
Internet Engineering Task Force (IETF) D. Hardt, Ed.
Request for Comments: 6749 Microsoft
Obsoletes: 5849 October 2012
Category: Standards Track
ISSN: 2070-1721

 The OAuth 2.0 Authorization Framework

Abstract

 The OAuth 2.0 authorization framework enables a third-party
 application to obtain limited access to an HTTP service, either on
 behalf of a resource owner by orchestrating an approval interaction
 between the resource owner and the HTTP service, or by allowing the
 third-party application to obtain access on its own behalf. This
 specification replaces and obsoletes the OAuth 1.0 protocol described
 in RFC 5849 .

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741 .

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6749 .

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Hardt Standards Track [Page 1]

RFC 6749 OAuth 2.0 October 2012

Table of Contents

 1. Introduction .. 4
 1.1 . Roles .. 6
 1.2 . Protocol Flow .. 7
 1.3 . Authorization Grant .. 8
 1.3.1 . Authorization Code 8
 1.3.2 . Implicit .. 8
 1.3.3 . Resource Owner Password Credentials 9
 1.3.4 . Client Credentials 9
 1.4 . Access Token .. 10
 1.5 . Refresh Token ... 10
 1.6 . TLS Version ... 12
 1.7 . HTTP Redirections ... 12
 1.8 . Interoperability .. 12
 1.9 . Notational Conventions 13
 2. Client Registration .. 13
 2.1 . Client Types .. 14
 2.2 . Client Identifier ... 15
 2.3 . Client Authentication 16
 2.3.1 . Client Password 16
 2.3.2 . Other Authentication Methods 17
 2.4 . Unregistered Clients 17
 3. Protocol Endpoints ... 18
 3.1 . Authorization Endpoint 18
 3.1.1 . Response Type 19
 3.1.2 . Redirection Endpoint 19
 3.2 . Token Endpoint .. 21
 3.2.1 . Client Authentication 22
 3.3 . Access Token Scope .. 23
 4. Obtaining Authorization .. 23
 4.1 . Authorization Code Grant 24
 4.1.1 . Authorization Request 25
 4.1.2 . Authorization Response 26
 4.1.3 . Access Token Request 29
 4.1.4 . Access Token Response 30
 4.2 . Implicit Grant .. 31
 4.2.1 . Authorization Request 33
 4.2.2 . Access Token Response 35
 4.3 . Resource Owner Password Credentials Grant 37
 4.3.1 . Authorization Request and Response 39
 4.3.2 . Access Token Request 39
 4.3.3 . Access Token Response 40
 4.4 . Client Credentials Grant 40
 4.4.1 . Authorization Request and Response 41
 4.4.2 . Access Token Request 41
 4.4.3 . Access Token Response 42
 4.5 . Extension Grants .. 42

Hardt Standards Track [Page 2]

RFC 6749 OAuth 2.0 October 2012

 5. Issuing an Access Token .. 43
 5.1 . Successful Response 43
 5.2 . Error Response .. 45
 6. Refreshing an Access Token 47
 7. Accessing Protected Resources 48
 7.1 . Access Token Types .. 49
 7.2 . Error Response .. 49
 8. Extensibility .. 50
 8.1 . Defining Access Token Types 50
 8.2 . Defining New Endpoint Parameters 50
 8.3 . Defining New Authorization Grant Types 51
 8.4 . Defining New Authorization Endpoint Response Types 51
 8.5 . Defining Additional Error Codes 51
 9. Native Applications .. 52
 10. Security Considerations 53
 10.1 . Client Authentication 53
 10.2 . Client Impersonation 54
 10.3 . Access Tokens .. 55
 10.4 . Refresh Tokens ... 55
 10.5 . Authorization Codes 56
 10.6 . Authorization Code Redirection URI Manipulation 56
 10.7 . Resource Owner Password Credentials 57
 10.8 . Request Confidentiality 58
 10.9 . Ensuring Endpoint Authenticity 58
 10.10 . Credentials-Guessing Attacks 58
 10.11 . Phishing Attacks .. 58
 10.12 . Cross-Site Request Forgery 59
 10.13 . Clickjacking .. 60
 10.14 . Code Injection and Input Validation 60
 10.15 . Open Redirectors .. 60
 10.16. Misuse of Access Token to Impersonate Resource
 Owner in Implicit Flow 61
 11. IANA Considerations ... 62
 11.1 . OAuth Access Token Types Registry 62
 11.1.1 . Registration Template 62
 11.2 . OAuth Parameters Registry 63
 11.2.1 . Registration Template 63
 11.2.2 . Initial Registry Contents 64
 11.3 . OAuth Authorization Endpoint Response Types Registry 66
 11.3.1 . Registration Template 66
 11.3.2 . Initial Registry Contents 67
 11.4 . OAuth Extensions Error Registry 67
 11.4.1 . Registration Template 68
 12. References .. 68
 12.1 . Normative References 68
 12.2 . Informative References 70

Hardt Standards Track [Page 3]

RFC 6749 OAuth 2.0 October 2012

 Appendix A . Augmented Backus-Naur Form (ABNF) Syntax 71
 A.1 . "client_id" Syntax .. 71
 A.2 . "client_secret" Syntax 71
 A.3 . "response_type" Syntax 71
 A.4 . "scope" Syntax .. 72
 A.5 . "state" Syntax .. 72
 A.6 . "redirect_uri" Syntax 72
 A.7 . "error" Syntax .. 72
 A.8 . "error_description" Syntax 72
 A.9 . "error_uri" Syntax .. 72
 A.10 . "grant_type" Syntax 73
 A.11 . "code" Syntax ... 73
 A.12 . "access_token" Syntax 73
 A.13 . "token_type" Syntax 73
 A.14 . "expires_in" Syntax 73
 A.15 . "username" Syntax ... 73
 A.16 . "password" Syntax ... 73
 A.17 . "refresh_token" Syntax 74
 A.18 . Endpoint Parameter Syntax 74
 Appendix B . Use of application/x-www-form-urlencoded Media Type ... 74
 Appendix C . Acknowledgements 75

1. Introduction

 In the traditional client-server authentication model, the client
 requests an access-restricted resource (protected resource) on the
 server by authenticating with the server using the resource owner’s
 credentials. In order to provide third-party applications access to
 restricted resources, the resource owner shares its credentials with
 the third party. This creates several problems and limitations:

 o Third-party applications are required to store the resource
 owner’s credentials for future use, typically a password in
 clear-text.

 o Servers are required to support password authentication, despite
 the security weaknesses inherent in passwords.

 o Third-party applications gain overly broad access to the resource
 owner’s protected resources, leaving resource owners without any
 ability to restrict duration or access to a limited subset of
 resources.

 o Resource owners cannot revoke access to an individual third party
 without revoking access to all third parties, and must do so by
 changing the third party’s password.

Hardt Standards Track [Page 4]

RFC 6749 OAuth 2.0 October 2012

 o Compromise of any third-party application results in compromise of
 the end-user’s password and all of the data protected by that
 password.

 OAuth addresses these issues by introducing an authorization layer
 and separating the role of the client from that of the resource
 owner. In OAuth, the client requests access to resources controlled
 by the resource owner and hosted by the resource server, and is
 issued a different set of credentials than those of the resource
 owner.

 Instead of using the resource owner’s credentials to access protected
 resources, the client obtains an access token -- a string denoting a
 specific scope, lifetime, and other access attributes. Access tokens
 are issued to third-party clients by an authorization server with the
 approval of the resource owner. The client uses the access token to
 access the protected resources hosted by the resource server.

 For example, an end-user (resource owner) can grant a printing
 service (client) access to her protected photos stored at a photo-
 sharing service (resource server), without sharing her username and
 password with the printing service. Instead, she authenticates
 directly with a server trusted by the photo-sharing service
 (authorization server), which issues the printing service delegation-
 specific credentials (access token).

 This specification is designed for use with HTTP ([RFC2616]). The
 use of OAuth over any protocol other than HTTP is out of scope.

 The OAuth 1.0 protocol ([RFC5849]), published as an informational
 document, was the result of a small ad hoc community effort. This
 Standards Track specification builds on the OAuth 1.0 deployment
 experience, as well as additional use cases and extensibility
 requirements gathered from the wider IETF community. The OAuth 2.0
 protocol is not backward compatible with OAuth 1.0. The two versions
 may co-exist on the network, and implementations may choose to
 support both. However, it is the intention of this specification
 that new implementations support OAuth 2.0 as specified in this
 document and that OAuth 1.0 is used only to support existing
 deployments. The OAuth 2.0 protocol shares very few implementation
 details with the OAuth 1.0 protocol. Implementers familiar with
 OAuth 1.0 should approach this document without any assumptions as to
 its structure and details.

Hardt Standards Track [Page 5]

RFC 6749 OAuth 2.0 October 2012

1.1 . Roles

 OAuth defines four roles:

 resource owner
 An entity capable of granting access to a protected resource.
 When the resource owner is a person, it is referred to as an
 end-user.

 resource server
 The server hosting the protected resources, capable of accepting
 and responding to protected resource requests using access tokens.

 client
 An application making protected resource requests on behalf of the
 resource owner and with its authorization. The term "client" does
 not imply any particular implementation characteristics (e.g.,
 whether the application executes on a server, a desktop, or other
 devices).

 authorization server
 The server issuing access tokens to the client after successfully
 authenticating the resource owner and obtaining authorization.

 The interaction between the authorization server and resource server
 is beyond the scope of this specification. The authorization server
 may be the same server as the resource server or a separate entity.
 A single authorization server may issue access tokens accepted by
 multiple resource servers.

Hardt Standards Track [Page 6]

RFC 6749 OAuth 2.0 October 2012

1.2 . Protocol Flow

 +--------+ +---------------+
 | |--(A)- Authorization Request ->| Resource |
 | | | Owner |
 | |<-(B)-- Authorization Grant ---| |
 | | +---------------+
 | |
 | | +---------------+
 | |--(C)-- Authorization Grant -->| Authorization |
 | Client | | Server |
 | |<-(D)----- Access Token -------| |
 | | +---------------+
 | |
 | | +---------------+
 | |--(E)----- Access Token ------>| Resource |
 | | | Server |
 | |<-(F)--- Protected Resource ---| |
 +--------+ +---------------+

 Figure 1: Abstract Protocol Flow

 The abstract OAuth 2.0 flow illustrated in Figure 1 describes the
 interaction between the four roles and includes the following steps:

 (A) The client requests authorization from the resource owner. The
 authorization request can be made directly to the resource owner
 (as shown), or preferably indirectly via the authorization
 server as an intermediary.

 (B) The client receives an authorization grant, which is a
 credential representing the resource owner’s authorization,
 expressed using one of four grant types defined in this
 specification or using an extension grant type. The
 authorization grant type depends on the method used by the
 client to request authorization and the types supported by the
 authorization server.

 (C) The client requests an access token by authenticating with the
 authorization server and presenting the authorization grant.

 (D) The authorization server authenticates the client and validates
 the authorization grant, and if valid, issues an access token.

Hardt Standards Track [Page 7]

RFC 6749 OAuth 2.0 October 2012

 (E) The client requests the protected resource from the resource
 server and authenticates by presenting the access token.

 (F) The resource server validates the access token, and if valid,
 serves the request.

 The preferred method for the client to obtain an authorization grant
 from the resource owner (depicted in steps (A) and (B)) is to use the
 authorization server as an intermediary, which is illustrated in
 Figure 3 in Section 4.1 .

1.3 . Authorization Grant

 An authorization grant is a credential representing the resource
 owner’s authorization (to access its protected resources) used by the
 client to obtain an access token. This specification defines four
 grant types -- authorization code, implicit, resource owner password
 credentials, and client credentials -- as well as an extensibility
 mechanism for defining additional types.

1.3.1 . Authorization Code

 The authorization code is obtained by using an authorization server
 as an intermediary between the client and resource owner. Instead of
 requesting authorization directly from the resource owner, the client
 directs the resource owner to an authorization server (via its
 user-agent as defined in [RFC2616]), which in turn directs the
 resource owner back to the client with the authorization code.

 Before directing the resource owner back to the client with the
 authorization code, the authorization server authenticates the
 resource owner and obtains authorization. Because the resource owner
 only authenticates with the authorization server, the resource
 owner’s credentials are never shared with the client.

 The authorization code provides a few important security benefits,
 such as the ability to authenticate the client, as well as the
 transmission of the access token directly to the client without
 passing it through the resource owner’s user-agent and potentially
 exposing it to others, including the resource owner.

1.3.2 . Implicit

 The implicit grant is a simplified authorization code flow optimized
 for clients implemented in a browser using a scripting language such
 as JavaScript. In the implicit flow, instead of issuing the client
 an authorization code, the client is issued an access token directly

Hardt Standards Track [Page 8]

RFC 6749 OAuth 2.0 October 2012

 (as the result of the resource owner authorization). The grant type
 is implicit, as no intermediate credentials (such as an authorization
 code) are issued (and later used to obtain an access token).

 When issuing an access token during the implicit grant flow, the
 authorization server does not authenticate the client. In some
 cases, the client identity can be verified via the redirection URI
 used to deliver the access token to the client. The access token may
 be exposed to the resource owner or other applications with access to
 the resource owner’s user-agent.

 Implicit grants improve the responsiveness and efficiency of some
 clients (such as a client implemented as an in-browser application),
 since it reduces the number of round trips required to obtain an
 access token. However, this convenience should be weighed against
 the security implications of using implicit grants, such as those
 described in Sections 10.3 and 10.16 , especially when the
 authorization code grant type is available.

1.3.3 . Resource Owner Password Credentials

 The resource owner password credentials (i.e., username and password)
 can be used directly as an authorization grant to obtain an access
 token. The credentials should only be used when there is a high
 degree of trust between the resource owner and the client (e.g., the
 client is part of the device operating system or a highly privileged
 application), and when other authorization grant types are not
 available (such as an authorization code).

 Even though this grant type requires direct client access to the
 resource owner credentials, the resource owner credentials are used
 for a single request and are exchanged for an access token. This
 grant type can eliminate the need for the client to store the
 resource owner credentials for future use, by exchanging the
 credentials with a long-lived access token or refresh token.

1.3.4 . Client Credentials

 The client credentials (or other forms of client authentication) can
 be used as an authorization grant when the authorization scope is
 limited to the protected resources under the control of the client,
 or to protected resources previously arranged with the authorization
 server. Client credentials are used as an authorization grant
 typically when the client is acting on its own behalf (the client is
 also the resource owner) or is requesting access to protected
 resources based on an authorization previously arranged with the
 authorization server.

