

Master Method

Proof (Part 1)

Design and Analysis of Algorithms I

The Master Method If $T(n) \le aT\left(\frac{n}{b}\right) + O(n^d)$ then

$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \quad \text{(Case 1)} \\ O(n^d) & \text{if } a < b^d \quad \text{(Case 2)} \\ O(n^{\log_b a}) & \text{if } a > b^d \quad \text{(Case 3)} \end{cases}$$

Preamble

<u>Assume</u> : recurrence is

I. $T(1) \leq c$ (For some constant c) II. $T(n) \leq aT(n/b) + cn^d$ constant c) <u>And</u> n is a power of b. (general case is similar, but more tedious)

<u>Idea :</u> generalize MergeSort analysis. (i.e., use a recursion tree)

What is the pattern ? Fill in the blanks in the following statement: at each level j = 0,1,2,...,log_bn, there are <blank> subproblems, each of size <blank>

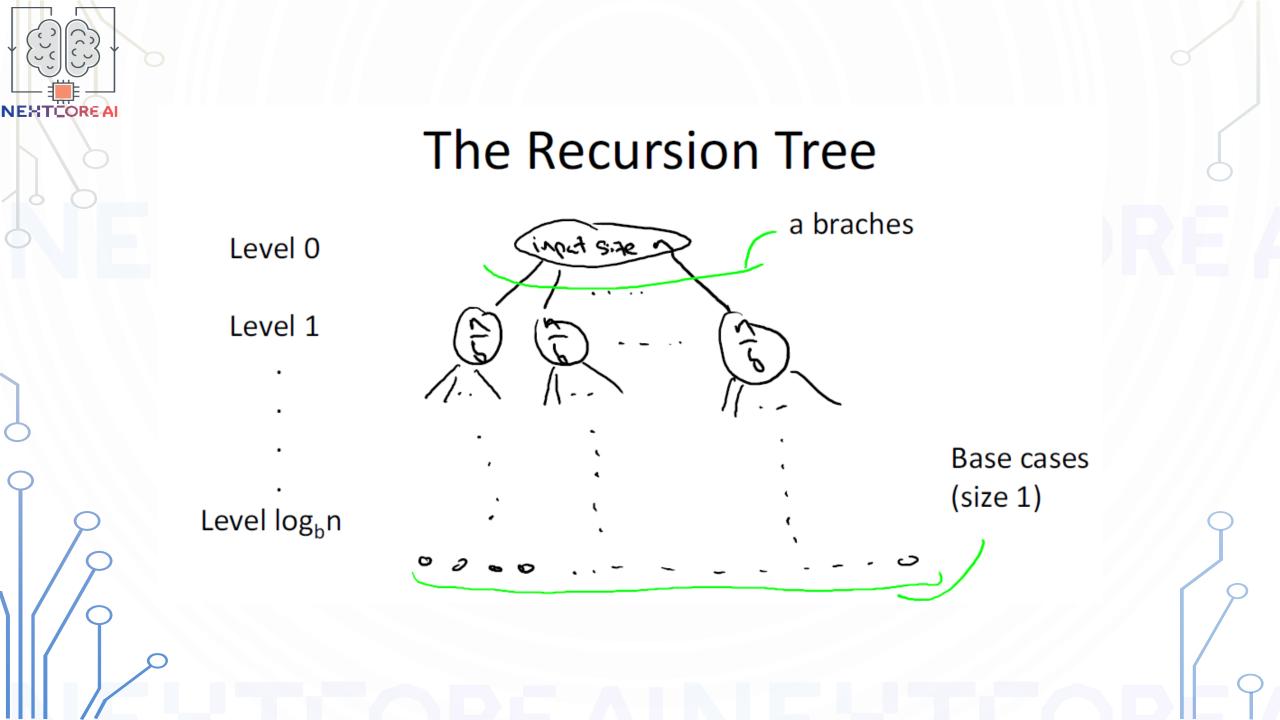
 \bigcirc a^j and n/a^j, respectively.

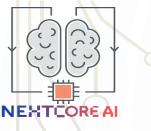
 \bigcirc a^j and n/b^j, respectively.

 \bigcirc b^j and n/a^j, respectively.

