

Master Method

Motivation

Design and Analysis of Algorithms I

Integer Multiplication Revisited

Motivation: potentially useful algorithmic ideas often need mathematical analysis to evaluate

Recall: grade-school multiplication algorithm uses $\theta(n^2)$ operation to multiply two n-digit numbers

A Recursive Algorithm

 $\frac{1}{2}$ Write $x=10^{n_\ell}$ [where a,b,c,d are $n/2$ – digit numbers]

$$
\frac{\text{So}}{x} \cdot y = 10^n ac + 10^{n/2} (ad + bc) + bd \quad (*)
$$

Algorithm#1 : recursively compute ac, ad, bc, bd , then compute $(*)$ in the obvious way.

A Recursive Algorithm

 $T(n)$ = maximum number of operations this algorithm T eds to multiply two n-uight numbers

Recurrence : express $T(n)$ in terms of running time of recursive calls.

Work done Base Case : $T(1) \leq a$ constant. here For all $n > 1$: $T(n) \leq 4T(n/2) + O(n)$ Work done by recursive calls

A Better Recursive Algorithm

Algorithm #2 (Gauss): recursively compute $ac^{(1)}$, bd, $(a+b)(c+d)^{(3)}$ [recall ad+bc = (3) – (1) – (2)]

New Recurrence:

Base Case : $T(1) \le a$ constant

Which recurrence best describes the running time of Gauss's algorithm for integer multiplication?

 $\bigcirc T(n) \leq 2T(n/2) + O(n^2)$ $O 3T(n/2) + O(n)$ $Q \, 4T(n/2) + O(n)$ $Q_{4T(n/2) + O(n^2)}$

A Better Recursive Algorithm

Algorithm #2 (Gauss): recursively compute ac, bd,⁽²⁾ $\frac{A_1}{A_2}$ (a usually functional solution $\frac{A_2}{A_1}$ and $\frac{A_1}{A_2}$ and $\frac{A_2}{A_1}$ and $\frac{A_1}{A_2}$ and $\frac{A_2}{A_1}$ and $\frac{A_1}{A_1}$ and $\frac{A_1}{A_1}$ and $\frac{A_2}{A_1}$ and $\frac{A_1}{A_1}$ and $\frac{A_2}{A_1}$ $(a+b)(c+a)$ [recall ad+bc – (3) – (1)

New Recurrence :

Base Case : $T(1) \le a$ constant **Work done** here For all $n>1$: $T(n) \leq 3T(n/2) + O(n)$ Work done by recursive calls