Hardt Standards Track [Page 9]

RFC 6749 OAuth 2.0 October 2012

1.4 . Access Token

 Access tokens are credentials used to access protected resources. An
 access token is a string representing an authorization issued to the
 client. The string is usually opaque to the client. Tokens
 represent specific scopes and durations of access, granted by the
 resource owner, and enforced by the resource server and authorization
 server.

 The token may denote an identifier used to retrieve the authorization
 information or may self-contain the authorization information in a
 verifiable manner (i.e., a token string consisting of some data and a
 signature). Additional authentication credentials, which are beyond
 the scope of this specification, may be required in order for the
 client to use a token.

 The access token provides an abstraction layer, replacing different
 authorization constructs (e.g., username and password) with a single
 token understood by the resource server. This abstraction enables
 issuing access tokens more restrictive than the authorization grant
 used to obtain them, as well as removing the resource server’s need
 to understand a wide range of authentication methods.

 Access tokens can have different formats, structures, and methods of
 utilization (e.g., cryptographic properties) based on the resource
 server security requirements. Access token attributes and the
 methods used to access protected resources are beyond the scope of
 this specification and are defined by companion specifications such
 as [RFC6750].

1.5 . Refresh Token

 Refresh tokens are credentials used to obtain access tokens. Refresh
 tokens are issued to the client by the authorization server and are
 used to obtain a new access token when the current access token
 becomes invalid or expires, or to obtain additional access tokens
 with identical or narrower scope (access tokens may have a shorter
 lifetime and fewer permissions than authorized by the resource
 owner). Issuing a refresh token is optional at the discretion of the
 authorization server. If the authorization server issues a refresh
 token, it is included when issuing an access token (i.e., step (D) in
 Figure 1).

 A refresh token is a string representing the authorization granted to
 the client by the resource owner. The string is usually opaque to
 the client. The token denotes an identifier used to retrieve the

Hardt Standards Track [Page 10]

RFC 6749 OAuth 2.0 October 2012

 authorization information. Unlike access tokens, refresh tokens are
 intended for use only with authorization servers and are never sent
 to resource servers.

 +--------+ +---------------+
	--(A)------- Authorization Grant --------->			
	<-(B)----------- Access Token -------------			
	& Refresh Token			
	+----------+			
	--(C)---- Access Token ---->			
	<-(D)- Protected Resource --	Resource		Authorization
Client		Server		Server
	--(E)---- Access Token ---->			
	<-(F)- Invalid Token Error -			
	+----------+			
	--(G)----------- Refresh Token ----------->			
	<-(H)----------- Access Token -------------			
 +--------+ & Optional Refresh Token +---------------+

 Figure 2: Refreshing an Expired Access Token

 The flow illustrated in Figure 2 includes the following steps:

 (A) The client requests an access token by authenticating with the
 authorization server and presenting an authorization grant.

 (B) The authorization server authenticates the client and validates
 the authorization grant, and if valid, issues an access token
 and a refresh token.

 (C) The client makes a protected resource request to the resource
 server by presenting the access token.

 (D) The resource server validates the access token, and if valid,
 serves the request.

 (E) Steps (C) and (D) repeat until the access token expires. If the
 client knows the access token expired, it skips to step (G);
 otherwise, it makes another protected resource request.

 (F) Since the access token is invalid, the resource server returns
 an invalid token error.

Hardt Standards Track [Page 11]

RFC 6749 OAuth 2.0 October 2012

 (G) The client requests a new access token by authenticating with
 the authorization server and presenting the refresh token. The
 client authentication requirements are based on the client type
 and on the authorization server policies.

 (H) The authorization server authenticates the client and validates
 the refresh token, and if valid, issues a new access token (and,
 optionally, a new refresh token).

 Steps (C), (D), (E), and (F) are outside the scope of this
 specification, as described in Section 7 .

1.6 . TLS Version

 Whenever Transport Layer Security (TLS) is used by this
 specification, the appropriate version (or versions) of TLS will vary
 over time, based on the widespread deployment and known security
 vulnerabilities. At the time of this writing, TLS version 1.2
 [RFC5246] is the most recent version, but has a very limited
 deployment base and might not be readily available for
 implementation. TLS version 1.0 [RFC2246] is the most widely
 deployed version and will provide the broadest interoperability.

 Implementations MAY also support additional transport-layer security
 mechanisms that meet their security requirements.

1.7 . HTTP Redirections

 This specification makes extensive use of HTTP redirections, in which
 the client or the authorization server directs the resource owner’s
 user-agent to another destination. While the examples in this
 specification show the use of the HTTP 302 status code, any other
 method available via the user-agent to accomplish this redirection is
 allowed and is considered to be an implementation detail.

1.8 . Interoperability

 OAuth 2.0 provides a rich authorization framework with well-defined
 security properties. However, as a rich and highly extensible
 framework with many optional components, on its own, this
 specification is likely to produce a wide range of non-interoperable
 implementations.

 In addition, this specification leaves a few required components
 partially or fully undefined (e.g., client registration,
 authorization server capabilities, endpoint discovery). Without

Hardt Standards Track [Page 12]

RFC 6749 OAuth 2.0 October 2012

 these components, clients must be manually and specifically
 configured against a specific authorization server and resource
 server in order to interoperate.

 This framework was designed with the clear expectation that future
 work will define prescriptive profiles and extensions necessary to
 achieve full web-scale interoperability.

1.9 . Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 specification are to be interpreted as described in [RFC2119].

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC5234]. Additionally, the rule URI-reference is
 included from "Uniform Resource Identifier (URI): Generic Syntax"
 [RFC3986].

 Certain security-related terms are to be understood in the sense
 defined in [RFC4949]. These terms include, but are not limited to,
 "attack", "authentication", "authorization", "certificate",
 "confidentiality", "credential", "encryption", "identity", "sign",
 "signature", "trust", "validate", and "verify".

 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

2. Client Registration

 Before initiating the protocol, the client registers with the
 authorization server. The means through which the client registers
 with the authorization server are beyond the scope of this
 specification but typically involve end-user interaction with an HTML
 registration form.

 Client registration does not require a direct interaction between the
 client and the authorization server. When supported by the
 authorization server, registration can rely on other means for
 establishing trust and obtaining the required client properties
 (e.g., redirection URI, client type). For example, registration can
 be accomplished using a self-issued or third-party-issued assertion,
 or by the authorization server performing client discovery using a
 trusted channel.

Hardt Standards Track [Page 13]

RFC 6749 OAuth 2.0 October 2012

 When registering a client, the client developer SHALL:

 o specify the client type as described in Section 2.1 ,

 o provide its client redirection URIs as described in Section 3.1.2 ,
 and

 o include any other information required by the authorization server
 (e.g., application name, website, description, logo image, the
 acceptance of legal terms).

2.1 . Client Types

 OAuth defines two client types, based on their ability to
 authenticate securely with the authorization server (i.e., ability to
 maintain the confidentiality of their client credentials):

 confidential
 Clients capable of maintaining the confidentiality of their
 credentials (e.g., client implemented on a secure server with
 restricted access to the client credentials), or capable of secure
 client authentication using other means.

 public
 Clients incapable of maintaining the confidentiality of their
 credentials (e.g., clients executing on the device used by the
 resource owner, such as an installed native application or a web
 browser-based application), and incapable of secure client
 authentication via any other means.

 The client type designation is based on the authorization server’s
 definition of secure authentication and its acceptable exposure
 levels of client credentials. The authorization server SHOULD NOT
 make assumptions about the client type.

 A client may be implemented as a distributed set of components, each
 with a different client type and security context (e.g., a
 distributed client with both a confidential server-based component
 and a public browser-based component). If the authorization server
 does not provide support for such clients or does not provide
 guidance with regard to their registration, the client SHOULD
 register each component as a separate client.

Hardt Standards Track [Page 14]

RFC 6749 OAuth 2.0 October 2012

 This specification has been designed around the following client
 profiles:

 web application
 A web application is a confidential client running on a web
 server. Resource owners access the client via an HTML user
 interface rendered in a user-agent on the device used by the
 resource owner. The client credentials as well as any access
 token issued to the client are stored on the web server and are
 not exposed to or accessible by the resource owner.

 user-agent-based application
 A user-agent-based application is a public client in which the
 client code is downloaded from a web server and executes within a
 user-agent (e.g., web browser) on the device used by the resource
 owner. Protocol data and credentials are easily accessible (and
 often visible) to the resource owner. Since such applications
 reside within the user-agent, they can make seamless use of the
 user-agent capabilities when requesting authorization.

 native application
 A native application is a public client installed and executed on
 the device used by the resource owner. Protocol data and
 credentials are accessible to the resource owner. It is assumed
 that any client authentication credentials included in the
 application can be extracted. On the other hand, dynamically
 issued credentials such as access tokens or refresh tokens can
 receive an acceptable level of protection. At a minimum, these
 credentials are protected from hostile servers with which the
 application may interact. On some platforms, these credentials
 might be protected from other applications residing on the same
 device.

2.2 . Client Identifier

 The authorization server issues the registered client a client
 identifier -- a unique string representing the registration
 information provided by the client. The client identifier is not a
 secret; it is exposed to the resource owner and MUST NOT be used
 alone for client authentication. The client identifier is unique to
 the authorization server.

 The client identifier string size is left undefined by this
 specification. The client should avoid making assumptions about the
 identifier size. The authorization server SHOULD document the size
 of any identifier it issues.

Hardt Standards Track [Page 15]

RFC 6749 OAuth 2.0 October 2012

2.3 . Client Authentication

 If the client type is confidential, the client and authorization
 server establish a client authentication method suitable for the
 security requirements of the authorization server. The authorization
 server MAY accept any form of client authentication meeting its
 security requirements.

 Confidential clients are typically issued (or establish) a set of
 client credentials used for authenticating with the authorization
 server (e.g., password, public/private key pair).

 The authorization server MAY establish a client authentication method
 with public clients. However, the authorization server MUST NOT rely
 on public client authentication for the purpose of identifying the
 client.

 The client MUST NOT use more than one authentication method in each
 request.

2.3.1 . Client Password

 Clients in possession of a client password MAY use the HTTP Basic
 authentication scheme as defined in [RFC2617] to authenticate with
 the authorization server. The client identifier is encoded using the
 "application/x-www-form-urlencoded" encoding algorithm per
 Appendix B , and the encoded value is used as the username; the client
 password is encoded using the same algorithm and used as the
 password. The authorization server MUST support the HTTP Basic
 authentication scheme for authenticating clients that were issued a
 client password.

 For example (with extra line breaks for display purposes only):

 Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

 Alternatively, the authorization server MAY support including the
 client credentials in the request-body using the following
 parameters:

 client_id
 REQUIRED. The client identifier issued to the client during
 the registration process described by Section 2.2 .

 client_secret
 REQUIRED. The client secret. The client MAY omit the
 parameter if the client secret is an empty string.

Hardt Standards Track [Page 16]

RFC 6749 OAuth 2.0 October 2012

 Including the client credentials in the request-body using the two
 parameters is NOT RECOMMENDED and SHOULD be limited to clients unable
 to directly utilize the HTTP Basic authentication scheme (or other
 password-based HTTP authentication schemes). The parameters can only
 be transmitted in the request-body and MUST NOT be included in the
 request URI.

 For example, a request to refresh an access token (Section 6) using
 the body parameters (with extra line breaks for display purposes
 only):

 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=refresh_token&refresh_token=tGzv3JOkF0XG5Qx2TlKWIA
 &client_id=s6BhdRkqt3&client_secret=7Fjfp0ZBr1KtDRbnfVdmIw

 The authorization server MUST require the use of TLS as described in
 Section 1.6 when sending requests using password authentication.

 Since this client authentication method involves a password, the
 authorization server MUST protect any endpoint utilizing it against
 brute force attacks.

2.3.2 . Other Authentication Methods

 The authorization server MAY support any suitable HTTP authentication
 scheme matching its security requirements. When using other
 authentication methods, the authorization server MUST define a
 mapping between the client identifier (registration record) and
 authentication scheme.

2.4 . Unregistered Clients

 This specification does not exclude the use of unregistered clients.
 However, the use of such clients is beyond the scope of this
 specification and requires additional security analysis and review of
 its interoperability impact.

Hardt Standards Track [Page 17]

RFC 6749 OAuth 2.0 October 2012

3. Protocol Endpoints

 The authorization process utilizes two authorization server endpoints
 (HTTP resources):

 o Authorization endpoint - used by the client to obtain
 authorization from the resource owner via user-agent redirection.

 o Token endpoint - used by the client to exchange an authorization
 grant for an access token, typically with client authentication.

 As well as one client endpoint:

 o Redirection endpoint - used by the authorization server to return
 responses containing authorization credentials to the client via
 the resource owner user-agent.

 Not every authorization grant type utilizes both endpoints.
 Extension grant types MAY define additional endpoints as needed.

3.1 . Authorization Endpoint

 The authorization endpoint is used to interact with the resource
 owner and obtain an authorization grant. The authorization server
 MUST first verify the identity of the resource owner. The way in
 which the authorization server authenticates the resource owner
 (e.g., username and password login, session cookies) is beyond the
 scope of this specification.

 The means through which the client obtains the location of the
 authorization endpoint are beyond the scope of this specification,
 but the location is typically provided in the service documentation.

 The endpoint URI MAY include an "application/x-www-form-urlencoded"
 formatted (per Appendix B) query component ([RFC3986] Section 3.4),
 which MUST be retained when adding additional query parameters. The
 endpoint URI MUST NOT include a fragment component.

 Since requests to the authorization endpoint result in user
 authentication and the transmission of clear-text credentials (in the
 HTTP response), the authorization server MUST require the use of TLS
 as described in Section 1.6 when sending requests to the
 authorization endpoint.

 The authorization server MUST support the use of the HTTP "GET"
 method [RFC2616] for the authorization endpoint and MAY support the
 use of the "POST" method as well.

Hardt Standards Track [Page 18]

RFC 6749 OAuth 2.0 October 2012

 Parameters sent without a value MUST be treated as if they were
 omitted from the request. The authorization server MUST ignore
 unrecognized request parameters. Request and response parameters
 MUST NOT be included more than once.

