

QuickSort

Analysis I: A Decomposition Principle

Design and Analysis of Algorithms I

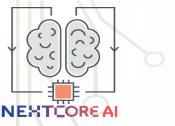
Average Running Time of QuickSort

<u>QuickSort Theorem</u>: for every input array of length n, the average running time of QuickSort (with random pivots) is O(nlog(n)).

Note: holds for every input. [no assumptions on the data]

- recall our guiding principles!
- "average" is over random choices made by the algorithm (i.e., the pivot choices)

Nextcore Al Gopal Shangari



Preliminaries

Fix input array A of length n

Sample Space Ω = all possible outcomes of random choices in QuickSort (i.e., pivot sequences)

Key Random Variable : for $\sigma \in \Omega$

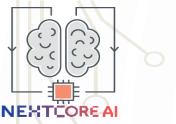
 $C(\sigma)$ = # of comparisons between two input elements made by QuickSort (given random choices σ)

Lemma: running time of QuickSort dominated by comparisons.

There exist constant c s.t. for all

Remaining goal :
$$E[C] = O(nlog(n))$$

$$\sigma \in \Omega$$
 , $RT(\sigma) \leq c \cdot C(\sigma)$



Building Blocks

Note can't apply Master Method [random, unbalanced subproblems]

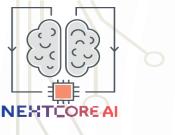
[A = final input array]

Notation : $z_i = i^{th}$ smallest element of A

For $\,\sigma \in \Omega$, indices i< j

$$X_{ij}(\sigma)$$
 = # of times $\mathbf{z_i}$, $\mathbf{z_j}$ get compared in QuickSort with pivot sequence σ

Nextcore AI -Gopal Shanga



Fix two elements of the input array. How many times can these two elements get compared with each other during the execution of QuickSort?

O 1

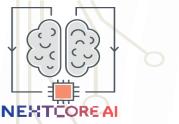
O 0 or 1

O 0, 1, or 2

<u>Reason</u>: two elements compared only when one is the pivot, which is excluded from future recursive calls.

 $\underline{\text{Thus}}$: each X_{ij} is an "indicator" (i.e., 0-1) random variable

 \bigcirc Any integer between 0 and n-1



A Decomposition Approach

<u>So</u>: $C(\sigma)$ = # of comparisons between input elements

 $X_{ij}(\sigma) = \#_{n-1} \text{ of comparisons between } z_i \text{ and } z_j$

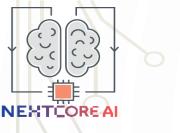
Thus:
$$\forall \sigma, C(\sigma) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij}(\sigma)$$

By Linearity of Expectation : $E[C] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$

Since
$$E[X_{ij}] = 0 \cdot Pr[X_{ij} = 0] + 1 \cdot Pr[X_{ij} = 1] = Pr[X_{ij} = 1]$$

Thus:
$$E[C] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Pr[z_i, z_j \ get \ compared]$$
 (*)

Gopal Shanga



A General Decomposition Principle

- 1. Identify random variable Y that you really care about
- Express Y as sum of indicator random variables :

