

API Architecture

The Big Picture for Building APIs

by Matthias Biehl

API University Series
www.api-university.com

2

API-University Press
Copyright © 2015 by Matthias Biehl
All rights reserved, including the right to reproduce
this book or portions thereof in any form whatsoever.

ISBN-13: 978-1508676645
ISBN-10: 150867664X

3

4

5

Synopsis

Looking for the big picture of building APIs? This book is for you!

Building APIs that consumers love should certainly be the goal of
any API initiative. However, it is easier said than done. It requires
getting the architecture for your APIs right. This book equips you
with both foundations and best practices for API architecture. This
book presents best practices for putting an infrastructure in place
that enables efficient development of APIs.

This book is for you if you want to understand the big picture of
API design and development, you want to define an API
architecture, establish a platform for APIs or simply want to build
APIs your consumers love.

This book is NOT for you, if you are looking for a step-by step
guide for building APIs, focusing on every detail of the correct
application of REST principles. In this case I recommend the book
API Design of the API-University Series.

What is API architecture? Architecture spans the bigger picture of
APIs and can be seen from several perspectives:

API architecture may refer to the architecture of the complete
solution consisting not only of the API itself, but also of an API
client such as a mobile app and several other components. API
solution architecture explains the components and their relations
within the software solution.

6

API architecture may refer to the technical architecture of the API
platform. When building, running and exposing not only one, but
several APIs, it becomes clear that certain building blocks of the
API, runtime functionality and management functionality for the
API need to be used over and over again. An API platform provides
an infrastructure for developing, running and managing APIs.

API architecture may refer to the architecture of the API portfolio.
The API portfolio contains all APIs of the enterprise and needs to be
managed like a product. API portfolio architecture analyzes the
functionality of the API and organizes, manages and reuses the
APIs.

API architecture may refer to the design decisions for a particular
API proxy. To document the design decisions, API description
languages are used. We explain the use of API description
languages (RAML and Swagger) on many examples.

This book covers all of the above perspectives on API architecture.
However, to become useful, the architecture needs to be put into
practice. This is why this book covers an API methodology for
design and development. An API methodology provides practical
guidelines for putting API architecture into practice. It explains how
to develop an API architecture into an API that consumers love.

A lot of the information on APIs is available on the web. Most of it
is published by vendors of API products. I am always a bit
suspicious of technical information pushed by product vendors.
This book is different. In this book, a product-independent view on
API architecture is presented.

The API-University Series is a modular series of books on API-
related topics. Each book focuses on a particular API topic, so you
can select the topics within APIs, which are relevant for you.

 Keywords: API, API Management, API Architecture, Integration,
API Description Languages, RAML, Swagger

7

8

Table of Contents

Introduction 15

What is an API? .. 15
Why APIs? .. 16
How are APIs used? .. 18
How to bui ld APIs? .. 18
What is API Architecture? .. 20
How to put API Architecture into Practice? 21
Why is API Architecture Important? .. 22

API Solution Architecture 25
Types of API Solut ions .. 26

Mobile Solutions ... 26
Cloud Solutions ... 27
Web Solutions ... 27
Integration Solutions ... 28
Multi-Channel Solutions .. 29
Smart TV Solutions ... 29
Internet of Things .. 30

Stakeholders in API Solut ions .. 31
API Providers .. 31
API Consumers ... 33
End Users ... 33

API-related Design Decisions .. 34
What do all types of API solutions have in common? 34
Functionality in the Client or in the API? 35
Use an existing API or build a new API? 35
How to choose a third party API? ... 36

API Platform Architecture 39
Overview .. 40

9

API Development Platform .. 41
Library of API Building Blocks ... 42
Language for Implementing APIs ... 43
Language for Designing APIs ... 44

API Runtime Platform .. 45
API Engagement Platform .. 46
API Platform Configurations and Interactions 48

Environments .. 48
API Platform Deployment Models ... 49
Interactions between the Platforms .. 49

