BASIC09

 Reference
11-33
BASIC09

 Reference
BASIC09

 Reference

11-48

FALSE Assi Boolean value
Syntax: variable =FALSE
Function: FALSE is a Boolean function that always returns False. You can use FALSE and TRUE to assign values to Boolean variables.
Parameters:
None
Examples:
DIM TEST:BOOLEAN
TEST-FALSE
Sample Program:
The procedure uses a Boolean variable to store True or False, depending on whether you answer some questions correctly or incorrectly.

PROCEDURE quiz
[]DIM REPLY,VALUE:BOOLEAN; ANSWER:STRING[1]; QUESTION:STRING[80]

[]FOR T-1 TO 5

[]READ QUESTION,VALUE
[]PRINT QUESTION
[]PRINT "(T) = TRUE[][][][][][][](F) = FALSE"
[]PRINT "Select T or F:[][]";
[]GET x1,ANSWER
[]IF ANSWER="T" THEN
[]REPLY=TRUE
[]ELSE
[]REPLY=FALSE
[]ENDIF
[]IF REPLY=VALUE THEN
[]PRINT \ PRINT "That's Correct ...Good Show!"
[]ELSE
[]PRINT "Sorry, you're wrong ...Better Luck next time."
[]ENDIF
[]PRINT \ PRINT \ PRINT
[]NEXT T
[]DATA "In computer talk, CPU stands for Central Packaging Unit.", FALSE []DATA "The actual value of 64K is 6SS36 bytes.",TRUE ODATA "The bits in a byte are normally numbered 0 through 7?",TRUE
[]DATA "BASIC09 has four data types.",FALSE
[]DATA "The LAND function is a Boolean type operator.",FALSE
[]END
FIX Round a real number
Syntax: FIX(value)
Function: Rounds a real number to the nearest whole number and converts it to an integer-type number. Fix performs a function that is the opposite of the FLOAT function.
Parameters:
value

Any real number.
Examples:
A=RND(1 0)
PRINT FIX(A)
Sample Program:
This procedure displays the FIXed values of seven constants.
PROCEDURE printfix
[]PRINT FIX(1.2)
[]PRINT FIX(1.3)
[]PRINT FIX(1.5)
[]PRINT FIX(1.8)
[]PRINT FIX(99.566666)
[]PRINT FIX(50.1)
[]PRINT FIX (.7654321)
[]PRINT FIX(-12.44)
[]PRINT FIX(-9.99)
[]ND
FLOAT Convert from integer or byte to real

Syntax: FLOAT(value)
Function: Converts an integer- or byte-type value to real type. FLOAT performs a function that is the opposite of the FIX function.

Parameters:

value

An integer- or byte-type number.

Examples:

DIM TEST: INTEGER
TEST=44
PRINT FLOAT(TEST)/3

Sample Program:

This procedure uses FLOAT to produce a real number result of an inch to centimeter conversion.

PROCEDURE convert
[]DIM T: INTEGER; MEASURE:STRING[11]
[]FOR T=1 TO 1 0
[]IF T=1 THEN
[]MEASURE="centimeter "
[]ELSE
[]MEASURE="centimeters"
[]ENDIF
[]PRINT T; " "; MEASURE; “ is “; FLOAT(T)*.3937; " inches."
[]NEXT T
[]END

FOR/NEXT/STEP Establish a loop
Syntax:

FOR variable = init val TO end val [STEP value]

[procedure statements]
NEXT variable
Function: Establishes a procedure loop that lets BASIC09 execute one or more procedure statements a specified number of times. The variables you use can be either integer or real type and can be negative, positive, or both. Loops using integer values execute faster than loops using real values.
BASIC09 executes the lines following the FOR statement until it encounters a NEXT statement. Then it either increases or decreases the initial value by one (the default) or by the value given STEP.
Parameters:
Variable
Any legal numeric variable name.
init val
Any numeric constant or variable.
end Ual
Any numeric constant or variable.
Value

Any numeric constant or variable.
procedure
Procedure lines you want to be executed within the loop.
statements
Notes:
· If you provide an initial value that is greater than the final value, BASIC09 skips the program loop entirely unless you specify a negative STEP value. Specifying a negative value for STEP causes the loop to decrement from the initial value to the end value.
· When execution reaches the NEXT statement in a positive stepping loop, and the step value is less than or equal to the end value, BASIC09 branches back to the line after FOR and repeats the process. When the step value is greater than the end value, BASIC 09 transfers execution to the statement following the NEXT statement.
· When execution reaches the NEXT statement in a negative stepping loop, and the step value is greater than or equal to the end value, BASIC09 branches back to the line after FOR and repeats the process. When the step value is less than the end value, execution continues following the NEXT statement.