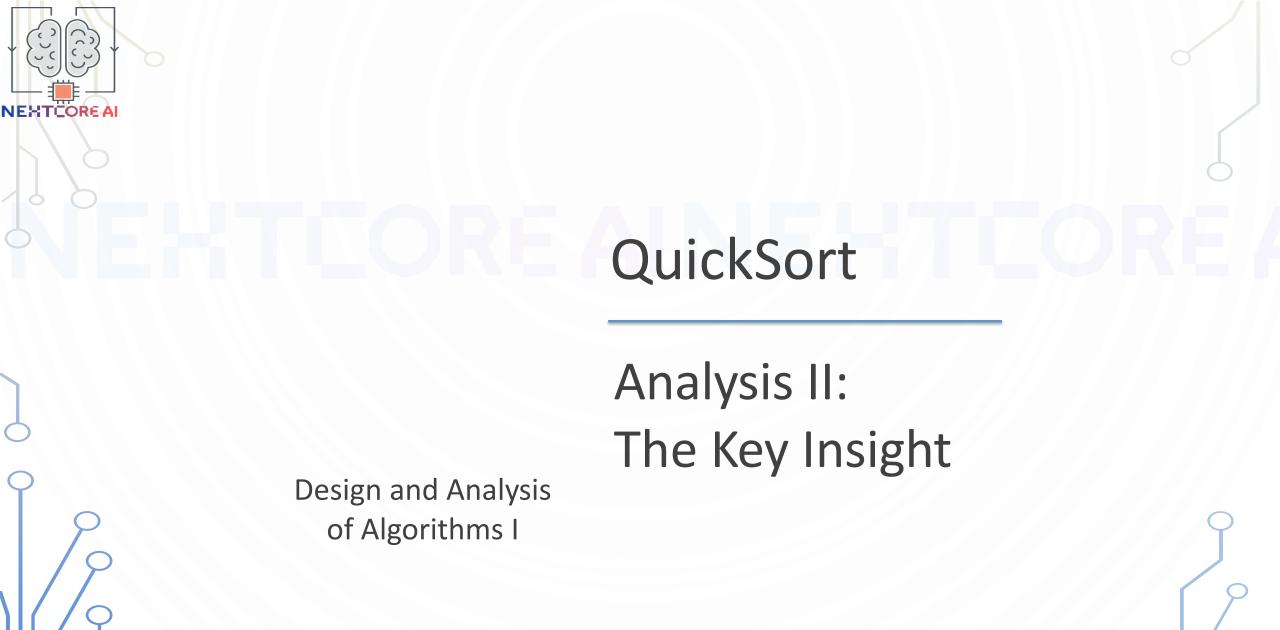
$$Y = \sum_{l=1}^{m} X_e$$

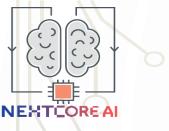
3. Apply Linearity of expectation:

$$E[Y] = \sum_{l=1}^{m} Pr[X_e = 1]^{\ell}$$

"just" need to understand these!

Gopal Shangari





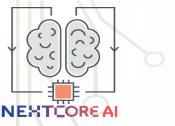
Average Running Time of QuickSort

<u>QuickSort Theorem</u>: for every input array of length n, the average running time of QuickSort (with random pivots) is O(nlog(n)).

Note: holds for every input. [no assumptions on the data]

- recall our guiding principles!
- "average" is over random choices made by the algorithm (i.e., the pivot choices)

Nextcore Al Gopal Shangari



The Story So Far

 $C(\sigma)$ = # of comparisons between input elements

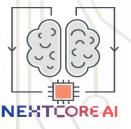
 $X_{ij}(\sigma)$ = # of comparisons between z_i and z_j

ith, jth smallest entries in array

$$\underline{\mathsf{Recall}} : E[C] = \sum_{i=1}^{n-1} \sum_{k=i+1}^{n} Pr[X_{ij} = 1] = Pr[z_i \ z_j \ get \ compared]$$

<u>Key Claim</u>: for all i < j, $Pr[z_i, z_j \text{ get compared }] = 2/(j-i+1)$

Gopal Shangari



Proof of Key Claim

 $Pr[z_i,z_j \text{ get } compared] = 2/(j-i+1)$

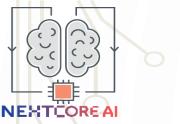
Fix z_i , z_j with i < jConsider the set z_i , z_{i+1} ,..., z_{j-1} , z_j

<u>Inductively</u>: as long as none of these are chosen as a pivot, all are passed to the same recursive call.

Consider the first among $z_i, z_{i+1}, ..., z_{j-1}, z_j$ that gets chosen as a pivot.

