reference
image automatically build for you, you'll be prompted for the Administrator Password each
run. This isn't really desirable in a reference scenario, as we want this to ultimately and
ideally be a repeatable and reliable process that can be done hands-off.

Creating Reference Images

[58]

Summarising our entries
Finally, we get a summary screen of our entries as shown in the following image:

Finalising the task sequence
We will click the Next button where we see our task sequence is created in a confirmation
page. If we chose to do so, we could view the script used to create the task sequence for
later use in automation, or save the output as well so that we can audit for a change
management tool or for documentation on what was done for change control or the like.

To review the script or save output, simply click on the appropriate button
at the end of our wizard screen and save the output; by default, it will
open in Notepad.

After completing the wizard by selecting Finish, there should be a task sequence populated,
as shown in the following image:

Creating Reference Images

[59]

Right-click and select Properties on the task sequence, the following screen shows up and
let's walk through the basic concepts:

In most deployments, it isn't necessary to select a client platform. However, if you needed
to, the flexibility is there to enable the task sequence to only be runnable on certain OSes. If
the sequence is a work in progress, it may make sense to hide the sequence in the
deployment wizard, or disable it entirely.

Creating Reference Images

[60]

However, a common gotcha in virtualized reference builds is to have a virtual machine for
the reference task sequence that does not have enough memory for Windows PE. You can
see from the task sequence that in the Validation folder, the Validate step looks for a
minimum of 768 MB of RAM available to run the task sequence. We also require an 800
MHz processor, and the OS that we are installing is Windows Client rather than Server:

So one must make sure that the virtual machine (or physical host, if you have to go that
route) has more than these requirements. You could reduce the requirements; however,
doing so would likely cause Windows PE to not load, crashing the rest of the task sequence
and wasting your time in troubleshooting.

Creating Reference Images

[61]

Observing the task sequence
As we observe on the Task Sequence tab, the engine breaks the sequence up into seven
steps. A brief introduction of them would be as follows:

Initialization: In this step, initial variable information is gathered for later
consumption.
Validation: In this step, some of the variables are compared against modifiable
rules to validate the task sequence can continue.
State Capture: In this step, the state of the machine can be captured. All the task
sequences can be run from either inside an OS, or from a WinPE ISO. User State
Migration Tool (USMT)-driven state capture is done here.
Preinstall: This step is broken into multiple areas, based on the stage or type of
sequence being run: New Computer only, Offline User State Capture,
and Refresh only. This is where the driver injection happens, which can be
controlled via selection profiles, which we will cover later.
Install: In this step, the sequence will install the OS specified, laying down the
WIM.
Postinstall: In this step, drivers are injected into the Windows installation.
Windows Recovery is added to the disk, and finally a reboot takes place.
State Restore: The last step, if any USMT work was done to capture user data, it
is restored here. In addition, join domain, installation of applications, enabling
BitLocker, and Local GPO packages are applied.

Creating Reference Images

[62]

Making configuration changes
Many options are the options with regards to what configuration changes you can make. It
all depends on what your needs for your organization are. The following task sequence
configuration will suit most reference image capture scenarios:

Enable the Windows Update (Pre-Application Installation) and Windows1.
Update (Post-Application Installation) steps in State Restore. To do this, select
each item to enable and click on the Options tab and uncheck the Disable this
step checkbox:

Creating Reference Images

[63]

Disable the Enable BitLocker step by the same method:2.

Creating an application bundle
After making these housekeeping item changes, we need to consider what applications we
want to place in our default image. What applications do we want in the image for all users,
both from a cost and licensing perspective, as well as a workload perspective?

Creating Reference Images

[64]

In our examples in the previous chapter, we created the applications for Foxit Reader, Java,
and 7-Zip. We could individually make these mandatory applications of the image, but let's
do something that is a little easier to manage: make the task sequence install an application
bundle containing all three:

Creating Reference Images

[65]

So, here we are creating an application bundle with more fluid details, as shown in the
following image:

You can click on Next and Finish to complete the creation of the bundle.

Creating Reference Images

[66]

Making an application bundle object
Making an application bundle object is quite easy and straightforward. The details are in
the post creation properties, in the Dependencies tab:

Now, it is as simple as adding each application that we want to include in our bundle:

The order, in this particular case, doesn't really matter. However, it is
important to recall that in some cases, such as when installing an
application with a Java or .NET dependency, we will install these first.

Creating Reference Images

[67]

So, we have selected, for this build, the x64 versions of the applications that have them, and
of course, we have not selected Application Bundle, as that would be recursive:

It is then as simple as applying the changes to the application bundle, as shown in the
following image:

Creating Reference Images

[68]

Installing the bundle
After creating our bundle for Task Sequence 1, we will go back to the properties of the
task sequence and go to the Install Applications item, where we can force our bundle to be
installed:

Modifying the bundle
Modifying the bundle is as simple as browsing and selecting the application bundle.

If we did not select the bundle or another application individually, the default behavior is to
install multiple applications, and in the task sequence, present a checkbox list for the
technician or end user to select and install manually.

For a reference image though, this doesn't make sense. We want our task sequence to be
repeatable, as close to a zero-touch event as possible.

Creating Reference Images

[69]

Managing updates
So now we have it, a completed task sequence to build a reference image. Additionally, in a
large managed environment, we would generally build a standalone Windows Server
Update Services (WSUS) server to manage our updates and approve, or not, the various
updates available from the Windows Update Catalog site. This is simply done by adding a
property to our Rules section, as shown in the following image:

It is unsupported by Microsoft to use a WSUS instance that is SCCM-
controlled. For updates that are available from the Catalog, but not
available in Windows Updates (so WSUS will not display them), you can
either import them directly into WSUS, or add them as a package in MDT.

Sysprep run supportability
Sysprep is primarily a tool used to prepare a Windows installation for cloning. It has been
around for some time now, so we won't go into it too much here. Suffice it to say that the
tool is alive and well in Windows 7 and 8, and it is one of the tools called by MDT scripts to
enable Audit mode, customize images, and build reference images.

Sysprep is famous for having a three-times limit for its run supportability on a single image
before it is no longer in a supported state. This is often misunderstood, so let's get a little
clarity here.

Creating Reference Images

[70]

From h t t p : / / t e c h n e t . m i c r o s o f t . c o m / e n - u s / l i b r a r y / c c 7 6 6 5 1 4 (v = W S . 1 0) . a s p x:

“There is no limit to the number of times Sysprep can run on a computer. However, the
clock for Windows Product Activation begins its countdown the first time Windows starts.
You can use the sysprep /generalize command to reset Windows Product Activation a
maximum of three times. After the third time you run the sysprep /generalize command,
the clock can no longer be reset.”

The number of /generalize passes can be determined by performing slmgr /dlv
(display license status verbosely) in a command prompt on running the Windows
installation. It does require administrative rights.

The following table details the changes in Sysprep limitations, based on the OS:

Windows
Version

Documented Sysprep Limitations

Windows XP Reference and destination computers must have compatible HAL types.
The size of the hard disk on the destination computer must be at least the
same size as the hard disk on the reference computer.
SkipRearm limit of three.

Windows 7 SkipRearm limit of three.

Windows 8 In most Windows 8 deployment scenarios, you no longer have to use the
SkipRearm answer file setting to reset the Windows Product Activation clock
when you run the sysprep command multiple times on a computer. In
Windows 8, the SkipRearm setting is used to specify the Windows licensing
state. If you specify a retail product key or volume license product key,
Windows is automatically activated. You can run the sysprep command up
to eight additional times on a single Windows image. After running Sysprep
eight times on a Windows 8 image, you must recreate your Windows image
(from h t t p : / / t e c h n e t . m i c r o s o f t . c o m / e n - u s / l i b r a r y / h h 8 2 5 1 9 5 . a
s p x).

http://technet.microsoft.com/en-us/library/cc766514(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/hh825195.aspx
http://technet.microsoft.com/en-us/library/hh825195.aspx

Creating Reference Images

[71]

Boot media for the reference task sequence
Boot media is created when the reference share is right-clicked and you select Update
Deployment Share.

This action runs a PowerShell script to update the WinPE share. This action is known as
UpdateDP:

Import-Module "C:\Program Files\Microsoft Deployment
 Toolkit\bin\MicrosoftDeploymentToolkit.psd1"
New-PSDrive -Name "DS001" -PSProvider MDTProvider -Root
 "C:\ReferenceShare"
update-MDTDeploymentShare -path "DS001:" –Verbose

This script updates the boot directory with a WIM and ISO media for easy use in a VM-boot
scenario or the creation of USB stick media.

Windows 10
All the concepts shown in this chapter are still valid for Windows 10, but
pay attention to the following points:

If you plan to create a Windows 10 image used for inplace
upgrade, only pure OS, features on demand, and patches are
allowed. Do not add any applications to an inplace upgrade
Image.
For a normal wipe and reload Windows 10 image, you can add
applications as shown previously.
WSUS 4.0 should be patched with KB3095113.
Changes to the SKU via the Provisioning Package or another
mechanism cause an automatic reboot to occur afterward. This
reboot is currently not controllable or interruptible. This will
result in a dirty environment message in MDT due to this
reboot outside of MDT. Speaking of Windows 10 v1511 / MDT
2013 U2, don't use this feature currently.

Creating Reference Images

[72]

Summary
In this chapter, we've covered Sysprep, creating the reference image, and how to do all this
in a supported method. The key takeaway from all this is that, with MDT 2013, you can,
every month if you chose, build a new golden image in a repeatable supported fashion. We
can get away from manual steps, entry points of human error, and questionable methods.

In the next chapter, we'll cover default user profile customization in depth, which will
certainly be part of the reference build process for you, going forward.

4
Default User Profile

Customization
In the previous chapter, we discussed the technique of collecting a reference build for
Windows in a virtual machine on Hyper-V or physical box with boot media on a USB stick.
In this chapter, we'll cover how to customize this base image as part of our process. Not
from an application build perspective, but to make the image branded, remove or add
features, remove the out-of-box experience (OOBE), and so forth. Now some general things
one might want done to their image would be removing the games, setting the Internet
Explorer default settings, customizing the background screen, and other branding
components, removing the ability to access things in the UI by default, and so on, as well as
customizing the image for a kiosk, tablet, cash register, ATM, exec's laptop, VDI image, and
so on.

In this chapter, we'll go through the following topics:

How to customize the Windows image
Windows System Image Manager and Unattend.xml
The differences between Windows 7 and 8 in UI customizations

Customizing the image
You may customize the image before running your reference task sequence. Customizations
are done in many ways; some are script-based, some group policies, some are manual
efforts, some are done in a tool known as Windows System Image Manager (WSIM), and
others can be done with PowerShell scripts.

Default User Profile Customization

[74]

Checking out the customization documentation
The general caveats and principles of image customization are documented for Windows at
this KB at h t t p : / / s u p p o r t . m i c r o s o f t . c o m / k b / 9 7 3 2 8 9. The essential gist of this is that
to customize the user profile of a future user of Windows 7 or 2008 R2, you must customize
the default local user profile. When this is done, the settings in the default profile will
become the settings of new user profiles on the system. Note that this is the only officially
supported method of customizing the default user profile in Windows 7.

For Windows 8.x, things change somewhat. The steps are documented at h t t p : / / t e c h n e t
. m i c r o s o f t . c o m / e n - u s / l i b r a r y / h h 8 2 5 1 3 5 . a s p x and involve, generally speaking, the
same steps as for Windows 7. However, a new functionality is provided to customize the
Start menu, documented at h t t p : / / t e c h n e t . m i c r o s o f t . c o m / e n - u s / l i b r a r y / j j 1 3 4 2
6 9 . a s p x.

Accessing Windows System Information Manager
An easy way to use this customization, as mentioned previously, is WSIM. It's quite easy to
access; simply right-click on your task sequence and select the OS Info tab, and click on
Edit Unattend.xml:

http://support.microsoft.com/kb/973289
http://technet.microsoft.com/en-us/library/hh825135.aspx
http://technet.microsoft.com/en-us/library/hh825135.aspx
http://technet.microsoft.com/en-us/library/jj134269.aspx
http://technet.microsoft.com/en-us/library/jj134269.aspx

Default User Profile Customization

[75]

Then you'll be rewarded with a modified view of the typical MMC console layout for
Unattend.xml editing, as shown in the following:

Default User Profile Customization

[76]

Adding games to our Enterprise image
This interface is a bit intimidating at first, and somewhat unclear about where things should
be edited, as they will sometimes appear to be applicable in multiple locations of the XML.
For those who have manually edited the Unattend.xml files in the past, this will make
little sense perhaps. It may be best to learn by doing, so let's add games to our Windows 7
Enterprise image by performing the following exercise:

Ensure the focus is on the Windows Image area of the MMC, as shown in the1.
following image:

Click on Find… in the Edit menu:2.

Default User Profile Customization

[77]

Now, simply type games here and observe that there are three responses to the3.
query:

In our case, we'll want them all, so select the top one, InboxGames. Double-click4.
on it, and then note in the bottom-left pane, we will see it highlighted. Right-click
on it and then left-click on Add to Answer File:

Default User Profile Customization

[78]

Note that the frame of reference in WSIM has changed. In the Answer File pane,5.
there is Packages listed at the bottom, broken out to Foundation and
then amd64_Micrsooft-Windows-Foundation-Package_#Windows
Version ; on the far right, we have the break out of all the options for this entry
listed. Nested in here is our InboxGames, and the property is Disabled by
default. Each entry is a drop box on the far right, as shown in the following
screenshot:

Default User Profile Customization

[79]

Simply click the Disabled text and change to Enabled:

Now that we've specified that we want to enable InboxGames from our image,6.
click on the Tools menu and select Validate Answer File:

Default User Profile Customization

[80]

Now, in the Messages area at the bottom of the screen, you should see that your7.
validation answer file is good and has no warnings or errors:

Finally, simply save the Unattend.xml file.8.

Now, from this point forward, this task sequence for Windows 7
Enterprise in this deployment share will have InboxGames enabled.

It's an important concept, the Unattend.xml file follows the task
sequence, not the operating system. Therefore, we can import Windows 7
Enterprise x64 edition once and make a multitude of different
configurations that all use this WIM and modify it differently, based on
the need.

Analyzing our changes
What has actually happened here is that the Unattend.xml file for our Windows 7 image
in MDT has been modified. The image itself, the WIM file, is fine. It hasn't been modified;
however, Unattend.xml, used in this task sequence, has been modified.

For example, Unattend.xml in the Control Directory\1 directory now has a snippet
that looks a bit similar to the following code:

<?xml version="1.0" encoding="utf-8"?>
<unattend xmlns="urn:schemas-microsoft-com:unattend">
 <servicing>
 <package action="configure">

Default User Profile Customization

[81]

 <assemblyIdentity name="Microsoft-Windows-Foundation-Package"
 version="6.1.7601.17514" processorArchitecture="amd64"
 publicKeyToken="31bf3856ad364e35" language="" />
 <selection name="InboxGames" state="true" />
 <selection name="Solitaire" state="true" />

Leveraging the Audit mode
What if we wanted to do things outside of the options we find in Unattend.xml?

For this, you may want to leverage the audit mode. This is a little known mode of Windows
boot, where the Windows installation is booted into the default administrator account
(which, on Windows 8, is always disabled by default).

The current definition of audit mode on TechNet (h t t p : / / t e c h n e t . m i c r
o s o f t . c o m / e n - u s / l i b r a r y / c c 7 2 2 4 1 3 (v = W S . 1 0) . a s p x), when
writing this text, is as follows:
“Audit Mode. Audit mode is used by OEMs and corporations to add
customizations to their Windows images. Audit mode does not require settings in
Windows Welcome to be applied. By bypassing Windows Welcome, you can get to
the desktop quicker and perform your customizations. You can add additional
device drivers, install applications, and test the validity of the installation. OEMs
and corps should use audit mode to complete their manual customizations before
shipping the computer to an end user.”
In audit mode, settings in an unattended answer file in the auditSystem
and auditUser configuration passes are processed. For more information
about these configuration passes, see auditSystem and auditUser.
If you are running in audit mode, to configure the installation to boot to
Windows Welcome, run the sysprep/oobe command. For more
information, see Sysprep Technical Reference. OEMs are required to run
sysprep/oobe before shipping a computer to an end user.

In the audit mode, all the changes to the base administrator account can become the default
settings for other users, provided the CopyProfile=true switch is flipped in
Unattend.xml (as we observed previously).

Now, MDT will enter the audit mode for us. However, if we want to customize the image
further than just what WSIM provides, we can pause the Task Sequence and modify this
logon for all sorts of customizations that WSIM does not expose to us.

http://technet.microsoft.com/en-us/library/cc722413(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc722413(v=WS.10).aspx

Default User Profile Customization

[82]

There are a few methods of pausing the task sequence. My personal favorite is to modify
the MDT Task Sequence Editor as documented at h t t p : / / b l o g s . t e c h n e t . c o m / b / d e p l o
y m e n t g u y s / a r c h i v e / 2 0 1 0 / 0 8 / 2 6 / c u s t o m i s i n g - t h e - m d t - t a s k - s e q u e n c e - e d i t o r . a

s p x.

This method adds the following lines to the actions.xml XML file, located in the
workbench machine:

<action divider="true" />
<action>
 <Category>Deployment Guys</Category>
 <Name>Pause Task Sequence</Name>
 <Type>SMS_TaskSequence_RunCustomSuspendCommandLineAction</Type>
 <Assembly>Microsoft.BDD.Actions</Assembly>
 <Class>Microsoft.BDD.Actions.ActionRunCommandLine</Class>
 <Property type="string" name="CommandLine"
 default="cscript.exe %SCRIPTROOT%\LTISuspend.wsf" />
 <Property type="string" name="WorkingDirectory" />
 <Property type="string" name="SuccessCodes" default="0 3010" />
 <Property type="string" name="PackageID" />
 <Property type="string" name="RunAsUser" default="false" />
 <Property type="string" name="SMSTSRunCommandLineUserName" />
 <Property type="string" name="SMSTSRunCommandLineUserPassword" />
 <Property type="boolean" name="LoadProfile" default="false" />
 <Property type="string" name="SupportedEnvironment"
 default="WinPEandFullOS" />
</action>
<action>
 <Category>Deployment Guys</Category>
 <Name>Force Update of Group Policy</Name>
 <Type>SMS_TaskSequence_RunCustomGPUpdateCommandLineAction</Type>
 <Assembly>Microsoft.BDD.Actions</Assembly>
 <Class>Microsoft.BDD.Actions.ActionRunCommandLine</Class>
 <Property type="string" name="CommandLine"
 default="gpupdate.exe /force" />
 <Property type="string" name="WorkingDirectory" />
 <Property type="string" name="SuccessCodes" default="0 3010" />
 <Property type="string" name="PackageID" />
 <Property type="string" name="RunAsUser" default="false" />
 <Property type="string" name="SMSTSRunCommandLineUserName" />
 <Property type="string" name="SMSTSRunCommandLineUserPassword" />
 <Property type="boolean" name="LoadProfile" default="false" />
 <Property type="string" name="SupportedEnvironment"
 default="WinPEandFullOS" />
</action>

http://blogs.technet.com/b/deploymentguys/archive/2010/08/26/customising-the-mdt-task-sequence-editor.aspx
http://blogs.technet.com/b/deploymentguys/archive/2010/08/26/customising-the-mdt-task-sequence-editor.aspx
http://blogs.technet.com/b/deploymentguys/archive/2010/08/26/customising-the-mdt-task-sequence-editor.aspx

Default User Profile Customization

[83]

Now, my wizard in the MDT console appears as shown in the following image:

So what I would do here is place the Pause Task Sequence step in my Custom Tasks
folder, as follows:

This will put a friendly link on the desktop to double-click when you choose to resume the
task sequence. Thanks Deployment Guys!

Default User Profile Customization

[84]

Local Policy Object Customizations and SCM
In 2008, Aaron Margosis published the Local Group Policy Object (LGPO) toolset to
manage and deploy local group policy objects. With these tools, it became easy to manage
settings in local policy. You could insert these policies into your image with the scripts and
tools that Aaron published and it worked fairly well.

Fast forward to today, Security Compliance Manager (SCM) (what LGPO became in
essence) is now the tool for doing this. With SCM, you can manage policies, create and
compare them, and then back them up. They are then (from a deployment perspective)
GPO Packs, and then MDT can import them as part of the task sequence, as shown in the
following image:

Default User Profile Customization

[85]

Using this suite of tools, we can then bake into the image customizations that we want to be
the default for Windows. Many security-conscious organizations will implement this as a
practice so that the machines that are built immediately have a default set of GPO settings
applied. These can then be modified remotely via SCM and Active Directory Group Policy
processing.

One must, however, consider the policy processing order when making these image
modifications. According to h t t p : / / t e c h n e t . m i c r o s o f t . c o m / e n - u s / l i b r a r y / c c 7 8 5 6
6 5 (v = W S . 1 0) . a s p x, the ordering of policy processing and precedence is as follows:

“Local Group Policy object—Each computer has exactly one Group Policy object that is stored
locally. This processes for both computer and user Group Policy processing.”

“Site—Any GPOs that have been linked to the site that the computer belongs to are processed next.
Processing is in the order that is specified by the administrator, on the Linked Group Policy Objects
tab for the site in Group Policy Management Console (GPMC). The GPO with the lowest link
order is processed last, and therefore has the highest precedence.”

“Domain-Processing of multiple domain—linked GPOs is in the order specified by the
administrator, on the Linked Group Policy Objects tab for the domain in GPMC. The GPO with
the lowest link order is processed last, and therefore has the highest precedence.”

“Organizational units—GPOs that are linked to the organizational unit that is highest in the
Active Directory hierarchy are processed first, then GPOs that are linked to its child organizational
unit, and so on. Finally, the GPOs that are linked to the organizational unit that contains the user
or computer are processed.”

Therefore, changes we make in our LGPO will not be overridden by future updates of
Active Directory policies, without modifying the local policy again, that is.

Another reason to utilize a tool such as SCM for configuration templates is
that the work put into the templates by Microsoft Consulting Services can
be leveraged as a baseline standard for your organization as well. Literally
hundreds of man-hours of experience and case work have resulted in
these templates for use in a security and management perspective.

http://technet.microsoft.com/en-us/library/cc785665(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc785665(v=WS.10).aspx

Default User Profile Customization

[86]

Shell customizations
In Windows XP, in the old days, one meticulously set up the desktop and Start menu
layout, and then copied the profile over the default profile by hand. This was never a
supported method for user customization, and over the years, some problems occurred due
to its use as a standard practice.

With the Windows Vista model of user profile customization, this has changed somewhat.
Questions on Windows 7, 8, 8.1, and beyond, generally boil down to topics such as how to
pin an internal application to the Start menu, how to pin it to the taskbar, and how to
customize the Start screen in Windows 8.

Windows 7 Start menu and taskbar
Supported methods of Windows 7 customization are well documented in several blogs and
support articles by Microsoft. In this text, we'll cover these modifications and the pros and
cons of the mentioned methods.

Note that the licensing of Windows 7 in some cases precludes image
customization. The TechNet article at h t t p : / / t e c h n e t . m i c r o s o f t . c o m
/ e n - u s / l i b r a r y / f f 7 3 0 9 1 4 . a s p x, in particular, discusses Windows 7
Professional and the customization of this image based on your particular
licensing scenario. It is not supported in any case to take an OEM image
that you get on a factory-built PC and capture and customize it. This
image has already been syspreped, and therefore, could cause
unpredictability in image creation and deployment, as well as violate the
OEM license.

First, Scott McArthur reviewed ways of customizing the Start menu and taskbar in
Windows 7 by way of Unattend.xml. This is a pretty straightforward method of image
customization and is fully supported. The article was posted to AskCore on March 16th 2010,
and is located at h t t p : / / b l o g s . t e c h n e t . c o m / b / a s k c o r e / a r c h i v e / 2 0 1 0 / 0 3 / 1 6 / h o w -
t o - c u s t o m i z e - t h e - w i n d o w s - 7 - s t a r t - m e n u - a n d - t a s k b a r - u s i n g - u n a t t e n d - x m l . a s

p x.

http://technet.microsoft.com/en-us/library/ff730914.aspx
http://technet.microsoft.com/en-us/library/ff730914.aspx
http://blogs.technet.com/b/askcore/archive/2010/03/16/how-to-customize-the-windows-7-start-menu-and-taskbar-using-unattend-xml.aspx
http://blogs.technet.com/b/askcore/archive/2010/03/16/how-to-customize-the-windows-7-start-menu-and-taskbar-using-unattend-xml.aspx
http://blogs.technet.com/b/askcore/archive/2010/03/16/how-to-customize-the-windows-7-start-menu-and-taskbar-using-unattend-xml.aspx

Default User Profile Customization

[87]

In this blog, Scott goes over two items in Unattend.xml, Microsoft-Windows-Shell-
Setup\StartPanelLinks and Microsoft-Windows-Shell-Setup\TaskBarLinks.
These settings should be placed in the oobeSystem part of the Unattend.xml file. The
StartPanelLinks area is fairly straightforward; it's modifying the part of the Start menu
shown in the following red box (the spot above is system-reserved):

Default User Profile Customization

[88]

To modify these, simply define them as links, as shown in the following example:

<StartPanelLinks>
<Link0>%ALLUSERSPROFILE%\Microsoft\Windows\Start
 Menu\Programs\accessories\Notepad.lnk</Link0>
<Link1>%ALLUSERSPROFILE%\Microsoft\Windows\Start
 Menu\Programs\accessories\Windows Explorer.lnk</Link1>
</StartPanelLinks>

This example will modify the menu to display Link0 as Notepad and Link1 as Windows
Explorer.

To modify the TaskbarLinks area, the logic is the same:

<TaskbarLinks>
<Link0>%ALLUSERSPROFILE%\Microsoft\Windows\Start
 Menu\Programs\accessories\Notepad.lnk</Link0>
<Link1>%ALLUSERSPROFILE%\Microsoft\Windows\Start
 Menu\Programs\accessories\Windows Explorer.lnk</Link1>
</TaskbarLinks>

There are some caveats to this setup that one must consider:

We need CopyProfile=true to be enabled in our Unattend.xml. This should
be expected for the default profile configuration at this point.
You cannot remove the icons in the Start menu above the red box that I detailed.
If you do, they are simply recreated when a new user logs in. Microsoft does not
support removing these icons in any manner.

Windows 7 background, logon screen, and user tiles
Modifying the Windows 7 logon screen is a fairly straightforward process. One simply
modifies a regkey value, drops in a graphic, and it's done.

The regkey is located at
HKLM\Software\Microsoft\Windows\CurrentVersion\Authentication\LogonUI\B

ackground, and the value of OEMBackground is set to 1.

Default User Profile Customization

[89]

Simply place your custom image in %windir%\system32\oobe\info\backgrounds. The
desired logon wallpaper should have the backgroundDefault.jpg filename.

Images must be less than 256 KB in size. With regards to resolution of the
image, set the resolution as you desire. If the monitor is set to an alternate
resolution, the graphic will stretched to fit.

The Windows 7 wallpaper is pretty easy too, you can set it in the image prior to
sysprep/capture through the normal UI; and as long as CopyProfile=true, it will keep
it as the default setting. Another method might be to set the
HKEY_CURRENT_USER\Control Panel\Desktop registry key value of wallpaper to the
C:\Windows\Web\Wallpaper\wallpaper.jpg path, or even use the GPO documented at
h t t p : / / g p s e a r c h . a z u r e w e b s i t e s . n e t / # 1 4 1 (Desktop Wallpaper User Policy).

To modify user tile to the company branding, the images are located in the following path:

%ProgramData%\Microsoft\User Account Pictures\Guest.bmp

%ProgramData%\Microsoft\User Account Pictures\User.bmp

However, I think that utilizing the picture of the user for the user tile is even more
interesting. On a domain-joined Windows 7 machine, the user tiles are stored for the users
in the C:\ProgramData\Microsoft\User Account Pictures path. There is an API to
pull the tiles from Active Directory. So get to work!

Just kidding. Jacob Steenhagen was kind enough to create a setUserTile.exe utility that
does the work for you. You can check it out at h t t p : / / j a c o b . s t e e n h a g e n . u s / b l o g / 2 0 1
2 / 0 2 / l o a d i n g - a - w i n d o w s - 7 - u s e r - t i l e - u s i n g - t h e - p i c t u r e - i n - a c t i v e - d i r e c t o r

y /.

You can use this tool (source documented in the blog post) to set this automatically from
your Active Directory User Tile attribute that you have already populated.

http://gpsearch.azurewebsites.net/#141
http://jacob.steenhagen.us/blog/2012/02/loading-a-windows-7-user-tile-using-the-picture-in-active-directory/
http://jacob.steenhagen.us/blog/2012/02/loading-a-windows-7-user-tile-using-the-picture-in-active-directory/
http://jacob.steenhagen.us/blog/2012/02/loading-a-windows-7-user-tile-using-the-picture-in-active-directory/

Default User Profile Customization

[90]

Windows 8 customizations
Windows 8 brought us a new Start screen experience that changes the game somewhat with
regards to image customization.

With regards to customizing the Start screen, Ben Hunter wrote (h t t p : / / b l o g s . t e c h n e t .
c o m / b / d e p l o y m e n t g u y s / a r c h i v e / 2 0 1 2 / 1 0 / 2 6 / s t a r t - s c r e e n - c u s t o m i z a t i o n - w i t h

- m d t . a s p x):

“There are three approaches that you can use:
1. Use the Unattend.xml file to define which applications will appear in each “slot” on the
Start Screen as detailed here.
2. Manually customize the Start Screen, then use CopyProfile to apply the customizations
to the default user profile.
3. Manually customize the Start Screen and capture the layout file created, then copy this
file to the default user during image deployment.”

We've already discussed CopyProfile=true to some extent in this text; the other two
options are interesting, where new customization capabilities are present.

