

Master Method

Motivation

Design and Analysis of Algorithms I

Integer Multiplication Revisited

<u>Motivation</u>: potentially useful algorithmic ideas often need mathematical analysis to evaluate

<u>Recall</u> : grade-school multiplication algorithm uses $\theta(n^2)$ operation to multiply two n-digit numbers

A Recursive Algorithm

<u>Recursive approach</u> Write $x = 10^{n/2}a + b$ $y = 10^{n/2}c + d$ [where a,b,c,d are n/2 – digit numbers]

$$\frac{80}{x} \cdot y = 10^{n}ac + 10^{n/2}(ad + bc) + bd$$
 (*)

<u>Algorithm#1</u> : recursively compute ac,ad,bc,bd, then compute (*) in the obvious way.

A Recursive Algorithm

T(n) = maximum number of operations this algorithm needs to multiply two n-digit numbers

<u>Recurrence</u> : express T(n) in terms of running time of recursive calls.

<u>Base Case</u> : T(1) <= a constant. For all n > 1 : $T(n) \le 4T(n/2) + O(n)$ Work done here

Work done by recursive calls

A Better Recursive Algorithm

<u>Algorithm #2 (Gauss)</u>: recursively compute $a_{c}^{(1)}bd_{c}^{(2)}$ (a+b)(c+d)⁽³⁾ [recall ad+bc = (3) – (1) – (2)]

New Recurrence :

Base Case : T(1) <= a constant

Which recurrence best describes the running time of Gauss's algorithm for integer multiplication?

 $\bigcirc T(n) \le 2T(n/2) + O(n^2)$ $\bigcirc 3T(n/2) + O(n)$ $\bigcirc 4T(n/2) + O(n)$ $\bigcirc 4T(n/2) + O(n^2)$

A Better Recursive Algorithm

<u>Algorithm #2 (Gauss)</u>: recursively compute $ac^{(1)}, bd^{(2)}, (a+b)(c+d)^{(3)}$ [recall ad+bc = (3) – (1) – (2)]

New Recurrence :

Base Case : $T(1) \le a$ constant **Work done For all n>1** : $T(n) \le 3T(n/2) + O(n)$ **Work done by recursive calls**