

Probability Review

Part II

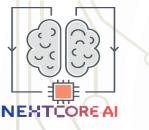
Design and Analysis of Algorithms I

Topics Covered

- Conditional probability
- Independence of events and random variables
 See also:

Nextcore Al Gopal Shangari

- Lehman-Leighton notes (free PDF)
- Wikibook on Discrete Probability



Concept #1 – Sample Spaces

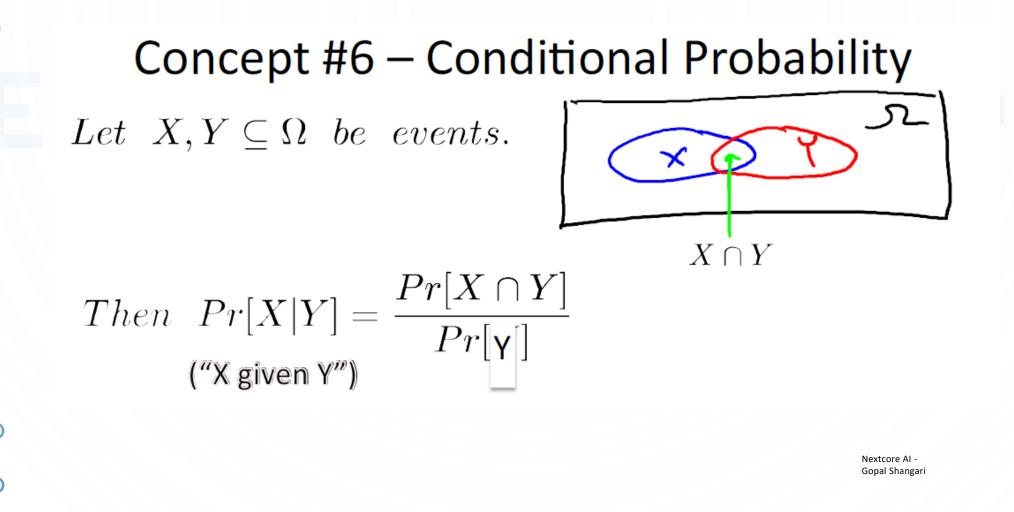
Sample Space Ω : "all possible outcomes" [in algorithms, Ω is usually finite]

<u>Also</u> : each outcome $i \in \Omega$ has a probability p(i) >= 0

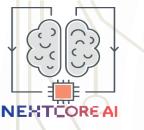
Constraint : $\sum_{i \in \Omega} p(i) = 1$ An event is a subset $S \subseteq \Omega$

The probability of an event S is $\sum_{i \in S} p(i)$

Gopal Shangari



 \bigcirc

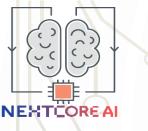


Suppose you roll two fair dice. What is the probability that at least one die is a 1, given that the sum of the two dice is 7?

 $^{1/_{36}}$ $^{1/_{6}}$ $^{1/_{3}}$ $^{1/_{2}}$

X = at least one die is a 1	
Y = sum of two dice = 7	
= {(1,6),(2,5),(3,4),(4,3),(5,2),(6,2	1)}
$=> X \cap Y = \{(1,6), (6,1)\}$	

$$Pr[X|Y] = \frac{Pr[X \cap Y]}{Pr[Y]} = \frac{(2/36)}{(6/36)} = \frac{1}{3}$$

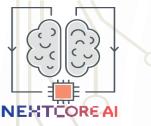


Concept #7 – Independence (of Events)

<u>Definition</u>: Events $X, Y \subseteq \Omega$ are independent if (and only if) $Pr[X \cap Y] = Pr[X] \cdot Pr[Y]$

<u>You check</u> : this holds if and only if Pr[X | Y] = Pr[X] <==> Pr[Y | X] = Pr{Y]

<u>WARNING</u> : can be a very subtle concept. (intuition is often incorrect!)



Independence (of Random Variables)

<u>Definition</u> : random variables A, B (both defined on Ω) are independent if and only if the events Pr[A=1], Pr[B=b] are independent for all a,b. [<==> Pr[A = a and B = b] = Pr[A=z]*Pr[B=b]]

Claim : if A,B are independent, then E[AB] = E[A]*E[B]

$$\underline{roof}: \quad E[AB] = \sum_{a,b} (a \cdot b) \cdot Pr[A = a \text{ and } B = b]$$

=
$$\sum_{a,b} (a \cdot b) \cdot Pr[A = a] \cdot Pr[B = b] \quad \text{(Since A, B independent)}$$

=
$$\underbrace{\left[\left[A \right]}_{=} \underbrace{\left[\sum_{a,b} a \cdot Pr[A = a] \right]}_{=} \underbrace{\left[\sum_{a,b} b \cdot Pr[B = b] \right]}_$$