So, let's discuss using the Unattend.xml file to define apps and the slotting model in the
Unattend.xml file. This will require the AppID key of the applications needed to be pinned
by the way, and TechNet covers the how-to at h t t p : / / t e c h n e t . m i c r o s o f t . c o m / e n - u s /
l i b r a r y / j j 1 3 4 2 6 9 . a s p x # B K M K _ S t a r t T i l e s, but in essence, Get-AppxPackage will
reveal this. Once you have your AppxPackage IDs, you can add the StartTiles setting to
the Unattend.xml file with WSIM or Notepad. You will construct the layout using the
Wide Tile##, Square Tile## and DesktopOrSquare Tile##.

http://blogs.technet.com/b/deploymentguys/archive/2012/10/26/start-screen-customization-with-mdt.aspx
http://blogs.technet.com/b/deploymentguys/archive/2012/10/26/start-screen-customization-with-mdt.aspx
http://blogs.technet.com/b/deploymentguys/archive/2012/10/26/start-screen-customization-with-mdt.aspx
http://technet.microsoft.com/en-us/library/jj134269.aspx#BKMK_StartTiles
http://technet.microsoft.com/en-us/library/jj134269.aspx#BKMK_StartTiles

Default User Profile Customization

[91]

In WSIM, these appear as follows:

AppsFolderLayout.bin is actually discussed in the same TechNet article at h t t p : / / t e c h
n e t . m i c r o s o f t . c o m / e n - u s / l i b r a r y / j j 1 3 4 2 6 9 . a s p x # B K M K _ A p p F o l d e r. To do this,
create a user profile, set up the Start screen, and then copy this design back into your master
image using xcopy. This works similar to the CopyProfile=true method, except you
overwrite AppsFolderLayout.bin from the customized profile to the default user profile
while in the audit mode. Then, all future profiles will load this customized layout.

http://technet.microsoft.com/en-us/library/jj134269.aspx#BKMK_AppFolder
http://technet.microsoft.com/en-us/library/jj134269.aspx#BKMK_AppFolder

Default User Profile Customization

[92]

Windows 10
All the concepts shown in this chapter are still valid for Windows 10
image creation. In addition the following information is relevant to
Windows 10 specifically:

Windows 10 comes with a new Windows Imaging and
Configuration Designer (Windows ICD). This Windows ICD is
used for configuring features and policies by provisioning
packages. This tool is designed specifically for Windows 10
customization and is discussed in Appendix, Additional
Enterprise Configuration Items, of this book.
MDT still needs modification of Unattend.xml. Unattend.xml
can only be modified with Windows System Image Manager
(WSIM), so you will still need WSIM.
Currently (at the time of writing) CopyProfile on Windows 10
can create unexpected results. Therefore the recommendation is
that you do not use CopyProfile with Windows 10 in your
task sequences. This is subject to change with future updates to
Windows 10.
Start menu layout customization has been extended for
Windows 10. It can be partially locked down. More information
can be found at h t t p s : / / b l o g s . t e c h n e t . m i c r o s o f t . c o m / d
e p l o y m e n t g u y s / 2 0 1 6 / 0 3 / 0 7 / w i n d o w s - 1 0 - s t a r t - l a y o u t -

c u s t o m i z a t i o n /.

Summary
In this chapter, we reviewed image customization and default profile modifications and
how to implement changes to these in a supported manner. We also reviewed WSIM and
the Unattend.xml file structure, and discussed some of the changes that Windows 8 brings
to Start Menu customizations as well.

In the next chapter, the CustomSettings.ini and task sequence engine will be covered in
detail and depth.

https://blogs.technet.microsoft.com/deploymentguys/2016/03/07/windows-10-start-layout-customization/
https://blogs.technet.microsoft.com/deploymentguys/2016/03/07/windows-10-start-layout-customization/
https://blogs.technet.microsoft.com/deploymentguys/2016/03/07/windows-10-start-layout-customization/

5
CustomSettings.ini and Task

Sequence
In the previous chapter, we discussed some tips and tricks to customize the default user
profile via policy, script, halting the MDT process mid-capture and modifying it manually,
and so on.

In this chapter, we will review the essence of deployment, the task sequence that is called to
perform the automated deployment in MDT. We will discuss the following topics:

We will discuss the CustomSettings.ini file as it relates to the Unattend.xml
file, what it does, how it works, and how to use it for your environment
We'll also get into the subject of the task sequence, the scripting environment,
logging, and how to use existing, as well as custom variables

The structure of the CustomSettings.ini file
As we look at the structure of the Rules tab of a share, we are also looking at the
CustomSettings.ini file. The structure of the file is fairly basic; there are two sections,
the [Settings] area and the [Default] area:

[Settings]
Priority=Default
Properties=MyCustomProperty

[Default]
OSInstall=Y
SkipAppsOnUpgrade=YES
SkipCapture=NO

CustomSettings.ini and Task Sequence

[94]

SkipAdminPassword=YES
SkipProductKey=YES
_SMSTSOrgName=MDT Reference Task Sequence
SkipBitLocker=YES
SkipDomainMembership=YES
JoinWorkgroup=Workgroup
SkipFinalSummary=YES
SkipLocaleSelection=YES
SkipSummary=YES
SkipTimeZone=YES
SkipUserData=YES
TimeZoneName=Eastern Standard Time

Now what we see is under [Settings]; there are two entries, Priority and Properties.
Priority defines the grouping order that is to be followed when there is a settings conflict.
Properties is a place to define custom properties, which we will discuss later in this
chapter.

So, on Priority, note that we only have one section, and its labelled [Default]. An
example of how we might do this differently than default would be, perhaps, if we wanted
to dynamically name workstations or laptops, based on chassis types.

However, let's walk through this as if we just stumbled upon this problem to show the
workflow. First, we'd want to designate the machine name as something unique. Every
machine has a unique serial number (we hope), so let's use that as follows:

[Default]
OSDComputerName=%serialnumber%

Well fair enough, we have it set now, so the machine names are unique, but we don't know
if it's a laptop or desktop, do we?

For this, some would say we need the MDT Database SQL backend, but that's not really
true:

[Settings]
Priority=IsLaptop, Default
Properties=MyCustomProperty

[IsLaptop]
Subsection=Laptop-%IsLaptop%
[Laptop-True]
OSDComputerName=L%serialnumber%

CustomSettings.ini and Task Sequence

[95]

[Laptop-False]
OSDComputerName=D%serialnumber%

[Default]
OSInstall=Y

The preceding code will specify, based on the variables.dat readout of the chassis type,
the computer name at the time of setup. Therefore, the %serialnumber% variable is queried
and placed in OSDComputerName as either an L or D followed by the variable (a mixture of
alphanumeric characters assumedly).

Some organizations will place laptops and desktops into different organizational units in
Active Directory as well, and we can accommodate this here quite easily as well:

[Settings]
Priority=IsLaptop, Default
Properties=MyCustomProperty

[IsLaptop]
Subsection=Laptop-%IsLaptop%
[Laptop-True]
OSDComputerName=L%serialnumber%
MachineObjectOU=OU= Laptops,OU= User Computers,DC=domain,DC=com

[Laptop-False]
OSDComputerName=D%serialnumber%
MachineObjectOU=OU= Desktops,OU= User Computers,DC=domain,DC=com

[Default]
OSInstall=Y

What if the serial number exceeds 15 characters (and the Network Basic Input/Output
System (NetBIOS) name)? No problem! Remember this is a scripting environment. We can
modify the preceding snippet to account for the excessive characters by changing
OSDComputerName to L#Right("%serialnumber%",8)#:

[Settings]
Priority=IsLaptop, Default
Properties=MyCustomProperty

[IsLaptop]
Subsection=Laptop-%IsLaptop%
[Laptop-True]
OSDComputerName=L#Right("%serialnumber%",8)#
MachineObjectOU=OU= Laptops,OU= User Computers,DC=domain,DC=com

CustomSettings.ini and Task Sequence

[96]

[Laptop-False]
OSDComputerName=D#Right("%serialnumber%",8)#
MachineObjectOU=OU= Desktops,OU= User Computers,DC=domain,DC=com

[Default]
OSInstall=Y

Now our OSDComputerName is a combination of L (or D) and then the right-most eight
characters of the serial number. Now, the name is within the 15-character requirement of
NetBIOS.

This same construct of logic can be used in the GUI as well! I will use the following example
for this: what if we want to install a set of applications, but we will only install it if it is a
VM, or only if it's a particular model number of hardware? For this example, let's assume
that we are deploying to HP Servers and VMware VMs and we want to install VMware
Tools, only if it is a VM, and the ProliantSupportPack software from HP, only if the task
sequence is running on physical machines. Easy! The steps to do so are as follows:

Import the applications for each, and then create an application step for each1.
under Custom Tasks:

CustomSettings.ini and Task Sequence

[97]

It will appear as shown in the following screenshot:

Then, in the Properties of each step, in the Options tab, add an If Statement2.
Properties condition, as shown in the following screenshot:

CustomSettings.ini and Task Sequence

[98]

Then simply set the condition for physical machine step as follows (Install3.
ProliantSupportPack in our example):

For VMs (in this case, Install VMware Tools) set the condition as follows:

Using this method, we will force an application to run, but only in the conditions for which
it is appropriate.

CustomSettings.ini and Task Sequence

[99]

The Unattend.xml structure
Now that we have walked through the CustomSettings.ini structure, it is important to
see exactly why this is relevant for an unattended installation of Windows. The key
takeaway is that the variables, which MDT has created and defined, overlap in many cases
with Unattend.xml. For example, we previously worked on a subsection in the
CustomSettings.ini example that hinged on the OSDComputerName variable. In our
Unattend.xml file, this is simply <ComputerName>.

We can review our Unattend.xml structure by going to our Task Sequences tab in our
MDT console, right-clicking on a specific task sequence, selecting Properties, and then
clicking on the OS Info tab, as shown in the following screenshot:

CustomSettings.ini and Task Sequence

[100]

There is a Edit Unattend.xml button. This launches Windows System Image Manager
(WSIM), so we won't see the raw file contents. To see this, we can easily browse to our
reference share using the C:\ReferenceShare\Control\1 path and the Unattend.xml
file. Open the file, and by default, Internet Explorer will render it for you, as shown in the
following screenshot:

CustomSettings.ini and Task Sequence

[101]

However, to open this file for ease of modification, I prefer to use the keystrokes Shift +
right-click and navigate to Open with | Notepad. It will then look like the following code
snippet and is fully editable:

<?xml version="1.0" encoding="utf-8"?>
<unattend xmlns="urn:schemas-microsoft-com:unattend">
 <servicing>
 <package action="configure">
 <assemblyIdentity name="Microsoft-Windows-Foundation-Package"
 version="6.1.7601.17514" processorArchitecture="amd64"
 publicKeyToken="31bf3856ad364e35" language="" />
 <selection name="InboxGames" state="true" />
 <selection name="Solitaire" state="true" />
 </package>
 </servicing>
 <settings pass="windowsPE">
 <component name="Microsoft-Windows-Setup"
 processorArchitecture="amd64" publicKeyToken="31bf3856ad364e35"
 language="neutral" versionScope="nonSxS"
 xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State">
 <ImageInstall>
 <OSImage>
 <WillShowUI>OnError</WillShowUI>
 <InstallTo>
 <DiskID>0</DiskID>
 <PartitionID>1</PartitionID>
 </InstallTo>
 <InstallFrom>
 <Path>.\Operating Systems\Windows 7
 x64\Sources\install.wim</Path>
 <MetaData>
 <Key>/IMAGE/INDEX</Key>
 <Value>1</Value>
 </MetaData>
 </InstallFrom>
 </OSImage>
 </ImageInstall>

It is not recommended to edit the Unattend.xml file manually, unless
you really know what you are doing. The file is picky about the order, and
some things that you think you might not need and want to delete are
actually core setup process dependencies. So tinker at your own peril!

CustomSettings.ini and Task Sequence

[102]

In the Unattend.xml file, we can see how MDT bootstraps itself as part of the logon process,
as shown in the following code snippet:

<FirstLogonCommands>
 <SynchronousCommand wcm:action="add">
 <CommandLine>wscript.exe
 %SystemDrive%\LTIBootstrap.vbs</CommandLine>
 <Description>Lite Touch new OS</Description>
 <Order>1</Order>
 </SynchronousCommand>

In the preceding code snippet, note that the first command run at logon is to launch
LTIBootstrap.vbs, which then resumes and controls the MDT task sequence engine for
the setup process.

The variables.dat structure
So, where do we get the list of the variables that exist? The Print-Ready Documentation for
MDT 2013 is a perfect library, particularly the Toolkit Reference.docx file. To see the
values that are being discovered for your hardware, one can easily open the
variables.dat file. The structure is XML-based (one can simply rename the file to .xml),
open it in Internet Explorer, and get a better view than Notepad.

However, when the variables.dat file is rendered in a browser, it appears as follows:

<MediaVarList Version="4.00.5345.0000">
 <var name="LOGPATH">
 <![CDATA[X:\MININT\SMSOSD\OSDLOGS]]>
 ...
 <![CDATA[Bootstrap.ini]]>
 </var>
 <var name="OSCURRENTVERSION">
 <![CDATA[6.3.9600]]>
 </var>
 <var name="OSCURRENTBUILD">
 <![CDATA[9600]]>
 </var>
 <var name="OSVERSION">
 <![CDATA[WinPE]]>
 </var>
 <var name="ISSERVEROS">
 <![CDATA[False]]>
 </var>
 <var name="ISSERVERCOREOS">
 <![CDATA[False]]>

CustomSettings.ini and Task Sequence

[103]

 </var>
 ...
 <var name="HOSTNAME">
 <![CDATA[MININT-I7GS8HP]]>
 </var>
 <var name="ASSETTAG">
 <![CDATA[7774-6450-3382-1242-9318-1886-08]]>
 </var>
 <var name="SERIALNUMBER">
 <![CDATA[7774-6450-3382-1242-9318-1886-08]]>
 </var>
 <var name="MAKE">
 <![CDATA[Microsoft Corporation]]>
 </var>
 <var name="MODEL">
 <![CDATA[Virtual Machine]]>
 </var>
 <var name="PRODUCT">
 <![CDATA[Virtual Machine]]>
 </var>
 <var name="UUID">
 <![CDATA[41498066-DE4A-4C40-918F-F7C8F8BD32D6]]>
 </var>
 <var name="MEMORY">
 <![CDATA[2047]]>
 </var>
 <var name="ARCHITECTURE">
 <![CDATA[X64]]>
 </var>
 <var name="PROCESSORSPEED">
 <![CDATA[3400]]>
 </var>
 <var name="CAPABLEARCHITECTURE">
 <![CDATA[AMD64 X64 X86]]>
 </var>
 <var name="ISLAPTOP">
 <![CDATA[False]]>
 </var>
 <var name="ISDESKTOP">
 <![CDATA[True]]>
 </var>

So, here we have our variables that we called previously, ISDESKTOP and ISLAPTOP.

CustomSettings.ini and Task Sequence

[104]

CustomSettings.ini and the Unattend.xml file
Now that we've reviewed the CustomSettings.ini structure, some commonalities
between the Unattend.xml file and CustomSettings.ini may be evident. For example,
the OSDComputerName value of CustomSettings.ini is what will dynamically supersede
our task sequence's <ComputerName> value of Unattend.xml when the task sequence
runs.

This is the key value in using MDT for deployment. With a structured Unattend.xml file
and deployment, you get a hands-off deployment. However, it's machine-specific, typically,
hardware-specific. It's also a challenge to manage this and change Unattend.xml, even
with WSIM. So, this solution of utilizing Unattend.xml manually (even per model, for
example, for driver considerations) doesn't scale and should not be used in the Enterprise
environment, or small and medium businesses.

Dynamic modification
With MDT, we are essentially scaling Unattend.xml and dynamically modifying the
values as we see fit, for each task sequence run. This is the value of utilizing this system for
deployments. If you need to take it even further, you can dynamically modify
CustomSettings.ini in the manner that we saw earlier in this chapter. However, this
modification method of using the scripting environment, native to the MDT, doesn't scale
very well.

The next option would be to utilize a concept known as UserExit scripts to modify the
CustomSettings.ini dynamically. Essentially, UserExit scripts are a way to exit the MDT
scripting environment and perform some function call and come back and populate
variables based on the function call. An example of this might be h t t p s : / / b l o g s . t e c h n e
t . m i c r o s o f t . c o m / d e p l o y m e n t g u y s / t a g / u s e r - e x i t - s c r i p t /, which details the
setting of the TaskSequenceID variable in CustomSettings.ini based on the available
RAM installed.

Lastly, there is another concept to dynamically modify CustomSettings.ini, and that is
the MDT SQL DB option. In this setup, a Microsoft SQL Database (installed on the MDT
Server or an instance of another existing Microsoft SQL Server in the environment) services
the deployment share and CustomSettings.ini. In this configuration, you can
dynamically populate groups of applications based on role, manage complex selection
profile arrangements, or even pre-populate the database with MAC addresses and
automatically pick TaskSequenceID based on the MAC address of the machine.

https://blogs.technet.microsoft.com/deploymentguys/tag/user-exit-script/
https://blogs.technet.microsoft.com/deploymentguys/tag/user-exit-script/

CustomSettings.ini and Task Sequence

[105]

Task sequence structure
If we examine the structure of our task sequence, we can see it is broken into a set of folders
and underlying actions for each folder (and in some cases, a tree of folders under the top-
level folder), as shown in the following screenshot:

The root-level steps and their functions are explained in the following sections.

CustomSettings.ini and Task Sequence

[106]

Initialization
In this step, the task sequence is initialized and a Gather local only step is run. This gathers
the data utilizing the script, ZTIGather.wsf, and in this step, the original variables.dat
file is populated.

Validation
In this step, the task sequence checks the local environment to verify that it is suitable to run
the rest of the task sequence. In this step, for instance, we will verify that the system has a
minimum of 768 MB to run Windows PE, and the processor speed is at least 800 Mhz:

Microsoft Virtual PC had an issue where it would report 0 Mhz for
processor speed, so when you ran a task sequence in Windows 7 Virtual
PC, you had to uncheck this step or the task sequence would fail.

CustomSettings.ini and Task Sequence

[107]

The next part of this step is an interesting component, Check BIOS. This is placed solely for
the purpose of validating BIOS. So if you have a model of computer that requires a
particular version of BIOS to allow the operating system to install properly, you can modify
the file in \Scripts\ZTIBIOSCheck.xml, which ZTIBIOSCheck.wsf calls, and this
guidance is provided in the XML file itself:

If you have a computer BIOS version that needs to be identified during the
BDD installation process, you can run the following VBScript program
(ZTINextPhase.wsf) to extract out the necessary fields on the computer
system.

Then, we will simply run the step, Next Phase, which calls ZTINextPhase.wsf, writes to
the variables.dat file (for future reference) and logs (for troubleshooting), and then
continues to the next step.

State capture
In this step, the task sequence may create the application migration file, capture user state
by calling the User State Migration Tool (USMT), appropriate XML configuration files,
capture network settings, and so on. I use the word may as it will only run these steps if
they are called by the task sequence that is currently executing. This is also the area where
the Refresh steps of a task sequence also may be run, particularly the Disable BDE
Protectors (to disable BitLocker drive encryption, or suspend it temporarily) and Apply
Windows PE steps.

CustomSettings.ini and Task Sequence

[108]

Preinstall
Firstly, the Preinstall task sequence step runs another Gather local only step. Then, it gets
interesting. If the task sequence is running in a situation that meets the
NEWCOMPUTER definition (as defined by the Options tab of the Task Sequence folder),
then it runs the steps under this folder, as shown in the following screenshot:

CustomSettings.ini and Task Sequence

[109]

If you observe, under this folder, if it runs, the task sequence will format and partition the
hard drive and then copy scripts to be run locally and set up a logging area. If it doesn't run,
it will skip to Offline User State Capture, or Refresh only, again based on the scenario.

After the variables are played out in the task sequence, an Inject Drivers occurs. This is an
interesting step, where according to the selection profile specified, drivers are injected for
the operating system. The ztidrivers.wsf script is called, which is described in detail in
the word document, Toolkit Reference.docx, from the MDT 2013 Documentation.
Basically, what happens is a query is made for Plug and Play (PnP) IDs located on the
hardware on which the script is running, and then a query is made against the XML file that
is the master inventory of the deployment share's Out-of-Box Drivers directory (where
you would import the third-party drivers) and any matches are copied over and made
available for installation.

Now, one key concept here is, as I mentioned, according to the selection profile specified. So
this step, by default, would pick every driver as a possibility for the installation of Windows.
In some instances, it is okay to leave this as a default, let the PnP magic happen in the
scripts, and auto-pick your drivers.

What if you have two Lenovo laptops, both of which resolve a piece of hardware that they
have installed to the same PnP ID, but there are actually two drivers for this PnP ID in your
Out-of-Box Drivers folder? What happens? Which driver is installed on which model?
It's somewhat random. Therefore, in this scenario, for example, the mass storage device
(your SATA controller, for instance, that connects the system board to the SSD/HD of the
device) might have the correct driver and allows the system to boot fine, or if the wrong
driver were to be loaded, the system would blue screen, probably quite quickly, with STOP
0x0000007B (INACCESIBLE_BOOT_DEVICE), something such as documented at
http://support.microsoft.com/kb/324103, for instance.

For this and other considerations, refer to Chapter 6, Drivers. The key to note here is that
you can specify alternate selection profiles to address this potential hiccup in your
deployment.

After the Inject Drivers step is complete, Apply Patches runs. This is similar to the Inject
Drivers step, but instead it utilizes DISM to apply Windows Updates, Language Packs, and
so forth to the WIM offline. It retrieves these from the Packages directory of the
deployment share. Later on, we'll discuss a step to download updates from Windows
Updates, or a Windows Server Update Services (WSUS) Server, for online action.
However, for now, we offline-install patches in this step.

http://support.microsoft.com/kb/324103

CustomSettings.ini and Task Sequence

[110]

Install
In the install phase of task sequence, the actual operating system is applied. What is actually
happening is a script is running, which calls DISM/Apply-Image to apply the WIM that you
select onto the storage you select. This is modifiable by the way!

Note that in the following screenshot, the WIM has a Browse… button to select an alternate
WIM, for instance, if you wanted to switch from Windows 8.1 with Update 1 to Windows
8.1 with Update 2 if and when it comes out. You can also select the logical drive to be
applied to the OS being installed:

CustomSettings.ini and Task Sequence

[111]

Postinstall
In the Postinstall task sequence phase, scripts are copied to the drive that we previously
formatted and performed the DISM /Apply-Image to, and then driver injection occurs and a
Windows Recovery Environment (WinRE) is applied to the volume. Then, the machine is
rebooted. It is pretty simple and straightforward.

State restore
In the State Restore phase, a domain join action—Recover From Domain—can run to join
the machine to the domain automatically. The registry is tattooed, options to opt in to CEIP
and WER are presented, and then Windows Updates can run (though it is disabled by
default). This will hit the Internet Windows Updates servers, unless one specifies a value in
CustomSettings.ini for WSUS server Then, the step will point directly to the specified
WSUS server, which ordinarily should be a quicker and less bandwidth-hungry operation.

This WSUS server cannot be an SCCM server or WSUS server touched by
SCCM. It is not supported and odd update experiences will occur.

Logging
In MDT 2010, an option to log the task sequence runs was introduced as a variable. This
SLShareDynamicLogging variable requires you to point to a UNC path where
deployments would be written to in real time. Therefore, as Michael Niehaus pointed out in
his blog back in 2009, you could run Trace32.exe against the BDD.LOG file in the share for
each deployment and see it happening in real time versus waiting for the deployment to
fully complete and then harvesting BDD.LOG from the deployed or failed deployment
machine.

CustomSettings.ini and Task Sequence

[112]

In MDT 2012, a feature known as MDT Monitoring was introduced. You can find the
settings for it by right-clicking on the deployment share and selecting Properties. The last
tab is Monitoring and should look similar to the following screenshot, by default:

To enable monitoring, simply tick the box and click on Apply. Note that checking the box
here adds a line to our CustomSettings.ini and rules entry,
EventService=http://LABMDT:9800. Also the default share used is a directory on the
C:\events local MDT host. This is a configurable option using the MDT task sequence
variable, EventShare, where EventShare=\\host\events. Also, a service must be
running for this to work, it is installed automatically and enabled when you click Apply.

One can also utilize PowerShell to access the data in the monitoring
service using the cmdlet Get-MDTMonitorData; an example is as simple
as (Get-MDTMonitorData -Path DS001:).Count

CustomSettings.ini and Task Sequence

[113]

Windows 10
Windows 10 does not significantly modify the instructions of this chapter.
Task sequence customization continues as any other operating system at
the time of writing this.

Summary
In this chapter, we've discussed the task sequence and how variables are utilized by the
stock scripts; we also discussed how to create our own variables for different hardware
configurations.

We've also looked at the structure of the CustomSettings.ini and variables.dat files
and Unattend.xml file. More importantly, we've discussed the interconnectedness of
CustomSettings.ini and how it is used to variable-ize Unattend.xml dynamically. On
top of this, the task sequence itself can make Unattend.xml values into variables as well
for our deployment purposes.

We've also walked through the deployment task sequence structure and covered the
gotchas, frequently used areas, and best practices.

Lastly, we've gone over monitoring, from its roots to its current incarnation of PowerShell-
enabled cmdlets.

In the next chapter, we'll cover driver concepts, when drivers are applications and when
they are drivers, how to handle both scenarios, and mandatory driver profiles.

6
Drivers

In the previous chapter, we discussed the CustomSettings.ini file as it relates to
Unattend.xml, what it does, how it works, and how to use it for your environment. We
discussed that not only can we define global rules that apply to all task sequences, but we
can also take advantage of variables to perform condition-based actions based on things
such as hardware type, model, default gateway, or any variables that MDT defines during
the gather phase, or even your own custom variables that you have created. These concepts
are very important in our next topic of driver management.

In this chapter, we will discuss how to utilize MDT to make the complex world of device
drivers into a much more manageable experience. We will focus on how drivers get
installed via MDT, how to specifically control which drivers get installed, and general best
practices around proper driver management.

We will cover the following topics in this chapter:

Understanding offline servicing
The MDT method of driver detection and injection
Populating the Out-of-Box Drivers node of MDT
Utilizing model variable to control what drivers are installed
Drivers as applications
Win PE drivers

Drivers

[115]

Understanding offline servicing
Those of us who created images for deployment of Windows XP were often met with an
enormous challenge of dealing with drivers for many different models of hardware. We
were already forced to create separate images for different HAL families. Additionally, in
order to deal with different hardware models within the same HAL family, the standard
practice way was usually to have a C:\Drivers folder, which contained a copy of every
possible driver that could be required by this image for all the different hardware models it
would be installed to. There was an OemPnPDriversPath entry in the registry that
individually listed each of the driver paths (subfolders under the C:\Drivers directory) for
the Windows Plug and Play (PnP) process to locate and install the driver. As you can
imagine, this was not a very efficient way to manage drivers. One reason is that every
driver for every machine was staged in the image, causing the image size to grow; another
reason being that we were relying on PnP to figure out the right driver to install, which
gives us less control of what driver actually gets installed, based on a driver ranking
process.

Fast forward to Windows Vista and the current versions of Windows, and we can now
utilize the magic of offline servicing to inject drivers into our WIM as it gets deployed. With
this in mind, consider the concept of having your customized Windows image created
through your reference image build process, but it contains no drivers. Now, when we go to
deploy this image, we could utilize a process to detect all of the hardware in the target
machine and then grab only the correct drivers that we need for this particular machine.
Then, we can utilize DISM to inject them into our WIM before the WIM actually gets
installed, thereby making the drivers available to be installed as Windows is installed on
this machine. MDT is doing just that.

The MDT method of driver detection and
injection
When we boot a target machine via our LiteTouch media, one of the initial task sequence
steps will enumerate (via PnPEnum.exe) all of the PnP IDs for every device in the machine.
Then, as part of the Inject Drivers task sequence step, we will search all of our Out-of-Box
Driver INF files to find the matching driver, then MDT will utilize DISM to inject these
drivers offline into the applied WIM.

Drivers

[116]

Note that, by default, we will be searching our entire Out-of-Box drivers
repository and letting PnP figure things out.

We will later discuss how to force MDT to only choose from the drivers that we specify,
thereby gaining strict control over which drivers actually get installed.

The preceding scenario indicates that this whole process hinges on the fact that we are
searching through driver INF files to find the matching PnP IDs in order to correctly detect
and install the correct driver. This brings up a concern; what if the driver does not contain
an INF file, but rather it simply has to be installed via an EXE program? In this scenario, we
cannot utilize the driver injection process; instead, we would treat this driver as an
application in MDT, meaning that we would add a new application using the EXE
program, and its accompanied files if present, as the source files, specifying the command-
line syntax to launch the driver install program and install silently, and then adding this
application as a task sequence step. I will later demonstrate how to utilize conditional
statements in your task sequence to only install this driver program on the model that it
applies to, thereby keeping our task sequence flexible in order to be able to install correctly
on any hardware.

Populating the Out-of-Box Drivers node of
MDT
The first step will be to visit the OEM Manufacturer's website and download all device
drivers for each model machine that we will be deploying to. Note that many OEMs now
offer a deployment-specific download or CAB file that has all of the drivers for a particular
model compressed into one single CAB file. This benefits you as you will not have to go
through the hassle of downloading and extracting each individual driver for each device
separately (NIC, video, audio, and so on). Once you have downloaded the necessary
drivers, to store them in a folder for each specific model, you will need to extract the drivers
within your folder before importing them into MDT.

Drivers

[117]

Next, we want to create a folder structure under the Out-of-Box Drivers node in MDT to
organize our drivers. This will not only allow easy manageability of drivers as new drivers
are released by the OEM; but if we name the folders to match the model names exactly, we
can later also introduce logic to limit our PnP search to the exact folder that contains the
correct drivers for our particular hardware model. As we will have different drivers for x86
and x64, as well as for different operating systems, a general best practice would be to
create the first hierarchy of your folder structure. Perform the following steps:

In order to create the folder structure, simply click on Out-of-Box Drivers and1.
choose New Folder, as shown in the following screenshot:

Drivers

[118]

Next, we will want to create a folder for each model that we will be deploying to:2.