 \bigcirc b^j and n/b^j, respectively.

of times you can divide n by b before reaching 1



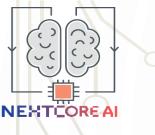


Work at a Single Level Total work at level j [ignoring work in recursive calls] >Work per level-j subproblem $)^{d} = cn^{d} \cdot \left(\frac{a}{h^{d}}\right)^{j}$ $\leq a^j \cdot$ # of level-j Size of each subproblems level-j subproblem

Summing over all levels j = 0,1,2,..., log_bn :

NEXTOREAL

$$\begin{array}{ll} \mbox{Total} & \leq c n^d \cdot \sum_{j=0}^{\log_b n} (\frac{a}{b^d})^j & \ (*) \\ \mbox{work} & \end{array}$$

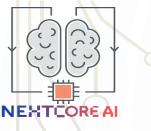


Master Method

Intuition for the 3 Cases

Design and Analysis of Algorithms I

> Nextcore AI -Gopal Shangari



HOW TO THINK ABOUT (*)

Our upper bound on the work at level j:

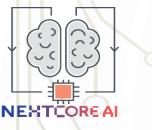
 $cn^d \times (\frac{a}{h^d})^j$

Interpreta3on

- a = rate of subproblem prolifera3on (RSP)
- b^d = rate of work shrinkage (RWS)

(per subproblem)

Nextcore AI -Gopal Shangari



Which of the following statements are true? (Check all that apply.)

- If RSP < RWS, then the amount of work is decreasing with the recursion level j.
- If RSP > RWS, then the amount of work is increasing with the recursion level j.
- No conclusions can be drawn about how the amount of work varies with the recursion level j unless RSP and RWS are equal.
- If RSP and RWS are equal, then the amount of work is the same at every recursion level j.

INTUITION FOR THE 3 CASES Upper bound for level j: $cn^d \times (\frac{a}{h^d})^j$

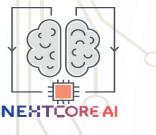
- 1. RSP = RWS => Same amount of work each level (like Merge Sort) [expect O(n^dlog(n)]
- 2. RSP < RWS => less work each level => most work at the root [might expect O(n^d)]
- 3. RSP > RWS => more work each level => most work at the leaves [might expect O(# leaves)]

Nextcore AI - Gopal Shangari

Master Method

Proof (Part II)

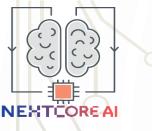
Design and Analysis of Algorithms I



THE STORY SO FAR/CASE 1

Total work:
$$\leq cn^d \times \sum_{j=0}^{\log_b n} a^{j}_{bd} = 1$$
 for
 $If \ a = b^d, \ then$
 $(*) = cn^d (\log_b n + 1)$
 $= O(n^d \log n)$
[end Case 1]

Nextcore AI -Gopal Shangari



Basic Sums Fact For $r \neq 1$, we have $1+r+r^2+r^3+\ldots+r^k=\frac{r^{k+1}-1}{r-1}$

Proof : by induction (you check)

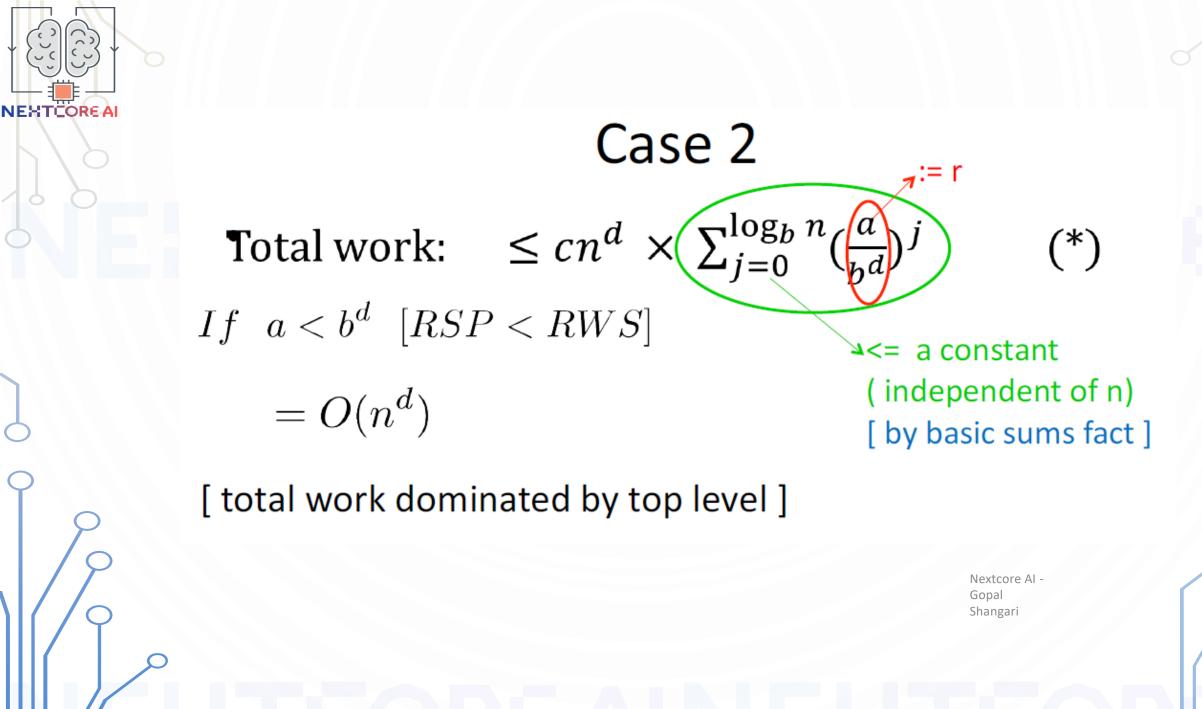
Upshot:

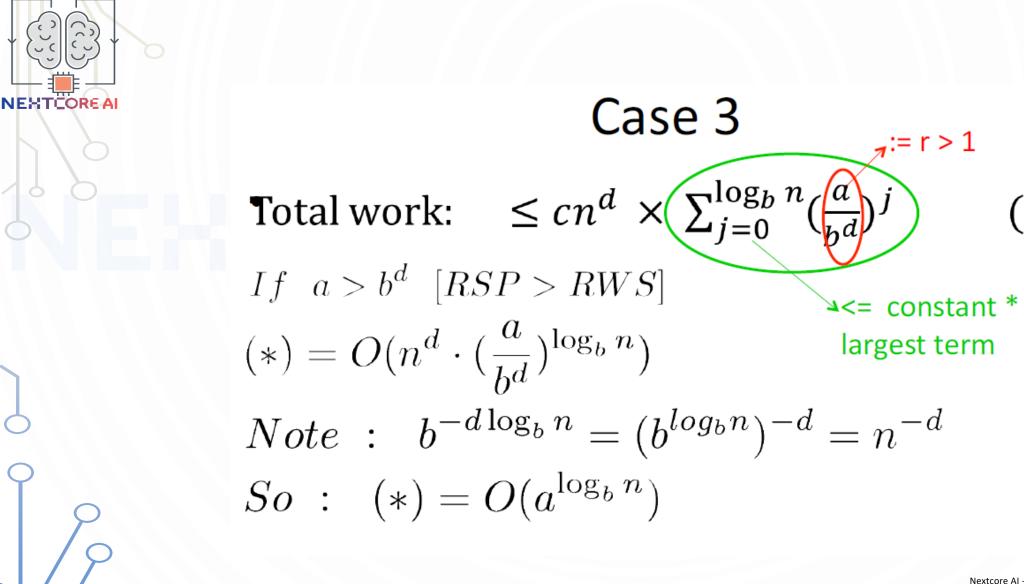
1. If r<1 is constant, RHS is <= $\frac{1}{1-r}$ = a constant l.e., 1st term of sum dominates

2. If r>1 is constant, RHS is <= $r^k \cdot \left(1 + \frac{1}{r-1}\right)$ I.e., last term of sum dominates

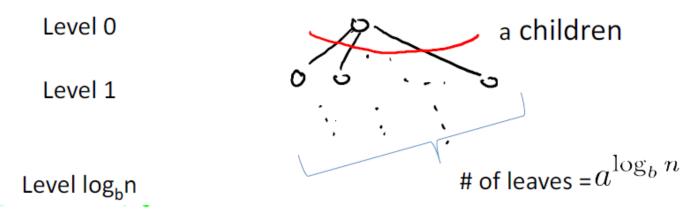
Nextcore AI -Gopal Shangari

Independent of k





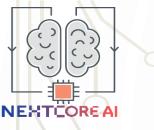
Gopal Shangari



Which of the following quantities is equal to $a^{\log_b n}$?

 \bigcirc The number of levels of the recursion tree.

- \bigcirc The number of nodes of the recursion tree.
- \bigcirc The number of edges of the recursion tree.
- $ightarrow {igodot}$ The number of leaves of the recursion tree.



Case 3 continued Total work: $\leq cn^d \times \sum_{j=0}^{\log_b n} (\frac{a}{b^d})^j$ So: $(*) = O(a^{\log_b n}) = O(\# \ leaves)$ More intuitive Note: $(a^{\log_b n}) = (n^{\log_b a})$ Simpler to apply $[Since \ (\log_b n)(\log_b a) = (\log_b a)(\log_b n)]$ [End Case 3]

(*)

The Master Method If $T(n) \le aT\left(\frac{n}{b}\right) + O(n^d)$ then

$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \quad \text{(Case 1)} \\ O(n^d) & \text{if } a < b^d \quad \text{(Case 2)} \\ O(n^{\log_b a}) & \text{if } a > b^d \quad \text{(Case 3)} \end{cases}$$