1 I
[‘E 'E [

NE-TCORE Al

Data Structures

Design and Analysis Heaps: Some
of Algorithms | Implementation Details

1 |
[g [

NE-TCORE Al

I~

Heap: Supported Operations

- A container for objects that have keys

- Employer records, network edges, events, etc.

Insert: add a new object to a heap. cqually well
Running time : O(log(n)) — EXTRACT MAX

Extract-Min: remove an object in heap with a minimum key

value. [ties broken arbitrarily]
Running time : O(log n) [n = # of objects in heap]

Also : HEAPIFY (momame), DELETE(O(log(n)) time)

1 |
[[

NE-TCORE Al

The Heap Property

oot

Conceptually : think of a heap as a tree. 3
-rooted, binary, as complete as possible /{},\

/\) >
Heap Property: at every node x, ®

. Ah
Key[x] <= all keys of x’s children @i
alterna‘uvely

(
Conseguence : object at root must (j Q\ (5 N ®\®

have minimum key value @ @ O

1 |
[g [

NE-TCORE Al

¥

I~

Array Implementation

@ (a gV’ \%\al] \u\x:l

N T

[i/2] if i odd

i.e., round down

and children of i are 2i, 2i+1

N iy g ~
Note : parent(i) = i/2 if i even @
- <

Level O

Level 3

1 |
[[

NE-TCORE Al

Insert and Bubble-Up

Implementation of Insert (given key k
_ (g y k) }"‘i \@

Step 1: stick k at end of last level.

N
Step 2 : Bubble-Up k until heap property ﬁ)\ 2 %(9

is restored (i.e., key of k’s parent @ W
b /L

Is k) ~log2n levels (n =# of

items in heap)

Check : 1.) bubbling up process must stop, with
heap property restored
2.) runtime = O(log(n))

1
NE-TCORE Al

Extract-Min and Bubble-Down

Implementation of Extract-Min
1. Delete root
2. Move last leaf to be new root.
3. lteratively Bubble-Down until heap
property has been restored
[always swap with smaller child!]

Check : 1.) only Bubble-Down once per level, halt with a heap

/ 2.) run time = O(log(n))
\