In order to ensure that you are using the correct model name, you can use the3.
following WMI query to see what the hardware returns as the model name:

Drivers

[119]

Once you have your folder structure created, you are ready to inject the drivers.4.
Right-click on the model folder and choose Import Drivers. Point the driver
source directory to the folder where you have downloaded and extracted the
OEM drivers:

Drivers

[120]

There is a checkbox stating Import drivers even if they are duplicates of
an existing driver. This is because MDT is utilizing the Single Instance
Storage (SIS) technology to store the drivers in the actual deployment
share. If you are importing multiple copies of a driver to different folders,
MDT only stores one copy of the file in the actual filesystem by default,
and the folder structure you see within the MDT Workbench will be
pointing duplicates to the same file in order to not waste any space.

As new drivers are released from the OEM, you can simply replace the drivers by going to
the particular folder for this model, removing the old drivers, and importing the new
drivers. Then, next time you install your WIM to this model, you will be using the new
drivers, and you don't have to make any modifications or updates to your WIM.

Utilizing model variable to control what
drivers are installed
As mentioned earlier, while using a default MDT task sequence, the Inject Drivers task
sequence step will search your entire Out-of-Box drivers repository to find a matching
driver. If you only have a few hardware models, and all models are from the same
manufacturer, then this could very well suit your needs without problem; but let's consider
the following scenario.

Let's say you have a Dell model that has a rebranded Broadcom Network Adapter. You also
have an HP model that has a rebranded Broadcom Network Adapter of the same chipset.
Now, Broadcom, Dell, and HP each have a driver. Based on what we discussed earlier
about how PnP finds a matching driver, it would be possible for any of these three drivers
to be a match, if both devices reported the same PnP ID, then Windows' driver ranking
process would determine which driver is installed based on signed versus unsigned,
version number, inbox versus Out-of-Box, and so on. So, we could get in a situation where
perhaps the HP driver was installed on the Dell. For us to have more control over which
driver gets installed, while also keeping the task sequence flexible to work on any model,
we can take advantage of variables and conditional statements.

Drivers

[121]

During the MDT Gather phase, MDT has already determined the exact model name of the
machine we are installing to and has stored this value in a %model% variable. MDT also
utilizes another built-in DriverGroup00x variable in order to set the path of where to look
for the drivers. So, we can place a step in the task sequence to set DriverGroup001 to point
to a dynamic path that gets filled in with the exact model name by use of the %model%
variable, as shown in the following screenshot example:

In the task sequence that you are using to deploy your image, under the1.
Preinstall section, we will modify the Inject Drivers step to use the selection
profile of Nothing, as shown in the following screenshot:

Drivers

[122]

Next, we will add a step above the Inject Drivers step to set our2.
DriverGroup001 variable to point to the path of the model we are installing to,
which will have the %model% variable filled in with the correct information, as
follows:

Configure the Properties page as outlined in the following screenshot:3.

Drivers

[123]

Now, you can be sure that when PnP is searching for and installing drivers, the drivers are
only coming from the correct folder for this model and you have full control over the
process instead of hoping things just work out on their own.

Drivers as applications
Unfortunately, all drivers don't adhere to the usual .inf/.sys format, and in this case, the
MDT driver injection method will not apply to these drivers. What I'm referring to is
drivers that install via a .exe format and cannot be extracted to the usual .inf/.sys
format that we are used to. In this case, we need to treat these drivers as applications. Let's
say, for example, I have a trackpad driver for a particular laptop that I need to install and
the driver installation program must be installed via a .exe program. I can import a new
application into MDT. The command line must be configured to perform a silent install and
you should also check the box in the application's Properties to hide the application so that
it will not show up during the LiteTouch Deployment wizard. We will add the driver to our
Task Sequence as follows:

Drivers

[124]

Now, to ensure that this application/driver only gets installed on the machines that we need
to install it on, we can take advantage of conditional statements to make this happen. This
way, the task sequence will still apply to any hardware, but will only execute this step on
the hardware the driver is targeted to. We can accomplish this as outlined in the following
screenshot:

Drivers

[125]

Win PE drivers
By default, MDT will inject all network adapter and mass storage drivers into the
LiteTouchPE_x86/LiteTouchPE_x64 ISO/WIM file(s). If you want to specifically control
which drivers are injected, you can create separate folders under your Out-of-Box Drivers
node for WinPE_x86 and WinPE_x64 drivers, then create selection profiles for each of these
folders. Navigate to the Properties of your deployment share | Windows PE tab | Drivers
and Patches tab, and select the Selection profile for each architecture. The steps to inject
specific drivers are as follows:

The first step would be to create a selection profile to point to the specific folder1.
where you have imported your Win PE drivers. You can accomplish this as
outlined in the following screenshot:

Drivers

[126]

In the next step, name the selection profile. In this example, we are naming it2.
WinPEx64, as shown in the following screenshot:

Drivers

[127]

We will then only select the folder that we want to include in the selection profile,3.
as shown in the following screenshot:

Drivers

[128]

Once we have created our selection profile, we will then go to the Properties of4.
our deployment share and then to the Windows PE tab, choose the Platform
(x64) from the drop-down list, and then go to the Drivers and Patches tab. From
the Selection profile drop-down list, choose the selection profile that you created
for WinPEx64, as shown in the following screenshot:

Now, when you update your deployment share to generate new LiteTouch media, it will
only inject drivers into Windows PE from the folder that you specified in your selection
profile. This will give you more control over which drivers actually get injected into your
LiteTouch media.

Drivers

[129]

Windows 10

All the concepts shown in this chapter are still valid for Windows 10, but
please pay attention to the following points:

While the plan is definitely to enforce the new driver signing
model (signed by Microsoft directly), current builds (1507 and
1511) allow the legacy driver signing model by default.
This was to work around upgrade challenges that will be
removed in the Redstone timeframe.
Moving forward, drivers will continue to be migrated and
loaded successfully (even if not signed properly), but all new
device drivers installed will require the new model.
When considering a Windows 10 deployment the same driver
considerations apply as any other Windows installation. In
some specific device installations such as Surface Pro 4 devices
or Surface Book, driver packages need to be installed to perform
device firmware updates. Therefore Microsoft and OEM
provided drivers are perhaps more important to keep up to date
in Windows 10 than in other operating systems.

Summary
In this chapter, we covered driver concepts, when drivers are applications and when they
are drivers, how to handle both scenarios, and we also discussed mandatory driver profiles.
In the next chapter, we'll look at the deployment share configuration, deployment best
practices, and guidelines to secure the deployment share.

7
Image Deployment

In the previous chapter, we discussed driver management in MDT. We discussed how to
perform offline servicing in order to inject drivers into our image post-capture. We also
discussed how plug and play works with MDT and driver profiles using variables in MDT
to force drivers into an installation based on properties such as model number.

In this chapter, we will go over how to deploy our image, both for capturing a reference
image, as well as doing deployments in test and production environments. Various caveats
and situations will be covered and several real-world scenarios will be examined as well.

We will cover the following topics in this chapter:

Reference image deployment and image types
Virtual machine creation
Deployment steps
Deployment share
Deployment scenarios and network considerations

Image Deployment

[131]

Reference image deployment
In previous chapters, we've discussed drivers, CustomSettings.ini configuration, task
sequence, and many other items. All these concepts are utilized here as we build our
reference image deployment task sequence and virtual machine. In our examples in this
chapter, we're going to be utilizing Hyper-V as a virtualization host for simplicity and cost;
other solutions can be used, but they add a complication layer in terms of drivers that need
to be inserted into both the Windows Preinstallation Environment (Win PE) and actual
driver store for the image itself. However, Hyper-V can pose the same concern with driver-
versioning needs.

What this means is the native Hyper-V drivers that are shipped with
Windows 7, for instance, will not work in a Hyper-V virtual machine
hosted in Windows Server 2012 R2, for example. Back-level drivers will
still need to be provided so that the Win PE and installation task sequence
can see the network, and thus communicate with the deployment share.

When we design our reference image, it behooves us to review the business needs and
consider the scenarios of thick, thin, and hybrid images. There are many scenarios and
business cases where Windows is used, and a blanket statement that one image type is
better than another is a slippery slope. Let's review the options and discuss when it would
be proper to implement the specific type of image.

Thick image
The thick image is one that contains all the applications needed by the overall business.
Depending on the bandwidth constraints connecting the sites for image replication, this
may be a viable and correct option.

For example, I had a customer implement the thick image due to limited connectivity
between their deployment sites. Replicating more than a single image took a very long time
to finish. Therefore, the solution was to have a master thick image. They then had multiple
task sequences that used the WIM and uninstalled select applications based on the
appropriate scenario (laptop, desktop, and so on).

Image Deployment

[132]

Thin image
The thin image contains a patched WIM of Windows and scant else. It is a barebones kit,
where applications are installed (or streamed via an application provisioning/virtualization
layer) at deployment, or even at the initial run of the application. These deployments tend
towards the campus deployment scenario, where high bandwidth and low latency are
present. Some VDI implementations go this route, particularly with the application
streaming components in place.

Another use case for this would be flexibility. You only need to rebuild a single image if
you need to apply additional updates, and so on. This makes maintenance of your
deployment images much easier and still gives the flexibility of multiple task sequences for
different business needs.

Hybrid image
Perhaps the most common of deployment methodologies, the base thin image is crafted
with a task sequence that (in addition to patching) adds universal applications that any user
at the business is licensed for and might feasibly use. An example would be a build with
Windows Updates, Office 2013, and Updates applied, but not the HR application nor the
accounting one. This type of image usually makes the most sense from licensing,
bandwidth, servicing, and deployment perspective.

Now the reader should keep in mind that any of these images can be the subject of many
task sequences that change CustomSettings.ini, Unattend.xml, and so on, and
customize the deployment in whatever manner needed. Therefore, in considering the type
of image to craft, consider this a skeletal design onto which you will later craft many
different and diverse task sequences against (potentially, some shops get by with one or two
images).

Image Deployment

[133]

Virtual machine creation
The screenshots and text are taken from Windows 8.1 Update 1, which is quite similar to
Windows Server 2012 R2 as well. Most concepts will apply to down-level Hyper-V hosts as
well though.

The first action item is to create a virtual machine. Generally speaking, a virtual1.
machine with one core and 2 GB of RAM is adequate for our purpose. We'll walk
through the wizard and create our virtual machine as follows:

Virtual Machine name

Image Deployment

[134]

In the next step, we'll want to select Generation 1. This is to support both x86 and2.
x64 versions of Windows, and also Windows 7 and Server 2008 R2, as well as
newer OSes:

Generation 1 selection

Image Deployment

[135]

In our next selection, we'll specify 2,048 MB for Startup memory, and not check3.
the box for Use Dynamic Memory for this virtual machine. We don't want the
hypervisor to try to reduce the RAM footprint of our system while it's installing
software, Windows Updates, and so on:

No Dynamic Memory here!

Then on the next screen, we need the virtual machine to be connected to a4.
network that has access to several items. The deployment server, preferably a
DHCP server, DNS, and either an external path to Windows Updates or an
internal WSUS server. We will simply place the virtual machine in this network
in Hyper-V.

Image Deployment

[136]

We'll cover static IP address considerations later in this chapter:5.

External network

Image Deployment

[137]

On the next screen, we need to allocate a virtual disk. If we don't already have a6.
virtual disk defined, we can simply ask Hyper-V to make one for us now. The
drive location should be speedy and have space for a Windows installation and
applications:

VHDX location

Image Deployment

[138]

On the next screen we are asked whether we want to install an OS now? Well,7.
sort of. What we want to do here is specify the ISO of the MDT reference share.
This ISO will be configured in the Bootstrap.ini and CustomSettings.ini to
know to talk to our reference share, run task sequences, and so forth. This ISO is
located in C:\ReferenceShare\Boot on our MDT server. Copying it from the
reference share to the Hyper-V host so that it appears in a local disk is
recommended:

The ISO must be on a local volume for the Hyper-V host

Then, it is a simple matter of clicking Finish and starting the virtual machine. The8.
machine will go through a boot process.

Image Deployment

[139]

Deployment
The virtual machine will go through the boot process, as shown in the following screenshot:

Here, BIOS in the virtual machine has posted and it is booting up

Image Deployment

[140]

We must then specify the task sequence that we wish to run:

Image Deployment

[141]

Note that now our task sequence engine skipped some screens. Our CustomSettings.ini
has specified the following:

SkipCapture=NO
SkipAdminPassword=YES
SkipProductKey=YES
SkipBitLocker=YES
SkipDomainMembership=YES
JoinWorkgroup=Workgroup
SkipFinalSummary=YES
SkipLocaleSelection=YES
SkipSummary=YES
SkipTimeZone=YES
SkipUserData=YES

As we specified SkipCapture=NO in the preceding code, the Capture Image screen wizard
is displayed as follows:

Image Deployment

[142]

The task sequence will then execute through the OS install, apply Windows updates and
application installations, and then Sysprep and capture the image:

Image Deployment

[143]

After the Sysprep is complete, the WIM is captured. This cannot be done with the running
system, so MDT needs to start a Win PE by applying Win PE to the virtual machines' disk,
changing the boot entry to Win PE, then rebooting to Win PE, and running a DISM
/captureimage command:

Image Deployment

[144]

The end product after running both our task sequences should be that our Captures
directory on the MDT reference share looks something similar to the following image:

Here we can see that we have two WIM files, both approximately 5 GB in size.

Now the process is to import these WIM files as OSes into our deployment share. We
haven't created a deployment share yet, but the steps are essentially the same as creating
the reference share.

Deployment share
The deployment share is quite similar to our reference share. Most of the content of the
CustomSettings.ini and Bootstrap.ini will be the same. The OSes of the deployment
share are simply the WIM files, which we just captured, the product of our reference share
task sequences. The applications will be complex drivers for specific hardware devices or
applications applied post-OS deployment. However, our base images are somewhat set in
stone at this point. The WIM files from our reference share form the base operating system
of our deployment task sequences.

Image Deployment

[145]

Again, creation of the deployment share follows the reference share, with some naming
differences:

Name the directory DeploymentShare to keep our naming standards correct. We
absolutely want to keep the reference share and deployment share work separate. This
gives us the flexibility of experimenting in the reference share space, building baseline
images, tweaking task sequences, and so on, without impacting deployment share, where
deployments will actually occur, replication with partners will take place, and so forth.

Image Deployment

[146]

We will continue through the wizard until we get to the Options area, where depending on
need, we'd likely want it set as shown in the following image:

We may need to backup a machine if we run the litetouch.vbs script on an existing
Windows installation and perform a replace scenario. We don't want to capture an image
though, so we uncheck this. We've already done our capture work in reference share.

Image Deployment

[147]

Some changes that we might want to make in CustomSettings.ini are as follows:

SMSTSOrgName=MDT Deployment Task Sequence
SkipDomainMembership=YES
JoinDomain=Contoso
DomainAdmin=Administrator

So, it will look something similar to the following:

OSInstall=Y
SkipAppsOnUpgrade=YES
SkipCapture=YES
SkipAdminPassword=YES
SkipProductKey=YES
_SMSTSOrgName=MDT Deployment Task Sequence
SkipBitLocker=YES
SkipDomainMembership=YES
JoinWorkgroup=Workgroup
SkipFinalSummary=YES
SkipLocaleSelection=YES
SkipSummary=YES
SkipTimeZone=YES
SkipUserData=YES
TimeZoneName=Eastern Standard Time
UserID=administrator
UserDomain=contoso
UserPassword=Password
FinishAction=RESTART

FinishAction=RESTART or SHUTDOWN is important in managed
environments. If this is not present, the action will be to leave the freshly
deployed machine that is joined to the domain and logged on as local
administrator, which could leave the system vulnerable to end user
shenanigans.

Don't forget to import Hyper-V driver additions, so WIN PE has them and update the
deployment share as well. For Hyper-V on Server 2008 R2 or 2012 R2, log on to a virtual
machine and insert integration service setup disk. If you do not have a virtual machine up
and running, you can mount %windir%\system32\vmguest.iso.

Image Deployment

[148]

Here, we will import the custom WIM file as an OS:

Also specify the file noted in the reference share. Note the checkbox, you can move the file
to speed the process. However, I prefer to keep the WIM files in the reference share to keep
a library of work:

Image Deployment

[149]

After we specify the WIM, on the next screen, we will specify the setup files needed from
the OS media. It is important to pick the one appropriate to bitness and version matching
the WIM file. Point to the official ISO for the OS you built/captured the WIM from:

Then we give it a friendly name:

Image Deployment

[150]

Deployment scenarios and network
considerations
During the capture process, the task sequence follows the steps, determining the variables,
making decisions whether to continue on error, and so on, all according to the task
sequence created in the share. We've gone over the task sequence engine, settings, and
variables, but we have not yet discussed the scenarios on the share itself, deployment
strategies, replication for enterprise environments, and so on. We'll cover some of these
scenarios now.

Firstly, deployment in most enterprises is considered a dangerous event. I've seen several
misconfigured environments that started running SMS or MDT-based task sequences on
production systems. User data is lost, days of productivity are lost, and IT careers are
altered in a negative way. One such incident that is helpful to dissect occurred at a
healthcare provider in the United States.

SMS advertised a deployment task sequence over an agent that told the agent to format the
existing hardware and install Windows 7. This includes all laptops, desktops, and servers in
the environment.

Deployment networks
For this reason alone, I typically advise customers to create a virtual network (VLAN) for
deployments. The MDT deployment share resides on this VLAN, and hosts that are to be
migrated are moved onto the VLAN temporarily for servicing. As laying down a fresh
image on a host happens rarely (one would hope), this should mitigate the accidental task
sequence push to all clients.

So, deploy in a VLAN. This brings us to the concept of how to configure this network.

Image Deployment

[151]

Configuration of the deployment network
Use Multi-Cast on the deployment VLAN. Multi-Cast transmission will allow Win PE boot
media to start listening to the broadcast anywhere in the image stream, as it is transmitted
to all endpoints on the VLAN. Therefore, Win PE can start listening as soon as it is network-
ready, and when the whole deployment transmissions is complete, it can begin running the
task sequence.

DHCP should be configured on the network, even in an environment that does not use
DHCP. The pain associated with manual static IP address assignments in a mass-
deployment scenario is possible with a lot of work, or a DHCP server.

The network should be as fast as possible, given that it's going to be deploying and
(potentially) migrating user data via User State Migration Tool (USMT). A sizing
estimation for data migration should also be done. The size of the user profile area on your
hosts * number of hosts being migrated at once = the general amount of storage you might
need (multiply the result by two or three so that you have extra. You can never have
enough storage).

More details about USMT and it's configuration will be discussed in Chapter 8, USMT –
The User State Migration Tool.

Geographical considerations
When we are deploying across geographical sites, we would want to use linked deployment
shares (available in the advanced area of the MDT share). The key here is to manage your
share centrally from the master deployment share, then use linked deployment shares to
essentially act as a floodgate to your downstream deployment points (ideally hosted in
DFS).

You may not (at the time of writing) utilize an active directory associated DFS share for
replication. Therefore, a deployment standalone DFS infrastructure is recommended. This
sounds like a lot of work; but in reality, it is quite simple to stand up.

So again, Master deployment share is linked to another share (which acts as a kind of
floodgate). This link will reside as a folder structure in a standalone DFS configuration. You
can then use block-level differential copying native in DFS to save bandwidth and time in
replicating changes between geographical sites.

Image Deployment

[152]

Windows 10
All the concepts shown in this chapter are valid for Windows 10, but pay
attention to the following points:

Windows 10 as a guest virtual machine is only supported on
Hyper-V on Server 2012 R2 or newer or on Hyper-V on
Windows 10.
I recommend using a Generation 2 virtual machine to create the
Windows 10 images.
If you plan to create a Windows 10 image used for inplace
upgrade, only pure OS features on demand and patches are
allowed. Do not add any application to an inplace upgrade
Image.
For a normal wipe and reload Windows 10 image, you can add
applications as shown previously.

Summary
In this chapter, we discussed the basics of deploying the image. We discussed how to set up
a capture share, how to set up a deployment share, and their basic configuration. The
concepts in this chapter are, in some instances, all you need for a deployment engagement.

However, many times, user data needs to be migrated, which is sometime problematic;
especially, when you have used redirection of user data folders and user profile contents.

In the next chapter, we'll discuss precisely how to migrate user data, supported by
Microsoft methodology using USMT. We will guide you for XML configuration and show
how to troubleshoot USMT.

8
USMT – The User State

Migration Tool
In the previous chapter we discussed deploying the image. The concepts in that chapter are
in some instances all you need for a deployment engagement. However, many times user
data is at rest on the endpoints, particularly when migrating from Windows XP where the
redirection of user data folders and user profile contents was not a good story.

In this chapter, we'll discuss precisely how to migrate user data, supported by Microsoft
methodology:

We'll look over the existing functionality of the toolset provided in the ADK
We'll look at the practice of customizing the toolset for some user data
configuration samples
We'll also look at how to troubleshoot USMT specifically and talk about some
supportability caveats with MDT and USMT

History
The User State Migration Tool (USMT) was designed as a command-line tool to move
settings and data from one computer to another or to save and restore settings in case of
break-fix. (break-fix is the repair of an IT system when computer equipment fails, the
network stops functioning or software programs are not working by reinstalling the OS.)
Some other GUI tools (for example, Windows Easy Transfer) rely on the technical base.

USMT – The User State Migration Tool

[154]

The first version of USMT migrated Windows 95/98 and Windows NT 4.0 computers to
Windows 2000 using customized INF Files. This version was never available publicly for
download. The first public version USMT 2.x added support for Windows 2000 source
computers and Windows XP destinations.

The USMT 3.x version brought considerable changes, including the use of XML files for
migration customization, file security migration, encrypted data storage and Windows
Vista manifest support.

USMT 4.0 was included in Windows Automated Installation Kit (WAIK) and adds
significant capabilities and complexity by introducing new data collection helper functions,
UsmtUtils tool, offline and hard-link migrations and support for Window 7 as source and
target, and removes Windows XP as target.

USMT 5.0 has the same capabilities as 4.0 but adds support for Windows 8 as source and
target and removes Windows Vista as target. Additionally some tools for compressed store
validation and recovery are added.

Beginning with USMT 5.0, the internal versioning of scanstate.exe and loadstate.exe
changed to version numbers identical to the OS. So you will see 6.2.xxxx or 6.3.xxxx or
10.0.xxxx versions depending which OS/ADK you are using.

Here is a compatibility chart explaining the source (left column) and target (top row) OS
supported by each USMT version:

Compatibility chart for USMT 3.x, 4.0, and 5.0

USMT – The User State Migration Tool

[155]

Supported scenarios and minimum
requirements
USMT does not have any explicit or its own CPU, RAM, graphics or HDD requirements. It
relies furthermore on the system requirements of the operating system it is executed on. If
you do not use hard-link migration or external disk or network path, the hard drives must
have sufficient space to contain the migration store, whether compressed or not.
Additionally, it will need some temporary space. If unsure, you can estimate the needed
space by using scanstate.exe /p.

USMT supports migration to the same OS or a newer OS, but it does not
support migration to an older OS. It supports migrating from 32-bit to 32-
bit, 32-bit to 64-bit and 64-bit to 64-bit. It does not support migrating from
64-bit to 32-bit. ARM is completely unsupported and so you cannot
migrate from any ARM edition nor to any ARM edition.

The following table lists the operating systems supported in USMT 5.0:

Operating System ScanState (Source PC) LoadState (Destination PC)

Windows XP Professional YES NO

Windows XP Professional x64 Edition YES NO

Windows Vista (32-bit) YES YES

Windows Vista (64-bit) YES YES

Windows 7 (32-bit) YES YES

Windows 7 (64-bit) YES YES

Windows 8 (32-bit) YES YES

Windows 8 (64-bit) YES YES

Windows RT (WOA) NO NO

USTM also does not support any Windows Server editions, Starter editions or Basic
editions.

USMT does support migration between Multilingual User Interfaces (MUIs), but it does
not support migration between OS languages.

USMT – The User State Migration Tool

[156]

The user running ScanState and LoadState must be a member of the local administrators
group and run it in elevated mode. If you modified the default privileges, make sure the
user still
has SeBackupPrivilege, SeDebugPrivilege, SeRestorePrivilege, SeSecurityPriv
ilege, and SeTakeOwnership granted.

What USMT will migrate and won't migrate
There is a complete list of settings, restrictions, applications, and file types in the What does
USMT migrate? section of the USMT User's Guide. I will highlight the most important
capabilities and limitations.

USMT will migrate the following things:

Profile data for all local users as well as the all users profile including My
Documents, My Pictures, Shared Documents, and Shared Favorites
EFS files and certificates (need to add /efs:copyraw option)
All file types defined in MigUser.xml (can be edited)
Application settings for certain apps defined in MigApps.xml (*) (can be edited)
Access control lists (ACL) with files and folders
Operating system data such as mouse and keyboard, taskbar, and also group
membership and more
Computer settings
Local user to local user or local user to domain user
Domain user to a (new) domain user

USMT will NOT migrate the following things:

Applications themselves, though it will migrate application settings. (You need to
install the applications on the destination computer prior to restoring settings
with LoadState.)
Applications to a newer version; the source and destination must be the same
version. (Except Microsoft Office, where it is supported to migrate to a newer
version.)
Application settings not modified by the user.
Operating system settings such as local and network printers, permissions for
shared folders, hardware settings, some firewall settings from XP, files, and
settings between different language OS.

USMT – The User State Migration Tool

[157]

USMT 5.0 migrates the following Microsoft and third party applications settings and data
files. Those must be installed on the source and destination computer prior to running
 ScanState and LoadState:

Product Version

Adobe Acrobat Reader 9

AOL Instant Messenger 6.8

Adobe Creative Suite 2

Adobe Photoshop CS 8, 9

Adobe ImageReady CS Any

Apple iTunes 6, 7, 8

Apple QuickTime Player 5, 6, 7

Apple Safari 3.1.2

Google Chrome Any

Google Picasa 3

Google Talk Any

IBM Lotus 1-2-3 9

IBM Lotus Notes 6, 7, 8

IBM Lotus Organizer 5

IBM Lotus WordPro 9.9

Intuit Quicken Deluxe 2009

Money Plus Business 2008

Money Plus Home 2008

Mozilla Firefox 3

Microsoft Office 2003, 2007, 2010, 2013

Microsoft Office Access 2003, 2007, 2010, 2013

Microsoft Office Excel 2003, 2007, 2010, 2013

Microsoft Office FrontPage 2003, 2007, 2010, 2013

Microsoft Office OneNote 2003, 2007, 2010, 2013

USMT – The User State Migration Tool

[158]

Microsoft Office Outlook 2003, 2007, 2010, 2013

Microsoft Office PowerPoint 2003, 2007, 2010, 2013

Microsoft Office Publisher 2003, 2007, 2010, 2013

Microsoft Office Word 2003, 2007, 2010, 2013

Opera Software Opera 9.5

Microsoft Outlook Express Only mailbox file

Microsoft Project 2003, 2007, 2010, 2013

Microsoft Office Visio 2003, 2007, 2010, 2013

RealPlayer Basic 11

Sage Peachtree 2009

Skype 3.8

Windows Live Mail 12, 14

Windows Live Messenger 8.5, 14

Windows Live MovieMaker 14

Windows Live Photo Gallery 12, 14

Windows Live Writer 12, 14

Windows Mail Only shipped with Windows Vista

Microsoft Works 9

Yahoo Messenger 9

Microsoft Zune 3, 4

USMT – The User State Migration Tool

[159]

Where to download
Older versions up to USMT 3.x can be downloaded separately on Microsoft Download
Center. Beginning with 4.0, USMT was integrated into the Windows Automated
Installation Kit (WAIK) for Windows 7. USMT 5 and later versions are included in
the Windows Assessment and Deployment Kit (Windows ADK) for Windows 8/8.1/8.1
Update.

The latest USMT (10.x) can be found in the newest released ADK, which is currently
Windows ADK for Windows 10, v1511, available at h t t p s : / / m s d n . m i c r o s o f t . c o m / e n - u
s / w i n d o w s / h a r d w a r e / d n 9 1 3 7 2 1 . a s p x. When executing the adksetup.exe web
installer, you have to select User State Migration Tool (USMT)

How USMT works
At first glance, USMT with its various executables looks complex and confusing. We will
explain the basics of USMT, the role of included XML files, and give insight to the
ScanState and LoadState process with its steps and rule processing. With this
knowledge, using USMT will be less confusing.

USMT basics
USMT 5.0 and newer consists of the following components:

scanstate.exe

loadstate.exe

usmtutils.exe

The MigDocs.xml, MigApps.xml, and MigUser.xml migration files

https://msdn.microsoft.com/en-us/windows/hardware/dn913721.aspx
https://msdn.microsoft.com/en-us/windows/hardware/dn913721.aspx

USMT – The User State Migration Tool

[160]

The downlevel and replacement manifests for Windows XP, Windows Vista, and
Windows 7
Various libraries and supporting files

The interactions between these components are shown in the following figure:

USMT uses a two-part migration process consisting of gather and restore. The gather, which
can be done in online and offline mode, uses the command-line scanstate.exe to collect
user and computer settings and data based on XML files included with USMT, included in
the operating system, and provided by the customer.

USMT – The User State Migration Tool

[161]

The restore uses the command-line loadstate.exe to reinstate those files to a computer
using the same or different XML files.

The usmtutils.exe is not required for the migration process but is recommended for
validating compressed stores. It can also recover data from a store that cannot be restored
by loadstate.exe normally.

USMT migrates application settings and user data based on rules defined in XML files:

MigApps.xml: Rules to migrate application settings
MigDocs.xml: Rules that use the MigXmlHelper.GenerateDocPatterns
helper function, which automatically finds user documents on a computer
without the need to author extensive custom migration XML files
MigUser.xml: Rules to migrate user profiles and user data

To perform a data-only migration, use only the MigDocs.xml and a Config.xml with all
migrate entries set to no.

Use the default migration .xml files as models. It is recommended that you create a
separate XML file instead of adding your XML code to one of the existing migration .xml
files.