Examples:
FOR COUNTER = 1 to 100 STEP .5 PRINT COUNTER NEXT COUNTER

FOR X = 1 0 TO 1 STEP -1 PRINT X NEXT X

FOR TEST = A TO B STEP RATE PRINT TEST NEXT TEST
Sample Program:
This procedure uses two nested FOR/NEXT loops to produce a multiplication table.

PROCEDURE multable
[]PRINT USING "S45^",”MULTIPLICATION TABLE"
[]PRINT

[]DIM I,J:INTEGER
[]FOR I=1 TO 9
[]FOR J=1 TO 9
[]IF J>1 THEN
[]PRINT I*J; TAB(5*J);
[]ELSE PRINT I*J; "|";
[]ENDIF
[]NEXT J
[]IF I=1 THEN
[]PRINT ""
[]PRINT “---“

[]ENDIF
[]PRINT
[]NEXT I
[]END
GET Read a direct-access file record
Syntax: GET #path,varname
Function: Reads a fixed-size binary data record from a file or device. Use GET to retrieve data from random access files.
Although you usually use GET with files, you can also use it to receive data for any outputting device, such as a keyboard or another computer. By dimensioning a string variable to the length of input you want, you can use GET to read a specified number of keystrokes, then continue program execution without requiring ENTER to be pressed.

For information about storing data in random access files, see Chapter 8, "Disk Files." Also see PUT, SEEK, and SIZE.
Parameters:
path
A variable name you choose in which BASIC09 stores the number of the path it opens to the device you specify or one of the standard I/Opaths (0, 1, or 2)
varname
The variable in which you want to store the data read by the GET statement.

Examples:

GET #PATH,DATA$
GET #1,RESPONSE$
GET #INPUT,INDEXCX)
Sample Program:
This procedure directs a directory listing to a file named Dirfile. GET then reads the file, one character at a time in order to determine which characters are valid filename character. The procedure creates a file containing all the filenames in the directory
PROCEDURE filenames
[]DIM DIRECTORY,FILENAME:STRING; CHARACTER:STRING[1]; FILES(125):STRING[15]; PATH,COUNT,T:INTEGER
[]COUNT=0

[]FILENAME=""
[]FOR T=1 TO 125

(* initialize array elements to null.
[]FILES(T)=""
[]NEXT T
[]INPUT "Pathlist of directory to read...",DIRECTORY (* dir to copy.
[]ON ERROR GOTO 10

[]DELETE "dirfile"

(* if dirfile already exists, delete it.
10[]ON ERROR
[]SHELL "DIR "+DIRECTORY+” > dirfile" (* copy directory into file.
[]OPEN #PATH,"dirfile":READ

(* open the file for reading. []REPEAT
[]REM Get characters from the file until the first carriage return - the beginning of the first filename.
[]GET xPATH,CHARACTER

(* get characters from the file.
[]UNTII CHARACTER=CHRS(13)
[]REM
20[]LOOP
[]EXITIF EOF(#PATH) THEN
[]GOTO 200

(* quit when end of file.
[]ENDEXIT
[]REM get a character from the file until it finds a. non-valid filename character.
[]GET #PATH,CHARACTER
[]REM
[]EXITIF CHARACTER<=" " OR CHARACTER>"z" THEN
[]GOTO 100

[]ENDEXIT
[]FILENAME=FILENAME+CHARACTER

(* build the filename.
[]ENDL00P
100[]WHILE NOT(EOF(#PATH)) DO
[]GET #PATH,CHARACTER

