EEEEEEEEEE

Data Structures

Hash Tables and
Applications

Design and Analysis
of Algorithms |

1 |
[g [

NE-TCORE Al

Hash Table: Supported Operations

Purpose : maintain a (possibly evolving) set of stuff.
(transactions, people + associated data, IP addresses, etc.)

Insert : add new record

Using a “key”

Delete : delete existing record AMAZING
GUARANTEE

. : All operations in
Lookup : check for a particular record O(1) time ! *

(a “dictionary”)
/ * 1. properly implemented 2. non-pathological data

1 |
[g [

NE-TCORE Al

Application: De-Duplication

: : _____—— Linear scan through a huge file
Given : a “stream” of objects— shanie

Or, objects arriving in real time

Goal : remove duplicates (i.e., keep track of unique objects)
-e.g., report unique visitors to web site
- avoid duplicates in search results

Solution : when new object x arrives
- lookup x in hash table H

/ - if not found, Insert x into H
\ /j

1 |
[g [

5‘:'5
NE-TCORE Al
Application: The 2-SUM Problem
Input : unsorted array A of n integers. Target sum t.
Goal : determine whether or not there are two numbers x,y in A with
X+y=1
Naive Solution : #(n°) time via exhaustive search
Better : 1.) sort A(#(nlogn) time) 2.) for each x in A, look for
..\ 7t-xin A via binary search
O(n) time B(nlogn)
Amazing : 1.) insert elements of A 2.) for each x |p A,
/ into hash table H lookub t-x ~ O(n) time

| -

1 |
[g [

NE-TCORE Al

Further Immediate Applications
- Historical application : symbol tables in compilers

- Blocking network traffic

- Search algorithms (e.g., game tree exploration)

- Use hash table to avoid exploring any

configuration (e.g., arrangement of chess
pieces) more than once

- etc.

(T~

1 I
[[

NE-TCORE Al

Data Structures

Hash Tables: Some
Implementation Details

.

1 |
[g [

{:E
NE-TCORE Al
Hash Table: Supported Operations
Purpose : maintain a (possibly evolving) set of stuff.
(transactions, people + associated data, IP addresses, etc.)
Insert : add new record
Using a “key”
Delete : delete existing record AMAZING
GUARANTEE
Lookup : check for a particular record gl(lﬁp;f:ﬁ?s "
(a “dictionary”)
\ / * 1. properly implemented 2. non-pathological data

{j;

NE-TCORE Al

1 |
[g [

High-Level Idea

Setup : universe U [e.g., all IP addresses, all

—

Naive Solutions

names, all chessboard configurations, etc.] 1.

[generally, REALLY BIG]

|

Goal : want to maintain evolving setS C U
[generally, of reasonable size]

Solution : 1.) pick n = # of “buckets” with 3

(for simplicity assume |S| doesn’t vary much)
2.) choose a hash function n:U — {0,1,2,....n— 1}
3.) use array A of length n, store x in A[h(x)]

Array-based
solution

[indexed by u]

- O(1) operations
but (IU) space
List —based
solution

- 0(|S]) space but
0(|S|) Lookup

1 |
[g [

NE-TCORE Al

Consider » people with random birthdays (i.e., with each day of
the year equally likely). How large does » need to be before there
is at least a 50% chance that two people have the same birthday?

L 50%

SIRTHDAY

99 %
Os57&
O 184 &~ 99.99...%

O3674— 100%

hae, oy Resolving Collisions

Collision: distinct ©,¥ € U such that 7(z) = h(y)

Solution # 1 : (separate) chaining
-keep linked list in each bucket
- given a key/object x, perform Insert/Delete/Lookup in

the list inzﬂ_\[mi)_]

~—>Bucket for x

Linked list for x
Solution #2 : open addressing. (only one object per bucket)
-Hash function now specifies probe sequence h,(x),h,(x),..
(keep trying till find open slot) Use 2 hash functions
/ - Examples : linear probing (look consecutively), double hashing

| -

1 |
[g [

NE-TCORE Al

| -

What Makes a Good Hash Function?

Note : in hash table with chaining, Insertis (1) 'f:;:torﬁft?:fﬁ(if]t
O(list length) for Insert/Delete. taual-length lists

could be anywhere from{m/n|/to m for@o_bjgcts Al
Point : performance depends on the choice of hash f[j'm;}'ion! objects in

. . i i — same
(analogous situation with open addressing) % bucket

Properties of a “Good” Hash function

1. Should lead to good performance => i.e., should “spread
data out” (gold standard — completely random hashing)

/ 2. Should be easy to store/ very fast to evaluate.

1 |
[g [

NE-TCORE Al

/7
P

Bad Hash Functions

Example : keys = phone numbers (10-digits). lu| =10%°

-Terrible hash function : h(x) = 15* 3 digits of x choose n = 10°
(i.e., area code)

- mediocre hash function : h(x) = last 3 digits of x
[still vulnerable to patterns in last 3 digits]

Example : keys = memory locations. (will be multiples of a power of 2)

-Bad hash function : h(x) = x mod 1000 (agzain n = 10°)
=> All odd buckets guaranteed to be empty.

1 |
[g [

NeTERe Quick-and-Dirty Hash Functions
budiers,
e,V £ ens D 5
@ “hash \:_y "‘comparison\ 0Ly --- -\
code” function {
& \
e.g., subroutine to convert like the mod n
strings to integers function

How to choose n = # of buckets

1. Choose nto be a prime (within constant factor of # of objects in
table)

2. Not too close to a power of 2

3. Not too close to a power of 10