Microsoft does not recommend using MigUser.xml. It is included for
backwards compatibility, but it misses many files and does not migrate
file ACLs outside the user profiles.

The ScanState process
The ScanState tool needs to be executed on the source computer. ScanState can be executed
from within a running OS or from a Windows Preinstallation Environment (Windows PE).
When running from within a running OS, it is recommended to perform a reboot before
executing to reduce the number of blocked/locked files.

scanstate.exe gathers everything in a user's profile and then does a file extension-based
search of most of the system for other user data. If data does not match either of these
criteria, the data does not migrate.

USMT – The User State Migration Tool

[162]

When you execute ScanState, the following steps are processed:

ScanState first parses and validates the command line parameters and starts1.
writing to a ScanState log file (by default ScanState.log).

All XML files specified in the command line are read and information about all2.
migration components that need to be migrated is being collected. A migration
component is a logical group of files, registry keys, and values. Typically, all
settings (files, registry keys, values) representing an application are grouped into
a single migration component. Additionally, since Vista and newer OS the built-
in manifest files from the source computer (%SYSTEMROOT%\Windows\WinSxS)
are also read and evaluated. You cannot edit these files directly. If you want to
exclude certain operating system settings you need to create and modify
a Config.xml file.
ScanState determines next which user profiles need to be migrated. By default, all3.
user profiles on the source computer are migrated. You can specify user options
to include and exclude certain users using the user arguments (/ue, /ui, /uel).
The All Users (XP)/Public (Vista and later) profile is always migrated and
cannot be excluded.
ScanState starts the Scanning phase and checks every user profile. Depending on4.
the component setting (User, System, or UserAndSystem) and the type of the
user profile the component is processed or ignored. For each processed
component of the correct type, ScanState evaluates the <detects> section. If
the <detects> section evaluates to true, the component is further processed.
Otherwise the component is dropped and the next component gets evaluated. For
all still valid components the <rules> section is evaluated next. Rules are again
listed in types (User, System, and UserAndSystem). Depending on the user
profile, ScanState processes the rule or continues to next rule of the component.
ScanState creates a list of migration units by processing all subsections under
each <rules> section. Each unit is collected if it is mentioned in an <include>
subsection and there is not a more specific rule with the <exclude> subsection or
a general <unconditionedExclude> subsection.
Next ScanState starts the Collecting phase by creating a master list of all valid5.
evaluated migration units combining all lists created for each profile.
The last phase of ScanState is the Saving phase. All collected migration units from6.
the master list are now written to the store location.

ScanState does not modify the source computer. No files and data are changed except the
creation of a store folder, for copying or hard linking the files, and a temporary folder for
the administrative user executing ScanState.

USMT – The User State Migration Tool

[163]

The LoadState process
The LoadState process is very similar to the ScanState process. Except for looking into user
profiles and searching the system, LoadState collects the migration units from the store
location and applies them to the destination computer.

When you execute LoadState, the following steps are processed:

LoadState first parses and validates the command line parameters and starts1.
writing to a LoadState log file.
All XML files specified in the command line are read and information about all2.
migration components need to be migrated is being collected.

Additionally, since Vista and newer OSes, the built-in manifest files from the
destination computer (%SYSTEMROOT%\Windows\WinSxS) are also read and
evaluated. You cannot edit these files directly. If you want to exclude certain
operating system settings you need to create and modify a Config.xml file.

LoadState determines all user profiles which should be migrated. By default, all3.
user profiles in the store location are migrated. You can specify user options to
include and exclude certain users using the user arguments (/ue, /ui, /uel).
The All Users (XP)/Public (Vista and later) profile is always migrated and
cannot be excluded.

If a local user account is migrated and does not already exist on the
destination computer, the migration will fail. In this case, you need to
create a user account before or specify the /lac argument.
With /md and /mu arguments user accounts can be renamed on the
destination computer.

Next, LoadState will run the Scanning phase. Similar to the Scanning phase of4.
ScanState each user profile type is checked, each component is evaluated, each
rule and subsection processed. Additionally the LoadState evaluates the
destination-specific subsections, for example, <destinationCleanup>
or <locationModify>. Also, the manifest files are processed, if migrating from a
downlevel OS.
The last phase executed by LoadState is the Apply phase. LoadState writes all5.
evaluated migration units to the destination computer. If there is no <merge>
rule defined for the object, registry keys are overwritten by default and files are
renamed by default.

USMT – The User State Migration Tool

[164]

ScanState and LoadState syntax
Writing down a full list of all possible ScanState and LoadState syntax and their possible
combinations would exceed the limits of this chapter by far (and would also be very boring
content).

For this reason, we will only highlight some particularly noteworthy command syntax you
should take a closer look at, marked by ScanState only, LoadState only, and generally valid
for both.

Command-Line Argument Description

/o

(ScanState only)
Required to overwrite any existing data in
the store location or Config.xml file. We
recommend to delete migration store
between executions.

/hardlink Needs to be combined with the
/nocompress option. It will enable the
hard-link migration. StorePath needs to
be on the same volume. When migrating
files on different volumes and using
/hardlink option the migration store
spans also multiple volumes.

/vsc

(ScanState only)
Enables the volume shadow copy service to
help with locked and in use files. It eliminates
most file-locking errors. It cannot be
combined with the /hardlink option.

/encrypt [/key|/keyfile]

(ScanState only)
Encrypts the store. By default, encryption is
disabled. Use caution with this parameter,
because everyone who has access to your
ScanState command line can read your
encryption key. /encrypt and
/nocompress cannot be used together.
Also, /encrypt and /hardlink cannot be
used together.

/decrypt [/key|/keyfile]

(LoadState only)
Decrypts the store. Use caution with this
parameter, because everyone who has
access to your LoadState command line can
read your encryption key. /decrypt and
/nocompress cannot be used together.
Also, /decrypt and /hardlink cannot be
used together.

USMT – The User State Migration Tool

[165]

/nocompress • Disables compression of data and saves all
files separately in store location.
• Good for troubleshooting to view what
ScanState is stored.
• /nocompress and /encrypt cannot be
used together. It can be used without
/hardlink option, but in this case only
recommended for testlab.

/auto:<path to default XML> If no path is specified, .xml files will be
searched in the USMT binaries folder.
It has the same effect as using the
following arguments:
• /i:MigDocs.xml
• /i:MigApp.xml
• /v:5

/localonly

(ScanState only)
Excludes all removable drives and network
drives regardless of the rules in the .xml
files specified on command line.

/v:<Verbosity> The default value is 0. For troubleshooting,
use the /v:5 option. Higher levels are only
readable by attached debuggers, lower
levels are not as useful for troubleshooting.

/offlineWinDir:<Path>
/offlineWinOld:<Path>

(ScanState only)

• The /offlineWinDir argument is only
for PE environment scenarios. This can be
helpful when the source OS cannot be
started any more or if even /vsc results in
locked files.
• The /offlineWinOld argument is for
already inplace migrated/reinstalled
scenarios where old data resides in the
Windows.old folder.

/c • ScanState/LoadState will continue even if
non-fatal errors occur. Using /c can result in
data loss.
• Better use the new <ErrorControl>
section in Config.xml for fine granular
error control.

USMT – The User State Migration Tool

[166]

/ui:DomainName\UserName
/ui:ComputerName\UserName

• By default, all users are included in the
migration. /ui only needs to be specified
when also using /ue and/or /uel.
DomainName and UserName can contain
asterisk wildcard (*). Usernames with spaces
need to be surrounded by quotation marks.
Multiple /ui arguments can be specified.
• /ui inclusions take precedence over /ue
and /uel exclusions.

/uel:<NumberOfDays>
/uel:<Date>
/uel:0

• Excludes users depending on their
LastModified date of NTUser.dat. For
example, /uel:30 excludes all users not
logged on within the last 30 days. /uel:0
migrates only users currently logged on.
• /ue exclusions override /uel.
• /uel cannot be used in offline migrations.

/ue:DomainName\UserName
/ue:ComputerName\UserName

• Excludes specified user accounts.
DomainName and UserName can contain
asterisk wildcard (*). Usernames with spaces
need to be surrounded by quotation marks.
Multiple /ue arguments can be specified.
• /ui inclusions take precedence over /ue
exclusions.

/md:OldDomain:NewDomain
/md:ComputerName:NewDomain

(LoadState only)

With this argument, users can be migrated
to a NewDomain. An OldDomain may
contain the asterisk wildcard (*). Multiple
/md arguments can be specified. If
conflicting /md commands are specified,
only the first rule is applied.

/mu:OldUserName:NewUserName
/mu:OldDomain\OldUserName:[NewDomain\]NewUserName

(LoadState only)

Specified user gets renamed. Wildcard
character is not supported. Multiple /mu
arguments can be specified.

/lac[:Password]

(LoadState only)
• If (non-domain) account does not exist,
specifying /lac will create such an account.
Otherwise, LoadState will stop with an error.
• The created user account will be disabled.
You need to enable it manually or specify
/lae.
• When no password is given, the user will
be created with an empty password. If you
specify a password, it will be plain-text
readable. Also, if multiple users need to be
created, all migrated users will have the
same password.

USMT – The User State Migration Tool

[167]

/lae

(LoadState only)
Enables the account which was created by
/lac argument.

UsmtUtils tool
The UsmtUtils tool is used for deleting a hard-link store, validating a compressed file store
and extracting data from a compressed file store. Additionally, it can determine
cryptographic capabilities of source and destination computer for use with the /encrypt
command.

Delete hard-link migration store
Hard-link migration stores cannot be deleted by Windows Explorer or the command
prompt. To delete these stores you need to use UsmtUtils with the /rd option.

If the migration store spans multiple volumes, it will be deleted from all volumes.
Sometimes the /rd option needs a reboot to delete all files. To override the accept prompt
you can specify the /y argument additionally.

Some examples include the following:

usmtutils /rd C:\HardLinkStore

usmtutils /rd D:\HardLinkStore /y

Verify compressed migration store
You can use the usmtutils.exe /verify argument when you want to validate whether a
compressed migration store is OK or contains corrupted files. The /verify argument
implements different types of reports specified by /verify[:<reportType>]:

Summary: Returns only the number of files corrupted and the number of files that
are intact. This summary type is the default report type if no type is specified.
all: Returns a list of all files in the compressed migration store and the status of
the file (tab delimited). It also reports the status of the Catalog of the store. If the
Catalog is corrupted, LoadState cannot open the migration store.

USMT – The User State Migration Tool

[168]

failureonly: Returns a list of only the corrupted files in the compressed
migration store.
Catalog: Returns only the status of the catalog.

If the migration store is encrypted, you need to specify the /decrypt option as you would
with LoadState.

Some examples include the following:

usmtutils /verify C:\MigrationStore\Store.mig

usmtutils /verify:all C:\MigrationStore\Store.mig
 /decrypt:AES_256 /key:"secret encryption key"

usmtutils /verify:failureonly C:\MigrationStore\Store.mig
 /decrypt /keyfile:C:\encryptionKey.txt

Recover files from a compressed migration store
You can use the /extract argument to recover files from a compressed migration store, for
example, if it is corrupted and will not restore normally with LoadState, or if you need to
extract some files without doing the full LoadState process.

You need to specify <path to Store.mig> and <destination path for the
extracted files>. Additionally, you can specify an include and/or exclude pattern
which supports the wildcard asterisk (*). It is possible to specify multiple patterns by
separating them with a comma or semicolon. Include patterns take precedence over exclude
patterns.

If the migration store is encrypted, you need to specify the /decrypt option like you would
with LoadState.

The /o option will overwrite existing output files.

Some examples include the following:

usmtutils /extract C:\MigrationStore\Store.mig
 C:\ExtractedFiles /o

usmtutils /extract C:\MigrationStore\Store.mig
 C:\ExtractedFiles /i:"*.docx,*,xlsx" /e:"~*.*"
 /decrypt:AES_192 /keyfile:C:\encryptionKey.txt

USMT – The User State Migration Tool

[169]

Supported cryptographic algorithms on the
current system
To get a list of supported cryptographic algorithms (AlgIDs) on the current system, you can
use the /ec argument. When using encryption it is important to check that the source and
destination computer support the selected/specified AlgID before running the ScanState
tool.

Valid values for AlgID include the following: AES_128, AES_192, AES_256, 3DES,
or 3DES_112.

If no AlgID for /encrypt or /decrypt is specified, the system will use 3DES by default.

Customization of XML files
USMT does not include graphical editing tools.

By default, a huge list of files is already migrated. For a complete and up to date list see
TechNet – What Does USMT Migrate?, available at h t t p s : / / t e c h n e t . m i c r o s o f t . c o m /
e n - u s / l i b r a r y / h h 8 2 5 2 3 8 . a s p x. For easy activation/deactivation of single components
inside default XML files you can use /genconfig and edit the resulting Config.xml.

If you need to modify or create USMT XML files you should use an XML editor to do it
safely. You can also use Visual Studio 2012 (Express) or newer.

To create a clean XML sample, open Visual Studio and select a new Visual C# project with a
blank application. To add a blank XML, go to Solution Explorer, right click and add a new
item, selecting the XML file item type.

Go to the XML menu, select Schemas…. In the Schemas dialog, add the MigXML.xsd from
the USMT folder.

Now you can create your custom XML, excluding or including content.

Some examples are as follows:

https://technet.microsoft.com/en-us/library/hh825238.aspx
https://technet.microsoft.com/en-us/library/hh825238.aspx

USMT – The User State Migration Tool

[170]

Migrate registry keys
The following .xml file migrates HKLM registry keys in a system context.

<migration urlid="http://www.microsoft.com/migration/1.0/migxmlext/test">
<component type="Application" context="System">
 <displayName>Component to migrate two registry keys and one registry
 value string</displayName>
 <role role="Settings">
 <rules>
 <include>
 <objectSet>
 <pattern type="Registry">HKLM\Software\
 PacktPublishing\Toolbar* [*]</pattern>
 <pattern type="Registry">HKLM\Software\
 PacktPublishing\Configuration* [*]</pattern>
 <pattern type="Registry">HKLM\Software\
 PacktPublishing [ShowHelp]</pattern>
 </objectSet>
 </include>
 </rules>
 </role>
</component>
</migration>

Migrate a folder from a specific drive
The following are two samples, one with and one without subdirectories.

Including subdirectories
The following .xml file migrates all files and subfolders from various locations, including
C:\PacktPublishing and C:\UserData, to the destination computer:

<migration urlid="http://www.microsoft.com/migration/1.0/migxmlext/test">
<component type="Documents" context="System">
 <displayName>Component to migrate all Packt Publishing Documents
 including subfolders</displayName>
 <role role="Data">
 <rules>>
 <include>
 <objectSet>
 <pattern type="File">C:\PacktPublishing* [*]</pattern>
 </objectSet>
 </include>

USMT – The User State Migration Tool

[171]

 </rules>
 </role>
</component>
<component type="Documents" context="System">
 <displayName>Component to migrate all User Data Documents including
 subfolders</displayName>
 <role role="Data">
 <rules>
 <include>
 <objectSet>
 <pattern type="File">C:\UserData* [*]</pattern>
 </objectSet>
 </include>
 </rules>
 </role>
</component>
</migration>

Excluding subdirectories
The following .xml file migrates all files from C:\PacktPublishing, but it does not
migrate any subfolders within C:\PacktPublishing:

<migration urlid="http://www.microsoft.com/migration/1.0/migxmlext/test">
<component type="Documents" context="System">
 <displayName>Component to migrate all Packt Publishing Documents without
 subfolders</displayName>
 <role role="Data">
 <rules>
 <include>
 <objectSet>
 <pattern type="File"> C:\PacktPublishing\ [*]</pattern>
 </objectSet>
 </include>
 </rules>
 </role>
</component>
</migration>

More samples can be found under TechNet – USMT – Include Files and Settings, at h t t p s
: / / t e c h n e t . m i c r o s o f t . c o m / e n - u s / l i b r a r y / h h 8 2 4 8 3 3 . a s p x.

https://technet.microsoft.com/en-us/library/hh824833.aspx
https://technet.microsoft.com/en-us/library/hh824833.aspx

USMT – The User State Migration Tool

[172]

Migration options
All USMT scenarios can be split in the following two common migration scenarios: PC
Refresh and PC Replacement.

PC Refresh scenario
The source and destination computer are the same. This scenario is used when upgrading
the OS or reinstalling OS for break-fix. The administrator migrates the user and computer
state to an intermediate store. This intermediate store can be a remote server/file share, an
external drive, or a hard-link migration store on the same drive (if no repartitioning or
change of partition type is needed). After installing the new OS on the same computer, the
migrated data and settings are brought back and the migration store is deleted.

When using a remote server/file share, using a compressed (and encrypted) migration store
is recommended.

When there is no need for repartitioning/formatting the hard disk, a hard-link migration
store is recommended due to the speed benefit.

If the source computer OS is broken and cannot be started any more, use a PE environment
and the /offlineWinDir argument.

When the OS was already reinstalled/upgraded before using USMT and Windows.old still
exists, you can try the /hardlink and /offlineWinOld argument.

USMT – The User State Migration Tool

[173]

PC Replacement scenario
The source and destination computers are different. This scenario is used when hardware is
being replaced (with or without an upgrade of OS).

The administrator migrates the user and computer state to an intermediate store. This
intermediate store can be a remote server/file share or an external HDD. A hard-link
migration store is not usable. After installing the new OS on the destination computer, the
migrated data and settings are brought back and the migration store is deleted. The source
computer can be repurposed or discarded.

When using a remote server/file share, using a compressed (and encrypted) migration store
is recommended.

USMT – The User State Migration Tool

[174]

If the source computer OS is broken and cannot be started again, use a PE environment and
the /offlineWinDir argument.

When planning a larger number of replacements, try to group users, as you will need a
huge amount of space on a file share depending on the habits of users and usage patterns of
the local data.

Network migration can be done manually or automated/managed by using MDT. I
recommend using the managed scenario and prepare/test common use XML files
(MigApps.xml, MigDocs.xml, MigUser.xml). The process is shown as follows:

USMT – The User State Migration Tool

[175]

Online versus offline migration
When comparing the online migration (running ScanState from the source OS) with offline
migration (running ScanState from a PE environment with /offlineWinDir or running
ScanState on the destination OS with /offlineWinOld) I will outline the highs and lows of
both methods.

The offline migration is normally not blocked by any in use files, but on the other hand it is
not possible to migrate all data. The following settings cannot be migrated (partly or at all)
as they utilize plugin DLLs that cannot load in that environment:

COM+ applications
Handwriting recognition
Internet Explorer networking
National language
Offline files
Connection manager
Regional and language options
Shell configuration
Shell HTTP handler
Windows Media Player
Windows remote management

In a normal scenario, you should stick with the online migration. But in the case of a broken
OS, offline migration is a better option than nothing, even if it doesn't migrate everything.

File copy versus hard-link
A hard-link is a simply way for NTFS to point to the same file from multiple locations on
the same volume, using only one time space of file. A hard-link has nothing to do with
USMT. USMT is just a consumer of a hard-link.

Instead of copying the data, the hard-link only creates additional pointers. The file itself
exists only once. This means when USMT is storing a hard-link copy of a file it is just telling
NTFS to make another pointer of the same file data without touching the data itself.

USMT – The User State Migration Tool

[176]

When comparing USMT copy times versus USMT hard-link times of the same amount of
data, there is a constantly increasing gap, as shown in the following figure:

Whenever possible, you should use a hard-link migration store to benefit from the speed
increase.

Windows 8 (.1) upgrades also use hard-links, which is one reason why those upgrades are
much faster than Windows 7.

Note: Any changes to a hard-linked file through one path or another
always reflect on the same physical file on the disk. When you delete one
of these representations of the file, the hard-link is deleted. When the last
one is deleted, you are also deleting the actual file data.

Using Windows XP with ADK 8.1
With the introduction of Windows ADK for Windows 8.1 and the integrated USMT 6.3,
support for Windows XP as the source computer OS was dropped. MDT 2013 and
ConfigMgr 2012 R2 require ADK 8.1. If you are in the unlucky situation needing to backup
Windows XP and migrate it with ADK 8.1 you can use the following workaround. Run
your backup with the older USMT 5.0 and restore with the newer USMT 6.3.

USMT – The User State Migration Tool

[177]

Best practices
A summary from TechNet (available at h t t p s : / / t e c h n e t . m i c r o s o f t . c o m / e n - u s / l i b r
a r y / h h 8 2 5 1 0 8 . a s p x) and experiences from the field are outlined as follows:

Install applications before running the LoadState tool: This helps ensure that
migrated settings are preserved. For Microsoft Office, this is required for
migration to work correctly.
Do not use MigUser.xml and MigDocs.xml together: If you use both .xml files,
some migrated files may be duplicated if conflicting instructions are given about
target locations. You can use the /genmigxml command-line option to determine
which files will be included in your migration, and to determine if any
modifications are necessary.
Use MigDocs.xml for a better migration experience: If your dataset is unknown
or if many files are stored outside of the standard user-profile folders,
the MigDocs.xml file is a better choice than the MigUser.xml file, because
the MigDocs.xml file will gather a broader scope of data. The MigDocs.xml file
migrates folders of data based on location, and on registered file types by
querying the registry for registered application extensions. The MigUser.xml file
migrates only the files with the specified file extensions and in user profiles.
Close all applications before running either the ScanState or LoadState tools:
Although using the /vsc switch can allow the migration of many files that are
open with another application-except with /hardlink—it is a best practice to
close all applications in order to ensure all files and settings migrate. Without
the /vsc or /c argument, USMT fails when it cannot migrate a file or setting.
When you use the /c option, USMT will ignore any files or settings that it cannot
migrate and log an error each time, but this also potentially leads to data loss on
the destination computer.
Log off after you run the LoadState tool: Some settings, such as fonts, wallpaper,
and screensaver settings, will not take effect until the next time the user logs on.
For this reason, you should log off after you run the LoadState tool.
Use migration to create a managed environment: USMT can move all of the end
user's documents from their various locations into their Documents
(%CSIDL_PERSONAL%) folder. Since Windows 7 and Windows 8 do not allow
standard users to create folders on the root of the C: drive, they will start to use
the more appropriate managed profile areas, making folder redirection, offline
files, and roaming folders easier to manage. The end users will naturally require
training to know where their data moved after migration.

https://technet.microsoft.com/en-us/library/hh825108.aspx
https://technet.microsoft.com/en-us/library/hh825108.aspx

USMT – The User State Migration Tool

[178]

Use Chkdsk.exe and usmtutils.exe /verify: We recommend that you
run Chkdsk.exe before running the ScanState and LoadState tools. Chkdsk.exe
creates a status report for a hard disk drive and lists and corrects common errors.
You should also usmtutils.exe /verify after creating a compressed store file
and before wiping any source machine data to insure integrity and prevent a
disaster later.
Migrate in groups: If you decide to perform the migration while users are using
the network, it is best to migrate user accounts in groups. To minimize the impact
on network performance, determine the size of the groups based on the size of
each user account. Migrating in phases also allows you to make sure each phase
is successful before starting the next phase. Using this method, you can make any
necessary modifications to your plan between groups.
Encrypting file system (EFS): Take extreme caution when migrating encrypted
files, because the end user does not need to be logged on to capture the user state.
By default, USMT fails if an encrypted file is found. Do not use /efs:skip
or /efs:decryptcopy without good cause; this may lead to data loss or
compromised data. Always provide /efs:copyraw or /efs:hardlink if you
are unsure that users are encrypting data, as the default behavior is for USMT to
fail when it detects an encrypted file and does not have an /efs argument
specified. Ensure there is at least one Data Recovery Agent assigned and
operating in the environment. Do not disable the certificate manifests
(CAPI2_certs-DL.man or CAPI2_certs-repl.man) using Config.xml.
Protect/encrypt the store: Use the /encrypt option with the ScanState command
to protect the compressed store. Use ACLs on the file server storing the data that
does not grant unnecessary access. Transmit data through IPSEC or VPN tunnels
to prevent access to the store files on the wire, especially if using an
uncompressed or unencrypted store. However, use extreme caution with this set
of options, because anyone who has access to the ScanState command-line script
also has access to the encryption key.
Virus scan: We recommend that you scan both the source and destination
computers for viruses before running USMT. In addition, you should scan the
destination computer image. To help protect data from viruses, it is strongly
recommended running an antivirus utility before migration. Along with this, you
might consider disabling any AV software during the backup/restore itself, so it
doesn't interfere with USMT.

USMT – The User State Migration Tool

[179]

Maintain security of the file server and the deployment server: It is
recommended that you manage the security of the file and deployment servers. It
is important to make sure that the file server where you save the store is secure.
You must also secure the deployment server, to ensure that the user data that is
in the log files is not exposed. It is also recommended that you only transmit data
over a secure Internet connection, such as a virtual private network. For more
information about network security, see Microsoft Security Compliance Manager.
Password migration/knowledge: To ensure the privacy of the end users, USMT
does not migrate passwords, including local user passwords and those for
applications such as Live Mail, Internet Explorer, Remote Access Service
connections, or mapped network drives. Ensure that end users know their
passwords or reset them before migrating if they no longer remember cached
passwords.
Legally bond your migration team: The users creating the migration store have
access to the store encryption key as well as access to all data in the store itself.
They must be trusted at the highest levels by the company as they have total
access to all client data, no matter what the local security permissions are on the
files, except for EFS-encrypted files. As local administrators on the destination
computers, they also have complete access to install malware or remote control
software. Microsoft suggests legally bonding administrators against exceeding
their access and contacting law enforcement authorities if suspecting employees
of theft.
Specify the same set of Mig*.xml files in both the ScanState and the LoadState
tools: If you used a particular set of Mig*.xml files in the ScanState tool, either
called through the /auto option, or individually through the /i option, then you
should use same option to call the exact same Mig*.xml files in the LoadState
tool.
The <CustomFileName> in the migration urlid should match the name of the
file: Although it is not a requirement, it is good practice for <CustomFileName>
to match the name of the file. For example, the following is from
the MigApps.xml file:

 <?xml version="1.0" encoding="UTF-8"?>
 <migration
 urlid="http://www.microsoft.com/migration/1.0/migxmlext/migapp">

USMT – The User State Migration Tool

[180]

Use an XML editor and use the XML Schema (MigXML.xsd) when authoring
.xml files to validate syntax: You can load the MigXML.xsd schema in Visual
Studio Express 2011 to ensure proper authoring of custom .xml. Do not
use Notepad.exe or other primitive text tools to create or edit XML files for any
product, especially USMT. Notepad++ would be a lightweight alternative to
Visual Studio, and provides XML syntax highlighting.
Use the default migration XML files as models: To create a custom .xml file,
you can use the migration .xml files as models to create your own. If you need to
migrate user data files, model your custom .xml file on MigUser.xml. To
migrate application settings, model your custom .xml file on the MigApps.xml
file.
Consider the impact on performance when using the <context> parameter: You
affect migration performance when you use the <context> element with
the <component> element; for example, as in when you want to encapsulate
logical units of file- or path-based <include> and <exclude> rules.

In the User context, a rule processes one time for each user on the
system
In the System context, a rule processes one time for the system
In the UserAndSystem context, a rule processes one time for each
user on the system and one time for the system

Note: The number of times a rule is processed does not affect the number
of times a file is migrated. The USMT migration engine ensures that each
file migrates only once.

Do not modify factory XML files: We recommend that you create a
separate .xml file instead of adding your .xml code to one of the existing
migration .xml files. For example, if you have code that migrates the settings for
an application, you should not just add the code to the MigApps.xml file.
Do not delete or modify manifest files: You should not alter
the DLmanifest, DlManifest7, ReplacementManifest, ReplacementManife
st7, or %SYSTEMROOT%\Windows\WinSxS files. If you want to exclude certain
operating system settings from the migration, you should create and modify
a Config.xml file. Set the Config.xml so as not to migrate the built-in manifest
settings you wish, then create a custom XML to provide any subset of those now-
missing behaviors.

USMT – The User State Migration Tool

[181]

Do not create custom .xml files to alter the operating system settings that are
migrated: These settings are migrated by manifests and you cannot modify those
files. If you want to exclude certain operating system settings from the migration,
you should create and modify a Config.xml file.
Perform backups before migrating: Prior to performing a ScanState, perform a
bare-metal backup of a source computer to ensure the ability to restore the
machine in an emergency or if the store cannot be recovered. SCCM and MDT
offer this as a built-in task option in their workflows.

Troubleshooting USMT
Troubleshooting USMT is very easy, as many error messages are very descriptive. First you
should examine the console output for errors.

Next you should use the /v:5 argument on ScanState, LoadState, and UsmtUtils to get
most of the details in the log file. The ScanState and LoadState debug logs—when run with
verbosity /v:5—contain the information needed to diagnose nearly all USMT failures that
get past the console error phase. Key to understanding the logs is examining normal
working scenarios versus logs which encounter errors. With this method, errors will be
much more obvious and easier to understand. Like all debug logs, some entries can appear
to report errors, which are actually expected and not problematic. Not comparing the log
with a working version can result in going down the wrong path.

If you still encounter errors, you can enable a special (optional) diagnostic log to determine
which migration units are detected and chosen. To activate this log you need to define a
system environment variable with the path where this log should be created:

SET MIG_ENABLE_DIAG=C:\MigDiag.xml

Use this log file only if there are no other console-related errors or errors with XML files.

The last step to perform is to determine if the behavior is expected and the lack of migration
is by design. This requires understanding the files or settings that are not migrating, then
examining the XML and component manifest files to see if any rules actually apply to them
and copy their data.

For better investigation, if a missing file/setting was not scanned or was not migrated back,
use the /nocompress argument to get single files. Then check whether the file/setting does
exist in the migration store to see if it was correctly collected by ScanState. If it exists in the
migration store, but not on the destination computer, troubleshoot the LoadState process.

USMT – The User State Migration Tool

[182]

In many cases, a customer will assume that something is wrong with USMT when in fact, it
is not migrating a setting because it is not told to do so.

Additionally, Michael Niehaus collected a great summary of all possible return codes and
their troubleshooting, mitigation, and workarounds.

