

Big-Oh: Definition

Design and Analysis of Algorithms I

Big-Oh: English Definition

Let $T(n)$ = function on $n = 1, 2, 3, ...$ [usually, the worst-case running time of an algorithm]

 $Q:$ When is $T(n) = O(f(n))$?

A : if eventually (for all sufficiently large n), T(n) is bounded above by a constant multiple of f(n)

> Nextcore AI Gopal Shangar

Big-Oh: Formal Definition

 $\sqrt{r(n)}$ 522

Picture $T(n) = O(f(n))$

Formal Definition : $T(n) = O(f(n))$ if and only if there exist constants $c, n_0 > 0$ such that $T(n) \leq c \cdot f(n)$

For all $n \geq n_0$

Warning: c, n_0 cannot depend on n

Nextcore Al -Gopal Shangari

Big-Oh: Basic Examples

Design and Analysis of Algorithms I

Example #1 <u>Claim</u>: if $T(n) = a_k n^k + ... + a_1 n + a_0$ then $T(n) = O(n^k)$

 $\underline{\textsf{Proof}}$: Choose $\,n_0=1\,$ and Need to show that $\forall n \geq 1, T(n) \leq c \cdot n^k$ We have, for every $n \geq 1$, $T(n) \leq |a_k|n^k + ... + |a_1|n + |a_0|$
 $\leq |a_k|n^k + ... + |a_1|n^k + |a_0|n^k$ $=c\cdot n^k$

Nextcore AI - Gopal Shangari

<u>Claim</u> : for every $k\geq 1, \; \; n^\kappa \;$ is not Example #2

<u>Proof</u> : by contradiction. Suppose $n^k = O(n^{k-1})$ Then there exist constants c, n_0 such that $n^k < c \cdot n^{k-1}$ $\forall n > n_0$

But then [cancelling n^{k-1} from both sides]:
 $n \leq c \quad \forall n \geq n_0$

Which is clearly False [contradict i o n]

Nextcore AI Gopal Shangari

Big Oh: Relatives (Omega & Theta)

Design and Analysis of Algorithms I

> Nextcore AI -Gopal Shangari

OMEGA NOTATION

Definition: $T(n) = \Omega(f(n))$ If and only if there exist constants c, n_0 such that $T(n) \geq c \cdot f(n) \quad \forall n \geq n_0$

Nextcore Al -**Gopal Shangari**

Theta Notation

Defini4on: $T(n) = \theta(f(n))$ if and only if $T(n) = O(f(n))$ and $T(n) = \Omega(f(n))$

 c_1, c_2, n_0 such that Equivalent : there exist constants $c_1 f(n) \leq T(n) \leq c_2 f(n)$ $\forall n \geq n_0$

> Nextcore AI -Gopal Shangari

Let $T(n) = \frac{1}{2}n^2 + 3n$. Which of the following statements are true ? (Check all that apply.) \Box $T(n) = O(n)$. $T(n) = \Omega(n).$ $[n_0 = 1, c = \sum_{i=1}^{n}$ $T(n) = \Theta(n^2).$ $[n_0 = 1, c_1 = 1/2, c_2 = 4]$ $T(n) = O(n^3).$ $[n_0 = 1, c = \mathsf{H}]$

Little-Oh Notation

Definition: $T(n) = o(f(n))$ if and only if for all constants $c>0$, there exists a constant n_0 such that

$$
T(n) \le c \cdot f(n) \quad \forall n \ge n_0
$$

Exercise: $\forall k \geq 1, n^{k-1} = o(n^k)$

Where Does Notation Come From?

"On the basis of the issues discussed here, I propose
that members of SIGACT, and editors of compter science and mathematics journals, adopt the O , Ω , and Θ notations as defined above, unless a better alternative can be found reasonably soon".

> -D. E. Knuth, "Big Omicron and Big Omega and Big Theta", SIGACT News, 1976. Reprinted in "Selected Papers on Analysis of Algorithms."

Additional Examples

Design and Analysis of Algorithms I

EXAMPLE #1

Claim : $2^{n+10} = O(2^n)$

Proof : need to pick constants $\,$ $\,c,\mathit{n}_0\,$ such that (*) $2^{n+10} \leq c \cdot 2^n$ $n \geq n_0$ Note: $2^{n+10} = 2^{10} \times 2^n = (1024) \times 2^n$ So if we choose $\,c=1024,n_0=1\,$ then (*) holds.

Q.E.D

Nextcore AI Gopal Shangari

EXAMPLE #2

Claim : $2^{10n} \neq O(2^n)$

Proof: by contradiction. If $2^{2^{n}m} = O(2^n)$ then there exist constants $c, n_0 > 0$ such that $2^{10n} \leq c \cdot 2^n$ $n \geq n_0$

But then [cancelling 2^n]

Which is certainly false.

Q.E.D

Nextcore AI Gopal Shangari

Example #3 (continued) **Proof**: $max{f, g} = \theta(f(n) + g(n))$ For every n, we have

 $max{f(n), g(n)} \le f(n) + g(n)$

And

$$
2 * max{f(n), g(n)} \ge f(n) + g(n)
$$

Thus
$$
\frac{1}{2} * (f(n) + g(n)) \leq max\{f(n), g(n)\} \leq f(n) + g(n) \quad \forall n \geq 1
$$

\n $\Rightarrow max\{f, g\} = \theta(f(n) + g(n)) \leq \text{where } n_0 = 1, c_1 = 1/2, c_2 = 1$