3.1.1 . Response Type

 The authorization endpoint is used by the authorization code grant
 type and implicit grant type flows. The client informs the
 authorization server of the desired grant type using the following
 parameter:

 response_type
 REQUIRED. The value MUST be one of "code" for requesting an
 authorization code as described by Section 4.1.1 , "token" for
 requesting an access token (implicit grant) as described by
 Section 4.2.1 , or a registered extension value as described by
 Section 8.4 .

 Extension response types MAY contain a space-delimited (%x20) list of
 values, where the order of values does not matter (e.g., response
 type "a b" is the same as "b a"). The meaning of such composite
 response types is defined by their respective specifications.

 If an authorization request is missing the "response_type" parameter,
 or if the response type is not understood, the authorization server
 MUST return an error response as described in Section 4.1.2.1 .

3.1.2 . Redirection Endpoint

 After completing its interaction with the resource owner, the
 authorization server directs the resource owner’s user-agent back to
 the client. The authorization server redirects the user-agent to the
 client’s redirection endpoint previously established with the
 authorization server during the client registration process or when
 making the authorization request.

 The redirection endpoint URI MUST be an absolute URI as defined by
 [RFC3986] Section 4.3 . The endpoint URI MAY include an
 "application/x-www-form-urlencoded" formatted (per Appendix B) query
 component ([RFC3986] Section 3.4), which MUST be retained when adding
 additional query parameters. The endpoint URI MUST NOT include a
 fragment component.

Hardt Standards Track [Page 19]

RFC 6749 OAuth 2.0 October 2012

3.1.2.1 . Endpoint Request Confidentiality

 The redirection endpoint SHOULD require the use of TLS as described
 in Section 1.6 when the requested response type is "code" or "token",
 or when the redirection request will result in the transmission of
 sensitive credentials over an open network. This specification does
 not mandate the use of TLS because at the time of this writing,
 requiring clients to deploy TLS is a significant hurdle for many
 client developers. If TLS is not available, the authorization server
 SHOULD warn the resource owner about the insecure endpoint prior to
 redirection (e.g., display a message during the authorization
 request).

 Lack of transport-layer security can have a severe impact on the
 security of the client and the protected resources it is authorized
 to access. The use of transport-layer security is particularly
 critical when the authorization process is used as a form of
 delegated end-user authentication by the client (e.g., third-party
 sign-in service).

3.1.2.2 . Registration Requirements

 The authorization server MUST require the following clients to
 register their redirection endpoint:

 o Public clients.

 o Confidential clients utilizing the implicit grant type.

 The authorization server SHOULD require all clients to register their
 redirection endpoint prior to utilizing the authorization endpoint.

 The authorization server SHOULD require the client to provide the
 complete redirection URI (the client MAY use the "state" request
 parameter to achieve per-request customization). If requiring the
 registration of the complete redirection URI is not possible, the
 authorization server SHOULD require the registration of the URI
 scheme, authority, and path (allowing the client to dynamically vary
 only the query component of the redirection URI when requesting
 authorization).

 The authorization server MAY allow the client to register multiple
 redirection endpoints.

 Lack of a redirection URI registration requirement can enable an
 attacker to use the authorization endpoint as an open redirector as
 described in Section 10.15 .

Hardt Standards Track [Page 20]

RFC 6749 OAuth 2.0 October 2012

3.1.2.3 . Dynamic Configuration

 If multiple redirection URIs have been registered, if only part of
 the redirection URI has been registered, or if no redirection URI has
 been registered, the client MUST include a redirection URI with the
 authorization request using the "redirect_uri" request parameter.

 When a redirection URI is included in an authorization request, the
 authorization server MUST compare and match the value received
 against at least one of the registered redirection URIs (or URI
 components) as defined in [RFC3986] Section 6 , if any redirection
 URIs were registered. If the client registration included the full
 redirection URI, the authorization server MUST compare the two URIs
 using simple string comparison as defined in [RFC3986] Section 6.2.1 .

3.1.2.4 . Invalid Endpoint

 If an authorization request fails validation due to a missing,
 invalid, or mismatching redirection URI, the authorization server
 SHOULD inform the resource owner of the error and MUST NOT
 automatically redirect the user-agent to the invalid redirection URI.

3.1.2.5 . Endpoint Content

 The redirection request to the client’s endpoint typically results in
 an HTML document response, processed by the user-agent. If the HTML
 response is served directly as the result of the redirection request,
 any script included in the HTML document will execute with full
 access to the redirection URI and the credentials it contains.

 The client SHOULD NOT include any third-party scripts (e.g., third-
 party analytics, social plug-ins, ad networks) in the redirection
 endpoint response. Instead, it SHOULD extract the credentials from
 the URI and redirect the user-agent again to another endpoint without
 exposing the credentials (in the URI or elsewhere). If third-party
 scripts are included, the client MUST ensure that its own scripts
 (used to extract and remove the credentials from the URI) will
 execute first.

3.2 . Token Endpoint

 The token endpoint is used by the client to obtain an access token by
 presenting its authorization grant or refresh token. The token
 endpoint is used with every authorization grant except for the
 implicit grant type (since an access token is issued directly).

Hardt Standards Track [Page 21]

RFC 6749 OAuth 2.0 October 2012

 The means through which the client obtains the location of the token
 endpoint are beyond the scope of this specification, but the location
 is typically provided in the service documentation.

 The endpoint URI MAY include an "application/x-www-form-urlencoded"
 formatted (per Appendix B) query component ([RFC3986] Section 3.4),
 which MUST be retained when adding additional query parameters. The
 endpoint URI MUST NOT include a fragment component.

 Since requests to the token endpoint result in the transmission of
 clear-text credentials (in the HTTP request and response), the
 authorization server MUST require the use of TLS as described in
 Section 1.6 when sending requests to the token endpoint.

 The client MUST use the HTTP "POST" method when making access token
 requests.

 Parameters sent without a value MUST be treated as if they were
 omitted from the request. The authorization server MUST ignore
 unrecognized request parameters. Request and response parameters
 MUST NOT be included more than once.

3.2.1 . Client Authentication

 Confidential clients or other clients issued client credentials MUST
 authenticate with the authorization server as described in
 Section 2.3 when making requests to the token endpoint. Client
 authentication is used for:

 o Enforcing the binding of refresh tokens and authorization codes to
 the client they were issued to. Client authentication is critical
 when an authorization code is transmitted to the redirection
 endpoint over an insecure channel or when the redirection URI has
 not been registered in full.

 o Recovering from a compromised client by disabling the client or
 changing its credentials, thus preventing an attacker from abusing
 stolen refresh tokens. Changing a single set of client
 credentials is significantly faster than revoking an entire set of
 refresh tokens.

 o Implementing authentication management best practices, which
 require periodic credential rotation. Rotation of an entire set
 of refresh tokens can be challenging, while rotation of a single
 set of client credentials is significantly easier.

Hardt Standards Track [Page 22]

RFC 6749 OAuth 2.0 October 2012

 A client MAY use the "client_id" request parameter to identify itself
 when sending requests to the token endpoint. In the
 "authorization_code" "grant_type" request to the token endpoint, an
 unauthenticated client MUST send its "client_id" to prevent itself
 from inadvertently accepting a code intended for a client with a
 different "client_id". This protects the client from substitution of
 the authentication code. (It provides no additional security for the
 protected resource.)

3.3 . Access Token Scope

 The authorization and token endpoints allow the client to specify the
 scope of the access request using the "scope" request parameter. In
 turn, the authorization server uses the "scope" response parameter to
 inform the client of the scope of the access token issued.

 The value of the scope parameter is expressed as a list of space-
 delimited, case-sensitive strings. The strings are defined by the
 authorization server. If the value contains multiple space-delimited
 strings, their order does not matter, and each string adds an
 additional access range to the requested scope.

 scope = scope-token *(SP scope-token)
 scope-token = 1*(%x21 / %x23-5B / %x5D-7E)

 The authorization server MAY fully or partially ignore the scope
 requested by the client, based on the authorization server policy or
 the resource owner’s instructions. If the issued access token scope
 is different from the one requested by the client, the authorization
 server MUST include the "scope" response parameter to inform the
 client of the actual scope granted.

 If the client omits the scope parameter when requesting
 authorization, the authorization server MUST either process the
 request using a pre-defined default value or fail the request
 indicating an invalid scope. The authorization server SHOULD
 document its scope requirements and default value (if defined).

4. Obtaining Authorization

 To request an access token, the client obtains authorization from the
 resource owner. The authorization is expressed in the form of an
 authorization grant, which the client uses to request the access
 token. OAuth defines four grant types: authorization code, implicit,
 resource owner password credentials, and client credentials. It also
 provides an extension mechanism for defining additional grant types.

Hardt Standards Track [Page 23]

RFC 6749 OAuth 2.0 October 2012

4.1 . Authorization Code Grant

 The authorization code grant type is used to obtain both access
 tokens and refresh tokens and is optimized for confidential clients.
 Since this is a redirection-based flow, the client must be capable of
 interacting with the resource owner’s user-agent (typically a web
 browser) and capable of receiving incoming requests (via redirection)
 from the authorization server.

 +----------+
 | Resource |
 | Owner |
 | |
 +----------+
 ^
 |
 (B)
 +----|-----+ Client Identifier +---------------+
 | -+----(A)-- & Redirection URI ---->| | |
 | User- | | Authorization |
 | Agent -+----(B)-- User authenticates --->| Server |
 | | | |
 | -+----(C)-- Authorization Code ---<| |
 +-|----|---+ +---------------+
 | | ^ v
 (A) (C) | |
 | | | |
 ^ v | |
 +---------+ | |
 | |>---(D)-- Authorization Code ---------’ |
 | Client | & Redirection URI |
 | | |
 | |<---(E)----- Access Token -------------------’
 +---------+ (w/ Optional Refresh Token)

 Note: The lines illustrating steps (A), (B), and (C) are broken into
 two parts as they pass through the user-agent.

 Figure 3: Authorization Code Flow

Hardt Standards Track [Page 24]

RFC 6749 OAuth 2.0 October 2012

 The flow illustrated in Figure 3 includes the following steps:

 (A) The client initiates the flow by directing the resource owner’s
 user-agent to the authorization endpoint. The client includes
 its client identifier, requested scope, local state, and a
 redirection URI to which the authorization server will send the
 user-agent back once access is granted (or denied).

 (B) The authorization server authenticates the resource owner (via
 the user-agent) and establishes whether the resource owner
 grants or denies the client’s access request.

 (C) Assuming the resource owner grants access, the authorization
 server redirects the user-agent back to the client using the
 redirection URI provided earlier (in the request or during
 client registration). The redirection URI includes an
 authorization code and any local state provided by the client
 earlier.

 (D) The client requests an access token from the authorization
 server’s token endpoint by including the authorization code
 received in the previous step. When making the request, the
 client authenticates with the authorization server. The client
 includes the redirection URI used to obtain the authorization
 code for verification.

 (E) The authorization server authenticates the client, validates the
 authorization code, and ensures that the redirection URI
 received matches the URI used to redirect the client in
 step (C). If valid, the authorization server responds back with
 an access token and, optionally, a refresh token.

4.1.1 . Authorization Request

 The client constructs the request URI by adding the following
 parameters to the query component of the authorization endpoint URI
 using the "application/x-www-form-urlencoded" format, per Appendix B :

 response_type
 REQUIRED. Value MUST be set to "code".

 client_id
 REQUIRED. The client identifier as described in Section 2.2 .

 redirect_uri
 OPTIONAL. As described in Section 3.1.2 .

Hardt Standards Track [Page 25]

RFC 6749 OAuth 2.0 October 2012

 scope
 OPTIONAL. The scope of the access request as described by
 Section 3.3 .

 state
 RECOMMENDED. An opaque value used by the client to maintain
 state between the request and callback. The authorization
 server includes this value when redirecting the user-agent back
 to the client. The parameter SHOULD be used for preventing
 cross-site request forgery as described in Section 10.12 .

 The client directs the resource owner to the constructed URI using an
 HTTP redirection response, or by other means available to it via the
 user-agent.

 For example, the client directs the user-agent to make the following
 HTTP request using TLS (with extra line breaks for display purposes
 only):

 GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
 Host: server.example.com

 The authorization server validates the request to ensure that all
 required parameters are present and valid. If the request is valid,
 the authorization server authenticates the resource owner and obtains
 an authorization decision (by asking the resource owner or by
 establishing approval via other means).

 When a decision is established, the authorization server directs the
 user-agent to the provided client redirection URI using an HTTP
 redirection response, or by other means available to it via the
 user-agent.

4.1.2 . Authorization Response

 If the resource owner grants the access request, the authorization
 server issues an authorization code and delivers it to the client by
 adding the following parameters to the query component of the
 redirection URI using the "application/x-www-form-urlencoded" format,
 per Appendix B :

 code
 REQUIRED. The authorization code generated by the
 authorization server. The authorization code MUST expire
 shortly after it is issued to mitigate the risk of leaks. A
 maximum authorization code lifetime of 10 minutes is
 RECOMMENDED. The client MUST NOT use the authorization code

Hardt Standards Track [Page 26]

RFC 6749 OAuth 2.0 October 2012

 more than once. If an authorization code is used more than
 once, the authorization server MUST deny the request and SHOULD
 revoke (when possible) all tokens previously issued based on
 that authorization code. The authorization code is bound to
 the client identifier and redirection URI.

 state
 REQUIRED if the "state" parameter was present in the client
 authorization request. The exact value received from the
 client.

 For example, the authorization server redirects the user-agent by
 sending the following HTTP response:

 HTTP/1.1 302 Found
 Location: https://client.example.com/cb?code=SplxlOBeZQQYbYS6WxSbIA
 &state=xyz

 The client MUST ignore unrecognized response parameters. The
 authorization code string size is left undefined by this
 specification. The client should avoid making assumptions about code
 value sizes. The authorization server SHOULD document the size of
 any value it issues.

4.1.2.1 . Error Response

 If the request fails due to a missing, invalid, or mismatching
 redirection URI, or if the client identifier is missing or invalid,
 the authorization server SHOULD inform the resource owner of the
 error and MUST NOT automatically redirect the user-agent to the
 invalid redirection URI.

 If the resource owner denies the access request or if the request
 fails for reasons other than a missing or invalid redirection URI,
 the authorization server informs the client by adding the following
 parameters to the query component of the redirection URI using the
 "application/x-www-form-urlencoded" format, per Appendix B :

 error
 REQUIRED. A single ASCII [USASCII] error code from the
 following:

 invalid_request
 The request is missing a required parameter, includes an
 invalid parameter value, includes a parameter more than
 once, or is otherwise malformed.