Surrounding Systems .. 51
Load Balancers and Firewalls ... 53
Identity and Access Management Infrastructure 53
Existing Functionality in Backends ... 54
New Functionality ... 55
Enterprise Service Buses and SOA Platforms 55

API Portfol io Architecture 59
Requirements .. 59

Consistency .. 59
Reuse ... 60
Customization ... 61
Discoverability ... 61
Longevity .. 62

Governance .. 62
Consistency .. 63

Consistency Checks in Practice ... 64
Reuse .. 65

Reuse of API Features ... 65
Reuse of Complete APIs .. 66
Reusing own APIs .. 66
Reusing Third-Party APIs ... 67

Customization .. 68
Approach .. 70
Summary .. 71

10

Discoverabi l i ty . 71
Manual Discovery ... 72
Automated Discovery .. 72

Change Management and Versioning .. 74
The Evolution Challenge ... 74
Why does the Evolution Challenge exist at all? 75
Classifying API Evolution .. 75
Dealing with Evolution in APIs .. 78
Anticipating and Avoiding Evolution .. 79
Prevent Feature Creep ... 80

API Proxy Architecture 83
Requirements for APIs .. 83

Responsibilities of APIs .. 84
Desirable Properties of APIs ... 85

Architectural Patterns .. 88
Client Server Patterns ... 88
Facade Pattern ... 90
Proxy Pattern .. 91

Architectural Styles .. 91
REST Style ... 92
HATEOAS Style .. 96
RPC Style ... 97
SOAP Style ... 99
Architectural Trade-offs .. 99

API Description Languages 105
What are API Descript ion Languages? 106

API Description Language vs. API Development Language 107
Usage .. 108

Communication and Documentation 108
Design Repository .. 110
Contract Negotiation ... 111
API Implementation .. 112
Client Implementation ... 113
Discovery .. 113

11

Simulation ... 114
Language Features .. 114
Swagger . 117

Introduction ... 117
Example .. 118
Root Element .. 120
Resources ... 122
Parameters ... 126
Reusable Elements ... 128
Security ... 129

RAML ... 133
Introduction ... 133
Example .. 134
Root Element .. 136
Resources ... 137
Schema ... 138
Parameters ... 139
Reusable Elements ... 143
Security ... 145

Summary .. 147

API Methodology 151
Foundations .. 151

Consumer-oriented Design Approach 152
Contract First Design Approach .. 154
Agile Design Approach ... 154
Simulation-based Design .. 155
Requirements for an API Methodology 156

Methodology .. 158
Overview ... 158
Phase 1: Domain Analysis .. 159
Phase 2: Architectural Design .. 162
Phase 3: Prototyping .. 164
Phase 4: Implementation for Production 167
Phase 5: Publish ... 168

12

Maintenance .. 171
Discussion .. 172

Hand-over Points .. 172
Pre-Work vs. Actual Work ... 173

Summary .. 174

Conclusion 177

Backmatter 181
Feedback .. 181
About the Author . 181
Other Products by the Author . 182

OAuth 2.0: API Security Book ... 182
API Design Book ... 183
OAuth 2.0 Online Course .. 184

References 187
Image Sources .. 190

13

14

15

Introduction

What is an API?

Software is typically used by people like you and me via a user
interface. Increasingly, however, software is not only used by
people, but also by other software applications. This requires
another type of interface, an Application Programming Interface, in
short API.

APIs offer a simple way for connecting to, integrating with and
extending a software system. More precisely, APIs are used for
building distributed software systems, whose components are
loosely coupled. The APIs studied here are web-APIs, which are
realized as web services and deliver data resources via a web
technology stack. Typical applications using APIs are mobile apps,
cloud apps, web applications or smart devices.

The charm of APIs is that they are simple, clean, clear and
approachable. They provide a reusable interface that different
applications can connect to easily. However, APIs do not offer a
user interface, they are usually not visible on the surface and
typically no end user will directly interact with them. Instead, APIs
operate under the hood and are only directly called by other
applications. APIs are used for machine to machine communication
and for the integration of two or more software systems.