(* check for non-valid filename characters.
[]EXITIF CHARACTER>" " AND CHARACTERS<="z" THEN (* check if valid char, []COUNT=COUNT+1
[]FILES(COUNT)=FILENAME

(* store filename in array.
[]PRINT FILENAME,

(* display the extracted filename.
[]FILENAME=""

(* set variable to NULL.
[]FILENAME=FILENAME+CHARACTER
(* last character begins new filename.
[]GOTO 28

(* go get the rest of filename.
[]ENDEXIT
[]ENDWHILE
200[]CLOSE #PATH
[]DELETE "dirfile"

(* names are all in array so delete file.
[]CREATE OPATH,"dirfile":WRITE

(* create the file again.
[]FOR T-1 TO COUNT
[]WRITE #PATH,FILES(T)

(* fill the file with individual filenames.
[]NEXT T
[]CLOSE #PATH
[]PRINT
[]PRINT "[][][][][][][]*The directory has "; COUNT; "entries."
[]PRINT[]"[][][][][][][][]They are now stored in a file named Dirfile."
[]end

GOSUB/RETURN
Jump to subroutine/ Return from subroutine
Syntax: GOSUB linenumber
Function: Branches program execution to the specified line number.
BASIC09 lets you write programs with line numbers or without. You can also mix numbered and un-numbered lines within a single procedure. This means that, to use GOSUB, you need to number only the first line of the subroutine to which you want to branch.
Every subroutine you access with GOSUB must contain a RETURN statement. You can call a subroutine in this manner as many times as you want. When BASIC09 encounters the RETURN, it transfers program execution to the line following the GOSUB statement.
You can precede GOSUB with a test statement, such as IF or WHEN, that makes branching conditional.
You can nest GOSUB statements to any depth, depending on your computer's free memory.
Parameters:
linenumber

The number of the line where procedure execution is to continue.
Examples:
GOSUH 1 0 0
Sample Program:
The following procedure asks you for two numbers and an operator. It determines the line to jump to by the position of the operator in a table. GOSUB sends the procedure to execute the proper routine. RETURN sends the execution back to the main routine. To quit, enter a negative value.
PROCEDURE calc
[]DIM NUM1,NUM2:REAL; OP:STRING[1]; A:INTEGER
1[]INPUT "NUMBER 1 ";NUM1
[]IF NUM1 <0 THEN
[]END
[]ENFIF
[]INPUT "NUMBER 2 ";NUM2
[]INPUT "OPERATOR ";OP
[]A=SUBSTR(OP,"+-*/^")
[]0N A GOSUB 10,20,30,40,50
[]GOTO 1
10[]PRINT NUM1 +NUM2 \ RETURN
20[]PRINT NUM1 -NUM2 \ RETURN
30[]PRINT NUM1 *NUM2 \ RETURN
40[]PRINT NUM1 /NUM2 \ RETURN
50[]PRINT NUM1 NUM2 \ RETURN
[]END
IF/THEN/ELSE/ENDIF
Vest a Boolean expression
Syntax:
IF condition THEN linenumber
[ELSE
secondary action
ENDIF]
IF condition THEN

action
[ELSE secondary action]

ENDIF
Function: Tests a Boolean expression and executes action if the expression is true. Optionally, the statements execute a secondary action if the expression is not true. Each IF statement must be accompanied by THEN. If action is a line number, you can omit the ENDIF statement. For instance, both of the following statements operate in the same manner:
IF T=5 THEN 10

IF T=5 THEN
GOTO 1 0
ENDIF
Parameters:
condition
A Boolean expression (produces True or False).

linenumber
A line to which the procedure is to transfer execution if condition is true.

action

One or more procedure statements to be executed if condition is true.

secondary
One or more procedure statements to execute if condition is false.
action
Examples:
IF AFB THEN 100

