1 I
[[

NE-TCORE Al

Master Method

Motivation

P Design and Analysis

/3 of Algorithms |
\

I~

1
NE-TCORE Al

Integer Multiplication Revisited

Motivation : potentially useful algorithmic ideas
often need mathematical analysis to evaluate

Recall : grade-school multiplication algorithm uses
(—)(nz) operation to multiply two n-digit numbers

1
NE-TCORE Al

A Recursive Algorithm

Recursive approach
Write = 10™%a + b Yy = 10" %¢ + d
[where a,b,c,d are n/2 — digit numbers]

So:

z -y = 10"ac+ 10" ?*(ad + be) + bd (%)

Algorithm#1 : recursively compute ac,ad,bc,bd,
then compute (*) in the obvious way.

I~

1
NE-TCORE Al

A Recursive Algorithm

T(n) = maximum number of operations this algorithm
needs to multiply two n-digit numbers

Recurrence : express T(n) in terms of running time of
recursive calls.

R
Base Case : T(1) <= a constant. Work dene

< here

Foralln>1: 7T'(n) < 4T(nz2) + O(n)

/ Werk done by recursive ealls

1 |
[[

NE-TCORE Al

A Better Recursive Algorithm

Algorithm #2 (Gauss) : recursively compute ad"bd®
(a+b)(c+d) " [recall ad+bc = (3) = (1) = (2)]

New Recurrence :

Base Case : T(1) <= a constant

(]~

1 |
[g [

NE-TCORE Al

Which recurrence best describes the running time of Gauss’s
algorithm for integer multiplication?

O T(n) £2T(n/2) +0(n?
= 0O3T(n/2)+0(n)

QO 4T(n/2) + 0(n)

O 4T(n/2) + 0(n?)

¥

| -

1 |
[g [

NE-TCORE Al

A Better Recursive Algorithm

Algorithm #2 (Gauss) : recursively compute ac, bd"”
(3)

(a+b)(c+d) [recall ad+bc=(3)—(1)-(2)]

New Recurrence :

Base Case : T(1) <= a constant

Werk done
<« |here

Foralln>1:7T(n) < 3T(ﬂ»{2) + O(n)

%,
%,
%,

Wierk dene by recursive calls

St M e T et et