Hardt Standards Track [Page 27]

RFC 6749 OAuth 2.0 October 2012

 unauthorized_client
 The client is not authorized to request an authorization
 code using this method.

 access_denied
 The resource owner or authorization server denied the
 request.

 unsupported_response_type
 The authorization server does not support obtaining an
 authorization code using this method.

 invalid_scope
 The requested scope is invalid, unknown, or malformed.

 server_error
 The authorization server encountered an unexpected
 condition that prevented it from fulfilling the request.
 (This error code is needed because a 500 Internal Server
 Error HTTP status code cannot be returned to the client
 via an HTTP redirect.)

 temporarily_unavailable
 The authorization server is currently unable to handle
 the request due to a temporary overloading or maintenance
 of the server. (This error code is needed because a 503
 Service Unavailable HTTP status code cannot be returned
 to the client via an HTTP redirect.)

 Values for the "error" parameter MUST NOT include characters
 outside the set %x20-21 / %x23-5B / %x5D-7E.

 error_description
 OPTIONAL. Human-readable ASCII [USASCII] text providing
 additional information, used to assist the client developer in
 understanding the error that occurred.
 Values for the "error_description" parameter MUST NOT include
 characters outside the set %x20-21 / %x23-5B / %x5D-7E.

 error_uri
 OPTIONAL. A URI identifying a human-readable web page with
 information about the error, used to provide the client
 developer with additional information about the error.
 Values for the "error_uri" parameter MUST conform to the
 URI-reference syntax and thus MUST NOT include characters
 outside the set %x21 / %x23-5B / %x5D-7E.

Hardt Standards Track [Page 28]

RFC 6749 OAuth 2.0 October 2012

 state
 REQUIRED if a "state" parameter was present in the client
 authorization request. The exact value received from the
 client.

 For example, the authorization server redirects the user-agent by
 sending the following HTTP response:

 HTTP/1.1 302 Found
 Location: https://client.example.com/cb?error=access_denied&state=xyz

4.1.3 . Access Token Request

 The client makes a request to the token endpoint by sending the
 following parameters using the "application/x-www-form-urlencoded"
 format per Appendix B with a character encoding of UTF-8 in the HTTP
 request entity-body:

 grant_type
 REQUIRED. Value MUST be set to "authorization_code".

 code
 REQUIRED. The authorization code received from the
 authorization server.

 redirect_uri
 REQUIRED, if the "redirect_uri" parameter was included in the
 authorization request as described in Section 4.1.1 , and their
 values MUST be identical.

 client_id
 REQUIRED, if the client is not authenticating with the
 authorization server as described in Section 3.2.1 .

 If the client type is confidential or the client was issued client
 credentials (or assigned other authentication requirements), the
 client MUST authenticate with the authorization server as described
 in Section 3.2.1 .

Hardt Standards Track [Page 29]

RFC 6749 OAuth 2.0 October 2012

 For example, the client makes the following HTTP request using TLS
 (with extra line breaks for display purposes only):

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

 The authorization server MUST:

 o require client authentication for confidential clients or for any
 client that was issued client credentials (or with other
 authentication requirements),

 o authenticate the client if client authentication is included,

 o ensure that the authorization code was issued to the authenticated
 confidential client, or if the client is public, ensure that the
 code was issued to "client_id" in the request,

 o verify that the authorization code is valid, and

 o ensure that the "redirect_uri" parameter is present if the
 "redirect_uri" parameter was included in the initial authorization
 request as described in Section 4.1.1 , and if included ensure that
 their values are identical.

4.1.4 . Access Token Response

 If the access token request is valid and authorized, the
 authorization server issues an access token and optional refresh
 token as described in Section 5.1 . If the request client
 authentication failed or is invalid, the authorization server returns
 an error response as described in Section 5.2 .

Hardt Standards Track [Page 30]

RFC 6749 OAuth 2.0 October 2012

 An example successful response:

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"example",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",
 "example_parameter":"example_value"
 }

4.2 . Implicit Grant

 The implicit grant type is used to obtain access tokens (it does not
 support the issuance of refresh tokens) and is optimized for public
 clients known to operate a particular redirection URI. These clients
 are typically implemented in a browser using a scripting language
 such as JavaScript.

 Since this is a redirection-based flow, the client must be capable of
 interacting with the resource owner’s user-agent (typically a web
 browser) and capable of receiving incoming requests (via redirection)
 from the authorization server.

 Unlike the authorization code grant type, in which the client makes
 separate requests for authorization and for an access token, the
 client receives the access token as the result of the authorization
 request.

 The implicit grant type does not include client authentication, and
 relies on the presence of the resource owner and the registration of
 the redirection URI. Because the access token is encoded into the
 redirection URI, it may be exposed to the resource owner and other
 applications residing on the same device.

Hardt Standards Track [Page 31]

RFC 6749 OAuth 2.0 October 2012

 +----------+
 | Resource |
 | Owner |
 | |
 +----------+
 ^
 |
 (B)
 +----|-----+ Client Identifier +---------------+
 | -+----(A)-- & Redirection URI --->| | |
 | User- | | Authorization |
 | Agent -|----(B)-- User authenticates -->| Server |
 | | | |
 | |<---(C)--- Redirection URI ----<| |
 | | with Access Token +---------------+
 | | in Fragment
 | | +---------------+
 | |----(D)--- Redirection URI ---->| Web-Hosted |
 | | without Fragment | Client |
 | | | Resource |
 | (F) |<---(E)------- Script ---------<| |
 | | +---------------+
 +-|--------+
 | |
 (A) (G) Access Token
 | |
 ^ v
 +---------+
 | |
 | Client |
 | |
 +---------+

 Note: The lines illustrating steps (A) and (B) are broken into two
 parts as they pass through the user-agent.

 Figure 4: Implicit Grant Flow

Hardt Standards Track [Page 32]

RFC 6749 OAuth 2.0 October 2012

 The flow illustrated in Figure 4 includes the following steps:

 (A) The client initiates the flow by directing the resource owner’s
 user-agent to the authorization endpoint. The client includes
 its client identifier, requested scope, local state, and a
 redirection URI to which the authorization server will send the
 user-agent back once access is granted (or denied).

 (B) The authorization server authenticates the resource owner (via
 the user-agent) and establishes whether the resource owner
 grants or denies the client’s access request.

 (C) Assuming the resource owner grants access, the authorization
 server redirects the user-agent back to the client using the
 redirection URI provided earlier. The redirection URI includes
 the access token in the URI fragment.

 (D) The user-agent follows the redirection instructions by making a
 request to the web-hosted client resource (which does not
 include the fragment per [RFC2616]). The user-agent retains the
 fragment information locally.

 (E) The web-hosted client resource returns a web page (typically an
 HTML document with an embedded script) capable of accessing the
 full redirection URI including the fragment retained by the
 user-agent, and extracting the access token (and other
 parameters) contained in the fragment.

 (F) The user-agent executes the script provided by the web-hosted
 client resource locally, which extracts the access token.

 (G) The user-agent passes the access token to the client.

 See Sections 1.3.2 and 9 for background on using the implicit grant.
 See Sections 10.3 and 10.16 for important security considerations
 when using the implicit grant.

4.2.1 . Authorization Request

 The client constructs the request URI by adding the following
 parameters to the query component of the authorization endpoint URI
 using the "application/x-www-form-urlencoded" format, per Appendix B :

 response_type
 REQUIRED. Value MUST be set to "token".

 client_id
 REQUIRED. The client identifier as described in Section 2.2 .

Hardt Standards Track [Page 33]

RFC 6749 OAuth 2.0 October 2012

 redirect_uri
 OPTIONAL. As described in Section 3.1.2 .

 scope
 OPTIONAL. The scope of the access request as described by
 Section 3.3 .

 state
 RECOMMENDED. An opaque value used by the client to maintain
 state between the request and callback. The authorization
 server includes this value when redirecting the user-agent back
 to the client. The parameter SHOULD be used for preventing
 cross-site request forgery as described in Section 10.12 .

 The client directs the resource owner to the constructed URI using an
 HTTP redirection response, or by other means available to it via the
 user-agent.

 For example, the client directs the user-agent to make the following
 HTTP request using TLS (with extra line breaks for display purposes
 only):

 GET /authorize?response_type=token&client_id=s6BhdRkqt3&state=xyz
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
 Host: server.example.com

 The authorization server validates the request to ensure that all
 required parameters are present and valid. The authorization server
 MUST verify that the redirection URI to which it will redirect the
 access token matches a redirection URI registered by the client as
 described in Section 3.1.2 .

 If the request is valid, the authorization server authenticates the
 resource owner and obtains an authorization decision (by asking the
 resource owner or by establishing approval via other means).

 When a decision is established, the authorization server directs the
 user-agent to the provided client redirection URI using an HTTP
 redirection response, or by other means available to it via the
 user-agent.

Hardt Standards Track [Page 34]

RFC 6749 OAuth 2.0 October 2012

4.2.2 . Access Token Response

 If the resource owner grants the access request, the authorization
 server issues an access token and delivers it to the client by adding
 the following parameters to the fragment component of the redirection
 URI using the "application/x-www-form-urlencoded" format, per
 Appendix B :

 access_token
 REQUIRED. The access token issued by the authorization server.

 token_type
 REQUIRED. The type of the token issued as described in
 Section 7.1 . Value is case insensitive.

 expires_in
 RECOMMENDED. The lifetime in seconds of the access token. For
 example, the value "3600" denotes that the access token will
 expire in one hour from the time the response was generated.
 If omitted, the authorization server SHOULD provide the
 expiration time via other means or document the default value.

 scope
 OPTIONAL, if identical to the scope requested by the client;
 otherwise, REQUIRED. The scope of the access token as
 described by Section 3.3 .

 state
 REQUIRED if the "state" parameter was present in the client
 authorization request. The exact value received from the
 client.

 The authorization server MUST NOT issue a refresh token.

 For example, the authorization server redirects the user-agent by
 sending the following HTTP response (with extra line breaks for
 display purposes only):

 HTTP/1.1 302 Found
 Location: http://example.com/cb#access_token=2YotnFZFEjr1zCsicMWpAA
 &state=xyz&token_type=example&expires_in=3600

 Developers should note that some user-agents do not support the
 inclusion of a fragment component in the HTTP "Location" response
 header field. Such clients will require using other methods for
 redirecting the client than a 3xx redirection response -- for
 example, returning an HTML page that includes a ’continue’ button
 with an action linked to the redirection URI.

Hardt Standards Track [Page 35]

RFC 6749 OAuth 2.0 October 2012

 The client MUST ignore unrecognized response parameters. The access
 token string size is left undefined by this specification. The
 client should avoid making assumptions about value sizes. The
 authorization server SHOULD document the size of any value it issues.

4.2.2.1 . Error Response

 If the request fails due to a missing, invalid, or mismatching
 redirection URI, or if the client identifier is missing or invalid,
 the authorization server SHOULD inform the resource owner of the
 error and MUST NOT automatically redirect the user-agent to the
 invalid redirection URI.

 If the resource owner denies the access request or if the request
 fails for reasons other than a missing or invalid redirection URI,
 the authorization server informs the client by adding the following
 parameters to the fragment component of the redirection URI using the
 "application/x-www-form-urlencoded" format, per Appendix B :

 error
 REQUIRED. A single ASCII [USASCII] error code from the
 following:

 invalid_request
 The request is missing a required parameter, includes an
 invalid parameter value, includes a parameter more than
 once, or is otherwise malformed.

 unauthorized_client
 The client is not authorized to request an access token
 using this method.

 access_denied
 The resource owner or authorization server denied the
 request.

 unsupported_response_type
 The authorization server does not support obtaining an
 access token using this method.

 invalid_scope
 The requested scope is invalid, unknown, or malformed.

Hardt Standards Track [Page 36]

RFC 6749 OAuth 2.0 October 2012

 server_error
 The authorization server encountered an unexpected
 condition that prevented it from fulfilling the request.
 (This error code is needed because a 500 Internal Server
 Error HTTP status code cannot be returned to the client
 via an HTTP redirect.)

 temporarily_unavailable
 The authorization server is currently unable to handle
 the request due to a temporary overloading or maintenance
 of the server. (This error code is needed because a 503
 Service Unavailable HTTP status code cannot be returned
 to the client via an HTTP redirect.)

 Values for the "error" parameter MUST NOT include characters
 outside the set %x20-21 / %x23-5B / %x5D-7E.

 error_description
 OPTIONAL. Human-readable ASCII [USASCII] text providing
 additional information, used to assist the client developer in
 understanding the error that occurred.
 Values for the "error_description" parameter MUST NOT include
 characters outside the set %x20-21 / %x23-5B / %x5D-7E.

 error_uri
 OPTIONAL. A URI identifying a human-readable web page with
 information about the error, used to provide the client
 developer with additional information about the error.
 Values for the "error_uri" parameter MUST conform to the
 URI-reference syntax and thus MUST NOT include characters
 outside the set %x21 / %x23-5B / %x5D-7E.

 state
 REQUIRED if a "state" parameter was present in the client
 authorization request. The exact value received from the
 client.

 For example, the authorization server redirects the user-agent by
 sending the following HTTP response:

 HTTP/1.1 302 Found
 Location: https://client.example.com/cb#error=access_denied&state=xyz

4.3 . Resource Owner Password Credentials Grant

 The resource owner password credentials grant type is suitable in
 cases where the resource owner has a trust relationship with the
 client, such as the device operating system or a highly privileged

Hardt Standards Track [Page 37]

RFC 6749 OAuth 2.0 October 2012

 application. The authorization server should take special care when
 enabling this grant type and only allow it when other flows are not
 viable.

 This grant type is suitable for clients capable of obtaining the
 resource owner’s credentials (username and password, typically using
 an interactive form). It is also used to migrate existing clients
 using direct authentication schemes such as HTTP Basic or Digest
 authentication to OAuth by converting the stored credentials to an
 access token.

 +----------+
 | Resource |
 | Owner |
 | |
 +----------+
 v
 | Resource Owner
 (A) Password Credentials
 |
 v
 +---------+ +---------------+
 | |>--(B)---- Resource Owner ------->| |
 | | Password Credentials | Authorization |
 | Client | | Server |
 | |<--(C)---- Access Token ---------<| |
 | | (w/ Optional Refresh Token) | |
 +---------+ +---------------+

 Figure 5: Resource Owner Password Credentials Flow

 The flow illustrated in Figure 5 includes the following steps:

 (A) The resource owner provides the client with its username and
 password.

