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Integer Multiplication Revisited

Motivation : potentially useful algorithmic ideas
often need mathematical analysis to evaluate

Recall : grade-school multiplication algorithm uses
(—)(nz) operation to multiply two n-digit numbers
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A Recursive Algorithm

Recursive approach
Write = 10™%a + b Yy = 10" %¢ + d
[where a,b,c,d are n/2 — digit numbers]

So:

z -y = 10"ac+ 10" ?*(ad + be) + bd (%)

Algorithm#1 : recursively compute ac,ad,bc,bd,
then compute (*) in the obvious way.
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A Recursive Algorithm

T(n) = maximum number of operations this algorithm
needs to multiply two n-digit numbers

Recurrence : express T(n) in terms of running time of
recursive calls.

R
Base Case : T(1) <= a constant. Work dene

< here

Foralln>1: 7T'(n) < 4T(nz2) + O(n)

/ Werk done by recursive ealls
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A Better Recursive Algorithm

Algorithm #2 (Gauss) : recursively compute ad"bd®
(a+b)(c+d) " [recall ad+bc = (3) = (1) = (2) ]

New Recurrence :

Base Case : T(1) <= a constant
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Which recurrence best describes the running time of Gauss’s
algorithm for integer multiplication?

O T(n) £2T(n/2) +0(n?
= 0O3T(n/2)+0(n)

QO 4T(n/2) + 0(n)

O 4T(n/2) + 0(n?)
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A Better Recursive Algorithm

Algorithm #2 (Gauss) : recursively compute ac, bd"”
(3)

(a+b)(c+d) [recall ad+bc=(3)—(1)-(2)]

New Recurrence :

Base Case : T(1) <= a constant

Werk done
<« |here

Foralln>1:7T(n) < 3T(ﬂ»{2) + O(n)
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Wierk dene by recursive calls
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