The USMT can report various errors. While these do vary somewhat for each version of
USMT, they are mostly consistent between versions.

The following are the return codes reported by USMT 5.0:

Return
code
value

Return code Error message Troubleshooting, mitigation, workarounds

0 USMT_SUCCESS Successful run Not applicable

1 USMT_DISPLAY_HELP Command line help requested Not applicable

2 USMT_STATUS_CANCELED Gather was aborted because of
an EFS file

Not applicable

 User chose to cancel (such as
pressing Ctrl + C)

Not applicable

3 USMT_WOULD_HAVE_FAILED At least one error was skipped
as a result of /c

Review the ScanState, LoadState, or UsmtUtils log
for details about command-line errors.

11 USMT_INVALID_PARAMETERS /all conflicts with /ui, /ue, or
/uel

Review the ScanState log or LoadState log for details
about command-line errors.

 /auto expects an optional
parameter for the script folder

Review the ScanState log or LoadState log for details
about command-line errors.

 /encrypt can't be used with
/nocompress

Review the ScanState log or LoadState log for details
about command-line errors.

 /encrypt requires /key or
/keyfile

Review the ScanState log or LoadState log for details
about command-line errors.

 /genconfig can't be used with
most other options

Review the ScanState log or LoadState log for details
about command-line errors.

 /genmigxml can't be used with
most other options

Review the ScanState log or LoadState log for details
about command-line errors.

 /hardlink requires
/nocompress

Review the ScanState log or LoadState log for details
about command-line errors.

 /key and /keyfile both
specified

Review the ScanState log or LoadState log for details
about command-line errors.

 /key or /keyfile used
without enabling encryption

Review the ScanState log or LoadState log for details
about command-line errors.

 /lae is only used with /lac Review the ScanState log or LoadState log for details
about command-line errors.

 /listfiles cannot be used
with /p

Review the ScanState log or LoadState log for details
about command-line errors.

 /offline requires a valid path
to an XML file describing offline
paths

Review the ScanState log or LoadState log for details
about command-line errors.

USMT – The User State Migration Tool

[183]

 /offlinewindir requires a
valid path to offline windows
folder

Review the ScanState log or LoadState log for details
about command-line errors.

 /offlinewinold requires a
valid path to offline windows
folder

Review the ScanState log or LoadState log for details
about command-line errors.

 A command was already
specified

Verify that the command-line syntax is correct and
that there are no duplicate commands.

 An option argument is missing Review the ScanState log or LoadState log for details
about command-line errors.

 An option is specified more than
once and is ambiguous

Review the ScanState log or LoadState log for details
about command-line errors.

 By default /auto selects all
users and uses the highest log
verbosity level. Switches such
as /all, /ui, /ue, /v are not
allowed.

Review the ScanState log or LoadState log for details
about command-line errors.

 Command line arguments are
required. Specify /? for options.

Review the ScanState log or LoadState log for details
about command-line errors.

 Command line option is not
valid

Review the ScanState log or LoadState log for details
about command-line errors.

 EFS parameter specified is not
valid for /efs

Review the ScanState log or LoadState log for details
about command-line errors.

 File argument is invalid for
/genconfig

Review the ScanState log or LoadState log for details
about command-line errors.

 File argument is invalid for
/genmigxml

Review the ScanState log or LoadState log for details
about command-line errors.

 Invalid space estimate path.
Check the parameters and/or file
system permissions

Review the ScanState log or LoadState log for details
about command-line errors.

 List file path argument is invalid
for /listfiles

Review the ScanState log or LoadState log for details
about command-line errors.

 Retry argument must be an
integer

Review the ScanState log or LoadState log for details
about command-line errors.

 Settings store argument
specified is invalid

Review the ScanState log or LoadState log for details
about command-line errors. Make sure that the store
path is accessible and that the proper permission
levels are set.

 Specified encryption algorithm
is not supported

Review the ScanState log or LoadState log for details
about command-line errors.

 /efs:hardlink requires
/hardlink

Review the ScanState log or LoadState log for details
about command-line errors.

 The /target Windows 7
option is only available for
Windows XP, Windows Vista,
and Windows 7

Review the ScanState log or LoadState log for details
about command-line errors.

 The store parameter is required
but not specified

Review the ScanState log or LoadState log for details
about command-line errors.

 The source-to-target domain
mapping is invalid for /md

Review the ScanState log or LoadState log for details
about command-line errors.

USMT – The User State Migration Tool

[184]

 The source-to-target user
account mapping is invalid for
/mu

Review the ScanState log or LoadState log for details
about command-line errors.

 Undefined or incomplete
command-line option

Review the ScanState log or LoadState log for details
about command-line errors.

 Use /nocompress, or provide
an XML file path with
/p"pathtoafile" to get a
compressed store size estimate

Review the ScanState log or LoadState log for details
about command-line errors.

 User exclusion argument is
invalid

Review the ScanState log or LoadState log for details
about command-line errors.

 Verbosity level must be
specified as a sum of the desired
log options: Verbose (0x01),
Record Objects (0x04), Echo
to debug port (0x08)

Review the ScanState log or LoadState log for details
about command-line errors.

 Volume shadow copy feature is
not supported with a hard-link
store

Review the ScanState log or LoadState log for details
about command-line errors.

 Wait delay argument must be an
integer

Review the ScanState log or LoadState log for details
about command-line errors.

12 USMT_ERROR_OPTION_PARAM_T
OO_LARGE

Command-line arguments
cannot exceed 256 characters

Review the ScanState log or LoadState log for details
about command-line errors.

 Specified settings store path
exceeds the maximum allowed
length of 256 characters

Review the ScanState log or LoadState log for details
about command-line errors.

13 USMT_INIT_LOGFILE_FAILED Log path argument is invalid for
/l

When /l is specified in the ScanState command line,
USMT validates the path. Verify that the drive and
other information, for example, file system
characters, are correct.

14 USMT_ERROR_USE_LAC Unable to create a local account
because /lac was not specified

When creating local accounts, the command-line
options /lac and /lae should be used.

26 USMT_INIT_ERROR Multiple Windows installations
found

Listfiles.txt could not be created. Verify that
the location you specified for the creation of this file
is valid.

 Software malfunction or
unknown exception

This is a common error when using /i to load the
Config.xml file in USMT. Check all the loaded
.xml files for syntax errors.

 Unable to find a valid Windows
directory to proceed with
requested offline operation;
Check if offline input file is
present and has valid entries

Verify that the offline input file is present and that it
has valid entries. USMT could not find valid offline
operating system. Verify your offline directory
mapping.

27 USMT_INVALID_STORE_LOCATION A store path can't be used
because an existing store exists;
specify /o to overwrite

Specify /o to overwrite an existing intermediate or
migration store.

 A store path is missing or has
incomplete data

Make sure that the store path is accessible and that
the proper permission levels are set.

 An error occurred during store
creation

Make sure that the store path is accessible and that
the proper permission levels are set. Specify /o to
overwrite an existing intermediate or migration
store.

USMT – The User State Migration Tool

[185]

 An inappropriate device such as
a floppy disk was specified for
the store

Make sure that the store path is accessible and that
the proper permission levels are set.

 Invalid store path; check the
store parameter and/or file
system permissions

Invalid store path; check the store parameter and/or
file system permissions.

 The file layout and/or file
content is not recognized as a
valid store

Make sure that the store path is accessible and that
the proper permission levels are set. Specify /o to
overwrite an existing intermediate or migration
store.

 The store path holds a store
incompatible with the current
USMT version

Make sure that the store path is accessible and that
the proper permission levels are set.

 The store save location is read-
only or does not support a
requested storage option

Make sure that the store path is accessible and that
the proper permission levels are set.

28 USMT_UNABLE_GET_SCRIPTFILES Script file is invalid for /i Check all specified migration .xml files for errors.
This is a common error when using /i to load the
Config.xml file.

 Unable to find a script file
specified by /i

Verify the location of your script files, and ensure
that the command-line options are correct.

29 USMT_FAILED_MIGSTARTUP A minimum of 250 MB of free
space is required for temporary
files

Verify that the system meets the minimum
temporary disk space requirement of 250 MB. As a
workaround, you can set the environment variable
USMT_WORKING_DIR=<path> to redirect the
temporary files working directory.

 Another process is preventing
migration; only one migration
tool can run at a time

Check the ScanState log file for migration .xml file
errors.

 Failed to start main processing,
look in log for system errors or
check the installation

Check the ScanState log file for migration .xml file
errors.

 Migration failed because of an
XML error; look in the log for
specific details

Check the ScanState log file for migration .xml file
errors.

 Unable to automatically map the
drive letters to match the online
drive letter layout; use
/offline to provide a
mapping table

Check the ScanState log file for migration .xml file
errors.

31 USMT_UNABLE_FINDMIGUNITS An error occurred during the
discover phase; the log should
have more specific information

Check the ScanState log file for migration .xml file
errors.

32 USMT_FAILED_SETMIGRATIONTYPE An error occurred processing
the migration system

Check the ScanState log file for migration .xml file
errors, or use online help by typing /? on the
command line.

33 USMT_UNABLE_READKEY Error accessing the file specified
by the /keyfile parameter

Check the ScanState log file for migration .xml file
errors, or use online help by typing /? on the
command line.

 The encryption key must have at
least one character

Check the ScanState log file for migration .xml file
errors, or use online help by typing /? on the
command line.

USMT – The User State Migration Tool

[186]

34 USMT_ERROR_INSUFFICIENT_RIGH
TS

Directory removal requires
elevated privileges

Log on as Administrator, and run with elevated
privileges.

 No rights to create user profiles Log on as Administrator, and run with elevated
privileges.

 No rights to read or delete user
profiles

Log on as Administrator, and run with elevated
privileges.

35 USMT_UNABLE_DELETE_STORE A reboot is required to remove
the store

Reboot to delete any files that could not be deleted
when the command was executed.

 A store path can't be used
because it contains data that
could not be overwritten

A migration store could not be deleted. If you are
using a hard-link migration store, you might have a
locked file in it. You should manually delete the
store, or use usmtutils /rd command to delete
the store.

 There was an error removing
the store

Review the ScanState log or LoadState log for details
about command-line errors.

36 USMT_ERROR_UNSUPPORTED_PL
ATFORM

Compliance check failure; please
check the logs for details

Investigate whether there is an active temporary
profile on the system.

 Use of /offline is not
supported during apply

The /offline command was not used while
running in the Windows PE.

 Use /offline to run gather on
this platform

The /offline command was not used while
running in Windows PE.

37 USMT_ERROR_NO_INVALID_KEY The store holds encrypted data
but the correct encryption key
was not provided

Verify that you have included the correct encryption
/key or /keyfile.

38 USMT_ERROR_CORRUPTED_NOTE
NCRYPTED_STORE

An error occurred during store
access

Review the ScanState log or LoadState log for details
about command-line errors. Make sure that the store
path is accessible and that the proper permission
levels are set.

39 USMT_UNABLE_TO_READ_CONFIG
_FILE

Error reading Config.xml Review the ScanState log or LoadState log for details
about command-line errors in the Config.xml file.

 File argument is invalid for
/config

Check the command line you used to load the
Config.xml file. You can use online help by typing
/? on the command line.

40 USMT_ERROR_UNABLE_CREATE_P
ROGRESS_LOG

Error writing to the progress log The progress log could not be created. Verify that
the location is valid and that you have write access.

 Progress log argument is invalid
for /progress

The progress log could not be created. Verify that
the location is valid and that you have write access.

41 USMT_PREFLIGHT_FILE_CREATION
_FAILED

Can't overwrite existing file The progress log could not be created. Verify that
the location is valid and that you have write access.

 Invalid space estimate path.
Check the parameters and/or file
system permissions

Review the ScanState log or LoadState log for details
about command-line errors.

42 USMT_ERROR_CORRUPTED_STORE The store contains one or more
corrupted files

Review the UsmtUtils log for details about the
corrupted files. For information on how to extract
the files that are not corrupted, learn how to Extract
Files from a Compressed USMT Migration Store at
h t t p s : / / t e c h n e t . m i c r o s o f t . c o m / e n - i n / l i

b r a r y / h h 8 2 4 9 6 2 . a s p x.

61 USMT_MIGRATION_STOPPED_NO
NFATAL

Processing stopped due to an
I/O error

USMT exited but can continue with the /c
command-line option, with the optional
configurable <ErrorControl> section or by using
the /vsc command-line option.

https://technet.microsoft.com/en-in/library/hh824962.aspx
https://technet.microsoft.com/en-in/library/hh824962.aspx

USMT – The User State Migration Tool

[187]

71 USMT_INIT_OPERATING_ENVIRON
MENT_FAILED

A Windows Win32 API error
occurred

Data transfer has begun, and there was an error
during the creation of migration store or during the
apply phase. Review the ScanState log or LoadState
log for details.

 An error occurred when
attempting to initialize the
diagnostic mechanisms such as
the log

Data transfer has begun, and there was an error
during the creation of migration store or during the
apply phase. Review the ScanState log or LoadState
log for details.

 Failed to record diagnostic
information

Data transfer has begun, and there was an error
during the creation of migration store or during the
apply phase. Review the ScanState log or LoadState
log for details.

 Unable to start. Make sure you
are running USMT with
elevated privileges

Exit USMT and log in again with elevated
privileges.

72 USMT_UNABLE_DOMIGRATION An error occurred closing the
store

Data transfer has begun, and there was an error
during migration store creation or during the apply
phase. Review the ScanState log or LoadState log for
details.

 An error occurred in the apply
process

Data transfer has begun, and there was an error
during migration store creation or during the apply
phase. Review the ScanState log or LoadState log for
details.

 An error occurred in the gather
process

Data transfer has begun, and there was an error
during migration store creation or during the apply
phase. Review the ScanState log or LoadState log for
details.

 Out of disk space while writing
the store

Data transfer has begun, and there was an error
during migration store creation or during the apply
phase. Review the ScanState log or LoadState log for
details.

 Out of temporary disk space on
the local system

Data transfer has begun, and there was an error
during migration store creation or during the apply
phase. Review the ScanState log or LoadState log for
details.

USMT – The User State Migration Tool

[188]

GUI wrappers for USMT
USMT does not provide any GUI for its three command-line tools. Additionally, USMT
command-line input can be very complex. There are many third-party GUI frontends
available on the Internet, and also commercial products incorporating the USMT engine. I
will pick some of the GUI frontends you should have a closer look at:

USMTGUI (h t t p : / / u s m t g u i . e h l e r . d k /): A very powerful one window GUI
for USMT. Newer versions of USMTGUI are now Donation ware. Depending how
much you donate, you will get the basic or the pro version. The new pro version
is now also able to handle all advanced USMT features for offline migration.
Workstation Migration Assistant (h t t p : / / d c u n n i n g h a m . n e t / a p p l i c a t i o n s /
w o r k s t a t i o n - m i g r a t i o n - a s s i s t a n t /): This nice looking UI was written by
Dan Cunningham and is now open source, and the source code is available on
GitHub. It is highly customizable so you can adapt it to your needs.

Windows 10
All the concepts shown in this chapter are still valid for Windows 10, but
please pay attention to following compatibility matrix:

Destination
OS

Source
OS

Windows
XP

Windows
Vista

Windows
7

Windows
8

Windows
8.1

Windows
10

Windows
XP

USMT 3 USMT 3,
4

USMT 4,
5

USMT 5 Not
supported

Not
supported

Windows
Vista

Not
supported

USMT 3,
4

USMT 4,
5

USMT 5 Not
supported

USMT 10

Windows
7

Not
supported

Not
supported

USMT 4,
5, 6.3, 6.3
Update,
10

USMT 5,
6.3, 6.3
Update,
10

USMT
6.3, 6.3
Update,
10

USMT 10

Windows
8

Not
supported

Not
supported

Not
supported

USMT 5,
6.3, 6.3
Update,
10

USMT
6.3, 6.3
Update,
10

USMT 10

Windows
8.1

Not
supported

Not
supported

Not
supported

Not
supported

USMT
6.3, 6.3
Update,
10

USMT 10

http://usmtgui.ehler.dk/
http://dcunningham.net/applications/workstation-migration-assistant/
http://dcunningham.net/applications/workstation-migration-assistant/

USMT – The User State Migration Tool

[189]

Windows
10

Not
supported

Not
supported

Not
supported

Not
supported

Not
supported

USMT 10

Here:
USMT 3-Windows Vista (MSI download)
USMT 4-Windows 7 AIK
USMT 5-Windows 8 ADK
USMT 6.3-Windows 8.1 RTM ADK (6.3.9600.16384)
USMT 6.3 Update-Windows 8.1 Update ADK (6.3.9600.17029)
USMT 10-Windows 10 ADK
Note: Always use the Windows 10 ADK version of USMT that matches the
OS release (that is, 1507 ADK version with Win10 1507, 1511 ADK version
with Win10 1511, and so on.)

Summary
In this chapter we have learned how to utilize the USMT. We showed which benefits and
drawbacks this solution provides. By talking about best practices and looking at third-party
GUI extensions and troubleshooting tips you should be able to incorporate USMT well in
your environment.

In the next chapter we will have a deeper look into troubleshooting in MDT itself.

9
Troubleshooting Deployment

Logs
In the previous chapter, we discussed how to migrate user data. Now it is time to discuss
what to do when things go wrong or do not deliver the expected results.

The Windows deployment process contains many moving targets—scripts, tools, utilities,
and other stuff are brought together for a complete end-to-end deployment process. In a
perfect world, all of these things would work perfectly and there would be no need to
troubleshoot.

However, as you may already realize, perfection is hard to achieve and will probably never
be achieved. This means that we will need to do some troubleshooting.

In this chapter, we'll discuss which logs we should look at if the deployment fails. We will
give a summary of the logs you will be most concerned with when troubleshooting a failed
OS deployment via Microsoft Deployment Toolkit 2013. We will show some common error
codes and how to solve them.

We will also discuss frequent pitfalls and common mistakes and how to circumvent or
avoid them, and we will give tips about how to troubleshoot effectively.

Troubleshooting Deployment Logs

[191]

Delving into Windows logs
During the operating system deployment process, several logs are created. Depending on
what portion of setup phase we are talking about, the location of the logs will move around
to different paths and drive letters.

Starting point for troubleshooting basic operating system deployment errors is usually the
main setupact.log file. This log keeps track of everything that happens during the
deployment process.

Whereas, setuperr.log only contains error entries from the main log file. Very often you
will need the information lines before and after the error occurred in order to determine the
root cause. So, setuperr.log should be seen as an indicator and cannot be used
standalone. If its file size is larger than 0 bytes, take a look at setupact.log:

Whenever possible, you should grab the whole Panther directory. This is
typically found under C:\Windows\Panther, including all subdirectories.
This directory is often referenced as the Panther logs. The Panther log
directory will contain all logs for specialize, OOBE, and Sysprep phases.

Snippet from a setupact.log

Troubleshooting Deployment Logs

[192]

The described Windows logs are plain text files starting with date and
time and an Info, Warning, or Error indicator. When something is
critical, it is additionally marked with !!!. Always look for the first
encounter of an error, as most other errors are following errors caused by
the first one. From the position of the first error, look around for
surrounding Warnings.

Here is a summary of the most useful logs created on the client during deployment process.
Dig into these log files first to get an impression what was going wrong.

The Client Log files are mentioned in the following table:

Log file: setupact.log

Description: This is the main log file written by the operating system installation process.
This log keeps track of everything that happens during the deployment process.
This is useful for investigating failed installations. For more details, refer to h t t
p : / / s u p p o r t . m i c r o s o f t . c o m / k b / 9 2 7 5 2 1.

Path(s): C:\$WINDOWS.~BT\Sources\Panther (early migration phase)
X:\$WINDOWS.~BT\Sources\Panther (in Windows PE phase)
C:\Windows\Panther (for specialize phase)
C:\Windows\Panther\UnattendGC (for OOBE phase)
C:\Windows\System32\Sysprep\Panther (for Sysprep phase)

Log file: setuperr.log

Description: This is the log file containing only error entries from the main log file. Very often
you will need the info lines before and after the error occurred in order to
determine the root cause. This is useful as an indicator: if >0 bytes, take a look at
setupact.log.

Path(s): C:\$WINDOWS.~BT\Sources\Panther (early migration phase)
X:\$WINDOWS.~BT\Sources\Panther (in Windows PE phase)
C:\Windows\Panther (for specialize phase)
C:\Windows\Panther\UnattendGC (for OOBE phase)
C:\Windows\System32\Sysprep\Panther (for Sysprep phase)

Log file: CBS.log

Description: This is the log file containing details for servicing operations executed by the
servicing stack. This is helpful for analyzing file mismatch and corrupted files.

Path(s): C:\Windows\Logs\CBS

http://support.microsoft.com/kb/927521
http://support.microsoft.com/kb/927521

Troubleshooting Deployment Logs

[193]

Log file: dism.log

Description: This is the log file containing all DISM command results that are executed
during the installation process. Use this log file for issues with security update
installation, language pack installation, driver injection, and so on.

Path(s): C:\Windows\Logs\DISM

Log file: setupapi.app.log and setupapi.dev.log

Description: These are the log files containing all PnP device driver installation details during
the installation process. This is useful for failed driver installations and
determining what drivers were used for which device. If you encounter very
long setup time during detection and configuration of devices phase, take a
closer look at lines starting with Error or !!!.

Path(s): X:\Windows\Inf (drivers loaded in Windows PE phase)
C:\Windows\Inf

Log file: netsetup.log

Description: This is the log file containing all domain join attempts and the result of each
attempt. This file contains all domain join details that were specified (except
password). This is useful for troubleshooting domain join issues.

Path(s): C:\Windows\Debug

Log file: WindowsUpdate.log

Description: This is the log file containing details related to software update installation. This
is useful for determining the source that was used (Windows Update, WSUS, or
SCCM), which updates where detected and downloaded, and so on.

Path(s): C:\Windows

Log file: wpeinit.log

Description: This is the log file containing details about the Windows PE initialization
process. This is useful for analyzing PE network initialization issues, slow start
up times of PE, and failed commands during PE initialization. If Windows PE
does not reboot automatically, look for hanging/failed commands during Init.

Path(s): X:\Windows\System32 (in Windows PE phase)

Troubleshooting Deployment Logs

[194]

If you are using a Windows server-based Windows Deployment Services (WDS), you
should also take a look into the following file created on the server when WDS / PXE is
failing.

The Server Log file is explained in the following table:

Log file: wdsserver.log

Description: This is the log file containing details about all PXE requests and multicast
transmissions processed by WDS. This log has to be enabled on the server, as it
is disabled by default. Details on how to enable it in the different WDS server
versions can be found at h t t p : / / s u p p o r t . m i c r o s o f t . c o m / k b / 9 3 6 6 2 5.

Path(s): C:\Windows\Tracing

Microsoft deployment toolkit logs and task
sequencer logs
Each MDT script creates its own individual log file during execution. These log files
normally match the script name (for example, ZTIGather.log, ZTIDiskpart.log, and so
on) or begin with the script name (for example, ZTIConfigureDHCP_DISM.log).
Additionally, each script writes to the common BDD.log. The information written to both
log files is the same; so normally, it is okay to just take a look at the aggregated BDD.log as
it contains everything needed.

The position of BDD.log and individual script logs changes several times during the
deployment process. During the Windows PE phase, when there is no partition
accessible/existing, the log file will be hosted under X:\MININT\SMSOSD\OSDLOGS. As soon
as partition is accessible/created, logs will be transferred to C:\MININT\SMSOSD\OSDLOGS.
MDT copies the scripts without deleting the logs in the old location, so make sure to view at
the newest/up-to-date copy of the logs.

After completion of LiteTouch, log files are copied to
C:\Windows\Temp\DeploymentLogs. The BDD.log file is also copied to a network
location at the end of the deployment if the SLShare variable is defined
in CustomSettings.ini.

http://support.microsoft.com/kb/936625

Troubleshooting Deployment Logs

[195]

Another important log file, SMSTS.log, is used by the task sequencer of MDT. This log file
is useful for verifying the evaluation of conditions and investigating the failed task
sequence step, especially when no other log was written. For example, if the script name
was not correct. SMSTS.log is typically stored in %TEMP%\SMSTSLog (during Windows PE
phase) or in C:_SMSTaskSequence\Logs (or in some rare cases, under X:\SMSTSLog
/C:\SMSTSLog).

Unfortunately, the BDD log format is designed to be read by Trace32 (used with SMS 2003
and SCCM 2007) or CMTrace (used with SCCM 2012 and higher versions). Although you
can view the logs with Notepad, we strongly recommend using this tool to read the log
whenever possible, as it makes it not only more readable, but also highlights errors and
warnings. Lines containing the word Warning will be highlighted in yellow and lines
containing the word Error are highlighted in red. Additionally, Trace32 and CMTrace can
easily calculate elapsed time when marking two or more entries.

Here is an example of BDD.log opened in Notepad. It's quite unreadable if you are not
familiar to the XML style:

BDD.log viewed in Notepad

Troubleshooting Deployment Logs

[196]

When opening the same BDD.log inside CMTrace, it is instantly formatted and much more
readable. With the error/warning highlighting, you easily see if something is going wrong,
and CMTrace has the possibility to autoscroll, so you can read logs live:

BDD.log viewed in CMTrace

Troubleshooting Deployment Logs

[197]

Getting CMTrace
Trace32.exe is part of the Microsoft SCCM 2007 Toolkit. However, Trace32.exe is an
x86 binary, so it cannot be used directly on a x64 Windows PE environment, as it has no
WoW emulation. There is also a Trace64.exe x64 native binary, but is (officially) only
available internally at Microsoft.

However, with the release of Microsoft SCCM 2012 Toolkit, things changed. The toolkit
includes the new CMTrace.exe, which is an x86/x64 dual binary. The x64 part is a little bit
hidden inside the x86 executable.

To get a x64 version, you need to download System Center 2012 R2 Configuration Manager
Toolkit (h t t p s : / / w w w . m i c r o s o f t . c o m / e n - u s / d o w n l o a d / d e t a i l s . a s p x ? i d = 5 0 0 1 2)
and install the Client Based Tools on a x64 OS. When executing CMTrace.exe (located in
C:\Program Files(x86)\ConfigMgr 2012 Toolkit R2\ClientTools\), the process
will create a dynamically named temporary x64 file in %TEMP% and execute
this CMTrace_amd64.exe image.

To get a copy of this x64 binary, view the CMTrace.exe process in Process Explorer. Note
the following TRAD85.tmp file (it may be named differently on your system):

https://www.microsoft.com/en-us/download/details.aspx?id=50012

Troubleshooting Deployment Logs

[198]

Look at the properties of the .tmp file, as shown in the following image:

Get a copy of this file, rename it to, for example, CMTrace64.exe and enjoy. This version is
also usable on x64 Windows PE.

Troubleshooting Deployment Logs

[199]

Clearing a failed (dirty) MDT deployment
BDD.log and SMSTS.log are the brain of MDT. After each reboot, MDT tries to resume
with the next step/action in the task sequence. If your task sequence failed, and you start a
new try with remaining parts of MININT and _SMSTaskSequence directory, the results will
be unpredictable.

In MDT versions prior to MDT 2013 (such as 2012 Update 1), this cleanup needs to be done
manually. A lot of tips state using diskpart clean. However, if you want to preserve the
other data/files/settings, this is not a good idea. Also, it needs a reboot after cleaning.

With MDT 2013, a dirty environment detection with modal dialog was introduced:

After clicking on Yes, Microsoft Deployment Toolkit will clean the old parts and start a new
run.

Especially during the test lab phase, but possibly also later in the productive environment
phase for highly automating the process (Zero Touch) you do not want to get stuck on this
mentioned modal dialog. It is as well a good idea to automatically get rid of all old parts of
a former task sequence before making a new installation attempt.

However, you cannot easily delete both folders every time you start the PE, as you will
need it in the case of capturing the final image from PE. Here is a sample script to clean up
with checking the condition of an applied PE for capturing phase. Hook this script to your
Unattend.xml.

Troubleshooting Deployment Logs

[200]

The sample cleanup script is as follows:

Option Explicit
Dim objWso,objFso
Set objWso = WScript.CreateObject("Wscript.Shell")
Set objFso = CreateObject("Scripting.FileSystemObject")
If objFso.FileExists("C:\Sources\boot.wim") Or
 objFso.FileExists("D:\Sources\boot.wim") Or
 objFso.FileExists("E:\Sources\boot.wim") Then
 ' We are running with integrated PE = WIM creating mode = do nothing
Else
 ' We are in deployment mode first boot = wipe MININT and _SMSTaskSequence
 If objFso.FolderExists("C:\MININT") Then
 On Error Resume Next
 objFso.DeleteFolder "C:\MININT", True
 On Error Goto 0
 End If
 If objFso.FolderExists("D:\MININT") Then
 On Error Resume Next
 objFso.DeleteFolder "D:\MININT", True
 On Error Goto 0
 End If
 If objFso.FolderExists("E:\MININT") Then
 On Error Resume Next
 objFso.DeleteFolder "E:\MININT", True
 On Error Goto 0
 End If
 If objFso.FolderExists("C:_SMSTaskSequence") Then
 On Error Resume Next
 objFso.DeleteFolder "C:_SMSTaskSequence", True
 On Error Goto 0
 End If
 If objFso.FolderExists("D:_SMSTaskSequence") Then
 On Error Resume Next
 objFso.DeleteFolder "D:_SMSTaskSequence", True
 On Error Goto 0
 End If
 If objFso.FolderExists("E:_SMSTaskSequence") Then
 On Error Resume Next
 objFso.DeleteFolder "E:_SMSTaskSequence", True
 On Error Goto 0
 End If
End If

Set objFso = Nothing
Set objWso = Nothing

Troubleshooting Deployment Logs

[201]

Run this script every time you start up your PE environment by linking it to Unattend.xml
in the root directory:

Look up error codes
Error codes are numbers (or letter and number combinations) that are associated with more
or less helpful error messages. Translating these error codes to useful error messages is
sometimes tricky. Let's shed some light onto this area.