 (B) The client requests an access token from the authorization
 server’s token endpoint by including the credentials received
 from the resource owner. When making the request, the client
 authenticates with the authorization server.

 (C) The authorization server authenticates the client and validates
 the resource owner credentials, and if valid, issues an access
 token.

Hardt Standards Track [Page 38]

RFC 6749 OAuth 2.0 October 2012

4.3.1 . Authorization Request and Response

 The method through which the client obtains the resource owner
 credentials is beyond the scope of this specification. The client
 MUST discard the credentials once an access token has been obtained.

4.3.2 . Access Token Request

 The client makes a request to the token endpoint by adding the
 following parameters using the "application/x-www-form-urlencoded"
 format per Appendix B with a character encoding of UTF-8 in the HTTP
 request entity-body:

 grant_type
 REQUIRED. Value MUST be set to "password".

 username
 REQUIRED. The resource owner username.

 password
 REQUIRED. The resource owner password.

 scope
 OPTIONAL. The scope of the access request as described by
 Section 3.3 .

 If the client type is confidential or the client was issued client
 credentials (or assigned other authentication requirements), the
 client MUST authenticate with the authorization server as described
 in Section 3.2.1 .

 For example, the client makes the following HTTP request using
 transport-layer security (with extra line breaks for display purposes
 only):

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded

 grant_type=password&username=johndoe&password=A3ddj3w

Hardt Standards Track [Page 39]

RFC 6749 OAuth 2.0 October 2012

 The authorization server MUST:

 o require client authentication for confidential clients or for any
 client that was issued client credentials (or with other
 authentication requirements),

 o authenticate the client if client authentication is included, and

 o validate the resource owner password credentials using its
 existing password validation algorithm.

 Since this access token request utilizes the resource owner’s
 password, the authorization server MUST protect the endpoint against
 brute force attacks (e.g., using rate-limitation or generating
 alerts).

4.3.3 . Access Token Response

 If the access token request is valid and authorized, the
 authorization server issues an access token and optional refresh
 token as described in Section 5.1 . If the request failed client
 authentication or is invalid, the authorization server returns an
 error response as described in Section 5.2 .

 An example successful response:

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"example",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",
 "example_parameter":"example_value"
 }

4.4 . Client Credentials Grant

 The client can request an access token using only its client
 credentials (or other supported means of authentication) when the
 client is requesting access to the protected resources under its
 control, or those of another resource owner that have been previously
 arranged with the authorization server (the method of which is beyond
 the scope of this specification).

Hardt Standards Track [Page 40]

RFC 6749 OAuth 2.0 October 2012

 The client credentials grant type MUST only be used by confidential
 clients.

 +---------+ +---------------+
 | | | |
 | |>--(A)- Client Authentication --->| Authorization |
 | Client | | Server |
 | |<--(B)---- Access Token ---------<| |
 | | | |
 +---------+ +---------------+

 Figure 6: Client Credentials Flow

 The flow illustrated in Figure 6 includes the following steps:

 (A) The client authenticates with the authorization server and
 requests an access token from the token endpoint.

 (B) The authorization server authenticates the client, and if valid,
 issues an access token.

4.4.1 . Authorization Request and Response

 Since the client authentication is used as the authorization grant,
 no additional authorization request is needed.

4.4.2 . Access Token Request

 The client makes a request to the token endpoint by adding the
 following parameters using the "application/x-www-form-urlencoded"
 format per Appendix B with a character encoding of UTF-8 in the HTTP
 request entity-body:

 grant_type
 REQUIRED. Value MUST be set to "client_credentials".

 scope
 OPTIONAL. The scope of the access request as described by
 Section 3.3 .

 The client MUST authenticate with the authorization server as
 described in Section 3.2.1 .

Hardt Standards Track [Page 41]

RFC 6749 OAuth 2.0 October 2012

 For example, the client makes the following HTTP request using
 transport-layer security (with extra line breaks for display purposes
 only):

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded

 grant_type=client_credentials

 The authorization server MUST authenticate the client.

4.4.3 . Access Token Response

 If the access token request is valid and authorized, the
 authorization server issues an access token as described in
 Section 5.1 . A refresh token SHOULD NOT be included. If the request
 failed client authentication or is invalid, the authorization server
 returns an error response as described in Section 5.2 .

 An example successful response:

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"example",
 "expires_in":3600,
 "example_parameter":"example_value"
 }

4.5 . Extension Grants

 The client uses an extension grant type by specifying the grant type
 using an absolute URI (defined by the authorization server) as the
 value of the "grant_type" parameter of the token endpoint, and by
 adding any additional parameters necessary.

Hardt Standards Track [Page 42]

RFC 6749 OAuth 2.0 October 2012

 For example, to request an access token using a Security Assertion
 Markup Language (SAML) 2.0 assertion grant type as defined by
 [OAuth-SAML2], the client could make the following HTTP request using
 TLS (with extra line breaks for display purposes only):

 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Asaml2-
 bearer&assertion=PEFzc2VydGlvbiBJc3N1ZUluc3RhbnQ9IjIwMTEtMDU
 [...omitted for brevity...]aG5TdGF0ZW1lbnQ-PC9Bc3NlcnRpb24-

 If the access token request is valid and authorized, the
 authorization server issues an access token and optional refresh
 token as described in Section 5.1 . If the request failed client
 authentication or is invalid, the authorization server returns an
 error response as described in Section 5.2 .

5. Issuing an Access Token

 If the access token request is valid and authorized, the
 authorization server issues an access token and optional refresh
 token as described in Section 5.1 . If the request failed client
 authentication or is invalid, the authorization server returns an
 error response as described in Section 5.2 .

5.1 . Successful Response

 The authorization server issues an access token and optional refresh
 token, and constructs the response by adding the following parameters
 to the entity-body of the HTTP response with a 200 (OK) status code:

 access_token
 REQUIRED. The access token issued by the authorization server.

 token_type
 REQUIRED. The type of the token issued as described in
 Section 7.1 . Value is case insensitive.

 expires_in
 RECOMMENDED. The lifetime in seconds of the access token. For
 example, the value "3600" denotes that the access token will
 expire in one hour from the time the response was generated.
 If omitted, the authorization server SHOULD provide the
 expiration time via other means or document the default value.

Hardt Standards Track [Page 43]

RFC 6749 OAuth 2.0 October 2012

 refresh_token
 OPTIONAL. The refresh token, which can be used to obtain new
 access tokens using the same authorization grant as described
 in Section 6 .

 scope
 OPTIONAL, if identical to the scope requested by the client;
 otherwise, REQUIRED. The scope of the access token as
 described by Section 3.3 .

 The parameters are included in the entity-body of the HTTP response
 using the "application/json" media type as defined by [RFC4627]. The
 parameters are serialized into a JavaScript Object Notation (JSON)
 structure by adding each parameter at the highest structure level.
 Parameter names and string values are included as JSON strings.
 Numerical values are included as JSON numbers. The order of
 parameters does not matter and can vary.

 The authorization server MUST include the HTTP "Cache-Control"
 response header field [RFC2616] with a value of "no-store" in any
 response containing tokens, credentials, or other sensitive
 information, as well as the "Pragma" response header field [RFC2616]
 with a value of "no-cache".

 For example:

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"example",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",
 "example_parameter":"example_value"
 }

 The client MUST ignore unrecognized value names in the response. The
 sizes of tokens and other values received from the authorization
 server are left undefined. The client should avoid making
 assumptions about value sizes. The authorization server SHOULD
 document the size of any value it issues.

Hardt Standards Track [Page 44]

RFC 6749 OAuth 2.0 October 2012

5.2 . Error Response

 The authorization server responds with an HTTP 400 (Bad Request)
 status code (unless specified otherwise) and includes the following
 parameters with the response:

 error
 REQUIRED. A single ASCII [USASCII] error code from the
 following:

 invalid_request
 The request is missing a required parameter, includes an
 unsupported parameter value (other than grant type),
 repeats a parameter, includes multiple credentials,
 utilizes more than one mechanism for authenticating the
 client, or is otherwise malformed.

 invalid_client
 Client authentication failed (e.g., unknown client, no
 client authentication included, or unsupported
 authentication method). The authorization server MAY
 return an HTTP 401 (Unauthorized) status code to indicate
 which HTTP authentication schemes are supported. If the
 client attempted to authenticate via the "Authorization"
 request header field, the authorization server MUST
 respond with an HTTP 401 (Unauthorized) status code and
 include the "WWW-Authenticate" response header field
 matching the authentication scheme used by the client.

 invalid_grant
 The provided authorization grant (e.g., authorization
 code, resource owner credentials) or refresh token is
 invalid, expired, revoked, does not match the redirection
 URI used in the authorization request, or was issued to
 another client.

 unauthorized_client
 The authenticated client is not authorized to use this
 authorization grant type.

 unsupported_grant_type
 The authorization grant type is not supported by the
 authorization server.

Hardt Standards Track [Page 45]

RFC 6749 OAuth 2.0 October 2012

 invalid_scope
 The requested scope is invalid, unknown, malformed, or
 exceeds the scope granted by the resource owner.

 Values for the "error" parameter MUST NOT include characters
 outside the set %x20-21 / %x23-5B / %x5D-7E.

 error_description
 OPTIONAL. Human-readable ASCII [USASCII] text providing
 additional information, used to assist the client developer in
 understanding the error that occurred.
 Values for the "error_description" parameter MUST NOT include
 characters outside the set %x20-21 / %x23-5B / %x5D-7E.

 error_uri
 OPTIONAL. A URI identifying a human-readable web page with
 information about the error, used to provide the client
 developer with additional information about the error.
 Values for the "error_uri" parameter MUST conform to the
 URI-reference syntax and thus MUST NOT include characters
 outside the set %x21 / %x23-5B / %x5D-7E.

 The parameters are included in the entity-body of the HTTP response
 using the "application/json" media type as defined by [RFC4627]. The
 parameters are serialized into a JSON structure by adding each
 parameter at the highest structure level. Parameter names and string
 values are included as JSON strings. Numerical values are included
 as JSON numbers. The order of parameters does not matter and can
 vary.

 For example:

 HTTP/1.1 400 Bad Request
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "error":"invalid_request"
 }

Hardt Standards Track [Page 46]

RFC 6749 OAuth 2.0 October 2012

6. Refreshing an Access Token

 If the authorization server issued a refresh token to the client, the
 client makes a refresh request to the token endpoint by adding the
 following parameters using the "application/x-www-form-urlencoded"
 format per Appendix B with a character encoding of UTF-8 in the HTTP
 request entity-body:

 grant_type
 REQUIRED. Value MUST be set to "refresh_token".

 refresh_token
 REQUIRED. The refresh token issued to the client.

 scope
 OPTIONAL. The scope of the access request as described by
 Section 3.3 . The requested scope MUST NOT include any scope
 not originally granted by the resource owner, and if omitted is
 treated as equal to the scope originally granted by the
 resource owner.

 Because refresh tokens are typically long-lasting credentials used to
 request additional access tokens, the refresh token is bound to the
 client to which it was issued. If the client type is confidential or
 the client was issued client credentials (or assigned other
 authentication requirements), the client MUST authenticate with the
 authorization server as described in Section 3.2.1 .

 For example, the client makes the following HTTP request using
 transport-layer security (with extra line breaks for display purposes
 only):

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded

 grant_type=refresh_token&refresh_token=tGzv3JOkF0XG5Qx2TlKWIA

Hardt Standards Track [Page 47]

RFC 6749 OAuth 2.0 October 2012

 The authorization server MUST:

 o require client authentication for confidential clients or for any
 client that was issued client credentials (or with other
 authentication requirements),

 o authenticate the client if client authentication is included and
 ensure that the refresh token was issued to the authenticated
 client, and

 o validate the refresh token.

 If valid and authorized, the authorization server issues an access
 token as described in Section 5.1 . If the request failed
 verification or is invalid, the authorization server returns an error
 response as described in Section 5.2 .

 The authorization server MAY issue a new refresh token, in which case
 the client MUST discard the old refresh token and replace it with the
 new refresh token. The authorization server MAY revoke the old
 refresh token after issuing a new refresh token to the client. If a
 new refresh token is issued, the refresh token scope MUST be
 identical to that of the refresh token included by the client in the
 request.

7. Accessing Protected Resources

 The client accesses protected resources by presenting the access
 token to the resource server. The resource server MUST validate the
 access token and ensure that it has not expired and that its scope
 covers the requested resource. The methods used by the resource
 server to validate the access token (as well as any error responses)
 are beyond the scope of this specification but generally involve an
 interaction or coordination between the resource server and the
 authorization server.

 The method in which the client utilizes the access token to
 authenticate with the resource server depends on the type of access
 token issued by the authorization server. Typically, it involves
 using the HTTP "Authorization" request header field [RFC2617] with an
 authentication scheme defined by the specification of the access
 token type used, such as [RFC6750].

Hardt Standards Track [Page 48]

RFC 6749 OAuth 2.0 October 2012

7.1 . Access Token Types

 The access token type provides the client with the information
 required to successfully utilize the access token to make a protected
 resource request (along with type-specific attributes). The client
 MUST NOT use an access token if it does not understand the token
 type.

 For example, the "bearer" token type defined in [RFC6750] is utilized
 by simply including the access token string in the request:

 GET /resource/1 HTTP/1.1
 Host: example.com
 Authorization: Bearer mF_9.B5f-4.1JqM

 while the "mac" token type defined in [OAuth-HTTP-MAC] is utilized by
 issuing a Message Authentication Code (MAC) key together with the
 access token that is used to sign certain components of the HTTP
 requests:

 GET /resource/1 HTTP/1.1
 Host: example.com
 Authorization: MAC id="h480djs93hd8",
 nonce="274312:dj83hs9s",
 mac="kDZvddkndxvhGRXZhvuDjEWhGeE="

 The above examples are provided for illustration purposes only.
 Developers are advised to consult the [RFC6750] and [OAuth-HTTP-MAC]
 specifications before use.

 Each access token type definition specifies the additional attributes
 (if any) sent to the client together with the "access_token" response
 parameter. It also defines the HTTP authentication method used to
 include the access token when making a protected resource request.

7.2 . Error Response

 If a resource access request fails, the resource server SHOULD inform
 the client of the error. While the specifics of such error responses
 are beyond the scope of this specification, this document establishes
 a common registry in Section 11.4 for error values to be shared among
 OAuth token authentication schemes.

