Design and Analysis
of Algorithms |

Master Method

Proof (Part 1)

1 |
[g [

NE-TCORE Al

(7~

If T(n) < aT (g) +0(n%)

then

T(n) = -

The Master Method

0 (nd log n)
0(n%)

0 (nlogb a)

ifa = b (Case1)
ifa < b (Case2)
ifa > b? (Case3)

1 |
[g [

gl
Preamble
Assume : recurrence is
. T(l) =c (For some
. T'(n) < aT(n/b)+ cn” constant c)

And n is a power of b.
(general case is similar, but more tedious)

ldea : generalize MergeSort analysis.
/ (i.e., use a recursion tree)

I~

1 |
[g [

NE-TCORE Al

What is the pattern ? Fill in the blanks in the following

statement: at each level j =0,1,2,...,log,n, there are <blank>
subproblems, each of size <blank>

of times you can divide n by b

O al and n/al, respectively. before reaching 1

O al and n/b}, respectively.
O bl and n/al, respectively.

O bl and n/bj, respectively.

1 |
[g [

NE-TCORE Al

The Recursion Tree

a braches
Level O
Level 1
[. N
‘ Base cases
' (size 1)
Level log, n

{j;

NE-TCORE Al

1 |
[g [

Work at a Single Level

Total work at level j [ighoring work in recursive calls]

>Work per level-j subproblem

y d d. (2
<a’ - cl(=)=cn" (=)
of level Siize of each
subpreblems level-j

subpreblem

1 |
[[

NE-TCORE Al

Total Work

Summing over all levels j=0,1,2,..., log,n:

log, n
] a ..
ol < el 3 (0 ()
work 0

1 I
[[

NE-TCORE Al

Master Method

Intuition for
the 3 Cases

P Design and Analysis

/D of Algorithms |
\

I~

1 |
[:Iii!i lii!ig [

NE-TCORE Al

HOW TO THINK ABOUT (*)

Our upper bound on the work at level j:

Interpreta3on
a = rate of subproblem prolifera3on (RSP)

bd = rate of work shrinkage (RWS)

(per subproblem)

Gopal Shangari

(%

1 |
[g [

NE-TCORE Al

Which of the following statements are true?
(Check all that apply.)

If RSP < RWS, then the amount of work is decreasing with the
> recursion level j.

[] If RSP > RWS, then the amount of work is increasing with the
7 recursion level j.

[] No conclusions can be drawn about how the amount of work varies
with the recursion level j unless RSP and RWS are equal.

[] If RSP and RWS are equal, then the amount of work is the same at
7 every recursion level j.

| -

1 |
[[

NE-TCORE Al

INTUITION FOR THE 3 CASES

Upper bound for level j: cn® ><()1

. RSP = RWS => Same amount of work each level (like

Merge Sort) [expect O(n%og(n)]

. RSP < RWS => |less work each level => most work at the

root [might expect O(nY)]

. RSP > RWS => more work each level => most work at

the leaves [might expect O(# Ieaves)]

aaaaaaaaaaaaaaaaaaaaaaa

Design and Analysis
of Algorithms |

Master Method

Proof (Part Il)

1 |
[:IEIEI Iii!ig [

NE-TCORE Al

17

THE STORY SO FAR/CASE 1

=1 for
all j

Total work: < cn? X Zﬁgé’ 4 %!)

If a=10b% then K 7

= (logpn + 1)

(%) = cnd(logb n+ 1)

= O(n%logn)
[end Case 1]

Gopal Shangari

1 |
[g [

NE-TCORE Al

Basic Sums Fact

For 7 7 1 \we have

k—l—l_l
l+r+r2+r 4. +rF= 4

r—1

Proof : by induction (you check)
Independent of k

Upshot: | _—

Ve
1. Ifr<lisconstant, RHSis<= 7~ = a constant

l.e. | | k
2. Ifr>1is constant, RHSis<= 1" -
l.e., last term of sum dominates i

Shangari

1 |
[g [

NE-TCORE Al

Total work: < cn® x(Y. *)

If a<b? [RSP < RWS]

“a<= 3 constant
(independent of n)
| by basic sums fact]

= O(n%)

| total work dominated by top level]

Nextcore Al -
\ Gopal
Shangari

1 |
[:IEHEI Iii!i; [

NE-TCORE Al

Total work: < cn® x(Y.

If a>b? [RSP > RWS]
a

<= constant *

(*) — O(?’L(‘i . (ba’,)logh ’”f) largest term

Note b—dIOgb'n, — (blogbn)_d — n_d
So () = Oa ")

Gopal Shangari

{j;

NE-TCORE Al

1 |
[g [

L .
Level 1 <

.

Level O M a children
0 |)

‘ __.....--..--.....

.-".'
.‘.‘I

log, n
Level log,n # of leaves =@ °°

Which of the following quantities is equal to a'°8» ?

O The number of levels of the recursion tree.
O The number of nodes of the recursion tree.
O The number of edges of the recursion tree.

" O The number of leaves of the recursion tree.

1 |
[[

NE-TCORE Al

Case 3 continued

Total work: < cn? x Zlogb n()J (™)
So: (%) =0(a'°%™) = O(# leaves)
< ———— More intuitive
Note : {Simplertoapplv
Since (log, n)(log, a) = (log, a)(log, n)]
[End Case 3]

1 |
[g [

NE-TCORE Al

(7~

tf T(n) < aT (g) +0(n%)

then

T(n) = -

The Master Method

0 (nd log n)
0(n%)

0 (nlogb a)

ifa = b (Case1)
ifa < b (Case2)
ifa > b? (Case3)