16

The only people interacting with APIs directly are the developers
creating applications or solutions with the APIs. This is why APIs
need to be built with the developers in mind, who will integrate the
APIs into new applications. This insight explains, why a new
perspective is required for building APIs.

Why APIs?

An API offers a simple way for connecting to, integrating with and
extending software systems. Now, think about the entities that are
run by software. Businesses, markets and banks are run by
software. Industrial production processes are controlled by
software. Machines, cars and many consumer products contain
software. However, these software systems are typically isolated
and functionality of one system cannot be accessed from the other
system. APIs provide a possibility to connect these separate
software entities.

APIs provide the capabilities which are essential for connecting,
extending and integrating software. And by connecting software,
APIs connect businesses with other businesses, businesses with
their products, services with products or products directly with
other products.

The infrastructure for enabling this connection is already in place.
Each and every person, each employee and each customer has a
smart, internet-enabled device, businesses have websites and web-
services. Even an increasing number of the products sold by the
businesses carry digital sensors and are internet enabled. All these
devices are connected to the internet and can - in principle - be
connected via APIs.

17

Just one example for the business to business integration: The
business of an enterprise can be expanded by linking the business to
partners up and down the value chain. Since businesses are run by
IT, the businesses can be better linked by integrating the IT systems
of a business up and down the value chain to the IT systems of
other businesses, partners, employees and to customers. This can be
accomplished if the IT systems of the business partners are linked
via services.

An enterprise cannot force its business partners to use its services.
But it can make these services so good -- so valuable and simple --
that the business partners will want to use them. If these services
are good, they can become a means for retaining existing partners
and a means for obtaining new partners.

But what makes a service good? In this context a service is good if

• it is valuable and helps the partners perform their business.

• it fits the exact needs of the partners.

• it is simple to understand.

• it is easy to integrate and monitor for the partners.

• it is secure, reliable and performant.

Generally, APIs are services that deliver several advantageous
properties. This is why they are used for both external integration
with business partners and for internal integration within the
company. Amazon, for example, uses APIs internally, to integrate
the IT systems of its departments. If the interfaces and technology
are already in place for internal integration, it becomes easier to
provide external integration. External integration is used with
business partners or external entities. External APIs are also
necessary for realizing mobile apps. Interesting mobile apps use
company data, data that is delivered to the app via APIs.

18

Another reason for using APIs is their use as an innovation lab of
the enterprise. To fulfill this vision, the API portfolio should enable
the enterprise to build innovative apps with little effort and spark
creativity. By making company assets easily available through API,
new uses of these assets can be found. Since APIs provide a new,
simple way for accessing company assets, assets can be used in new
ways within the company. Providing external access to company
assets, enables third party developers, who are not even on your
pay roll, to create innovations for your organization.

How are APIs used?

APIs are not called by end-users directly. Instead, APIs are called by
apps, such as mobile apps, web apps or TV apps. The apps are then
offered to end users. The complete solution, which uses APIs,
typically consists of:

• A client or app that calls the APIs and processes the data
provided by the APIs. This client is responsible for the end-
user experience.

• A number of APIs that provide the data to the app.

• An API platform that manages the APIs.

How to build APIs?

I will get back to APIs in a moment. For now, let us assume that we
were in the car manufacturing business and we would like to build
a new car... What would we have to do?

19

1. We find out, how the consumer would want to use the new
car.

2. We design the car, so it fits into the portfolio of different
models that our company sells - sports cars, vans and
trucks.

3. We choose the architectural style, i.e. if the car uses a diesel
engine, hybrid engine or a fully electric engine.

4. We design a blueprint of the car according to the consumer’s
needs and wants. We simulate components of the car and
build a prototype.

5. We select the component suppliers of our car parts.

6. Finally, we configure the assembly line for putting all the car
parts together efficiently.

Could work. And what would the corresponding steps be, when
building an API?