 New authentication schemes designed primarily for OAuth token
 authentication SHOULD define a mechanism for providing an error
 status code to the client, in which the error values allowed are
 registered in the error registry established by this specification.

Hardt Standards Track [Page 49]

RFC 6749 OAuth 2.0 October 2012

 Such schemes MAY limit the set of valid error codes to a subset of
 the registered values. If the error code is returned using a named
 parameter, the parameter name SHOULD be "error".

 Other schemes capable of being used for OAuth token authentication,
 but not primarily designed for that purpose, MAY bind their error
 values to the registry in the same manner.

 New authentication schemes MAY choose to also specify the use of the
 "error_description" and "error_uri" parameters to return error
 information in a manner parallel to their usage in this
 specification.

8. Extensibility

8.1 . Defining Access Token Types

 Access token types can be defined in one of two ways: registered in
 the Access Token Types registry (following the procedures in
 Section 11.1), or by using a unique absolute URI as its name.

 Types utilizing a URI name SHOULD be limited to vendor-specific
 implementations that are not commonly applicable, and are specific to
 the implementation details of the resource server where they are
 used.

 All other types MUST be registered. Type names MUST conform to the
 type-name ABNF. If the type definition includes a new HTTP
 authentication scheme, the type name SHOULD be identical to the HTTP
 authentication scheme name (as defined by [RFC2617]). The token type
 "example" is reserved for use in examples.

 type-name = 1*name-char
 name-char = "-" / "." / "_" / DIGIT / ALPHA

8.2 . Defining New Endpoint Parameters

 New request or response parameters for use with the authorization
 endpoint or the token endpoint are defined and registered in the
 OAuth Parameters registry following the procedure in Section 11.2 .

 Parameter names MUST conform to the param-name ABNF, and parameter
 values syntax MUST be well-defined (e.g., using ABNF, or a reference
 to the syntax of an existing parameter).

 param-name = 1*name-char
 name-char = "-" / "." / "_" / DIGIT / ALPHA

Hardt Standards Track [Page 50]

RFC 6749 OAuth 2.0 October 2012

 Unregistered vendor-specific parameter extensions that are not
 commonly applicable and that are specific to the implementation
 details of the authorization server where they are used SHOULD
 utilize a vendor-specific prefix that is not likely to conflict with
 other registered values (e.g., begin with ’companyname_’).

8.3 . Defining New Authorization Grant Types

 New authorization grant types can be defined by assigning them a
 unique absolute URI for use with the "grant_type" parameter. If the
 extension grant type requires additional token endpoint parameters,
 they MUST be registered in the OAuth Parameters registry as described
 by Section 11.2 .

8.4 . Defining New Authorization Endpoint Response Types

 New response types for use with the authorization endpoint are
 defined and registered in the Authorization Endpoint Response Types
 registry following the procedure in Section 11.3 . Response type
 names MUST conform to the response-type ABNF.

 response-type = response-name *(SP response-name)
 response-name = 1*response-char
 response-char = "_" / DIGIT / ALPHA

 If a response type contains one or more space characters (%x20), it
 is compared as a space-delimited list of values in which the order of
 values does not matter. Only one order of values can be registered,
 which covers all other arrangements of the same set of values.

 For example, the response type "token code" is left undefined by this
 specification. However, an extension can define and register the
 "token code" response type. Once registered, the same combination
 cannot be registered as "code token", but both values can be used to
 denote the same response type.

8.5 . Defining Additional Error Codes

 In cases where protocol extensions (i.e., access token types,
 extension parameters, or extension grant types) require additional
 error codes to be used with the authorization code grant error
 response (Section 4.1.2.1), the implicit grant error response
 (Section 4.2.2.1), the token error response (Section 5.2), or the
 resource access error response (Section 7.2), such error codes MAY be
 defined.

Hardt Standards Track [Page 51]

RFC 6749 OAuth 2.0 October 2012

 Extension error codes MUST be registered (following the procedures in
 Section 11.4) if the extension they are used in conjunction with is a
 registered access token type, a registered endpoint parameter, or an
 extension grant type. Error codes used with unregistered extensions
 MAY be registered.

 Error codes MUST conform to the error ABNF and SHOULD be prefixed by
 an identifying name when possible. For example, an error identifying
 an invalid value set to the extension parameter "example" SHOULD be
 named "example_invalid".

 error = 1*error-char
 error-char = %x20-21 / %x23-5B / %x5D-7E

9. Native Applications

 Native applications are clients installed and executed on the device
 used by the resource owner (i.e., desktop application, native mobile
 application). Native applications require special consideration
 related to security, platform capabilities, and overall end-user
 experience.

 The authorization endpoint requires interaction between the client
 and the resource owner’s user-agent. Native applications can invoke
 an external user-agent or embed a user-agent within the application.
 For example:

 o External user-agent - the native application can capture the
 response from the authorization server using a redirection URI
 with a scheme registered with the operating system to invoke the
 client as the handler, manual copy-and-paste of the credentials,
 running a local web server, installing a user-agent extension, or
 by providing a redirection URI identifying a server-hosted
 resource under the client’s control, which in turn makes the
 response available to the native application.

 o Embedded user-agent - the native application obtains the response
 by directly communicating with the embedded user-agent by
 monitoring state changes emitted during the resource load, or
 accessing the user-agent’s cookies storage.

 When choosing between an external or embedded user-agent, developers
 should consider the following:

 o An external user-agent may improve completion rate, as the
 resource owner may already have an active session with the
 authorization server, removing the need to re-authenticate. It
 provides a familiar end-user experience and functionality. The

Hardt Standards Track [Page 52]

RFC 6749 OAuth 2.0 October 2012

 resource owner may also rely on user-agent features or extensions
 to assist with authentication (e.g., password manager, 2-factor
 device reader).

 o An embedded user-agent may offer improved usability, as it removes
 the need to switch context and open new windows.

 o An embedded user-agent poses a security challenge because resource
 owners are authenticating in an unidentified window without access
 to the visual protections found in most external user-agents. An
 embedded user-agent educates end-users to trust unidentified
 requests for authentication (making phishing attacks easier to
 execute).

 When choosing between the implicit grant type and the authorization
 code grant type, the following should be considered:

 o Native applications that use the authorization code grant type
 SHOULD do so without using client credentials, due to the native
 application’s inability to keep client credentials confidential.

 o When using the implicit grant type flow, a refresh token is not
 returned, which requires repeating the authorization process once
 the access token expires.

10. Security Considerations

 As a flexible and extensible framework, OAuth’s security
 considerations depend on many factors. The following sections
 provide implementers with security guidelines focused on the three
 client profiles described in Section 2.1 : web application,
 user-agent-based application, and native application.

 A comprehensive OAuth security model and analysis, as well as
 background for the protocol design, is provided by
 [OAuth-THREATMODEL].

10.1 . Client Authentication

 The authorization server establishes client credentials with web
 application clients for the purpose of client authentication. The
 authorization server is encouraged to consider stronger client
 authentication means than a client password. Web application clients
 MUST ensure confidentiality of client passwords and other client
 credentials.

Hardt Standards Track [Page 53]

RFC 6749 OAuth 2.0 October 2012

 The authorization server MUST NOT issue client passwords or other
 client credentials to native application or user-agent-based
 application clients for the purpose of client authentication. The
 authorization server MAY issue a client password or other credentials
 for a specific installation of a native application client on a
 specific device.

 When client authentication is not possible, the authorization server
 SHOULD employ other means to validate the client’s identity -- for
 example, by requiring the registration of the client redirection URI
 or enlisting the resource owner to confirm identity. A valid
 redirection URI is not sufficient to verify the client’s identity
 when asking for resource owner authorization but can be used to
 prevent delivering credentials to a counterfeit client after
 obtaining resource owner authorization.

 The authorization server must consider the security implications of
 interacting with unauthenticated clients and take measures to limit
 the potential exposure of other credentials (e.g., refresh tokens)
 issued to such clients.

10.2 . Client Impersonation

 A malicious client can impersonate another client and obtain access
 to protected resources if the impersonated client fails to, or is
 unable to, keep its client credentials confidential.

 The authorization server MUST authenticate the client whenever
 possible. If the authorization server cannot authenticate the client
 due to the client’s nature, the authorization server MUST require the
 registration of any redirection URI used for receiving authorization
 responses and SHOULD utilize other means to protect resource owners
 from such potentially malicious clients. For example, the
 authorization server can engage the resource owner to assist in
 identifying the client and its origin.

 The authorization server SHOULD enforce explicit resource owner
 authentication and provide the resource owner with information about
 the client and the requested authorization scope and lifetime. It is
 up to the resource owner to review the information in the context of
 the current client and to authorize or deny the request.

 The authorization server SHOULD NOT process repeated authorization
 requests automatically (without active resource owner interaction)
 without authenticating the client or relying on other measures to
 ensure that the repeated request comes from the original client and
 not an impersonator.

Hardt Standards Track [Page 54]

RFC 6749 OAuth 2.0 October 2012

10.3 . Access Tokens

 Access token credentials (as well as any confidential access token
 attributes) MUST be kept confidential in transit and storage, and
 only shared among the authorization server, the resource servers the
 access token is valid for, and the client to whom the access token is
 issued. Access token credentials MUST only be transmitted using TLS
 as described in Section 1.6 with server authentication as defined by
 [RFC2818].

 When using the implicit grant type, the access token is transmitted
 in the URI fragment, which can expose it to unauthorized parties.

 The authorization server MUST ensure that access tokens cannot be
 generated, modified, or guessed to produce valid access tokens by
 unauthorized parties.

 The client SHOULD request access tokens with the minimal scope
 necessary. The authorization server SHOULD take the client identity
 into account when choosing how to honor the requested scope and MAY
 issue an access token with less rights than requested.

 This specification does not provide any methods for the resource
 server to ensure that an access token presented to it by a given
 client was issued to that client by the authorization server.

10.4 . Refresh Tokens

 Authorization servers MAY issue refresh tokens to web application
 clients and native application clients.

 Refresh tokens MUST be kept confidential in transit and storage, and
 shared only among the authorization server and the client to whom the
 refresh tokens were issued. The authorization server MUST maintain
 the binding between a refresh token and the client to whom it was
 issued. Refresh tokens MUST only be transmitted using TLS as
 described in Section 1.6 with server authentication as defined by
 [RFC2818].

 The authorization server MUST verify the binding between the refresh
 token and client identity whenever the client identity can be
 authenticated. When client authentication is not possible, the
 authorization server SHOULD deploy other means to detect refresh
 token abuse.

 For example, the authorization server could employ refresh token
 rotation in which a new refresh token is issued with every access
 token refresh response. The previous refresh token is invalidated

Hardt Standards Track [Page 55]

RFC 6749 OAuth 2.0 October 2012

 but retained by the authorization server. If a refresh token is
 compromised and subsequently used by both the attacker and the
 legitimate client, one of them will present an invalidated refresh
 token, which will inform the authorization server of the breach.

 The authorization server MUST ensure that refresh tokens cannot be
 generated, modified, or guessed to produce valid refresh tokens by
 unauthorized parties.

10.5 . Authorization Codes

 The transmission of authorization codes SHOULD be made over a secure
 channel, and the client SHOULD require the use of TLS with its
 redirection URI if the URI identifies a network resource. Since
 authorization codes are transmitted via user-agent redirections, they
 could potentially be disclosed through user-agent history and HTTP
 referrer headers.

 Authorization codes operate as plaintext bearer credentials, used to
 verify that the resource owner who granted authorization at the
 authorization server is the same resource owner returning to the
 client to complete the process. Therefore, if the client relies on
 the authorization code for its own resource owner authentication, the
 client redirection endpoint MUST require the use of TLS.

 Authorization codes MUST be short lived and single-use. If the
 authorization server observes multiple attempts to exchange an
 authorization code for an access token, the authorization server
 SHOULD attempt to revoke all access tokens already granted based on
 the compromised authorization code.

 If the client can be authenticated, the authorization servers MUST
 authenticate the client and ensure that the authorization code was
 issued to the same client.

10.6 . Authorization Code Redirection URI Manipulation

 When requesting authorization using the authorization code grant
 type, the client can specify a redirection URI via the "redirect_uri"
 parameter. If an attacker can manipulate the value of the
 redirection URI, it can cause the authorization server to redirect
 the resource owner user-agent to a URI under the control of the
 attacker with the authorization code.

 An attacker can create an account at a legitimate client and initiate
 the authorization flow. When the attacker’s user-agent is sent to
 the authorization server to grant access, the attacker grabs the
 authorization URI provided by the legitimate client and replaces the

Hardt Standards Track [Page 56]

RFC 6749 OAuth 2.0 October 2012

 client’s redirection URI with a URI under the control of the
 attacker. The attacker then tricks the victim into following the
 manipulated link to authorize access to the legitimate client.

 Once at the authorization server, the victim is prompted with a
 normal, valid request on behalf of a legitimate and trusted client,
 and authorizes the request. The victim is then redirected to an
 endpoint under the control of the attacker with the authorization
 code. The attacker completes the authorization flow by sending the
 authorization code to the client using the original redirection URI
 provided by the client. The client exchanges the authorization code
 with an access token and links it to the attacker’s client account,
 which can now gain access to the protected resources authorized by
 the victim (via the client).

 In order to prevent such an attack, the authorization server MUST
 ensure that the redirection URI used to obtain the authorization code
 is identical to the redirection URI provided when exchanging the
 authorization code for an access token. The authorization server
 MUST require public clients and SHOULD require confidential clients
 to register their redirection URIs. If a redirection URI is provided
 in the request, the authorization server MUST validate it against the
 registered value.

10.7 . Resource Owner Password Credentials

 The resource owner password credentials grant type is often used for
 legacy or migration reasons. It reduces the overall risk of storing
 usernames and passwords by the client but does not eliminate the need
 to expose highly privileged credentials to the client.

 This grant type carries a higher risk than other grant types because
 it maintains the password anti-pattern this protocol seeks to avoid.
 The client could abuse the password, or the password could
 unintentionally be disclosed to an attacker (e.g., via log files or
 other records kept by the client).

 Additionally, because the resource owner does not have control over
 the authorization process (the resource owner’s involvement ends when
 it hands over its credentials to the client), the client can obtain
 access tokens with a broader scope than desired by the resource
 owner. The authorization server should consider the scope and
 lifetime of access tokens issued via this grant type.

 The authorization server and client SHOULD minimize use of this grant
 type and utilize other grant types whenever possible.