Converting error codes:
Many error codes in the log files are presented in a hexadecimal order
(recognizable by the leading 0x). If you get, for example, 0x80070040,
look at the last four digits. Converting 0x40 (trailing zeroes are dropped)
to decimal will get a 64 Error. To translate the error code in a meaningful
text, open a command prompt and type the following:
net helpmsg 64
This will get you the following extended help text:
The specified network name is no longer available.
If you don't want to translate the error code manually, you can use a
command-line tool, Microsoft Exchange Server Error Code Look-up
utility. You can find this utility in the Microsoft Download Center (h t t p : /
/ w w w . m i c r o s o f t . c o m / e n - u s / d o w n l o a d / d e t a i l s . a s p x ? i d = 9 8 5).

Beginning with Microsoft Deployment Toolkit 2013 Update 2, the rich documentation was
changed to an online version. You will find launch.htm in the Documentation folder.
This launch.htm is pointing to the corresponding TechNet pages. Within the Microsoft
Deployment Toolkit documentation, there is a very detailed 56-page Troubleshooting
Reference (h t t p : / / t e c h n e t . m i c r o s o f t . c o m / e n - u s / l i b r a r y / d n 7 8 1 0 8 8 . a s p x) with
multiple examples of problems with AutoLogon, BIOS, database connections, partitioning,
PXE boot, and more and their solutions.

http://www.microsoft.com/en-us/download/details.aspx?id=985
http://www.microsoft.com/en-us/download/details.aspx?id=985
http://technet.microsoft.com/en-us/library/dn781088.aspx

Troubleshooting Deployment Logs

[202]

The MDT 2013 documentation can also be directly accessed at h t t p s : / / t e c h n e t . m i c r o s o
f t . c o m / e n - u s / l i b r a r y / d n 7 8 1 2 9 4 . a s p x.

More than 40 common problems are described in detail and a possible solution is given.

The following is a sample from the Troubleshooting Reference document:

Lost Network Connections

Problem: An installation may fail if it installs device drivers or alters device and
network configurations. These changes may result in a lapse in network
connectivity that causes the installation to fail.
Possible solution: Implement the ZTICacheUtil.vbs script to enable download
and execution for the installation. This script is designed to tweak the
advertisement to enable download and execute. The download uses Background
Intelligent Transfer Service (BITS) if the Configuration Manager distribution
point is Web-based Distributed Authoring and Versioning and BITS enabled. At
the same time, it modifies Configuration Manager to run the ZTICache.vbs
script first, which makes sure the program does not delete itself during the
deployment process.

It also includes a long table of error codes in numerical order and their description, but with
no further information/help/solution.

To help with this issue, Michael Niehaus wrote a document called Troubleshooting
Windows Deployments 2012-09-11.pdf in September 2012. Download from his blog at h t t p
: / / b l o g s . t e c h n e t . c o m / b / m n i e h a u s / a r c h i v e / 2 0 1 2 / 0 9 / 1 1 / t r o u b l e s h o o t i n g - w i n d

o w s - d e p l o y m e n t s - t a k e - 2 . a s p x. He also announces if there will be a newer version of
this document on his blog. Even though this document was originally written for MDT
2012, most parts are still valid for 2013.

This document contains an approximately 40-page table with all return codes, the script
that it is normally raising, the original error message, and troubleshooting suggestions.
Additionally, each of these errors are rated on two categories on scales from 0 to 10,
representing the Likelihood (where 0 stands for highly unlikely, up to 10 for very
common) and Quality is the error that is self-explanatory or make little sense without further
explanation (where 0 stands for useless message and 10 for nothing to add, all
explained).

https://technet.microsoft.com/en-us/library/dn781294.aspx
https://technet.microsoft.com/en-us/library/dn781294.aspx
http://blogs.technet.com/b/mniehaus/archive/2012/09/11/troubleshooting-windows-deployments-take-2.aspx
http://blogs.technet.com/b/mniehaus/archive/2012/09/11/troubleshooting-windows-deployments-take-2.aspx
http://blogs.technet.com/b/mniehaus/archive/2012/09/11/troubleshooting-windows-deployments-take-2.aspx

Troubleshooting Deployment Logs

[203]

Although Michael Niehaus gave me permission to use/copy his troubleshooting document
for this book, adding this table would not only blast the length of this chapter, but also not
be very readable/searchable. Having it in digital PDF format makes it easier to look the
return code very fast. So I'm adding only one sample to give you a teaser of what to expect
from this document.

The following is a sample from Michael Niehaus' document:

Return
code

Script Error
Message

Likely
?

Quality Troubleshooting Suggestions

5212 LiteTouch.wsf Welcome
wizard
failed or
was
cancelled

10 5 This is normal if you cancel the
LiteTouch welcome wizard (the
initial wizard that shows up in
Windows PE unless you set
SkipWizard=YES).
But it also might mean that the
wizard crashed.
You can't really tell the difference
though. (The wizard sets a variable
WizardComplete to Y when it
succeeds. The error means
WizardComplete wasn't set to Y.)
You might also see this message
show up in the log file for the next
task sequence executed on the
computer because of a left-over
BDD.log found on the computer in
the C:\MININT folder structure. This
is harmless, but will result in a
yellow summary screen at the end of
the deployment.

Common errors and frequent pitfalls
Beside these two mentioned good troubleshooting documents (I'm sure there are more
documents that are worth mentioning, but space is limited, and I want to share my findings
with you), there are some more common errors to add.

Troubleshooting Deployment Logs

[204]

Deployment stop during applying patches offline

During deployment task sequence at the Apply patches / Install Updates offline step,
installation is failing and you get error message and deployment stops.

Possible solution: Some patches/hotfixes cannot be applied offline due to pending file
actions. Identify the blocking patch by reviewing dism.log and CBS.log. Select/review
first patch with error, as other error messages could be after effects. After applying such a
pending action patch, following installations of patches can be prevented until the system is
booted once.

To avoid this scenario, a /PreventPending option was introduced to DISM.exe to skip the
installation of the package if the package or Windows image has pending online actions.
This option can only be used when servicing Windows 8, Windows Server 2012, or
Windows PE 4.0 and newer images. So there is no automatic prevention for Windows
7/Server 2008 R2 and older systems. If you identified the patch that caused the error, and
you need this patch integrated into your image before first boot up, you need to create a
patched reference image by running a full deployment, patching, Sysprep, and capture
sequence. Otherwise, just remove the patch from offline apply folder and move it to the
Windows Update step (use of WSUS recommended).

Dirty environment found during Windows Update before or after the application step

During deployment task sequence at the Windows Update step, you get the Dirty
Environment found error message after reboot/applying patches.

Possible solution: Your deployment was possibly broken by a multi-reboot update.
Microsoft is maintaining a regularly updated list (h t t p s : / / s u p p o r t . m i c r o s o f t . c o m / e n
- u s / k b / 2 8 9 4 5 1 8 /). Review your WindowsUpdate.log and CBS.log to identify the last
patches installed before reboot. If one of these patches is mentioned in the KB, exclude this
patch (it can only be done if controlled by WSUS) or apply it offline.

The Dirty Environment found error message during installation of software and the
HideShell=YES option used

During deployment task sequence at the Installing Software step, you get the Dirty
Environment found error message without seeing a reboot. The HideShell=YES option is
used.

https://support.microsoft.com/en-us/kb/2894518/
https://support.microsoft.com/en-us/kb/2894518/

Troubleshooting Deployment Logs

[205]

Possible solution: Your deployment was possibly broken by an installation routine that
tried to restart Explorer.exe. The HideShell=YES parameter is preventing UserInit
/Explorer.exe to start and presenting a desktop/Start menu. When the installation routine
is trying to restart the Shell by killing and restarting Explorer.exe, it is triggering Dirty
Environment as MDT does not expect a running Explorer.exe, execution of all startup
scripts, and so on. As a quick workaround in Windows 7, you can try HideShell=NO, but it
lacks the hidden desktop. For Windows 8 and 8.1, HideShell=YES is mandatory.
Therefore, in this case or when you don't want to show desktop or give the user possibility
to interact with the system before the installation is finished, you need to contact the vendor
of the software to request a fixed/updated version of its product. (Also,
restarting Explorer.exe is a quick and dirty solution and should be avoided.)

Your customized Windows PE image boots only from PXE/USB, but not from CD-ROM

Starting your Windows PE image by PXE/WDS server or from an USB drive works as
expected. However, on the same hardware, the same Windows PE image hangs on boot
when ISO is burned to a CD-R and started from a CD-ROM or DVD-ROM drive.

Possible solution: Your customized Windows PE image was broken by a faulty/conflicting
chipset or storage driver. Also, this is very often seen when using an outdated driver not
optimized for this OS version (for example, using a Windows 7 only driver on a Windows
PE 5.0 = Windows 8.1). If you are building a PE 4.0 or higher version, try to remove all
storage drivers as most of the actual hardware is already covered by Out-of-Box Drivers of
these newer WinPE. If you still need your storage driver, try to only integrate one version of
this driver (avoid integrating, for example, Intel RST 12.x and Intel RST 13.x, as they
possibly use the same SYS driver filenames and get in conflict).

Your customized Windows PE image boots from USB but then fails to find scripts and/or
content

Your customized Windows PE image boots from USB. As soon as it tries to access scripts,
you see an error message similar to Please reinsert the media (CD, DVD, or USB)
needed to complete the deployment. or A connection to the deployment
share xxxxxxxx could not be made. The drive letter X: is missing.

Troubleshooting Deployment Logs

[206]

Possible solution: This is very similar to PE 3.0, but in rare cases, is also seen on newer PE
versions when using an USB 3.0 drive in an USB 3.0-capable USB port without adding
suitable USB drivers to the PE image:

By default, only network drivers and mass storage drivers are included to PE. Even adding
the system class drivers selection will not help in all cases. This is caused by different
classification of USB 3.0 drivers depending on the vendor. So, even if you include the
drivers in your example WinPE selection profile directories, the drivers are not considered
by MDT as long as you do not select Include all drivers from the selection profile. Please
do not use/change the default All Drivers and Patches selection profile before building
your PE.

Be very careful with this setting, as it will try to include all the driver
classes pointed to by the selection profile, also drivers known to break
your PE due to incompatibility. Only add drivers that are absolutely
needed to access the network share and your local drives. Don't add your
example audio, modem, fingerprint, or similar drivers to your
WinPE image.

Troubleshooting Deployment Logs

[207]

After complete rebuild of Windows PE image, it is no longer loading correct driver or not
working

During the integration of new hardware for faster creation of Windows PE, you have
chosen only the default Optimize the boot image updating process option, maybe together
with the Compress the boot image contents to recover space used by removed or
modified content option. When transferring the content from test lab to productive share or
next time when selecting Completely regenerate the boot images, your Windows PE is no
longer working as expected and the drivers seem to malfunction.

Possible solution: When choosing the fast/optimized build process, only new files are added
to the image. If you integrate multiple drivers using the same name for the SYS driver file,
this will lead to problems, especially if you do not review the build warnings and ignore
them. Depending which driver (version) was included first, this scenario will work or lead
to unpredictable results.

To prevent this situation, you need to keep the following points in mind:

Avoid including the driver if the device is already supported by Out-of-Box
Drivers
Avoid including the same driver in different versions
Review not only build errors, but also build warnings carefully
Periodically choose the Completely regenerate the boot images option, as shown
in the following screenshot:

Troubleshooting Deployment Logs

[208]

Task sequence Windows Update step cannot communicate with Windows Update
Online due to the need of a proxy

When executing the task sequence Windows Update step, the update process comes back
with the 8024402F error. This is a very common error when the communication is blocked
by proxy.

Possible solution: You need to set a proxy before executing the Windows Update step. This
can easily be achieved by configuring the ProxyServer (REG_SZ), ProxyEnable
(REG_DWORD), and ProxyOverride (REG_SZ) registry values under
the HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings hive. Don't forget to clean up the three values after successful
patching/deployment. The Deployment Guys created a script back in the MDT 2010 times
that is still usable and valid. You'll find the set and cleanup scripts at h t t p : / / b l o g s . t e c h
n e t . c o m / b / d e p l o y m e n t g u y s / a r c h i v e / 2 0 1 0 / 1 1 / 3 0 / u s i n g - t h e - m d t - w i n d o w s - u p d a t

e - t a s k s - i n - i m a g e - e n g i n e e r i n g . a s p x.

Task sequence Windows Update step does not select minor updates, recommended
updates, and trusted publisher certs

When executing the task sequence Windows Update step, the update process does not
select minor updates, recommended updates, and trusted publisher certs.

Possible solution: You can force these updates by setting several regkeys under the
HKLM\SOFTWARE\Policies\Microsoft\Windows\WindowsUpdate\AU hive. You need
to activate AutoInstallMinorUpdates, IncludeRecommendedUpdates,
and AcceptTrustedPublisherCerts REG_DWORD.

http://blogs.technet.com/b/deploymentguys/archive/2010/11/30/using-the-mdt-windows-update-tasks-in-image-engineering.aspx
http://blogs.technet.com/b/deploymentguys/archive/2010/11/30/using-the-mdt-windows-update-tasks-in-image-engineering.aspx
http://blogs.technet.com/b/deploymentguys/archive/2010/11/30/using-the-mdt-windows-update-tasks-in-image-engineering.aspx

Troubleshooting Deployment Logs

[209]

The following is a possible sample LTIPrepareUpdates.wsf script:

<job id="LTIPrepareUpdates">
 <script language="VBScript" src="ZTIUtility.vbs"/>
 <script language="VBScript" src="ZTIDataAccess.vbs"/>
 <script language="VBScript">
Option Explicit
RunNewInstance

Const SCRIPTVERSION = "1.0"

Class LTIPrepareUpdates

 Dim iRetVal,objWso,strSyscall

 Private Sub Class_Initialize
 Set objWso = WScript.CreateObject("WScript.Shell")
 End Sub

 Function Main
 oLogging.CreateEntry "Start LTIPrepareUpdates.wsf v" &
 SCRIPTVERSION, LogTypeInfo

 ' Include Minor Updates
 oLogging.CreateEntry "Include Minor Updates", LogTypeInfo
 strSyscall = "cmd /c reg.exe add
 HKLM\SOFTWARE\Policies\Microsoft\Windows\WindowsUpdate\AU /v
 AutoInstallMinorUpdates /t REG_DWORD /d 1 /f"
 iRetVal = objWso.run(strSyscall,0,true)

 ' Include Recommended Updates
 oLogging.CreateEntry "Include Recommended Updates", LogTypeInfo
 strSyscall = "cmd /c reg.exe add
 HKLM\SOFTWARE\Policies\Microsoft\Windows\WindowsUpdate\AU /v
 IncludeRecommendedUpdates /t REG_DWORD /d 1 /f"
 iRetVal = objWso.run(strSyscall,0,true)

 ' Accept TrustedPublisher Certs
 oLogging.CreateEntry "Accept TrustedPublisher Certs", LogTypeInfo
 strSyscall = "cmd /c reg.exe add
 HKLM\SOFTWARE\Policies\Microsoft\Windows\WindowsUpdate /v
 AcceptTrustedPublisherCerts /t REG_DWORD /d 1 /f"
 iRetVal = objWso.run(strSyscall,0,true)

 End Function
End Class
 </script>
</job>

Troubleshooting Deployment Logs

[210]

DiskPart fails with error – The parameter is incorrect

When partitioning DiskPart fails with the DiskPart has encountered an error: The
parameter is incorrect error and deployment fails with 0x80004005:

Possible solution 1: This error can be caused by a faulty sector on drive. Run a complete
disk check, including sector check by executing chkdsk /r.

Possible solution 2: A very common mistake is to use the same label twice during disk
partitioning. Please check your DiskPart settings to have different labels for all partitions.

Getting a list of all available variables used in MDT / get all current values

When troubleshooting MDT issues, it is very helpful to get a list of all the available
variables used / get all current values.

Possible solution: To get a list of all the available variables, you can use a SQL query when
you connect your MDT environment to a SQL server. Click on the Roles subtab. Click on
New and select Details. All the available variables will now be listed.

If you did not link your MDT environment to a SQL database, or you need current values of
all the variables dumped, you need to use a small script. Michael Niehaus created two easy
versions of the script: one in VBscript and the other in PowerShell: h t t p : / / b l o g s . t e c h n e
t . c o m / b / m n i e h a u s / a r c h i v e / 2 0 1 0 / 0 4 / 2 6 / d u m p i n g - t a s k - s e q u e n c e - v a r i a b l e s . a s p

x.

The following is a sample DumpVar.wsf script:

<job id="ZTIConnect">
 <script language="VBScript" src="ZTIUtility.vbs"/>
 <script language="VBScript">

 Set env = CreateObject("Microsoft.SMS.TSEnvironment")
 For each v in env.GetVariables
 oLogging.CreateEntry v & " = " & env(v), LogTypeInfo
 Next

 </script>
</job>

http://blogs.technet.com/b/mniehaus/archive/2010/04/26/dumping-task-sequence-variables.aspx
http://blogs.technet.com/b/mniehaus/archive/2010/04/26/dumping-task-sequence-variables.aspx
http://blogs.technet.com/b/mniehaus/archive/2010/04/26/dumping-task-sequence-variables.aspx

Troubleshooting Deployment Logs

[211]

The following is a sampleDumpVar.ps1 script:

Determine where to do the logging
$tsenv = New-Object -COMObject Microsoft.SMS.TSEnvironment
$logPath = $tsenv.Value("_SMSTSLogPath")
$logFile = "$logPath\$($myInvocation.MyCommand).log"

Start the logging
Start-Transcript $logFile

Write all the variables and their values
$tsenv.GetVariables() | % { Write-Host "$_ = $($tsenv.Value($_))" }

Stop logging
Stop-Transcript

Further help
Now that you know how to locate more detailed error information in the logs, the following
are some locations that you can use to search to find solutions for your issues:

Ask the Core Team blogs on TechNet: h t t p : / / b l o g s . t e c h n e t . c o m / b / a s k c o r
e /

The Deployment Guys blogs on TechNet: h t t p : / / b l o g s . t e c h n e t . c o m / b / d e p
l o y m e n t g u y s /

The MDT Social Forums on TechNet: h t t p : / / s o c i a l . t e c h n e t . m i c r o s o f t . c o
m / F o r u m s / e n / m d t / t h r e a d s

The Microsoft Deployment Toolkit homepage on TechNet: h t t p s : / / t e c h n e t . m
i c r o s o f t . c o m / e n - u s / w i n d o w s / d n 4 7 5 7 4 1

User state migration tool logs
To know more about user state migration tool logs you can refer to Chapter 8, USMT –
The User State Migration Tool.

Windows 10
All the concepts shown in this chapter are still valid for Windows 10.
For errors during in-place upgrades, take a look at
C:\$Windows\~bt\sources\Panther.

http://blogs.technet.com/b/askcore/
http://blogs.technet.com/b/askcore/
http://blogs.technet.com/b/deploymentguys/
http://blogs.technet.com/b/deploymentguys/
http://social.technet.microsoft.com/Forums/en/mdt/threads
http://social.technet.microsoft.com/Forums/en/mdt/threads
https://technet.microsoft.com/en-us/windows/dn475741
https://technet.microsoft.com/en-us/windows/dn475741

Troubleshooting Deployment Logs

[212]

Summary
In this chapter, we gave you some insight and guidelines into troubleshooting, and helped
you gather up as much experience as possible. This includes experiences around standard
problems and specific problems and solutions, as well as techniques for getting to the root
cause, even for uncommon issues that no one has seen before. Now it is up to you to get
familiar with the logs and get trained in hunting down the root cause.

But most of us realize that “perfection” cannot be achieved. That means we will
need to do troubleshooting. So how do you do this effectively? Well, there are
really two ways:

Learn through your own experiences.
Learn through the experiences of others.

So which is the best? Neither, as you need to be able to do both. You want to
leverage the experience of others while also learning how to investigate your own
unique issues without depending on others to do it for you.
                    - Michael Niehaus in September 2012

However, don't become desperate with your problems; there is a very strong and powerful
community around MDT with lots of helpful people. Additionally, as it is a fully supported
product by Microsoft, you always have the possibility to open a case.

In the next chapter, we will discuss techniques for image validation in terms of quality gate,
bad drivers, poor performance, and tools to use for this validation.

10
Validating the Image

In the previous chapter, we discussed how to troubleshoot deployment logs and
deployment share operations:

We looked at tools to decipher the MDT log files and error codes
We discussed the locations of the log files and importance of the logs in general
We also looked at a few common mistakes or errors that one might encounter in a
standard MDT process

In this chapter, we will cover image validation scenarios:

We will talk to different tools that can be used to validate the image
We will check for bad drivers and poor performance and articulate the cost of
purchasing lower-end hardware to the management
We will determine the operational and performance costs of anti-malware,
antivirus, and other security auditing software

While it is all well and good to have a universal hardware-agnostic image deployed by
the task sequence that lays down applications based on input criteria, how do we know that
once the image reaches the end user, it will perform well? Do we know that we have solid
Windows Hardware Quality Labs (WHQL) drivers that don't have memory leaks or Blue
Screen of Death (BSOD) scenarios in them? How do we know the antivirus and security
software suite that we've chosen (or had mandated by the security team) isn't going to cause
significant performance degradation; and if it did cause degradation, could we articulate it
to the decision makers or vendor?

With the tools discussed in this chapter, you will be able to perform these tasks. First, we'll
look at a built-in utility in Windows. Then we'll get into some free tools in the Windows
ADK, namely, the Windows Performance Toolkit (WPT), Windows Assessment Toolkit
(WAT), and the infrastructure-requiring Windows Assessment Services (WAS).

Validating the Image

[214]

Driver Verifier
Driver Verifier (or verifier.exe) has been native to Windows since Vista and can be used
to test particular drivers in Windows or test the entire image's hardware drivers for stability
tests. It even inserts debugging information into the memory dumps that are generated by
its tests to help pinpoint the root cause of a particular driver problem:

Driver Verifier is launched by simply typing verifier into an elevated1.
command prompt:

Validating the Image

[215]

Testing a particular driver is as simple as selecting Next at Create standard2.
settings and then setting the radio button to Select driver names from a list, as
shown in the following screenshot:

Validating the Image

[216]

Then pick the driver(s) you want to test (in this case, storport.sys):3.

Clicking on Finish results in a window indicating a reboot is needed, after which,4.
the Verifier executes tests against the driver for typical problems in hardware
drivers.

If a dump is generated, !verifier in Windows Debugger (WinDbg) would be a starting
point for debugging. Defrag Tools Episodes 16, 17, and 18 on Channel9.msdn.com cover
Verifier data results extensively and get into debugging and code, which is beyond the
scope of this work (h t t p : / / c h a n n e l 9 . m s d n . c o m / S h o w s / D e f r a g - T o o l s / D e f r a g - T o o l s
- 1 6 - W i n D b g - D r i v e r - V e r i f i e r).

http://channel9.msdn.com/Shows/Defrag-Tools/Defrag-Tools-16-WinDbg-Driver-Verifier
http://channel9.msdn.com/Shows/Defrag-Tools/Defrag-Tools-16-WinDbg-Driver-Verifier

Validating the Image

[217]

Windows Performance Toolkit
WPT is a deep troubleshooting toolkit used to triage many scenarios in the Windows
ecosystem. We can use it to troubleshoot power consumption problems, high CPU usage
scenarios, heap leak analysis, and many other scenarios. This toolkit is covered in Clint
Huffman's Windows Performance Analysis Field Guide, so I will not delve deeper into it
here. Suffice it to say, the toolkit has a steep learning curve and requires a good knowledge
of the Windows kernel and system architecture.

Michael Milirud gave a talk in 2011 in California on this subject and is on Channel 9 at h t t p
: / / c h a n n e l 9 . m s d n . c o m / e v e n t s / B U I L D / B U I L D 2 0 1 1 / H W - 5 9 T.

Windows Assessment Toolkit
WAT is essentially a WPT wizard. We can utilize the built-in templates to collect and
measure a variety of performance test cases. It can even be used against domain-joined
machines. It is unfortunate that the tool set isn't as documented as one might have hoped.
Many of the links in the tool set for More Information or Updates simply point back to the
same URL that you downloaded the tool set from:

http://channel9.msdn.com/events/BUILD/BUILD2011/HW-59T
http://channel9.msdn.com/events/BUILD/BUILD2011/HW-59T

Validating the Image

[218]

One of the interesting things with this tool set is that one can select individual assessments
and create a custom package for troubleshooting purposes, as well as benchmarking:

Validating the Image

[219]

Many of these tests require ETW providers from a particular version of Windows or higher.
Therefore, if you are analyzing Windows 7, for instance, some of the tests won't work and
will end in error. After the engineer has selected a set of individual assessments to run, the
series of tests can be executed immediately or made into a container for easy portability to
another system to be run by another person (say, for an end user's workstation having
issues). The results of the test case can be analyzed back at the engineer's workstation after
the end user captures the test data.

Windows Assessment Toolkit example 1 –
verifying drivers
The first example that I'll provide on utilizing the WAT (also known as Windows
Assessment Console) is to validate that the drivers provided to the Windows installation
are good. It will also serve as a walkthrough of the UI in general:

Launching the Windows Assessment Console results in the following view. Click1.
on Run Individual Assessments, and instead of picking an out-of-box test, click
the Configure button in the bottom-right corner of the UI:

Validating the Image

[220]

Once you've clicked Configure, the UI changes a little to give us options for job2.
settings and assessments that we can add to the job. The pane on the right gives
us a good description view of what we've selected on the left. A thing I'd
recommend doing for all my tests is to check the Stop this job if an error occurs
box as in this scenario, we are going to presumably be running this on a user's
computer. We don't want to totally destroy it. We want the ability to restore the
service if needed.

Also, if you like, keep the temporary files around so you can learn what the
tool set is doing and have records. If you don't do this, you'll have
only report data, but no depth log data to go through if the tool set
report doesn't go as deep as you'd like:

Typically, we see which operating system at a minimum is supported for the
test case at hand in the display. In this case, we are okay to run this on
Windows 7 and higher versions as no entry is listed.

Validating the Image

[221]

We're perfectly fine to accept defaults in this area (and for most of the test
runs, this is the case as well, not just for Driver Verifier).

Then click the Package… button in the bottom-right corner.

Give the custom job a friendly name. In this case, Driver Verifier seems
apropos:

Next, you'll be prompted to select a package path and results path. The
results path can be left as a default. For package path, I tend to place it on
Desktop of the user I'm currently logged on as. Then click on OK:

Validating the Image

[222]

Now you get a Windows Explorer window in the package directory. Simply
go up one directory and give the Package folder to the end user. They
execute runjob, or you can call it as psexec or any other method for
elevation if the end user doesn't have rights.

You can even run this task on a build where you've been given new video or
NIC drivers and want to validate they are okay.

So, you run runjob and then get the following window. Simply click Run
job on this computer to run the job:

Validating the Image

[223]

Once the job is done executing, you get an UI pop up, and the package
directory has the results as well, for easy import on the Windows
Assessment Console on another workstation:

I personally was dissatisfied with the Driver Verifier run. Apparently, it doesn't reboot the
box to perform full tests in an automated fashion anymore. However, it did perform a
sanity check on them in a simple format.

Validating the Image

[224]

The next test I'd like to highlight is browsing. It's the same drill, but instead of Driver
Verifier, select Internet Explorer browsing performance.

When you run runjob, you are told not to interact with the host during
testing (it's essentially running a scripted macro, so hands off)!

Validating the Image

[225]

To perform browsing performance test, follow these steps:

The scripted tests are fairly amusing (the IE team had some fun here, especially1.
with the speed reading test, also known as Wheel of Fortune):

Validating the Image

[226]

When the test is over, we get a scorecard of the test scenarios and how well the2.
image and hardware did:

It should be a simple exercise to compare different models of hardware or builds with this
tool at this point.

Windows Assessment Services
WAS will seem familiar if you've looked at the WAT. There are a few differences, though,
that need to be understood. First, the WAS setup requires a SQL backend. It also requires
more disk space, and cannot run in a domain-joined environment.

Validating the Image

[227]

Installation is a fairly straightforward affair. Check the boxes as listed (the default):

Note here that if you install WAS (really, if you run the ADK setup) on a domain controller,
the Windows Assessment Services checkbox disappears. It cannot be installed in this
scenario.

Validating the Image

[228]

Running the WAS console post-install results in a prompt to initialize the server:

Part of the initialization is to create Win PE boot images, much like MDT shares have. You
can observe this happening in the UI. Much like MDT, it is important to provide
appropriate drivers if you intend to use the Win PE WIMs to do bare metal testing. In my
example, these are not necessary:

Validating the Image

[229]

After the Win PE images are created, scripts are set up, and SQL DB is initialized, you
receive the following prompt. It should take a few minutes to complete all this:

The console is a simple UI, which in places is not terribly intuitive. For example, the default
screen gives you no real guide on how to get started without referring to the documentation
and is not usable out-of-box, without following the procedures in these documents:

Validating the Image

[230]

The first action to get this thing going is to connect your victim machines that you want to
test up to the test harness in the console. This is a fairly straightforward operation. On the
server, a share called relax was created and a user account called localadmin (which,
despite the name, is not an admin of the WAS server; in fact, it has no group memberships
when created). The password of this account is Pass.word.

The account is a local account on the WAS server. Changing the rights and trying to make
this work in a domain-joined environment is a pretty daunting task and beyond the scope
of this book (and unsupported by Microsoft as well):

Validating the Image

[231]

Note the lack of any group memberships. The account is really a sort of orphaned execution
account:

Validating the Image

[232]

Armed with the local account knowledge, we can then go to each of our target hosts and
perform an elevated CMD prompt to NET USE the relax share using the local account of
the WAS server. Then run the completedeployment.cmd file to make the host a victim of
the relax directory scripts and WAS engine:

Once the script runs, it prompts for a Y or N to become a victim, enable autologon, and so
on. Then it prompts for a group name if you wanted to group your machines. The default
option is fine here and can be changed later if need be.