IF A<B THEN 100
ELSE
A=A-1
ENDIF

IF TEST=TRUE THEN
PRINT "The test is a success..."
ENDIF

I F A < B THEN
PRINT "A is 1es than B"
ELSE
PRINT "B is 1ess than A"
ENDIF
Sample Program:
The following procedure is a purge procedure. Use it only with the GET Sample Program to delete one or more files from your current directory. .
The Filenames procedure (see GET) stores the current directory's-filenames in Dirfile. This procedure reads Dirfile, displays all the filenames, then asks you for a wildcard. Type in characters that identify a group of files you want to delete. The program deletes all files that contain, in the same order and case, the characters you type.
For instance, if you have four files named Test, File 1, Filet, and File3, and you type a wildcard of "File," the procedure deletes Filel, Filet, and File3, but does not delete Test. Delete all of the files in a directory by typing "*" as the wildcard.
Use this program carefully. Be sure you are in the right directory and that the wildcard characters you type are not contained in filenames other than the ones you want to delete. You might want to add a prompt to the procedure that lets you confirm each deletion before it happens.

PROCEDURE purge
[]DIM PATH: INTEGER
[]DIM NAMEC100):STRING
[]DIM WILDCARD:STRING
[]X=0

[]OPEN #PATH,"dirfile":READ
[]WHILE NOT(EOF(#PATH)) DO
[]X=X+1
[]READ #PATH,NAME(X)
[]ENDWHILE
[]FOR T=1 TO X
[‘]PRINT NAME(T),
[]NEXT T
[]INPUT "Wildcard Character5...",WILDCARD
[]FOR T=1 TO X
[]ON ERROR GOTO 100
[]IF SUHSTR(WILDCARD,NAME(T))>0 OR WILDCARD ="*" THEN
[]PRINT "DELETING "; NAME(T); “.”

[]DELETE NAME(T)
[]ENDIF
10[]NEXT T
[]END
100[]PRINT "* * * ERROR * * * "; NAME(T) " cannot be deleted..continuing." []GOTO 10

INKEY Read a keypress
Syntax:
RUN INKEY(string)
Function: Reads a keypress, and stores the character of the key in the specified string variable.
Parameters:
string

is a string variable into which INKEY stores the character you press.

Examples:
DIM CHAR:STRING[1]
CHAR=""
WHILE CHAR="" DO
RUN INKEY(CHAR)
ENDWHILE
PRINT ASC(CHAR)
Sample Program:
PROCEDURE Calculate
[]DIM CHAR : STRING[1]

[]DIM LOOKUP:STRING[7]

[]DIM FIRST,SECOND:REAL
[]DIM FLAG:INTEGER
[]LOOKUP="+-*/^<>"
1 FLAG=0 \CHAR=""
[]PRINT "Enter the first number to evaluate...”;

[]INPUT FIRST
[]IF FIRST=0 THEN
[]GOTO 100
[]]ENDIF
[]PRINT "Enter the Second number to evaluate...";
[]INPUT SECOND
[]PRINT "PreSS the key of the operator you want to use..."
[]PRINT " + - * / w < > ...”;

[]WHILE CHAR="" DO
[]RUN INKEY(CHAR)
[]ENDWHILE
[]PRINT
[]FLAG=SUHSTR(CHAR,LOOKUP)
[]ON FLAG GOTO 10,20,30,40,50,60,70
10 PRINT FIRST+SECOND \ GOTO 1
20 PRINT FIRST-SECOND \ GOTO 1
30 PRINT FIRST*SECOND \ GOTO 1
40 PRINT FIRST/SECOND \ GOTO 1
50 PRINT FIRST^SECOND \ GOTO 1
60 PRINT FIRST<SECOND \ GOTO 1
70 PRINT FIRST>SECOND \ GOTO 1
100 PRINT "Procedure Terminated Due to 0 Input..."
[]END
INPUT Get data from a device path
Syntax: INPUT [#path,] [promp4] variable [,variable...]