Hardt Standards Track [Page 57]

RFC 6749 OAuth 2.0 October 2012

10.8 . Request Confidentiality

 Access tokens, refresh tokens, resource owner passwords, and client
 credentials MUST NOT be transmitted in the clear. Authorization
 codes SHOULD NOT be transmitted in the clear.

 The "state" and "scope" parameters SHOULD NOT include sensitive
 client or resource owner information in plain text, as they can be
 transmitted over insecure channels or stored insecurely.

10.9 . Ensuring Endpoint Authenticity

 In order to prevent man-in-the-middle attacks, the authorization
 server MUST require the use of TLS with server authentication as
 defined by [RFC2818] for any request sent to the authorization and
 token endpoints. The client MUST validate the authorization server’s
 TLS certificate as defined by [RFC6125] and in accordance with its
 requirements for server identity authentication.

10.10 . Credentials-Guessing Attacks

 The authorization server MUST prevent attackers from guessing access
 tokens, authorization codes, refresh tokens, resource owner
 passwords, and client credentials.

 The probability of an attacker guessing generated tokens (and other
 credentials not intended for handling by end-users) MUST be less than
 or equal to 2^(-128) and SHOULD be less than or equal to 2^(-160).

 The authorization server MUST utilize other means to protect
 credentials intended for end-user usage.

10.11 . Phishing Attacks

 Wide deployment of this and similar protocols may cause end-users to
 become inured to the practice of being redirected to websites where
 they are asked to enter their passwords. If end-users are not
 careful to verify the authenticity of these websites before entering
 their credentials, it will be possible for attackers to exploit this
 practice to steal resource owners’ passwords.

 Service providers should attempt to educate end-users about the risks
 phishing attacks pose and should provide mechanisms that make it easy
 for end-users to confirm the authenticity of their sites. Client
 developers should consider the security implications of how they
 interact with the user-agent (e.g., external, embedded), and the
 ability of the end-user to verify the authenticity of the
 authorization server.

Hardt Standards Track [Page 58]

RFC 6749 OAuth 2.0 October 2012

 To reduce the risk of phishing attacks, the authorization servers
 MUST require the use of TLS on every endpoint used for end-user
 interaction.

10.12 . Cross-Site Request Forgery

 Cross-site request forgery (CSRF) is an exploit in which an attacker
 causes the user-agent of a victim end-user to follow a malicious URI
 (e.g., provided to the user-agent as a misleading link, image, or
 redirection) to a trusting server (usually established via the
 presence of a valid session cookie).

 A CSRF attack against the client’s redirection URI allows an attacker
 to inject its own authorization code or access token, which can
 result in the client using an access token associated with the
 attacker’s protected resources rather than the victim’s (e.g., save
 the victim’s bank account information to a protected resource
 controlled by the attacker).

 The client MUST implement CSRF protection for its redirection URI.
 This is typically accomplished by requiring any request sent to the
 redirection URI endpoint to include a value that binds the request to
 the user-agent’s authenticated state (e.g., a hash of the session
 cookie used to authenticate the user-agent). The client SHOULD
 utilize the "state" request parameter to deliver this value to the
 authorization server when making an authorization request.

 Once authorization has been obtained from the end-user, the
 authorization server redirects the end-user’s user-agent back to the
 client with the required binding value contained in the "state"
 parameter. The binding value enables the client to verify the
 validity of the request by matching the binding value to the
 user-agent’s authenticated state. The binding value used for CSRF
 protection MUST contain a non-guessable value (as described in
 Section 10.10), and the user-agent’s authenticated state (e.g.,
 session cookie, HTML5 local storage) MUST be kept in a location
 accessible only to the client and the user-agent (i.e., protected by
 same-origin policy).

 A CSRF attack against the authorization server’s authorization
 endpoint can result in an attacker obtaining end-user authorization
 for a malicious client without involving or alerting the end-user.

 The authorization server MUST implement CSRF protection for its
 authorization endpoint and ensure that a malicious client cannot
 obtain authorization without the awareness and explicit consent of
 the resource owner.

Hardt Standards Track [Page 59]

RFC 6749 OAuth 2.0 October 2012

10.13 . Clickjacking

 In a clickjacking attack, an attacker registers a legitimate client
 and then constructs a malicious site in which it loads the
 authorization server’s authorization endpoint web page in a
 transparent iframe overlaid on top of a set of dummy buttons, which
 are carefully constructed to be placed directly under important
 buttons on the authorization page. When an end-user clicks a
 misleading visible button, the end-user is actually clicking an
 invisible button on the authorization page (such as an "Authorize"
 button). This allows an attacker to trick a resource owner into
 granting its client access without the end-user’s knowledge.

 To prevent this form of attack, native applications SHOULD use
 external browsers instead of embedding browsers within the
 application when requesting end-user authorization. For most newer
 browsers, avoidance of iframes can be enforced by the authorization
 server using the (non-standard) "x-frame-options" header. This
 header can have two values, "deny" and "sameorigin", which will block
 any framing, or framing by sites with a different origin,
 respectively. For older browsers, JavaScript frame-busting
 techniques can be used but may not be effective in all browsers.

10.14 . Code Injection and Input Validation

 A code injection attack occurs when an input or otherwise external
 variable is used by an application unsanitized and causes
 modification to the application logic. This may allow an attacker to
 gain access to the application device or its data, cause denial of
 service, or introduce a wide range of malicious side-effects.

 The authorization server and client MUST sanitize (and validate when
 possible) any value received -- in particular, the value of the
 "state" and "redirect_uri" parameters.

10.15 . Open Redirectors

 The authorization server, authorization endpoint, and client
 redirection endpoint can be improperly configured and operate as open
 redirectors. An open redirector is an endpoint using a parameter to
 automatically redirect a user-agent to the location specified by the
 parameter value without any validation.

 Open redirectors can be used in phishing attacks, or by an attacker
 to get end-users to visit malicious sites by using the URI authority
 component of a familiar and trusted destination. In addition, if the
 authorization server allows the client to register only part of the
 redirection URI, an attacker can use an open redirector operated by

Hardt Standards Track [Page 60]

RFC 6749 OAuth 2.0 October 2012

 the client to construct a redirection URI that will pass the
 authorization server validation but will send the authorization code
 or access token to an endpoint under the control of the attacker.

10.16 . Misuse of Access Token to Impersonate Resource Owner in Implicit
 Flow

 For public clients using implicit flows, this specification does not
 provide any method for the client to determine what client an access
 token was issued to.

 A resource owner may willingly delegate access to a resource by
 granting an access token to an attacker’s malicious client. This may
 be due to phishing or some other pretext. An attacker may also steal
 a token via some other mechanism. An attacker may then attempt to
 impersonate the resource owner by providing the access token to a
 legitimate public client.

 In the implicit flow (response_type=token), the attacker can easily
 switch the token in the response from the authorization server,
 replacing the real access token with the one previously issued to the
 attacker.

 Servers communicating with native applications that rely on being
 passed an access token in the back channel to identify the user of
 the client may be similarly compromised by an attacker creating a
 compromised application that can inject arbitrary stolen access
 tokens.

 Any public client that makes the assumption that only the resource
 owner can present it with a valid access token for the resource is
 vulnerable to this type of attack.

 This type of attack may expose information about the resource owner
 at the legitimate client to the attacker (malicious client). This
 will also allow the attacker to perform operations at the legitimate
 client with the same permissions as the resource owner who originally
 granted the access token or authorization code.

 Authenticating resource owners to clients is out of scope for this
 specification. Any specification that uses the authorization process
 as a form of delegated end-user authentication to the client (e.g.,
 third-party sign-in service) MUST NOT use the implicit flow without
 additional security mechanisms that would enable the client to
 determine if the access token was issued for its use (e.g., audience-
 restricting the access token).

Hardt Standards Track [Page 61]

RFC 6749 OAuth 2.0 October 2012

11. IANA Considerations

11.1 . OAuth Access Token Types Registry

 This specification establishes the OAuth Access Token Types registry.

 Access token types are registered with a Specification Required
 ([RFC5226]) after a two-week review period on the
 oauth-ext-review@ietf.org mailing list, on the advice of one or more
 Designated Experts. However, to allow for the allocation of values
 prior to publication, the Designated Expert(s) may approve
 registration once they are satisfied that such a specification will
 be published.

 Registration requests must be sent to the oauth-ext-review@ietf.org
 mailing list for review and comment, with an appropriate subject
 (e.g., "Request for access token type: example").

 Within the review period, the Designated Expert(s) will either
 approve or deny the registration request, communicating this decision
 to the review list and IANA. Denials should include an explanation
 and, if applicable, suggestions as to how to make the request
 successful.

 IANA must only accept registry updates from the Designated Expert(s)
 and should direct all requests for registration to the review mailing
 list.

11.1.1 . Registration Template

 Type name:
 The name requested (e.g., "example").

 Additional Token Endpoint Response Parameters:
 Additional response parameters returned together with the
 "access_token" parameter. New parameters MUST be separately
 registered in the OAuth Parameters registry as described by
 Section 11.2 .

 HTTP Authentication Scheme(s):
 The HTTP authentication scheme name(s), if any, used to
 authenticate protected resource requests using access tokens of
 this type.

 Change controller:
 For Standards Track RFCs, state "IETF". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

Hardt Standards Track [Page 62]

RFC 6749 OAuth 2.0 October 2012

 Specification document(s):
 Reference to the document(s) that specify the parameter,
 preferably including a URI that can be used to retrieve a copy of
 the document(s). An indication of the relevant sections may also
 be included but is not required.

11.2 . OAuth Parameters Registry

 This specification establishes the OAuth Parameters registry.

 Additional parameters for inclusion in the authorization endpoint
 request, the authorization endpoint response, the token endpoint
 request, or the token endpoint response are registered with a
 Specification Required ([RFC5226]) after a two-week review period on
 the oauth-ext-review@ietf.org mailing list, on the advice of one or
 more Designated Experts. However, to allow for the allocation of
 values prior to publication, the Designated Expert(s) may approve
 registration once they are satisfied that such a specification will
 be published.

 Registration requests must be sent to the oauth-ext-review@ietf.org
 mailing list for review and comment, with an appropriate subject
 (e.g., "Request for parameter: example").

 Within the review period, the Designated Expert(s) will either
 approve or deny the registration request, communicating this decision
 to the review list and IANA. Denials should include an explanation
 and, if applicable, suggestions as to how to make the request
 successful.

 IANA must only accept registry updates from the Designated Expert(s)
 and should direct all requests for registration to the review mailing
 list.

11.2.1 . Registration Template

 Parameter name:
 The name requested (e.g., "example").

 Parameter usage location:
 The location(s) where parameter can be used. The possible
 locations are authorization request, authorization response, token
 request, or token response.

 Change controller:
 For Standards Track RFCs, state "IETF". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

Hardt Standards Track [Page 63]

RFC 6749 OAuth 2.0 October 2012

 Specification document(s):
 Reference to the document(s) that specify the parameter,
 preferably including a URI that can be used to retrieve a copy of
 the document(s). An indication of the relevant sections may also
 be included but is not required.

11.2.2 . Initial Registry Contents

 The OAuth Parameters registry’s initial contents are:

 o Parameter name: client_id
 o Parameter usage location: authorization request, token request
 o Change controller: IETF
 o Specification document(s): RFC 6749

 o Parameter name: client_secret
 o Parameter usage location: token request
 o Change controller: IETF
 o Specification document(s): RFC 6749

 o Parameter name: response_type
 o Parameter usage location: authorization request
 o Change controller: IETF
 o Specification document(s): RFC 6749

 o Parameter name: redirect_uri
 o Parameter usage location: authorization request, token request
 o Change controller: IETF
 o Specification document(s): RFC 6749

 o Parameter name: scope
 o Parameter usage location: authorization request, authorization
 response, token request, token response
 o Change controller: IETF
 o Specification document(s): RFC 6749

 o Parameter name: state
 o Parameter usage location: authorization request, authorization
 response
 o Change controller: IETF
 o Specification document(s): RFC 6749

 o Parameter name: code
 o Parameter usage location: authorization response, token request
 o Change controller: IETF
 o Specification document(s): RFC 6749

Hardt Standards Track [Page 64]

RFC 6749 OAuth 2.0 October 2012

 o Parameter name: error_description
 o Parameter usage location: authorization response, token response
 o Change controller: IETF
 o Specification document(s): RFC 6749

 o Parameter name: error_uri
 o Parameter usage location: authorization response, token response
 o Change controller: IETF
 o Specification document(s): RFC 6749

 o Parameter name: grant_type
 o Parameter usage location: token request
 o Change controller: IETF
 o Specification document(s): RFC 6749

 o Parameter name: access_token
 o Parameter usage location: authorization response, token response
 o Change controller: IETF
 o Specification document(s): RFC 6749

 o Parameter name: token_type
 o Parameter usage location: authorization response, token response
 o Change controller: IETF
 o Specification document(s): RFC 6749

 o Parameter name: expires_in
 o Parameter usage location: authorization response, token response
 o Change controller: IETF
 o Specification document(s): RFC 6749

 o Parameter name: username
 o Parameter usage location: token request
 o Change controller: IETF
 o Specification document(s): RFC 6749

 o Parameter name: password
 o Parameter usage location: token request
 o Change controller: IETF
 o Specification document(s): RFC 6749

 o Parameter name: refresh_token
 o Parameter usage location: token request, token response
 o Change controller: IETF
 o Specification document(s): RFC 6749

Hardt Standards Track [Page 65]

RFC 6749 OAuth 2.0 October 2012

11.3 . OAuth Authorization Endpoint Response Types Registry

 This specification establishes the OAuth Authorization Endpoint
 Response Types registry.

 Additional response types for use with the authorization endpoint are
 registered with a Specification Required ([RFC5226]) after a two-week
 review period on the oauth-ext-review@ietf.org mailing list, on the
 advice of one or more Designated Experts. However, to allow for the
 allocation of values prior to publication, the Designated Expert(s)
 may approve registration once they are satisfied that such a
 specification will be published.

 Registration requests must be sent to the oauth-ext-review@ietf.org
 mailing list for review and comment, with an appropriate subject
 (e.g., "Request for response type: example").

 Within the review period, the Designated Expert(s) will either
 approve or deny the registration request, communicating this decision
 to the review list and IANA. Denials should include an explanation
 and, if applicable, suggestions as to how to make the request
 successful.

 IANA must only accept registry updates from the Designated Expert(s)
 and should direct all requests for registration to the review mailing
 list.