Validating the Image

[233]

Once the script runs, a refresh of the console will reveal the victim is now registered with
the WAS server and is a valid target for actions:

Validating the Image

[234]

After we add an asset to the inventory, we are prompted for our next step, which is
importing a WIM as our image. This step is actually discretionary, based on whether we are
going to do bare metal testing or not:

Validating the Image

[235]

Here we will give the WAS server our WIM file, in case we want to deploy our image over
Win PE in an automated test case fashion. In this walk-through, we don't need to do this,
we're hooking up the existing hardware models or VMs to the WAS server instead.
Therefore, this is optional, but it looks similar to the following screenshot if we give it an
image (which must be placed in the C:\relax\images directory on the WAS server:

Double check the image to make sure that it's the correct architecture and version of
ntoskrnl as a way to validate that you imported the correct one (using a WIM from your
capture directory is completely appropriate here):

Validating the Image

[236]

As we create our first project, we should give it a good logical name. Note that many tests
can be run under a project. In this case, I am going to name mine Windows 7 Image Test.
I will be using the same base WIM under different hardware conditions to test and confirm
my image is performant in differing scenarios:

Validating the Image

[237]

Next, you will add the victims (here, they are named assets) to the project. You can add
additional victims to the project later without issue:

Validating the Image

[238]

Next we are prompted to add an image to our project. Again this is an optional step, but
since I added one to the WAS server, I'll also add it here:

Validating the Image

[239]

Note that as we create our job, we are connected to the Windows 7 Image Test project, and
the server is actually running on port 8000 on the WAS host:

Now that we've created our project, let's create a job. The first job I'll create is a disk test
(specifically, file operations). I'll name it Hammer Disks, as shown in the following image:

Validating the Image

[240]

Now that there is a job wizard running to create a job named Hammer Disks, I need to
specify the type of job (custom) and then give the job some victims to play with:

Validating the Image

[241]

So I will check the box for all of them and click on Finish. After the barebones job is created,
I will specify to continue on error and also to process results on the server (assuming the
WAS machine is a beefy box here; if it isn't, processing locally may be a valid option):

Then, I will pick the File Handling task. Note that you can't tell this job will run on
Windows 7 until after you add it to the job. Why? I don't know. After this, simply click
on Run, as shown in the following screenshot:

Validating the Image

[242]

So, we see here the job is running, double-clicking on the job shows us the instances (per
machine tests being run):

Note there are two actions. The first is to set up the environment and the second is to run
the actual File Handling task, as shown in the following screenshot:

Validating the Image

[243]

On our victims, the logged on instance shows a minimized command prompt running. This
is the script engine executing the file handling test actions:

Note that on my host, I can see that the SSD is getting a bit of activity. All four victims are
housed on the same SSD here:

Validating the Image

[244]

After the tasks finish, we can analyze the results by selecting the View results button:

This rolls back to a job view versus a victim/target view, as shown in the following
screenshot:

Validating the Image

[245]

In the view, we can see the hardware of each host defined, along with the results in a graph
format for easy comparison of results:

Now I'm going to move the VHDX files on my victims to different storage. This is an easy
task in Hyper-V, where I simply select an individual VM and select Move and then only
move the VHDX to a new drive:

Validating the Image

[246]

Now that I've rearranged the victim storage locations, I will rerun my test job:

We can also see that one machine has finished (the one I left on SSD, naturally):

Validating the Image

[247]

One is on much slower storage than the other three, and the test actually semi-times out
here. We get a notice in the console that the test case is running long on this victim. I gave it
some more time (simply waited) and the test finally completed:

Now I am viewing the results, but only for this job; if I wanted to view the results for both
runs of the job, I would just click on Add results and add the other test run:

Validating the Image

[248]

Now we can compare pure SSD storage versus a mixture of SSD, RAID 0, and RAID 1
storage, as shown in the following image:

Validating the Image

[249]

Considering what WAS brings to the table in terms of test cases, it's more robust than WAT;
but again, it requires infrastructure:

Windows 10
All the concepts shown in this chapter are still valid for Windows 10
image creation. Use the Windows 10 ADK according to your version of OS
(v1507, v1511, v1607, and so on).
While the plan is definitely to enforce the new driver-signing model
(signed by Microsoft directly), current builds (1507 and 1511) allow the
legacy driver-signing model by default.
This was to work around upgrade challenges that will be removed in the
Redstone timeframe.
Moving forward, the drivers will continue to be migrated and loaded
successfully (even if they are not signed properly), but all new device
drivers that are installed will require the new model.

Validating the Image

[250]

Summary
In conclusion, there are several free tools available to the image builder to test for driver
issues, boot time performance, browser performance, and many other scenarios. Therefore,
you should not rely blindly on using your image on new hardware from an OEM, try your
image and security stack with their hardware, and then test it out!

In our next chapter, we will examine UserExit scripts and some add-on packages from
CodePlex that web-enable MDT to make it more of a self-service portal. We'll also take a
look at the data configuration options available to us for advanced configuration.

11
Database, UserExit Scripts, and

Web Services
In the previous chapter, we have learned techniques and tools to validate the image in
terms of quality, performance, missing drivers, and finalization. We have also shown ways
to automate these tests.

In this chapter, we will show the ability to web front-end the MDT implementation as well
as how to utilize the configuration database capabilities of MDT for deeper deployment
options. Also, we'll discuss UserExit scripts. We'll get into the whys and hows, what options
are available, and when to use these UserExit scripts, by covering the following types:

Database and the flexibility it brings
Custom UserExit scripts
Web services available for use

MDT Configuration Database step by step
The entire purpose of the MDT Configuration Database is to make your deployments more
dynamic and your CustomSettings.ini less complex. As dynamic has many different
meanings, let's define dynamic a little bit. When using CustomSettings.ini for
configuration and selections of task sequence, you need to hardcode everything. And every
change of CustomSettings.ini means in effect rebuilding your media or, if using PXE
and share, updating all shares.

If you are using MDT just to build your golden image or in a small test lab scenario, this
disadvantage can be small enough. But as soon as you think about productive use/rollout,
you should think twice before using MDT without the SQL database.

Database, UserExit Scripts, and Web Services

[252]

With the MDT database you can apply different customizations for different groups of
computers based on the computer's hardware, such as the MAC address, its physical
location, or manufacturer and model.

Furthermore, a configuration database gives you the ability to assign settings based on the
MAC address, universally unique identifier (UUID), serial number, computer
manufacturer and model, default gateway, and grouping, in a very easy way.

Sure, coding all this into CustomSettings.ini is also possible, but you need to be very
experienced in writing conditions in CustomSettings.ini and it will get very hard to
read/understand for people not directly involved in coding.

We will give you an overview of how to set up your MDT environment for use with SQL
and an introduction to the Computers / Roles / Locations / Make and Model options used
in MDT.

Supported versions of SQL Server
MDT is, in terms of SQL version, very SQL agnostic. Support statements about which
version of SQL server can be used are more like not tested, than like not working. For test lab
installations, it is OK to use the newest SQL version, but for a production environment,
please stay with the recommended versions to get full support.

Also, MDT does not incorporate a huge amount of data stored inside the database, so in
many cases, like test lab and small productive environments, the limitations of SQL Server
Express will not hurt us. If you have a standard or enterprise SQL server available in your
environment you can use them; if not you can use, for example, the SQL Server Express
2012 included in the ADK.

Official supported SQL Server versions in MDT 2013 include:

SQL Server 2008 R2 SP1 CU6 and newer
SQL Server 2012 SP1 and newer
SQL Server 2012 R2 and newer
The corresponding Express versions

Database, UserExit Scripts, and Web Services

[253]

Even so, MDT supports lower versions of SP/CU; we recommend to upgrade to the latest
SP/CU of the SQL Server available.

Installing SQL Server (Express) is very straightforward and there are many tutorials
available on how to set up such a SQL Server Express. Please install SQL Server (Express)
and install all needed Service Packs/Cumulative Updates. MDT does not need high
performance of SQL, no special tuning of worker threads, or any special memory
configuration of SQL, especially in test lab/small environments. So if unsure, leave SQL out-
of-the-box. If you know what you are doing, feel free to tune your SQL Server. Afterwards,
installing some basic configuration for communicating with SQL is needed. We will show
how to configure SQL for use with MDT.

Configuring the SQL Server
To be able to communicate with MDT clients, it is important to open the needed firewall
ports, enable the SQL Browser service and enable named pipe authentication. We will show
how to do this:

First of all we need to configure the integrated Windows Firewall (if enabled). In1.
a simple approach we can enable all communication of sqlservr.exe and
sqlbrowser.exe.
Go to Control Panel | System and Security | Windows Firewall2.

Database, UserExit Scripts, and Web Services

[254]

Select Allow an app or feature through Windows Firewall:3.

If Allow another app… is greyed out, please click on Change settings to enable4.
editing:

Database, UserExit Scripts, and Web Services

[255]

Select Allow another app…:5.

Database, UserExit Scripts, and Web Services

[256]

Click on Browse…, locate your sqlservr.exe (if you installed SQL Express 20126.
from the ADK package, you will find it under C:\Program Files
(x86)\Microsoft SQL Server\MSSQL11.ADK\MSSQL\Binn\) and click Open:

Database, UserExit Scripts, and Web Services

[257]

Database, UserExit Scripts, and Web Services

[258]

A new entry named SQL Server Windows NT will show up in the list. Select it7.
and press Add:

Database, UserExit Scripts, and Web Services

[259]

Repeat the steps beginning with Allow another app… to add sqlbrowser.exe8.
(if you installed SQL Express 2012 from the ADK package, you will find it under
C:\Program Files (x86)\Microsoft SQL Server\90\Shared\). It will be
named SQL Browser Service EXE:

Database, UserExit Scripts, and Web Services

[260]

Allow communication in private networks. Additionally, you need to enable file9.
sharing for using named pipes authentication.

If you need a more sophisticated / reduced to the minimum ports solution,
you need to open ports UDP 1434 and TCP 1434 for SQL and port TCP 445
for SMB/named pipe. You can use an administrative command prompt to
achieve this:

 netsh advfirewall firewall add rule name="SQL Browser" dir=in
 action=allow protocol=udp localport=1434 profile=private
 netsh advfirewall firewall add rule name="SQL Server" dir=in
 action=allow protocol=tcp localport=1433 profile=private
 netsh advfirewall firewall add rule name="SMB" dir=in action=allow
 protocol=tcp localport=445 profile=private

If your computer is domain-joined, you need to replace
profile=private with profile=domain.

Next we need to activate the named pipes protocol. Open SQL Server10.
Configuration Manager and select SQL Server Network Configuration.
Select Named Pipes, right click and select Enable:11.

Database, UserExit Scripts, and Web Services

[261]

Unfortunately, Windows PE does not have the ability to use integrated
security with TCP/IP sockets. If you want to use an Active Directory (AD)
or Windows username and password to connect to the database, you must
be using named pipes. You are connecting to a file share on the SQL
Server and passing your credentials / authentication to SQL.
If you use TCP/IP sockets you will need a SQL user account and
password, which we do not recommend.

Accept the warning that you need to restart the SQL Server:12.

Go to SQL Server Services and select SQL Server Browser, right click and select13.
Properties:

Database, UserExit Scripts, and Web Services

[262]

Go to the Service tab, select Start Mode from the drop-down list and select14.
Automatic. Press Apply/OK:

Database, UserExit Scripts, and Web Services

[263]

Now right-click on SQL Server Browser and select Start:15.

As a final step restart SQL Server (ADK):16.

Congratulations, your SQL Server is now set up for its first communication with MDT and
we can go on with the creation of the database.

Database, UserExit Scripts, and Web Services

[264]

Creating a MDT database
Creating a MDT database is really simple and fast, as you will see in the following
instructions, which can be used with the older MDT 2012. If you are upgrading your MDT,
the database will be automatically upgraded on first connect.

Sometimes some manual steps are needed. Always look at the MDT
release notes. For MDT 2013 you will find them at: h t t p s : / / t e c h n e t . m i
c r o s o f t . c o m / l i b r a r y / d n 7 8 1 2 7 7 . a s p x.
MDT 2013 includes a change to the database to extend the application
name field from 50 to 255 characters. A new database in MDT 2013 will
use the 255 character field length. An existing database upgraded from
MDT 2012 Update 1 to MDT 2013 will retain the 50 character field length.
Workaround: After upgrading to MDT 2013, manually alter the database
table with the following SQL commands:
ALTER TABLE [dbo].[Settings_Applications]
ALTER COLUMN [Applications] [nvarchar] (256)

The following are the steps to create a MDT database:

Open the Deployment Workbench and expand your Deployment Shares.1.

https://technet.microsoft.com/library/dn781277.aspx
https://technet.microsoft.com/library/dn781277.aspx

Database, UserExit Scripts, and Web Services

[265]

Expand Advanced Configuration, right click on Database, and select New2.
Database:

Enter the (FQDN) hostname of the server where you installed SQL Server3.
(Express). Don't use localhost if you installed it locally; even so MDT will
throw no error, as the PE environment will need to resolve the server name and
cannot resolve the localhost correctly.

Enter the name of the instance. (Leave it empty for the default instance of the
full SQL Server, type SQLExpress for the default instance of the Express SQL
Server. In my case it is ADK, as I used SQL Express installation from the ADK
setup.)

Choose Named Pipes under Network Library if not already selected.

Database, UserExit Scripts, and Web Services

[266]

If the information is correct and SQL Browser can be contacted, the wizard
will continue. Otherwise, you will get an error message and will need to
resolve connection problems:

Database, UserExit Scripts, and Web Services

[267]

Select Create a new database and give your MDT database a name:4.

Use a neutral name. Don't use MDT2013, even if it may sound conducive.
When you later upgrade your MDT installation, the name of your
database will not change and so you could end up in a strange sounding
combination of, for example, MDT 2016 accessing a MDT2013 database.
Changing the database name requires a lot of manual steps, so it is better
to choose MDT or MDT_CompanyName or MDT_Testlab, and so on.

Database, UserExit Scripts, and Web Services

[268]

Next you need to specify the share name on the SQL Server for named pipes5.
authentication. Please don't use the example DeploymentShare$, as it will lead to
several problems when using SQL together with MEDIA install. If you do use
DeploymenShare$ and use MEDIA based install, in some rare cases the drive
letter of this network mapping could be in front of the drive letter of the USB
media. In this case, MDT would take configuration from the network and
produce strange or paradox behavior, like drawing all content from the network.

Create a unique share, for example, NamedPipes$. The user only needs the
Read rights for this folder.

Review the summary and click on Next:

Database, UserExit Scripts, and Web Services

[269]

If everything completed successfully, click Finish:6.

Database, UserExit Scripts, and Web Services

[270]

This is what the Database page should look like after successfully completing the7.
wizard:

Configuring permission of the MDT database
For configuration of user accounts/user permissions, SQL Management Studio is needed.
When using a SQL Express Server version, it is not included by default and needs to be
downloaded/installed separately. For SQL Server 2012 from ADK, you can find it under h t
t p s : / / w w w . m i c r o s o f t . c o m / e n - U S / d o w n l o a d / d e t a i l s . a s p x ? i d = 2 9 0 6 2.

https://www.microsoft.com/en-US/download/details.aspx?id=29062
https://www.microsoft.com/en-US/download/details.aspx?id=29062

Database, UserExit Scripts, and Web Services

[271]

When executing SQLManagementStudio_x86_ENU.exe or when running the SQL Server
Installation Center of full server, select Add Features to existing SQL installation and select
the following features:

Database, UserExit Scripts, and Web Services

[272]

Installing Management Studio will take some time and will very likely require a restart.

The following are the steps for configuring permission of the MDT database:

Open the SQL Management Studio, log in to your SQL Server, open Databases |1.
MDT | Security | Users. Right click and select New User…:

Database, UserExit Scripts, and Web Services

[273]

Switch to User type – Windows user:2.

Browse or type in User name to add. Use the same user as connecting to3.
DeploymentShare$:

Database, UserExit Scripts, and Web Services

[274]

Select Membership and check the roles. For InstallUser, read permission is4.
adequate. Don't grant too many rights:

Press OK to accept the configuration changes.5.

If you are sharing SQL Server with other applications and want a fine
granular permission control also for your MDT Deployment Workbench
admin, you will need sysadmin or db_creator rights for the first
creation of DB; later on, db_ddladmin, db_datawriter and
db_datareader permission is enough for administration of the MDT
database. For a more detailed overview of permissions, take a look at h t t p
s : / / t e c h n e t . m i c r o s o f t . c o m / l i b r a r y / d n 7 5 9 4 1 5 . a s p x # A s s i g n i n g
t h e A p p r o p r i a t e P e r m i s s i o n s t o t h e M D T D B

After configuring and setting permissions to the database we have prepared everything for
using the database.

https://technet.microsoft.com/library/dn759415.aspx#AssigningtheAppropriatePermissionstotheMDTDB
https://technet.microsoft.com/library/dn759415.aspx#AssigningtheAppropriatePermissionstotheMDTDB
https://technet.microsoft.com/library/dn759415.aspx#AssigningtheAppropriatePermissionstotheMDTDB

Database, UserExit Scripts, and Web Services

[275]

Using the MDT database
The MDT database can handle different types of objects:

Computers: Identified by Asset tag, UUID, serial number and/or MAC address.
You need to specify at least one.
Roles: Identified by role name.
Locations: Identified by IPv4 default gateway(s) (IPv6 is currently not
supported).
Make and Model: Identified by computer manufacturer and computer model as
represented by WMI query to CSProduct. (In the UserExit script section, we will
discuss a mapping/trunking of names.)

Now, before we can use the MDT database to deploy our image based on the properties,
intended roles, locations, or make/model of our target computers, we need to configure our
CustomSettings.ini file so that it can use settings we choose to store in this database. To
archive this, right-click on Database in the Deployment Workbench and select Configure
Database Rules:

Database, UserExit Scripts, and Web Services

[276]

This launches the Configure DB Wizard, which is a bit misleading because it does not
configure the database, but instead configures your CustomSettings.ini file by adding
additional rules to it so that MDT can query the database during deployment.

Note that for each item selected in this wizard, MDT will use a script to
perform the corresponding database query. That means the more items
you select, the more queries will be performed and the longer it will take
to perform the deployment. Also, you strain your SQL Server a bit more
with each query.

In the first screen, Computer Options, you need to select which categories/information you
want to store below your computer object:

Database, UserExit Scripts, and Web Services

[277]

The following options are available:

Object specific settings: You have the possibility to define one or more MDT
values. All MDT values can be used, even if they are not computer-specific. Better
wording would be setting/value defined specific to this computer.
Assigned roles: You have the possibility to define one or more additional roles
which should be included.
Applications: You can specify MDT application packages which should be
installed.
SMS packages: (Only usable with ConfigMgr.) You can specify ConfigMgr
packages which should be installed. Deselect if you did not integrate MDT into
ConfigMgr.
Assigned administrators: You can specify one or more administrators which
should be created.

In the second screen, Location Options, you have all previous five options and additionally,
an option to query the default gateway to resolve to location name. You should leave this
option enabled:

Database, UserExit Scripts, and Web Services

[278]

The third screen, Make/Model Options, has the same five options as computer objects:

Database, UserExit Scripts, and Web Services

[279]

The last configuration screen, Role Options, has only four options. It is missing the query
role option, as you cannot specify inherited/nested roles:

After going through all four configuration pages you get a Summary page, Progress page,
and finally, a Confirmation page.

Database, UserExit Scripts, and Web Services

[280]

When selecting all available options this will result in 20 SQL queries/rules in
CustomSettings.ini, as shown in the following screenshot:

Now it is safe to modify the CustomSettings.ini, change the order/priority of rules,
and/or modify rules, for example, using CustomMake and CustomModel variables for
queries (see the UserExit script section). But be careful. Every time you execute the
Configure DB Wizard again it will overwrite your changes.

Database, UserExit Scripts, and Web Services

[281]

Applying customizations to individual computers
If you wanted to apply settings to specific computers in your environment, you need to
create a Computer record in your MDT database and specify one or more of the following
to uniquely identify the computers in question:

Asset tag
UUID
Serial number
MAC address

To create a Computer record in your MDT database, follow these steps:

First go to your workbench, expand the Deployment Shares, and navigate to and1.
expand Database in the navigation pane:

Database, UserExit Scripts, and Web Services

[282]

Right-click on Computer and select New, and you will see the following2.
Properties window (without values):

Database, UserExit Scripts, and Web Services

[283]

The Description is only for database usage; hostname needs to be specified as the
OSDComputerName variable. You need to specify a minimum of one of the four required
fields. All letters needs to be upper case notation. You can obtain this information from your
target computer's BIOS.

Enter your choice of unique identifier along with a description of this particular computer
in the Identity tab. MAC addresses must be separated by colons and UUIDs must be
entered in the exact format.

Using a MAC address works well unless the target computer has two NICs, in which case it
is safer to identify the computer using one of the other three unique identifiers.

UUIDs are an octet string of 16 octets (128 bits). The 16 octets can be
interpreted as an unsigned integer encoding, and the resulting integer
value is more commonly represented with hexadecimal digits, with a
hyphen separating the different fields within the 16-octet UUID.
So, UUID is a set of 32 hexadecimal characters (36 if you count the dashes),
noted as 12345678-1234-1234-1234-123456789012.
Be careful: some early BIOS implementations set the UUID to all
(0000–000…).

The customization settings are entered in the Details tab. Any customization settings you
enter here will be applied at the time of deployment to your specified target computer.

Database, UserExit Scripts, and Web Services

[284]

The computer name needs to be inserted into OSDComputerName (the old value
ComputerName is now obsolete), as shown in the following screenshot:

Database, UserExit Scripts, and Web Services

[285]

The deployment workbench does not provide an easy way to show all the values set on all
computer objects in one view. You need to open each object individually.

Computer settings should be reduced to a minimum and be unique. More often/global used
values are better stored in roles objects.

Use the Role tab to assign one or more roles assigned to this individual computer.

Editing all this information in GUI can be time consuming and prone to error. But you can
use PowerShell to bulk import, for example, a prepared CSV file.

If you have, for example, a CSV file named bulkimport.csv with four columns
(Description, MAC, Name, Roles), you can import it with the following easy code:

Import-Module -name .\MDTDB.psm1
Connect-MDTDatabase -sqlServer MDTSERVER.testlab.local –instance
 ADK -database MDT
$computers = Import-Csv .\bulkimport.csv
For ($i=1; $i -le $computers.count; $i++)
{
New-MDTComputer -macAddress $computers[$i-1].mac –description
 $computers[$i-1].description -settings @{
OSDComputerName=$computers[$i-1].name;
}
Get-MDTComputer -macAddress $computers[$i-1].mac ? Set-
 MDTComputerRole -roles
$computers[$i-1].roles
}

Other examples, like importing it directly from AD or from another asset DB are possible,
depending on the source of your data.

Database, UserExit Scripts, and Web Services

[286]

Applying customizations to roles
If you wanted to apply settings to specific groups in your environment, you need to create a
Role record in your MDT database and specify a unique role name.

Go to your workbench, expand the Deployment Shares, and navigate to and1.
expand Database in the navigation pane:

Database, UserExit Scripts, and Web Services

[287]

Right-click on Roles and select New, and you will see the following Properties2.
window (without the Role name):

Enter a unique role name. GUI will not check if the name is unique. Spaces are allowed, but
we recommend to exchange them with an underscore character.

The customization settings are entered in the Details tab. Any customization settings you
enter here will be applied at the time of deployment if the role is targeted to your specific
computer.

Database, UserExit Scripts, and Web Services

[288]

You can create roles for global settings (for example, Global), country-based settings (for
example, United_Kingdom, Germany, USA, or en-GB, de-DE, en-US), department-specific
settings (for example, HR, Finance), computer role-specific settings (for example, Laptop,
Desktop, Workstation), and many more.

You can also add packages to these specific roles (for example, add a VPN package to
the Laptop role).

Try to avoid defining the same setting with different values in two or more roles which can
be assigned at the same time, as the order of role settings processing cannot be influenced
easily and settings, once set, are no longer overwritten by the MDT environment.

Applying customizations to locations
If you wanted to apply settings to specific locations in your environment, you need to create
a Location record in your MDT database and specify a unique location name and one or
more unique IPv4 gateways for each location.

Go to your workbench, expand the Deployment Shares and navigate to and1.
expand Database in the navigation pane:

Database, UserExit Scripts, and Web Services

[289]

Right-click on Locations and select New, and you will see the following2.
Properties window (without the values):

Enter a unique location name. GUI will not check if the name is unique. Spaces are allowed,
but we recommend to exchange them with an underscore character.

Then click on Add and enter a unique IPv4 gateway address. If one location has multiple
gateways, repeat this step accordingly. GUI will not check if the IP is unique.

The customization settings are entered in the Details tab. Any customization settings you
enter here will be applied at the time of deployment if the default gateway of your
computer during deployment matches one of the default gateways.

Database, UserExit Scripts, and Web Services

[290]

As already mentioned in individual computer settings, displaying all settings in MDT GUI
is not very comfortable. It is better to think about creating roles and assigning roles to your
locations.

Applying customizations to computers based on their
manufacturer and model
If you wanted to apply settings targeted at a particular manufacturer and/or model of
computer, you need to create a Make and Model record in the MDT database and provide
the manufacturer and model name of the targeted computers:

Go to your workbench, expand the Deployment Shares, and navigate to and1.
expand Database in the navigation pane:

Database, UserExit Scripts, and Web Services

[291]

On the Deployment Workbench, right-click on Make and Model and select New.2.
A Properties window will come up as shown here (without the values):

Enter the Make and Model fields in the Identity tab, making sure you copy the3.
vendor and name values returned from the WMIC query on your target
computer correctly:

Database, UserExit Scripts, and Web Services

[292]

The Make and Model fields do not support wildcards like asterisk (*) or question mark (?).
You need to type in the Make and Model fields exactly as it will be returned by the WMI
query. This can lead to many entries, as some manufacturers have different notations for
their models (with or without brackets, including serials, including location coding, and so
on). A solution to tail/map these different notations to a few models will be shown in the
UserExit script section.

Again, you enter your customization settings in the Details tab. Any customization settings
you enter here will be applied at the time of deployment if the Make and Model of your
computer exactly match the database.

As already mentioned in individual computer settings, displaying all settings in MDT GUI
is not very comfortable. It is better to think about creating roles and assigning roles to your
locations.

Considerations on MDT database usage
Of course, this is only the basics of what's possible with the MDT database. The level of
complexity and the customizations you choose to make will depend on your deployment
environment. There is no one-fits-all master design which can be used for all MDT
databases. But we will give you some hints, best practice, and experience from the field on
how to configure/use these objects.

You can compare the MDT database model to the Group Policy data model. Information
which is more general resides in a hierarchically higher organizational unit (OU). GPOs
valid for all systems are stored in the topmost OU. GPOs valid only for some systems/users
are stored in the nearest OU or filtered by the security group.

The same should be done in MDT. General values should be stored in Roles, Location
specific / Model specific in their objects.

Individual information like computer name, static IP, or similar things, should be stored
where they belong, in the computer object itself. Information which enters the same value
several times, should be abstracted into a role object and instead the role object should be
assigned.

By this abstraction, you only need to change one place (the role itself), and not several
hundred computer objects, to change a value.

Database, UserExit Scripts, and Web Services

[293]

Depending on your company's infrastructure and geographical setup, there can be one or
more roles defined. If your company resides only in one country with one language spoken,
it could make sense to pack everything in a default configuration role object. If you have
multiple countries, it could make sense to create country-specific configuration roles. If you
have multiple domains, it could make sense to create a configuration role object for each
domain, and so on.

By this model, you can always override default values of roles by setting a different value
directly on the computer object itself if needed, as MDT won't change an already set value.

Always set the SkipWizard control in the object itself where you entered the information.
So if you are creating a role with time zone information, set SkipTimeZone=YES directly
inside this role. By this bundling, you mitigate the risk of an unhealthy installation due to
skipping all wizards without entering the necessary information.

Role definitions need to be done before or during the gather process. It is not possible / has
drawbacks to setting roles during the task sequence. We recommend to define all roles in
the database directly or the latest inside CustomSettings.ini by adding Role001=<Role
name>.

Editing the database in GUI can be time consuming. Take a closer look at Michael Niehaus'
blog about editing data by PowerShell: h t t p : / / b l o g s . t e c h n e t . c o m / b / m n i e h a u s / a r c h
i v e / 2 0 0 9 / 0 5 / 1 5 / m a n i p u l a t i n g - t h e - m i c r o s o f t - d e p l o y m e n t - t o o l k i t - d a t a b a s e - u

s i n g - p o w e r s h e l l . a s p x.

If plain data gathering is not enough and you need the ability to process data during gather,
you need to have a closer look at UserExit scripts. We will show you how to create such
script in the next section.

UserExit script
With all the rules, conditions and WMI queries, MDT is already a very powerful tool. But
sometimes you hit limitations during the gather process.

What if the vendor of your PC hardware has three different model names of the same
hardware and you need a model mapping or model alias? Your serial number contains
unneeded characters and needs to be truncated? Or in short, you need the ability to execute
a custom VBS script.

http://blogs.technet.com/b/mniehaus/archive/2009/05/15/manipulating-the-microsoft-deployment-toolkit-database-using-powershell.aspx
http://blogs.technet.com/b/mniehaus/archive/2009/05/15/manipulating-the-microsoft-deployment-toolkit-database-using-powershell.aspx
http://blogs.technet.com/b/mniehaus/archive/2009/05/15/manipulating-the-microsoft-deployment-toolkit-database-using-powershell.aspx

Database, UserExit Scripts, and Web Services

[294]

MDT gives you this opportunity. It is a little bit misleading calling it UserExit script. You can
define one (or more) scripts, which will then share its functions inside
CustomSettings.ini.

Let's open an editor and create a file called MDTUserExit.vbs. Copy the following code
mentioned inside this VBS.