Function: INPUT accepts input from the specified path. (The default is the keyboard.) When a procedure encounters INPUT, it displays a question mark and awaits data from the specified path. If you provide a string type prompt for INPUT, it displays the text of the prompt, rather than a question mark.
INPUT stores the data it collects in the variable you specify. The type of the receiving variable must match the type of data received.
Because INPUT sends data (the question mark prompt or the user-specified string prompt), it is really both an input and an output statement. This means that, if you use a path other than the standard input path, you should not use the UPDATE mode. If you do, the prompts produced by INPUT write to the file specified by the path number.
If the data received does not match the type of data INPUT expects, it displays the message:

INPUT ERROR - RETYPE
followed by a new prompt. You must then enter the entire input line, of the correct type, to satisfy INPUT. For more information, see GET
Parameters:
path
Either a variable containing the path number,
or the absolute path number to the file or
device from which you want to receive input. If
you want to receive input from the keyboard,
do not include a path number.
prompt
Text you type as a message to be displayed
when BASIC09 executes an INPUT statement.
variable
The variable name in which you want to store
the data received by INPUT. The type of vari
able must match the type of input.
Examples:
INPUT NUMBER,NAME$,LOCATION
INPUT #PATH,X,Y,Z
INPUT "What is your selection: ";CHOICE
INPUT #HOST,"What's your ID number? ",IDNUM
Sample Program:
This procedure calculates the day of the week for a specified date. It asks you for the date using the INPUT command.
PROCEDURE weekday
[]DIM X,Y,D,M,CALC:INTEGER; DAY,MONTH:STRING[2]; YEAR:STRING[4]; WEEKDAY (7):STRING[9]

[]DIM ANUM,BNUM,CNUM,DNUM,ENUM,FNUM,GNUM,HNUM,INUM:INTEGER
[]PRINT USING "S80 ","Day of the Week Program","For any year after 1752"
[]PRINT
[]PRINT "Enter day (e.g. 08): "; \ INPUT DAY
[]PRINT " Enter month (e.g. 12): "; \ INPUT MONTH
[]PRINT " Enter year (e.g. 1986): "; \ INPUT YEAR
[]Y=VAL(YEAR) \M=VAL(MONTH) \D=VAL(DAY)
[]FOR X=1 TO 7
[]READ WEEKDAY(X)
[]NEXT X
[]ANUM= INT(.6+1/M)
[]BNUM=Y-ANUM
[]CNUM=M+12*ANUM
[]DNUM=BNUM/100
[]ENUM=INT(DNUM/4)
[]FNUM=INT(DNUM)
[]GNUM-INT(5*HNUM/4)
[]HNUM=INT(13*(CNUM+1)/5)
[]INUM=HNUM+GNUM-FNUM+ENUM+D-1
[]INUM-INUM-7*INT(INUM/7)+1
[]PRINT
[]PRINT "The day of the week on "; M; "/"; D; "/"; Y; " i5 ..."; WEEKDAY (INUM)
[]DATA “Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"
[]END
INT Convert real number to whole number
Syntax:
INT(value)
Function: Converts a real number to a whole number by truncating any fractional part of the real number.
Parameters:
value

Any negative or positive real number.
Examples:
PRINT INT(77.89)

PRINT INTCNUM)
PRINT INT(-8.12)
Sample Program:
The RND function produces real numbers. This procedure uses INT to convert the real RND output to integer values.
PROCEDURE integer
[]DIM T: INTEGER
[]FOR T=1 TO 1 0
[]R=RNDC50)-25
[]PRINT R,INTCR)
[]NEXT T
[]END
KILL Remove a procedure from memory
Syntax:
KILL procedure
Function: Unlinks (removes) an external procedure from the BASIC09 procedure directory. If the procedure is not external, but resides in BASIC09's workspace, KILL has no effect.
Use KILL to remove auto-loaded (packed) procedures that are called by RUN or CHAIN. You can also use KILL with autoloading procedures as a method to overlay programs within BASIC09.
Warning: Be certain you do not KILL an active procedure. Also be certain that when you use RUN and KILL together, that both statements use the same string variable that contains the name of the procedure to RUN and KILL
Parameters:
procedure
The name of the external procedure you want
to KILL. Procedure can either be a name or a
variable containing the procedure name.
Examples:
PROCEDURENAME$ = "AVERAGE"
RUN PROCEDURENAME$
KILL PROCEDURENAME$