11.3.1 . Registration Template

 Response type name:
 The name requested (e.g., "example").

 Change controller:
 For Standards Track RFCs, state "IETF". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

 Specification document(s):
 Reference to the document(s) that specify the type, preferably
 including a URI that can be used to retrieve a copy of the
 document(s). An indication of the relevant sections may also be
 included but is not required.

Hardt Standards Track [Page 66]

RFC 6749 OAuth 2.0 October 2012

11.3.2 . Initial Registry Contents

 The OAuth Authorization Endpoint Response Types registry’s initial
 contents are:

 o Response type name: code
 o Change controller: IETF
 o Specification document(s): RFC 6749

 o Response type name: token
 o Change controller: IETF
 o Specification document(s): RFC 6749

11.4 . OAuth Extensions Error Registry

 This specification establishes the OAuth Extensions Error registry.

 Additional error codes used together with other protocol extensions
 (i.e., extension grant types, access token types, or extension
 parameters) are registered with a Specification Required ([RFC5226])
 after a two-week review period on the oauth-ext-review@ietf.org
 mailing list, on the advice of one or more Designated Experts.
 However, to allow for the allocation of values prior to publication,
 the Designated Expert(s) may approve registration once they are
 satisfied that such a specification will be published.

 Registration requests must be sent to the oauth-ext-review@ietf.org
 mailing list for review and comment, with an appropriate subject
 (e.g., "Request for error code: example").

 Within the review period, the Designated Expert(s) will either
 approve or deny the registration request, communicating this decision
 to the review list and IANA. Denials should include an explanation
 and, if applicable, suggestions as to how to make the request
 successful.

 IANA must only accept registry updates from the Designated Expert(s)
 and should direct all requests for registration to the review mailing
 list.

Hardt Standards Track [Page 67]

RFC 6749 OAuth 2.0 October 2012

11.4.1 . Registration Template

 Error name:
 The name requested (e.g., "example"). Values for the error name
 MUST NOT include characters outside the set %x20-21 / %x23-5B /
 %x5D-7E.

 Error usage location:
 The location(s) where the error can be used. The possible
 locations are authorization code grant error response
 (Section 4.1.2.1), implicit grant error response
 (Section 4.2.2.1), token error response (Section 5.2), or resource
 access error response (Section 7.2).

 Related protocol extension:
 The name of the extension grant type, access token type, or
 extension parameter that the error code is used in conjunction
 with.

 Change controller:
 For Standards Track RFCs, state "IETF". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

 Specification document(s):
 Reference to the document(s) that specify the error code,
 preferably including a URI that can be used to retrieve a copy of
 the document(s). An indication of the relevant sections may also
 be included but is not required.

12. References

12.1 . Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 , March 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246 , January 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616 , June 1999.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",
 RFC 2617 , June 1999.

Hardt Standards Track [Page 68]

RFC 6749 OAuth 2.0 October 2012

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818 , May 2000.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of
 ISO 10646", STD 63, RFC 3629 , November 2003.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986 , January 2005.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627 , July 2006.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 RFC 4949 , August 2007.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26 , RFC 5226 ,
 May 2008.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234 , January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246 , August 2008.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125 , March 2011.

 [USASCII] American National Standards Institute, "Coded Character
 Set -- 7-bit American Standard Code for Information
 Interchange", ANSI X3.4, 1986.

 [W3C.REC-html401-19991224]
 Raggett, D., Le Hors, A., and I. Jacobs, "HTML 4.01
 Specification", World Wide Web Consortium
 Recommendation REC-html401-19991224, December 1999,
 < http://www.w3.org/TR/1999/REC-html401-19991224 >.

 [W3C.REC-xml-20081126]
 Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E.,
 and F. Yergeau, "Extensible Markup Language (XML) 1.0
 (Fifth Edition)", World Wide Web Consortium
 Recommendation REC-xml-20081126, November 2008,
 < http://www.w3.org/TR/2008/REC-xml-20081126 >.

Hardt Standards Track [Page 69]

RFC 6749 OAuth 2.0 October 2012

12.2 . Informative References

 [OAuth-HTTP-MAC]
 Hammer-Lahav, E., Ed., "HTTP Authentication: MAC Access
 Authentication", Work in Progress, February 2012.

 [OAuth-SAML2]
 Campbell, B. and C. Mortimore, "SAML 2.0 Bearer Assertion
 Profiles for OAuth 2.0", Work in Progress, September 2012.

 [OAuth-THREATMODEL]
 Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", Work
 in Progress, October 2012.

 [OAuth-WRAP]
 Hardt, D., Ed., Tom, A., Eaton, B., and Y. Goland, "OAuth
 Web Resource Authorization Profiles", Work in Progress,
 January 2010.

 [RFC5849] Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC 5849 ,
 April 2010.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750 , October 2012.

Hardt Standards Track [Page 70]

RFC 6749 OAuth 2.0 October 2012

Appendix A . Augmented Backus-Naur Form (ABNF) Syntax

 This section provides Augmented Backus-Naur Form (ABNF) syntax
 descriptions for the elements defined in this specification using the
 notation of [RFC5234]. The ABNF below is defined in terms of Unicode
 code points [W3C.REC-xml-20081126]; these characters are typically
 encoded in UTF-8. Elements are presented in the order first defined.

 Some of the definitions that follow use the "URI-reference"
 definition from [RFC3986].

 Some of the definitions that follow use these common definitions:

 VSCHAR = %x20-7E
 NQCHAR = %x21 / %x23-5B / %x5D-7E
 NQSCHAR = %x20-21 / %x23-5B / %x5D-7E
 UNICODECHARNOCRLF = %x09 /%x20-7E / %x80-D7FF /
 %xE000-FFFD / %x10000-10FFFF

 (The UNICODECHARNOCRLF definition is based upon the Char definition
 in Section 2.2 of [W3C.REC-xml-20081126], but omitting the Carriage
 Return and Linefeed characters.)

A.1 . "client_id" Syntax

 The "client_id" element is defined in Section 2.3.1 :

 client-id = *VSCHAR

A.2 . "client_secret" Syntax

 The "client_secret" element is defined in Section 2.3.1 :

 client-secret = *VSCHAR

A.3 . "response_type" Syntax

 The "response_type" element is defined in Sections 3.1.1 and 8.4 :

 response-type = response-name *(SP response-name)
 response-name = 1*response-char
 response-char = "_" / DIGIT / ALPHA

Hardt Standards Track [Page 71]

RFC 6749 OAuth 2.0 October 2012

A.4 . "scope" Syntax

 The "scope" element is defined in Section 3.3 :

 scope = scope-token *(SP scope-token)
 scope-token = 1*NQCHAR

A.5 . "state" Syntax

 The "state" element is defined in Sections 4.1.1 , 4.1.2 , 4.1.2.1 ,
 4.2.1, 4.2.2, and 4.2.2.1:

 state = 1*VSCHAR

A.6 . "redirect_uri" Syntax

 The "redirect_uri" element is defined in Sections 4.1.1 , 4.1.3 ,
 and 4.2.1:

 redirect-uri = URI-reference

A.7 . "error" Syntax

 The "error" element is defined in Sections 4.1.2.1 , 4.2.2.1 , 5.2 ,
 7.2, and 8.5:

 error = 1*NQSCHAR

A.8 . "error_description" Syntax

 The "error_description" element is defined in Sections 4.1.2.1 ,
 4.2.2.1, 5.2, and 7.2:

 error-description = 1*NQSCHAR

A.9 . "error_uri" Syntax

 The "error_uri" element is defined in Sections 4.1.2.1 , 4.2.2.1 , 5.2 ,
 and 7.2:

 error-uri = URI-reference

Hardt Standards Track [Page 72]

RFC 6749 OAuth 2.0 October 2012

A.10 . "grant_type" Syntax

 The "grant_type" element is defined in Sections 4.1.3 , 4.3.2 , 4.4.2 ,
 4.5, and 6:

 grant-type = grant-name / URI-reference
 grant-name = 1*name-char
 name-char = "-" / "." / "_" / DIGIT / ALPHA

A.11 . "code" Syntax

 The "code" element is defined in Section 4.1.3 :

 code = 1*VSCHAR

A.12 . "access_token" Syntax

 The "access_token" element is defined in Sections 4.2.2 and 5.1 :

 access-token = 1*VSCHAR

A.13 . "token_type" Syntax

 The "token_type" element is defined in Sections 4.2.2 , 5.1 , and 8.1 :

 token-type = type-name / URI-reference
 type-name = 1*name-char
 name-char = "-" / "." / "_" / DIGIT / ALPHA

A.14 . "expires_in" Syntax

 The "expires_in" element is defined in Sections 4.2.2 and 5.1 :

 expires-in = 1*DIGIT

A.15 . "username" Syntax

 The "username" element is defined in Section 4.3.2 :

 username = *UNICODECHARNOCRLF

A.16 . "password" Syntax

 The "password" element is defined in Section 4.3.2 :

 password = *UNICODECHARNOCRLF

Hardt Standards Track [Page 73]

RFC 6749 OAuth 2.0 October 2012

A.17 . "refresh_token" Syntax

 The "refresh_token" element is defined in Sections 5.1 and 6:

 refresh-token = 1*VSCHAR

A.18 . Endpoint Parameter Syntax

 The syntax for new endpoint parameters is defined in Section 8.2 :

 param-name = 1*name-char
 name-char = "-" / "." / "_" / DIGIT / ALPHA

Appendix B . Use of application/x-www-form-urlencoded Media Type

 At the time of publication of this specification, the
 "application/x-www-form-urlencoded" media type was defined in
 Section 17.13.4 of [W3C.REC-html401-19991224] but not registered in
 the IANA MIME Media Types registry
 (< http://www.iana.org/assignments/media-types >). Furthermore, that
 definition is incomplete, as it does not consider non-US-ASCII
 characters.

 To address this shortcoming when generating payloads using this media
 type, names and values MUST be encoded using the UTF-8 character
 encoding scheme [RFC3629] first; the resulting octet sequence then
 needs to be further encoded using the escaping rules defined in
 [W3C.REC-html401-19991224].

 When parsing data from a payload using this media type, the names and
 values resulting from reversing the name/value encoding consequently
 need to be treated as octet sequences, to be decoded using the UTF-8
 character encoding scheme.

 For example, the value consisting of the six Unicode code points
 (1) U+0020 (SPACE), (2) U+0025 (PERCENT SIGN),
 (3) U+0026 (AMPERSAND), (4) U+002B (PLUS SIGN),
 (5) U+00A3 (POUND SIGN), and (6) U+20AC (EURO SIGN) would be encoded
 into the octet sequence below (using hexadecimal notation):

 20 25 26 2B C2 A3 E2 82 AC

 and then represented in the payload as:

 +%25%26%2B%C2%A3%E2%82%AC

Hardt Standards Track [Page 74]

RFC 6749 OAuth 2.0 October 2012

Appendix C . Acknowledgements

 The initial OAuth 2.0 protocol specification was edited by David
 Recordon, based on two previous publications: the OAuth 1.0 community
 specification [RFC5849], and OAuth WRAP (OAuth Web Resource
 Authorization Profiles) [OAuth-WRAP]. Eran Hammer then edited many
 of the intermediate drafts that evolved into this RFC. The Security
 Considerations section was drafted by Torsten Lodderstedt, Mark
 McGloin, Phil Hunt, Anthony Nadalin, and John Bradley. The section
 on use of the "application/x-www-form-urlencoded" media type was
 drafted by Julian Reschke. The ABNF section was drafted by Michael
 B. Jones.

 The OAuth 1.0 community specification was edited by Eran Hammer and
 authored by Mark Atwood, Dirk Balfanz, Darren Bounds, Richard M.
 Conlan, Blaine Cook, Leah Culver, Breno de Medeiros, Brian Eaton,
 Kellan Elliott-McCrea, Larry Halff, Eran Hammer, Ben Laurie, Chris
 Messina, John Panzer, Sam Quigley, David Recordon, Eran Sandler,
 Jonathan Sergent, Todd Sieling, Brian Slesinsky, and Andy Smith.

 The OAuth WRAP specification was edited by Dick Hardt and authored by
 Brian Eaton, Yaron Y. Goland, Dick Hardt, and Allen Tom.

 This specification is the work of the OAuth Working Group, which
 includes dozens of active and dedicated participants. In particular,
 the following individuals contributed ideas, feedback, and wording
 that shaped and formed the final specification:

 Michael Adams, Amanda Anganes, Andrew Arnott, Dirk Balfanz, Aiden
 Bell, John Bradley, Marcos Caceres, Brian Campbell, Scott Cantor,
 Blaine Cook, Roger Crew, Leah Culver, Bill de hOra, Andre DeMarre,
 Brian Eaton, Wesley Eddy, Wolter Eldering, Brian Ellin, Igor
 Faynberg, George Fletcher, Tim Freeman, Luca Frosini, Evan Gilbert,
 Yaron Y. Goland, Brent Goldman, Kristoffer Gronowski, Eran Hammer,
 Dick Hardt, Justin Hart, Craig Heath, Phil Hunt, Michael B. Jones,
 Terry Jones, John Kemp, Mark Kent, Raffi Krikorian, Chasen Le Hara,
 Rasmus Lerdorf, Torsten Lodderstedt, Hui-Lan Lu, Casey Lucas, Paul
 Madsen, Alastair Mair, Eve Maler, James Manger, Mark McGloin,
 Laurence Miao, William Mills, Chuck Mortimore, Anthony Nadalin,
 Julian Reschke, Justin Richer, Peter Saint-Andre, Nat Sakimura, Rob
 Sayre, Marius Scurtescu, Naitik Shah, Luke Shepard, Vlad Skvortsov,
 Justin Smith, Haibin Song, Niv Steingarten, Christian Stuebner,
 Jeremy Suriel, Paul Tarjan, Christopher Thomas, Henry S. Thompson,
 Allen Tom, Franklin Tse, Nick Walker, Shane Weeden, and Skylar
 Woodward.

Hardt Standards Track [Page 75]

RFC 6749 OAuth 2.0 October 2012

 This document was produced under the chairmanship of Blaine Cook,
 Peter Saint-Andre, Hannes Tschofenig, Barry Leiba, and Derek Atkins.
 The area directors included Lisa Dusseault, Peter Saint-Andre, and
 Stephen Farrell.

Author’s Address

 Dick Hardt (editor)
 Microsoft

 EMail: dick.hardt@gmail.com
 URI: http://dickhardt.org/

Hardt Standards Track [Page 76]