A UserExit script always needs the main function with name UserExit():

Function UserExit(sType, sWhen, sDetail, bSkip)
 UserExit = Success
End Function

But this basic function does not provide any logging. So you never know if UserExit()
was triggered and when. For better logging, you should extend the function, for example, as
follows:

Function UserExit(sType, sWhen, sDetail, bSkip)
 oLogging.CreateEntry "USEREXIT:MDTUserExit.vbs v1.0 started: " &
 sType & " " & sWhen & " " & sDetail, LogTypeInfo
 UserExit = Success
End Function

Next you need to add your needed functionality as a separate function. We will implement
a generic Make mapping, for example, with Dell and Panasonic and their different Make
notations, as shown in the following code. You can add more cases if needed:

Function SetMakeAlias()
oLogging.CreateEntry "Init USEREXIT:MDTUserExit.vbs|SetMakeAlias",
 LogTypeInfo
 //Get Make from MDT environment
 sMake = oEnvironment.Item("Make")
 SetMakeAlias = ""
 Select Case UCase(sMake)
 Case "DELL COMPUTER CORPORATION", "DELL INC.", "DELL COMPUTER
 CORP."
 SetMakeAlias = "Dell Inc."
 Case "MATSUSHITA ELECTRIC INDUSTRIAL CO.,LTD.", "PANASONIC
 CORPORATION"
 SetMakeAlias = "Panasonic Corporation"
 Case Else
 SetMakeAlias = sMake
 oLogging.CreateEntry "USEREXIT:MDTUserExit.vbs |SetMakeAlias
 - Alias rule not found. MakeAlias set to Make value.",
 LogTypeInfo
 End Select
 oLogging.CreateEntry "USEREXIT:MDTUserExit.vbs|SetMakeAlias -

Database, UserExit Scripts, and Web Services

[295]

 MakeAlias has been set to " & SetMakeAlias, LogTypeInfo
 oLogging.CreateEntry "Exit
 USEREXIT:MDTUserExit.vbs|SetMakeAlias", LogTypeInfo
End Function

Save this script in your MDT environment under DeploymentShare\Scripts. Modify
your CustomSettings.ini to include the following bold lines:

[Settings]
Priority=Default
Properties=MakeAlias

[Default]
OSInstall=YES
UserExit=MDTUserExit.vbs
MakeAlias=#SetMakeAlias()#

But a MakeAlias is worthless without a ModelAlias. So let's construct a suitable
additional function. We will also reuse the MakeAlias:

Function SetModelAlias(sMakeAlias)
 oLogging.CreateEntry "Start
 USEREXIT:MDTUserExit.vbs|SetModelAlias", LogTypeInfo
 sModel = oEnvironment.Item("Model")
 SetModelAlias = ""
 ' Check by MakeAlias
 Select Case UCase(sMakeAlias)
 Case "DELL INC."
 If Instr(sModel, "(") > 2 Then
 SetModelAlias = Trim(Left(sModel, Instr(sModel, "(") - 2))
 Else
 SetModelAlias = sModel
 End If

 Case "PANASONIC CORPORATION"
 'Panasonic Toughbook models
 If Left(sModel,2) = "CF" Then
 SetModelAlias = Left(sModel,5)
 Else
 If Instr(sModel, "(") > 2 Then
 SetModelAlias = Trim(Left(sModel, Instr(sModel, "(") -
 2))
 Else
 SetModelAlias = sModel
 End If
 oLogging.CreateEntry "USEREXIT:MDTUserExit.vbs|SetModelAlias
 - Alias rule not found. ModelAlias set to Model value.",
 LogTypeInfo

Database, UserExit Scripts, and Web Services

[296]

 End If

 Case Else
 If Instr(sModel, "(") > 2 Then
 SetModelAlias = Trim(Left(sModel, Instr(sModel, "(") - 2))
 Else
 SetModelAlias = sModel
 oLogging.CreateEntry
 "USEREXIT:MDTUserExit.vbs|SetModelAlias - Alias rule not
 found. ModelAlias set to Model value.", LogTypeInfo
 End If
 End Select
 oLogging.CreateEntry "USEREXIT:MDTUserExit.vbs|SetModelAlias -
 ModelAlias has been set to " & SetModelAlias, LogTypeInfo
 oLogging.CreateEntry "Exit
 USEREXIT:MDTUserExit.vbs|SetModelAlias", LogTypeInfo
End Function

We need to extend CustomSettings.ini to look like the following:

[Settings]
Priority=Default
Properties=MakeAlias
[Default]
OSInstall=YES
UserExit=MDTUserExit.vbs
MakeAlias=#SetMakeAlias()#
ModelAlias=#SetModelAlias("%MakeAlias%")#

All function calls inside hashtags (#) will be looked up in the UserExit script. You can even
parse values or variables when enclosed in quotes as shown for SetModelAlias().

With this easy modification it is now possible to use this new MakeAlias and ModelAlias,
for example, in the Make Model SQL query, as shown here:

[MMSettings]
SQLServer=MDTSERVER.testlab.local
Instance=ADK
Database=MDT
Netlib=DBNMPNTW
SQLShare=NamedPipes$
Table=MakeModelSettings
Parameters=MakeAlias, ModelAlias

This is only a small teaser to all the thinkable possibilities of such UserExit scripts.

Database, UserExit Scripts, and Web Services

[297]

Sometimes you will need to include more than one script. Deployment Guys have shown an
easy way without creating several subsections: h t t p : / / b l o g s . t e c h n e t . c o m / b / d e p l o y m
e n t g u y s / a r c h i v e / 2 0 1 3 / 0 9 / 1 3 / l o a d i n g - u s e r - e x i t - s c r i p t s - w i t h - v b s c r i p t - c l a s

s e s . a s p x.

MDT out-of-the-box does not provide the ability to write back information to the database.
If you ever need this ability, you should have a closer look at the Deployment Guys blog on
how to write data to a database during gather with the help of UserExit script: h t t p : / / b l o
g s . t e c h n e t . c o m / b / d e p l o y m e n t g u y s / a r c h i v e / 2 0 1 5 / 0 7 / 0 1 / w r i t i n g - d a t a - t o - t h e -

m d t - d a t a b a s e - d u r i n g - g a t h e r . a s p x.

And there are even more possibilities. You can use UserExit script, for example, to gather a
web service. We will show in the next section how to achieve this.

Web services
If the MDT database and UserExit script are still not sufficient for customizations, you can
further extend MDT with the use of web services.

Jase T. Wolfe wrote a good explanation of web service in his QuickStart Guide to Using
Web Services in MDT / SCCM (h t t p : / / m y i t f o r u m . c o m / m y i t f o r u m w p / 2 0 1 3 / 0 3 / 0 7 / a
- q u i c k s t a r t - g u i d e - t o - u s i n g - w e b - s e r v i c e s - i n - m d t - s c c m /):

“For those not completely familiar with a web service (WS), the condensed and over
simplified introduction is this: A WS is a middle man that simplifies obtaining information
or performing a process on behalf of the client and returning some type of data to the client.
As the name suggests, the WS is a web based process which is used (in this article) by
having a source client make an HTML request to the WS server, and that server returning
an XML response which can be used by the client.
For instance, the build process may need to know what the correct display resolution is for
the hardware it is building. The build process sends the make and model of the local
hardware to the WS, the WS performs a lookup based on that information, the WS returns
the resolution information to the client, and finally the build process uses that information
to configure the local environment. Using that methodology, the build process doesn't need
to have been developed with all the configuration information locally and doesn't require
any modification when new hardware is introduced to the environment. This obviously
simplifies the build process and reduces administrative time when making environmental
changes.

http://blogs.technet.com/b/deploymentguys/archive/2013/09/13/loading-user-exit-scripts-with-vbscript-classes.aspx
http://blogs.technet.com/b/deploymentguys/archive/2013/09/13/loading-user-exit-scripts-with-vbscript-classes.aspx
http://blogs.technet.com/b/deploymentguys/archive/2013/09/13/loading-user-exit-scripts-with-vbscript-classes.aspx
http://blogs.technet.com/b/deploymentguys/archive/2015/07/01/writing-data-to-the-mdt-database-during-gather.aspx
http://blogs.technet.com/b/deploymentguys/archive/2015/07/01/writing-data-to-the-mdt-database-during-gather.aspx
http://blogs.technet.com/b/deploymentguys/archive/2015/07/01/writing-data-to-the-mdt-database-during-gather.aspx
http://myitforum.com/myitforumwp/2013/03/07/a-quickstart-guide-to-using-web-services-in-mdt-sccm/
http://myitforum.com/myitforumwp/2013/03/07/a-quickstart-guide-to-using-web-services-in-mdt-sccm/

Database, UserExit Scripts, and Web Services

[298]

[…]
That said, implementing a WS in MDT isn't completely straightforward. MDT provides
the framework for WS calls, but neither provides a ready to use WS interface nor crystal
clear documentation on how to implement and use one on your own. In this article I've
condensed the how-to in the hopes that your implementation and usage is quick and fully
understood.”

Jase T. Wolfe incorporates the web service application of Maik Koster and shows in an easy
way how to build a web service. The QuickStart Guide was written for MDT 2012, but is
still valid for MDT 2013. Be careful with guides and tutorials written for web services in
MDT 2010, as some important parts have changed.

Beside this QuickStart Guide, we recommend the following links for further information
about web services for you:

h t t p : / / m d t w e b f r o n t e n d . c o d e p l e x . c o m / is currently a bit outdated, but
Maik Koster announced in November 2014 that an updated MDT web front-end
would be coming soon (h t t p : / / m a i k k o s t e r . c o m / t i m e - f o r - a - n e w - s t a r t - t
i m e - f o r - a - n e w - b l o g /)
h t t p s : / / m d t c u s t o m i z a t i o n s . c o d e p l e x . c o m / contains a collection of web
services and web front-ends written for MDT. A good source for review and
inspiration.

Windows 10
All the concepts shown in this chapter are still valid for Windows 10.

http://mdtwebfrontend.codeplex.com/
http://maikkoster.com/time-for-a-new-start-time-for-a-new-blog/
http://maikkoster.com/time-for-a-new-start-time-for-a-new-blog/
https://mdtcustomizations.codeplex.com/

Database, UserExit Scripts, and Web Services

[299]

Summary
In this chapter, we showed you how easily MDT can be extended by a SQL database
and how this benefits and brings flexibility to your deployment, especially when using
at larger scales. With UserExit scripts, you can extend and modify MDT in nearly every
way. You can use these scripts, for example, to build a Wrapper for your own GUI instead
of the MDT wizard, you can use these scripts to easily merge different models/makes, WMI
data, and so on. Last but not least, the web services bring you a lot of comfort features to
query AD, IP ranges, and lots of other information, without the need to expose critical AD
user account information into scripts. All these features would surely fill an entire book
for themselves, so this chapter only introduces you to these topics. Read the mentioned
blogs and links to learn more about these features. Additionally, you will find a lot of
information in the rich MDT community.

Additional Enterprise
Configuration Items

In this appendix, we will cover some supplementary information for reference VM
configuration and how to secure the MDT process by limiting access rights to your
deployment share. Additionally, we will discuss the new Windows Imaging and
Configuration Designer and why you should be careful when using this tool with MDT.

Reference VM configuration
A common problem that system administrators will run into is the installed memory of
your VM and Windows PE's requirement of 768 MB. Hyper-V, by default, will give a VM
only 512 MB and the dynamic memory driver will not service Windows PE either.

Additional Enterprise Configuration Items

[301]

Currently, this manifests in my lab, as shown in the following screenshot:

Simply increasing the system-installed memory in your VM to over 768 MB should
remediate the memory problem, and Windows PE from your MDT share will function
properly. To avoid this, I'd just set it to 1 GB or more.

Securing the MDT process
In some environments, security concerns are a primary driver, and thus the following
questions come up: what can we do to secure the share, and what can we do to validate that
the image is not tampered with?

For the first question about securing the share, the following rights are needed to allow
MDT to work properly:

\\path\deploymentshare$ rights:1.

In Sharing, remove EVERYONE and add the user account specified specifically in
your Bootstrap.ini and CustomSettings.ini file for READ access only
NTFS rights would be the following:

Creator Owner: Full control of subfolders and files only

Administrators: Full control of this folder, subfolders and files

System: Full control of this folder, subfolders, and files

Additional Enterprise Configuration Items

[302]

Users: Check the following check boxes:

• Read and Execute
• List Folder Contents
• Read

\\path\referenceshare$ rights:2.

In Sharing, again remove EVERYONE and add your user account used in the
capture process for READ and CHANGE rights
NTFS no changes needed

For the second part, how do we validate the image integrity?

The simplest way is to use PowerShell to generate a file hash of your WIM file. Use the
PowerShell cmdlet get-filehash. The following command is simple enough to add to
your process:

 Get-FileHash .\install.wim | format-list

You can then validate the returned value by checking the deployment time or in audit
processes in same way as the security requires.

Windows Imaging and Configuration
Designer
The new Windows Imaging and Configuration Designer (WICD) is part of the Windows
10 ADK. It will be updated/enhanced with next releases of ADK.

WICD is described on MSDN as a tool that can do the following tasks:

View all of the configurable settings and policies for a Windows 10 image or
provisioning package
Create Windows provisioning answer files
Add third-party drivers, apps, or other assets to an answer file
Create variants and specify the settings that apply to each variant
Build and flash a Windows image
Build a provisioning package

Additional Enterprise Configuration Items

[303]

The source of this information is h t t p s : / / m s d n . m i c r o s o f t . c o m / e n - u s / l i b r a r y / w i n d
o w s / h a r d w a r e / d n 9 1 6 1 1 3 (v = v s . 8 5) . a s p x.

Not only does it have the possibility to create configuration packages, but it is also able to
switch the SKU of your Windows 10 installation. This was previously not possible. You still
cannot move to Long-Term Servicing Branch (LTSB) via this mechanism, as this is a
completely different build. At this stage of the process, you cannot downgrade. Currently,
only an upgrade from Pro to Enterprise is possible (except for the Education SKU, which
allows an upgrade from Home to Education).

The WICD can be used to create packages that implement any mobile device management
(MDM)-based setting. Alternatively, you can run external scripts to set most MDM settings.

For some actions, such as pre-provisioning Windows 10 Mobile or switching to Windows 10
Mobile Enterprise, WICD is the only available tool to the enterprise.

WICD has a wide range of functionality in addition to script support. All in all, it sounds
like a very mighty and powerful tool. However, it is currently not directly supported inside
the MDT 2013 Update 2 GUI; this is subject to change in future releases. You can integrate a
command line as a workaround, but this has a major drawback.

Currently, there is no way to fully automate or silently install the provisioning package.
You can sign the ppkg to remove some prompts, but not in all circumstances. You also need
to embed it in an image so that it gets installed during the OOBE process to get no prompts.
However, this takes away a lot of flexibility.

If you hit the Windows key five times during OOBE, you can put in a
provisioning package!

It has been our field experience that certain functions WICD can perform or try will break
the MDT deployment process. Therefore, it should be tested and care should be taken while
including this tool in your work (at the time of writing).

https://msdn.microsoft.com/en-us/library/windows/hardware/dn916113(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/dn916113(v=vs.85).aspx

Additional Enterprise Configuration Items

[304]

Some issues found at the time of writing (1511 release) include the following:

Changing the SKU inducts a non-interruptible reboot that will break the MDT
task sequence engine.
Currently, you can only set what is shown through the UI. It is not possible to
enter extra OMA-URI-based CSP policies.
Removal of preinstalled applications does not work properly at this time.
Most policies configured are MDM-related, so some options are only available in
this toolset for customization.

With all these required workarounds, caveats, and limitations, we decided to move WICD
here for supplementary information purposes. This tool is likely to be improved in future
releases of the ADK. Also, future releases of MDT will likely support WICD directly in the
deployment workbench, so keep an eye out for release notes changes and expansion of the
tool's capabilities.

Index

A
access control lists (ACL) 156
Active Directory (AD) 261
ADK 8.1
 using, with Windows XP 176
application bundle, reference image
 application bundle object, creating 66, 67
 creating 63, 64, 65
 installing 68
 modifying 68
 updates, managing 69
applications 9
Assessment and Deployment Kit (ADK) 7
audit mode
 reference link 81

B
Background Intelligent Transfer Service (BITS)

202
Business Desktop Deployment (BDD) 8

C
Client Log files
 about 192
 CBS.log 192
 dism.log 193
 netsetup.log 193
 setupact.log 192
 setupapi.app.log 193
 setupapi.dev.log 193
 setuperr.log 192
 WindowsUpdate.log 193
 wpeinit.log 193
CMTrace
 obtaining 197, 198
CustomSettings.ini file

 comparing, with Unattend.xml file 104
 dynamic modification 104
 structure 93, 94, 95, 96, 97, 98

D
Deployment Image Servicing and Management

(DISM) 7
deployment network
 about 150
 configuring 151
deployment share
 about 144
 boot media, creating 31, 32
 confirmation 21, 22
 creating 145, 146, 147, 148, 149
 deployment options, modifying 19, 20
 descriptive name, specifying 19
 geographical considerations 151
 hotfix, including 44
 network considerations 150
 setting up 17, 18
 summary 21, 22
 updating 29, 30
driver detection 115, 116
driver injection 115, 116
driver installation
 controlling, with model variable 120, 121, 122,

123
Driver Verifier
 about 214, 215, 216
 URL 216
drivers
 about 9
 as applications 123, 124

[306]

E
encrypting file system (EFS) 178
Error Code Look-up utility
 URL 201
error codes
 converting 201
error handling
 about 203, 204, 206, 207, 208, 210, 211
 references 211

F
file copy
 versus hard-link 175

G
globally unique identifier (GUD) 7
golden image 8

H
hard-link
 versus file copy 175
hotfix
 deployment share, updating 44
 downloading 41, 42
hybrid image 9, 132
Hyper-V drivers
 importing 39, 40

I
image customization
 about 73
 Audit mode, leveraging 81, 82, 83
 changes, analyzing 80
 documentation, checking 74
 games, adding to Enterprise image 76, 77, 78,

79, 80
 Local Group Policy Object (LGPO) 84, 85
 reference link 86
 Security Compliance Manager (SCM) 84, 85
 Windows System Information Manager (WSIM),

accessing 74, 75
image
 hybrid image 9

 thick image 8
 thin image 9
 validating 213
imaging tools
 about 10
 MDT 10
 task sequence 10
 task sequencer 10
 variables.dat file 10
imaging
 concepts 8, 9
 history 6, 7, 8
ITNinja
 about 46
 URL 46

L
LoadState
 executing 163
 syntax 164
Local Group Policy Object (LGPO) 84, 85

M
mass storage drivers 206
MDT database, uses
 customizations, applying to computer based on

manufacturer and model 290, 291, 292
 customizations, applying to individual computers

281, 283
 customizations, applying to locations 288, 289
 customizations, applying to roles 286, 288
MDT database
 about 252
 creating 264, 265, 267, 268, 270
 objects, types 275
 permission, configuring 270, 271, 272, 273,

274
 SQL Server, configuring 253, 254, 256, 260,

261, 263
 SQL Server, supported versions 252, 253
 usage, considerations 292, 293
 using 275, 277, 279, 280
MDT installer
 downloading 14, 15
 URL 14

[307]

MDT logs
 about 194, 195, 196
 CMTrace, obtaining 197, 198
 error codes 201, 202, 203
 failed MDT deployment, clearing 199, 200, 201
MDT Monitoring 112
MDT Task Sequence Editor
 URL 82
Microsoft Deployment Toolkit (MDT)
 about 6, 10, 12
 deployment share, setting up 17
 installing 17
 process, securing 301
 reference share, setting up 17, 18
 setting up 12
 virtual machine, setting up 13, 14
Microsoft Management Console (MMC) 18
migration options
 about 172
 file copy, versus hard-link 175, 176
 offline migration 175
 online migration 175
 PC Refresh scenario 172
 PC Replacement scenario 173, 174
model variable
 used, for controlling driver installation 120, 121,

122, 123
Multilingual User Interfaces (MUIs) 155

N
Network Basic Input/Output System (NetBIOS) 95
network drivers 206

O
offline migration 175
offline servicing 115
online migration 175
Operating System (OS)
 image properties, viewing 38
 importing 33, 34
 importing, from DVD media 36, 37
 selecting 35
organizational unit (OU) 11, 292
Out-of-Box Drivers node
 populating 116, 117, 118, 119, 120

out-of-box experience (OOBE) 73

P
packages 9
patches
 deployment share, updating 44
 hotfix, downloading 41, 42
 importing 40
 packaged import, setting up 42, 43
Plug and Play (PnP) 9, 109, 115

R
reference image creation
 about 54
 application bundle, creating 63, 64, 65
 entries, summarizing 58
 general settings, specifying 54
 OS settings, specifying 56, 57
 OS, selecting 55, 56
 password, specifying 57
 product key, specifying 56, 57
 security, specifying 57
 task sequence configuration, modifying 62, 63
 task sequence, finalizing 58, 59, 60
 task sequence, observing 61
 template, selecting 55, 56
reference image deployment
 about 131
 hybrid image 132
 thick image 131
 thin image 132
reference image
 .msi file, placing 46
 .msi files, searching with ITNinja 46
 .msi source directory, searching 49
 application details, specifying 48
 application, setting up 47
 applications, adding 45
 command details, inserting 51, 52
 destination directory, specifying 50
 image updates, automating 45
reference share
 exploring 22, 23, 24
 ISO-generated files, naming 28
 properties, setting 24, 25

[308]

 scratch space, increasing 27
 setting up 17, 18
 share name, specifying 19
 task sequence, setting up 26, 27
 trace files, including in boot WIM 27, 28
reference task sequence
 boot media, creating 71

S
ScanState
 executing 161, 162
 syntax 164
Security Compliance Manager (SCM) 84
 about 85
Server Log file
 about 194
 wdsserver.log 194
Server Message Block (SMB) 13
Shell customization
 about 86
 Windows 7 background, customizing 88, 89
 Windows 7 logon screen, customizing 88, 89
 Windows 7 Start menu, customizing 86, 87, 88
 Windows 7 taskbar, customizing 86, 87, 88
 Windows 7 user tiles, customizing 88, 89
 Windows 8, customizing 90, 91
Single Instance Storage (SIS) technology 120
SQL Server
 configuring 253, 255, 258, 260, 261, 263
 supported versions 252, 253
Sysprep
 about 69
 limitations 70
 URL 70
System Center Configuration Manager (SCCM) 27
system class drivers 206

T
task sequence
 about 10
 initialization 106
 install 110
 logging 111, 112
 postinstall 111
 preinstall 108, 109

 state capture 107
 state restore 111
 structure 105
 validation 106
task sequencer 10, 195
task sequencer logs 194, 196
thick image 8, 131
thin image 9, 132
Toolkit Reference document
 URL 25

U
Unattend.xml file
 comparing, with CustomSettings.ini file 104
 dynamic modification 104
 structure 99, 100, 102
universally unique identifier (UUID) 252
UpdateDP 71
user interface (UI) 24
User State Migration Tool (USMT) 107, 151
 about 153
 applications, migrating 157
 best practices 177, 178, 179, 180, 181
 capabilities 156
 components 159, 160, 161
 downloading 159
 GUI wrappers 188
 history 153, 154
 limitations 156
 LoadState process 163
 logs 211
 requisites 155, 156
 ScanState process 161, 162
 troubleshooting 181, 182
 URL 159
 working with 159
UserExit scripts
 about 11, 104, 293, 294, 295, 297
 URL 104
USMTGUI
 about 188
 URL 188
UsmtUtils tool
 about 167
 compressed migration store, verifying 167, 168

 files, recovering from compressed migration
store 168

 hard-link migration stores, deleting 167
 supported cryptographic algorithms 169

V
variables.dat file
 about 10
 structure 102
virtual machine
 creating 133, 134, 135, 136, 137, 138
 deployment 139, 140, 141, 142, 143, 144
 setting up 13
VM configuration
 reference 300

W
Webservices
 about 297, 298
 URL 297
Windows 7
 background, customizing 88, 89
 logon screen, customizing 88, 89
 Start menu, customizing 86, 87, 88
 taskbar, customizing 86, 87, 88
 user tiles, customizing 88, 89
Windows 8
 customization 90, 91
Windows Assessment and Deployment Kit

(Windows ADK)
 about 12
 installing 16
 URL 14
Windows Assessment and Deploytment Kit

(Windows ADK) 159
Windows Assessment Services (WAS) 213
Windows Assessment Toolkit (WAT)
 about 213, 217, 218
 example 219, 220, 221, 222, 223, 224, 225

 Windows Assessment Services (WAS) 226,
227, 229, 230, 232, 233, 235, 238, 240,
241, 242, 243, 245, 246, 247

Windows Automated Installation Kit (WAIK) 154,
159

Windows Deployment Services (WDS) 194
Windows Imaging and Configuration Designer

(WICD) 302, 303
Windows Imaging Format (WIM) 7
Windows logs 191, 194
Windows Performance Toolkit (WPT)
 about 213, 217
 URL 217
Windows Preinstallation Environment (Win PE)

131, 161
Windows Recovery Environment (WinRE) 111
Windows Server Update Services (WSUS) 69,

109
Windows System Image Manager (WSIM) 73,

100
Windows XP
 using, with ADK 8.1 176
Windows
 setup process 10, 11
WinPE drivers
 about 125
 injecting 125, 126, 127, 128
Workstation Migration Assistant
 about 188
 URL 188

X
xcopy 91
XML files, customization
 about 169
 folder, migrating 170
 folder, migrating with subdirectories 170
 folder, migrating without subdirectories 171
 registry keys, migrating 170

	Cover
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Imaging Concepts and Theory
	Imaging history
	Imaging concepts
	Imaging tools
	Setup
	Summary

	Chapter 2: Setting Up Your Environment
	Setting up MDT for the first time
	Setting up the virtual machine
	Downloading the MDT installer
	Installing Windows ADK
	Installing MDT
	Setting up reference share and deployment share
	Specifying a share name
	Specifying a descriptive name
	Modifying deployment options
	Summary and confirmation

	Exploring the completed reference share
	Setting reference properties
	Setting up our reference share task sequence
	Increasing the scratch space
	Including trace files in the boot WIM
	Naming ISO-generated files

	Updating up the deployment share
	Automatic boot media creation

	Importing an OS
	Choosing the type of OS to add
	Importing an OS from DVD media
	Viewing image properties

	Importing Hyper-V drivers
	Importing patches
	Downloading a hotfix
	Setting up a packaged import
	Updating the deployment share to include the hotfix

	Adding applications to our reference image
	Automating image updates
	Finding .msi files with the ITNinja repository
	Placing the .msi file

	Setting up a new application
	Specifying application details
	Finding the .msi source directory
	Specifying the destination directory
	Entering command details

	Summary

	Chapter 3: Creating Reference Images
	Creating a reference image in the management console
	Specifying the general settings
	Selecting the template and the OS
	Specifying a product key and OS settings
	Passwords and security
	Summarising our entries
	Finalising the task sequence
	Observing the task sequence
	Making configuration changes
	Creating an application bundle
	Making an application bundle object
	Installing the bundle
	Modifying the bundle

	Managing updates

	Sysprep run supportability
	Boot media for the reference task sequence
	Summary

	Chapter 4: Default User Profile Customization
	Customizing the image
	Checking out the customization documentation
	Accessing Windows System Information Manager
	Adding games to our Enterprise image
	Analyzing our changes

	Leveraging the Audit mode
	Local Policy Object Customizations and SCM
	Shell customizations
	Windows 7 Start menu and taskbar
	Windows 7 background, logon screen, and user tiles
	Windows 8 customizations

	Summary

	Chapter 5: CustomSettings.ini and Task Sequence
	The structure of the CustomSettings.ini file
	The Unattend.xml structure
	The variables.dat structure

	CustomSettings.ini and the Unattend.xml file
	Dynamic modification
	Task sequence structure
	Initialization
	Validation
	State capture
	Preinstall
	Install
	Postinstall
	State restore

	Logging

	Summary

	Chapter 6: Drivers
	Understanding offline servicing
	The MDT method of driver detection and injection
	Populating the Out-of-Box Drivers node of MDT
	Utilizing model variable to control what drivers are installed
	Drivers as applications
	Win PE drivers
	Summary

	Chapter 7: Image Deployment
	Reference image deployment
	Thick image
	Thin image
	Hybrid image

	Virtual machine creation
	Deployment
	Deployment share
	Deployment scenarios and network considerations
	Deployment networks
	Configuration of the deployment network
	Geographical considerations

	Summary

	Chapter 8: USMT – The User State Migration Tool
	History
	Supported scenarios and minimum requirements
	What USMT will migrate and won't migrate
	Where to download
	How USMT works
	USMT basics
	The ScanState process
	The LoadState process

	ScanState and LoadState syntax
	UsmtUtils tool
	Delete hard-link migration store
	Verify compressed migration store
	Recover files from a compressed migration store
	Supported cryptographic algorithms on the current system

	Customization of XML files
	Migrate registry keys
	Migrate a folder from a specific drive
	Including subdirectories
	Excluding subdirectories

	Migration options
	PC Refresh scenario
	PC Replacement scenario
	Online versus offline migration
	File copy versus hard-link
	Using Windows XP with ADK 8.1

	Best practices
	Troubleshooting USMT
	GUI wrappers for USMT
	Summary

	Chapter 9: Troubleshooting Deployment Logs
	Delving into Windows logs
	Microsoft deployment toolkit logs and task sequencer logs
	Getting CMTrace
	Clearing a failed (dirty) MDT deployment
	Look up error codes

	Common errors and frequent pitfalls
	Further help
	User state migration tool logs

	Summary

	Chapter 10: Validating the Image
	Driver Verifier
	Windows Performance Toolkit
	Windows Assessment Toolkit
	Windows Assessment Toolkit example 1 – verifying drivers
	Windows Assessment Services

	Summary

	Chapter 11: Database, UserExit Scripts, and Web Services
	MDT Configuration Database step by step
	Supported versions of SQL Server
	Configuring the SQL Server
	Creating a MDT database
	Configuring permission of the MDT database
	Using the MDT database
	Applying customizations to individual computers
	Applying customizations to roles
	Applying customizations to locations
	Applying customizations to computers based on their manufacturer and model

	Considerations on MDT database usage

	UserExit script
	Web services
	Summary

	Appendix: Additional Enterprise Configuration Items
	Reference VM configuration
	Securing the MDT process
	Windows Imaging and Configuration Designer

	Index

