

Master Method

Proof (Part 1)

Design and Analysis of Algorithms I

The Master MethodIf $T(n) \leq aT\left(\frac{n}{b}\right) + O(n^d)$ then

$$
T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \quad \text{(Case 1)} \\ O(n^d) & \text{if } a < b^d \quad \text{(Case 2)} \\ O(n^{\log_b a}) & \text{if } a > b^d \quad \text{(Case 3)} \end{cases}
$$

Preamble

Shangari

Assume : recurrence is

1. $T(1) \leq c$ (For some constant c) II. $T(n) \leq aT(n/b) + cn^d$ And n is a power of b. $\frac{m \alpha}{2}$ is a power of b. general case is similar, but more

Idea : generalize MergeSort analysis. $(i.e., use a recursion tree)$

What is the pattern ? Fill in the blanks in the following statement: at each level $j = 0,1,2,...,log_bn$, there are
blank> subproblems, each of size <blank>

 \bigcirc a^j and n/a^j, respectively.

 \bigcirc a^j and n/b^j, respectively.

 \bigcirc b^j and n/a^j, respectively.

 \bigcirc b^j and n/b^j, respectively.

of times you can divide n by b before reaching 1

Work at a Single Level Total work at level j [ignoring work in recursive calls]>Work per level-j subproblem $\bigg(\Bigg)^d = cn^d \cdot (\frac{a}{b^d})^j.$ $\leq_{\mathfrak{L}} a^j$. # of level-j Size of each subproblems level-j subproblem

Total Work

Summing over all levels $j = 0, 1, 2, \ldots, \log_b n$:

$$
\begin{array}{lll} \text{Total} & \leq c n^d \cdot \displaystyle\sum_{j=0}^{\log_b n}(\frac{a}{b^d})^j & (*) \end{array}
$$

Master Method

Intuition for the 3 Cases

Design and Analysis of Algorithms I

> Nextcore AI -Gopal Shangari

HOW TO THINK ABOUT (*)

Our upper bound on the work at level j:

 $cn^d \times (\frac{a}{h^d})^j$

Interpreta3on

- a = rate of subproblem prolifera3on (RSP)
- b^d = rate of work shrinkage (RWS)

(per subproblem)

Nextcore AI - Gopal Shangar

Which of the following statements are true? $W_{\rm eff}$ are true statements are true?

- If $RSP < RWS$, then the amount of work is decreasing with the recursion level j.
- If RSP > RWS, then the amount of work is increasing with the recursion level j.
- No conclusions can be drawn about how the amount of work varies with the recursion level j unless RSP and RWS are equal.
- If RSP and RWS are equal, then the amount of work is the same at every recursion level j.

INTUITION FOR THE 3 CASES Upper bound for level j: $cn^d \times (\frac{a}{hd})^j$

- 1. RSP = RWS => Same amount of work each level (like Merge Sort) [expect $O(n^d \log(n))$]
- $RSP < RWS \Rightarrow$ less work each level \Rightarrow most work at the $\frac{1}{\sqrt{2}}$ root $[\text{might expect } O(n^d)]$
- [might expect $O(H \text{ leaves})$] 3. RSP > RWS => more work each level => most work at the leaves

Nextcore AI - Gopal Shangari

Master Method

Proof (Part II)

Design and Analysis of Algorithms I

THE STORY SO FAR/CASE 1

Total work:
$$
\leq cn^d \times \sum_{j=0}^{\log_b n} \left(\frac{a}{b^d}\right)^j
$$

\nIf $a = b^d$, then
\n
$$
(*) = cn^d (\log_b n + 1)
$$
\n
$$
= O(n^d \log n)
$$
\n
$$
[end Case 1]
$$

Nextcore AI -Gopal Shangari

For $r\neq 1$, we have Basic Sums Fact

Proof : by induction (you check)

Upshot:

1. If r<1 is constant, RHS is $\leq \frac{1}{1-r}$
l.e., 1st term of sum dominates $1-r$ = a constant

2. If r>1 is constant, RHS is $\leq r^k$ I.e., last term of sum dominates

Nextcore AI - Gopal Shangari

Independent of k

Nextcore AI Gopal Shangari

 $7 = r > 1$

 \rightarrow \leftarrow constant \ast

largest term

Which of the following quantities is equal to $a^{\log_b n}$?

 \bigcirc The number of levels of the recursion tree.

- \bigcirc The number of nodes of the recursion tree.
- \bigcirc The number of edges of the recursion tree.
- The number of leaves of the recursion tree.

Case 3 continued **Total work:** $\leq cn^d \times \sum_{j=0}^{\log_b n} (\frac{a}{bd})^j$ $So: (*) = O(a^{\log_b n}) = O(\# \ leaves)$ More intuitive $Note: (a^{\log_b n}) = (n^{\log_b a})$ Simpler to apply $[Since (\log_b n)(\log_b a) = (\log_b a)(\log_b n)]$ [End Case 3]

(*`

The Master Method If $T(n) \leq aT\left(\frac{n}{b}\right) + O(n^d)$ then

$$
T(n) = \begin{cases} O\left(n^d \log n\right) & \text{if } a = b^d \quad \text{(Case 1)}\\ O\left(n^d\right) & \text{if } a < b^d \quad \text{(Case 2)}\\ O\left(n^{\log_b a}\right) & \text{if } a > b^d \quad \text{(Case 3)} \end{cases}
$$