INPUT "Which test do you want to run? ",TEST$
RUN TEST$
KILL TESTS
Sample Program:
This procedure calls a procedure named Show to display ASCII values on the screen. When it no longer needs the Show procedure, it removes Show from memory using KILL.
PROCEDURE produce
[]DIM T,U:INTEGER
[]DIM NUM,NUM1,NUM2,TABLE,PROCNAME:STRING
[]PROCNAME=SHOW
[]TABLE="123456789AHCDEF"
[]FOR T=8 TO 15
[]FOR U=1 TO 15
[]NUM1=MID$(TABLE,T,1)
[]NUM2=MID$(TABLE,U,1)
[]NUM=NUM1+NUM2

(* parameter to pass to Show.
[]RUN PROCNAME(NUM)
[]NEXT U
[]NEXT T
[]KILL "PROCNAME"
Q

(* remove Show from the workspace.
[]END

PROCEDURE SHOW
[]PARAM NUM:STRING
[]SHELL "DISPLAY "+NUM
[]END
LAND Returns the logical AND of two numbers
Syntax:
LAND(numl,num2)
Function: Performs the logical AND function on a byte- or integer-type value. The operation involves a bit-by-bit logical AND of the two numbers you specify. For instance, if you LAND 5 and 6, the logic is like this:

Decimal 5 = Binary 0101
Decimal 6 = Binary 0110

0101
AND 0110

= 0100 = 4 Decimal
Parameters:

numl
A byte- or integer-type number.

num2
A byte- or integer-type number.
Examples:

PRINT LAND(1 1 , 1 2)

PRINT LAND($20,$FF)
Sample Program:
The following procedure asks eight questions and uses the eight bits of one byte (contained in the variable STORAGE) to indicate either a "yes" or "no" answer. If the answer is "yes," it sets a corresponding bit to 1. If the answer is "no," it sets a corresponding bit to 0, using LAND. This procedure operates in conjunction with the sample program for LXOR
PROCEDURE questions
[]DIM QUESTION;STRING[68]; T;INTEGER; X,STORAGE;BYTE
[]DIM ANSWER;STRING[1]
[]X-1
[]FOR T=1 TO 8
[]READ QUESTION
[]PRINT QUESTION; " (Y/N)? ";
[]GET #0,ANSWER
[]PRINT
[]IF ANSWER="y" OR ANSWER="Y" THEN
[]STORAGE=LOR(STORAGE,X)

(* OR STORAGE if yes.
[]ELSE
[]STORAGE=LAND(STORAGE,LNOT(X))
(* LAND STORAGE with NOT value if no.
[]ENDIF
[]X=X#2
[]NEXT T
[]RUN summary(STORAGE)
[]END
[]DATA "Do you have more than one Color Computer"
[]DATA "Do you use your Color Computer for games"
[]DATA "Do you use your Color Computer for word processing"
[]DATA "Do you use your Color Computer for business applications"
[]DATA "Do you use your Color Computer at home"
[]DATA "Do you use your Color Computer at the office"
[]DATA "Do you use your Color Computer more than two hours a day"
[]DATA "Do you share your Color Computer with others"
LEFT Returns characters from the left portion of a string

Syntax: LEFT$(stringlength)

Function: Returns the specified number of characters from the specified string, beginning at the leftmost character. If length is the same as or greater than the number of characters in string, then LEFT$ returns all the characters in the string.
Parameters:
string
A sequence of ASCII characters or a string
variable name.
length
The number of characters you want to access.
Examples:
PRINT LEFT$("H0TD0G",3)
PRINT LEFT$(A$,6)
Sample Program:
The following procedure extracts the first name from a list of ten names with the LEFT$ function.
PROCEDURE firstname
[]DIM NAMES:STRING; FIRSTNAME:STRING[10]
[]PRINT "Here are the first names:"
[]FOR T=1 TO 10
[]READ NAMES
[]POINTER=SUHSTR(" ",NAMES) (* find space between first and last names.
[]FIRSTNAME=LEFT$(NAMES,POINTER-1)
(* extract first name,
[]PRINT FIRSTNAME

(* print first name.
[]NEXT T
[]END
[]DATA "Joe Blonski","Mike Marvel","Hal Skeemish","Fred Laungly"
[]DATA "Jane Mistey","Wendy Paston","Martha Upshong","Jacqueline Rivers"
[]DATA "Susy Reetmore","Wilson Creding"