- 1. If z_i or z_i gets chosen first, then z_i and z_i get compared
- 2. If one of $z_{i+1},...,z_{j-1}$ gets chosen first then z_i and z_j are never compared [split into different recursive calls]

Nextcore Al Gopal
Shangari



Proof of Key Claim (con'd)

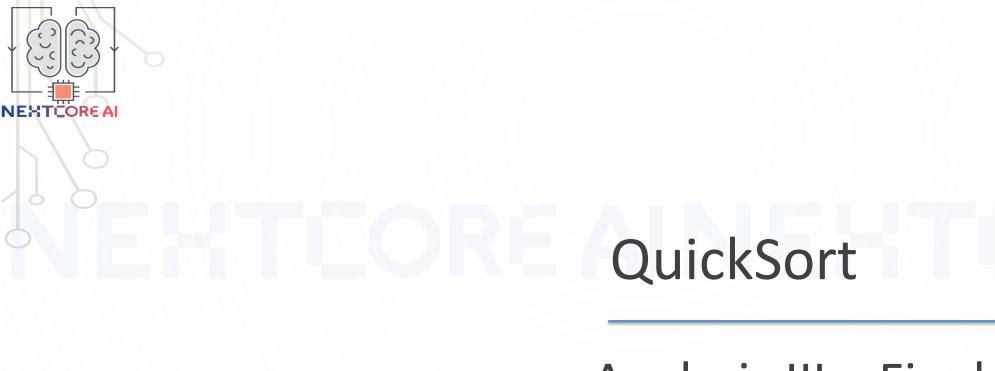
- 1. z_i or z_i gets chosen first => they get compared
- 2. one of $z_{i+1},...,z_{j-1}$ gets chosen first => z_i , z_j never compared

Note : Since pivots always chosen uniformly at random, each of $z_i, z_{i+1}, ..., z_{i-1}, z_i$ is equally likely to be the first

$$\Rightarrow$$
Pr[z_i,z_j get compared] = 2/(j-i+1) Choices that lead to case (1) Total # of choices

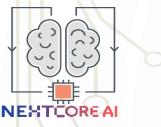
So:
$$E[C] = \sum_{i=1}^{n-1} \sum_{j=1}^{n} \frac{2}{j-i+1}$$
 [Still need to show this is O(nlog(n))

Gopai Tim Shangari



Analysis III: Final Calculations

Design and Analysis of Algorithms I



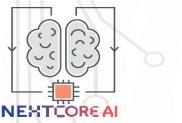
Average Running Time of QuickSort

<u>QuickSort Theorem</u>: for every input array of length n, the average running time of QuickSort (with random pivots) is O(nlog(n))

Note: holds for every input. [no assumptions on the data]

- recall our guiding principles!
- "average" is over random choices made by the algorithm (i.e., pivot choices)

Nextcore Al Gopal Shangari



The Story So Far

$$E[C] = 2\sum_{i=1}^{n-1}\sum_{j=1}^{n}\frac{1}{j-i+1}$$
 How big can this be ? <= n choices for i

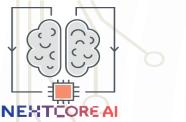
Note: for each fixed i, the inner sum is

$$\sum_{j=i+1}^{n} \frac{1}{j-i+1} = 1/2 + 1/3 + \dots$$

$$So \ E[C] \le 2 \cdot n \left(\cdot \sum_{j=i+1}^{n} \frac{1}{k} \right)$$

So
$$E[C] \le 2 \cdot n \left(\sum_{k=2}^{n} \frac{1}{k} \right)$$

Claim: this is <= ln(n)

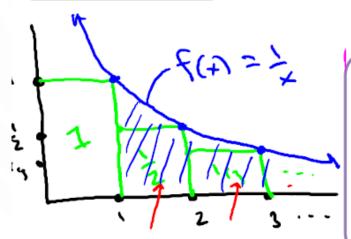


Completing the Proof

$$E[C] \le 2 \cdot n \cdot \sum_{k=2}^{n} \frac{1}{k}$$

$$Claim \sum_{k=2}^{n} \frac{1}{k} \le \ln n$$

Proof of Claim



$$So \sum_{k=2}^{n} \frac{1}{n} \le \int_{1}^{n} \frac{1}{x} dx$$

$$= \ln x \mid_{1}^{n}$$

$$= \ln n - \ln 1$$

$$= \ln n \quad \text{Q.E.D. (CLAIM)}$$

Nextcore AI -Gopal Shangari