1. We find out, how the majority of consumers would want to
use the new API.

2. We design the API, so it fits into the portfolio of different
APIs that our company offers.

3. We choose the architectural style, i.e. if the API applies a
REST, RPC or SOAP style.

4. We design a blueprint of the API using an API description
language, such as RAML or Swagger. We simulate the API
and build a prototype of the API.

5. We select the API platform, which provides the reusable
building blocks for the APIs.

20

6. Finally, we use a generative API methodology to develop
APIs efficiently. Of course, the generative techniques are
only used as far as possible, at some point some code might
still need to be written.

What is API Architecture?

What most API design books focus on is the use of HTTP methods,
URI design, HTTP status codes, HTTP headers and the structure of
the resources in the HTTP body. However, this is actually the
smallest challenge when building APIs. The real challenge is finding
an API architecture and defining the methodology.

API architecture is way more than the correct application of REST
principles. So what is API architecture? API Architecture spans the
bigger picture of APIs and can be seen from several perspectives:

API architecture may refer to the architecture of the complete
solution, consisting not only of the API itself, but also of an API
client such as a mobile app and several other components. API
solution architecture explains the components and their relations
within the software solution.

API architecture may refer to the technical architecture of the API
platform. An API platform provides an infrastructure for
developing, running and managing APIs.

21

API architecture may refer to the architecture of the API portfolio.
When building, running and exposing not only one, but several
APIs, it becomes clear that certain building blocks of the API,
runtime functionality and management functionality for the API
need to be used over and over again. The API portfolio contains all
APIs of the enterprise and needs to be managed like its product.
API portfolio architecture analyzes the functionality of the API and
organizes, manages and reuses the APIs.

API architecture may refer to the design decisions for a particular
API proxy. To document the design decisions, API description
languages are used (RAML and Swagger).

This book covers all of the above perspectives on API architecture.
Which one are you interested in? Jump to the respective chapter.

How to put API Architecture into
Practice?

To become useful, the API architecture needs to be put into practice.
This is why this book covers an API methodology for design and
development. An API methodology provides practical guidelines
and explains how to develop an API architecture into an API that
consumers love.

The methodology we propose is an outside-in approach, which also
incorporates ideas of contract first design and simulation. In this
methodology, the contract is expressed in the form of an API
description.

In each phase of the methodology, an API description is either
created, refined or used: the API description is the red thread
connecting all the steps of the methodology.

22

Why is API Architecture Important?

It is very hard to move the pillar of a bridge, which is made of steel
and concrete. Such changes are difficult, costly and time intensive.
This is why a blueprint is created before building the bridge. It
allows planning all the details, iterating over several proposals and
performing what-if analysis. Changes to the plan are easy and
cheap to perform. And by making changes to the plan, it hopefully
becomes unnecessary to make changes to the real artifacts. The
same is true for APIs.

When APIs have already been built, changes are difficult, expensive
and time-intensive. Even worse, the changes to published APIs
might break any clients using the API. The consumers might get
upset and switch the API provider. To avoid this, the API needs to
be right from the start, by the first time it is published.

This can be achieved by planning ahead with an API architecture.
An appropriate API architecture increases the efficiency of building
the right API, reduces the cost and time for both construction and
maintenance and thus reduces technical risk associated with the
construction.

An API architecture is an approach for risk mitigation. It enforces
that the approach is well thought out before construction is started.
It avoids situations, in which resources are spent on implementing
APIs, which cannot possibly fly.

An appropriate API architecture enables a contract-first design
approach. Once the architecture is externalized and written down, it
can be used not only by the API providers to implement the API
proxy, but also by API consumers to build apps with this API. The
API consumer does not have to wait for the API to be finished, but
development of API and app can proceed in parallel.

23

Non-functional properties of the API should not be an afterthought.
The API needs to be designed right from the start to fulfill all non-
functional properties such as security, performance, availability.
Based on an architecture, the implications of the architectural
choices on non-functional properties can be determined early in the
design.

Proper architecture and design of the APIs is an investment. In the
long run, it will save time and even help avoiding mistakes.

