

Array Sorting Algorithms

Design and Analysis of Algorithms I Introduction

Merge Sort (Pseudocode)

MERGE SORT: PSEUDOCODE

-recursively sort 1st half of the input array

-recursively sort 2nd half of the input array

-merge two sorted sublists into one

[ignores base cases]

Nextcore AI -Gopal Shangari

 \bigcirc

PSEUDOCODE FOR MERGE:

end

C = output [length = n] A for k = 1 to n = 1^{st} sorted array [n/2] B = 2^{nd} sorted array [n/2]i= 1 j = 1

if A(i) < B(j) C(k)= A(i) i++

> else [B(j) < A(it) C(k) = B(j) j++Nextcore Al-Gopal Shangari

(ignores end cases)

MERGE SORT RUNNING TIME?

Key Question : running time of Merge Sort on array of n numbers ?

[running time ~ # of lines of code executed]

Nextcore AI -Gopal Shangari

 \bigcirc

PSEUDOCODE FOR MERGE:

end

C = output [length = n] A = 1^{st} sorted array [n/2] B = 2^{nd} sorted array [n/2] i = 1j = 12 operations j = 1 for k = 1 to n if A(i) < B(j) C(k)= A(i) i++

```
else [B(j) < A(it)
C(k) = B(j)
j++
```

(ignores end cases) Nextcore AI -Gooal Shangari

RUNNING TIME OF MERGE

 $\begin{array}{l} \underline{\text{Upshot}}: \text{running time of Merge on array of} \\ \text{m numbers is } &\leq 4m+2 \\ &\leq 6m \qquad \text{(Since } m \geq 1\text{)} \end{array}$

Nextcore AI -Gopal Shangari

RUNNING TIME OF MERGE SORT Claim : Merge Sort requires $\leq 6n \log_2 n + 6n$ operation s to sort n numbers.

Recall : = $\log_2 n$ is the # of times you divide by 2 until you get down to 1 $\pi f(n) = n$ $f(u) = log_2 n$

> Nextcore AI -Gopal Shangari