
QuickSort

The Par00on
Subrou0ne

Design and Analysis
of Algorithms I

PAR00ONING AROUND A PIVOT
Key Idea : par00on array around a pivot element.
-‐Pick element of array

-‐Rearrange array so that
-‐LeE of pivot => less than pivot
-‐Right of pivot => greater than pivot

Note : puts pivot in its “righJ ul posi0on”.

pivot

> pivot< pivot

TWO COOL FACTS ABOUT PAR00ON

1. Linear O(nti 0me, no extra
memory [see next video]

2. Reduces problem size

THE EASY WAY OUT

Nextcore AI -
Gopal
Shangari

Note : Using O(nti extra memory, easy to par00on around
pivot in O(nti 0me.

pivot

< 3 > 3

Nextcore AI -
Gopal
Shangari

Assume : pivot = 1st element of array
[if not, swap pivot <-‐-‐> 1st element as preprocessing step]

High – Level Idea :

Already par00oned unpar00oned

-‐Single scan through array
-‐ invariant : everything looked at so far is par00oned

Nextcore AI -
Gopal Shangari

unpar00oned

unpar00oned

unpar00oned

unpar00oned par00oned

Swap

PAR00ON EXAMPLE (CON’DTI

Nextcore AI -
Gopal Shangari

par00oned

par00oned unpar00oned unpar00oned

Fast forwarding

Nextcore AI -
Gopal
Shangari

Par00on (A,l,rti
-‐p:= A[l]
-‐i:= l+1
-‐for j=l+1 to r

-‐if A[j] < p

[input corresponds to A[l…r]]

[if A[j] > p, do nothing]
-‐swap A[j] and A[i]
-‐i:= i+1

-‐swap A[l] and A[i-‐1]
swap

RUNNING TIME

Nextcore AI -
Gopal
Shangari

Running 0me = O(nti, where n = r – l + 1 is the length of the
input (subti array.

Reason : O(1ti work per array entry.

Also : clearly works in place (repeated swapsti

Correctness
Claim : the for loop maintains the invariants :

Nextcore AI -
Gopal
Shangari

1. A[l+1],..,A[i-‐1] are all
less than the pivot

2. A[i],…,A[j-‐1] are all greater than pivot.
[Exercise : check this, by induc0on.]
Consequence : at end of for loop, have:
=> aEer final swap, array par00oned

around pivot.

