

[image: image1]
alib
[image: image2]
Bob van der Poel has graciously given permission to include his RMA Library in the ToolShed project. Please send an email to Bob at bvdp@uniserve.com and say “thanks” for his contribution.

alib is a set of assembly language routines that encapsulate some of the most common programming tasks into a concise library. Using rma and rlink, your assembly language programs can take advantage of these library routines and allow you to focus on the specifics of your application. (The mamou assembler cannot utilize alib).

To use the routines in this library, just include calls to them in your programs with a "lbsr". For example, the following code segment calls a library routine to print a number via standard out:

ldd number

lbsr PRINT_DEC

To use a routine make sure you have set up all the registers properly. None of the routines use any memory other than stated. Since the hardware stack is used for all temporary variables all the routines are re-entrant and shareable. It is up to the user to ensure an adequate stack area.

Note that most of the routines have all uppercase names. It is hoped that this will make your code more readable since you can tell at a glance which routines are external.

To compile an assembler program using the library first use rma to generate a ".r" file, then use rlink to compile. A sample command line would be:

rlink yourprog.a -o=yourprog -l=alib.l

In the lib folder you will find the alib.l file. This is an assembled version of the library, ready for you to link your programs with.

The following pages document the various routines and procedures available to you through the alib library.

String Handling Routines

STIMESTR - Get current system time as an ASCII string.

OTHER MODULES NEEDED: DATESTR

ENTRY:
X = buffer for ASCII

EXIT:

All registers preserved (except CC)

DATESTR - Convert a date to a string.

This can be used for converting the system time as well as modify/create dates from files. The date must be 6 bytes -- null pad file dates.

OTHER MODULES NEEDED: BIN_ASC

ENTRY:
X = binary date

Y = buffer for ASCII

EXIT:

All registers preserved (except CC)

TO_NON_SP - Advance X to 1st non-space character

ENTRY:
X = somewhere in a string

EXIT:

X = 1st non-space character in string

B = char at X

PRINT_DEC - Print decimal number to standard out

ENTRY:
D = value to print

EXIT:

CC carry set if error (from I$WritLn)

B = error code, if any

PRINT_HEX - Print hex number to standard out

ENTRY:
D=value to print

EXIT:

CC carry set if error (from I$WritLn)

B = error code, if any

PRINT_ASC - Print binary number to standard out

ENTRY:
D=value to print

EXIT:

CC carry set if error (from I$WritLn)

B = error code, if any

STRCMP - Compare two null terminated strings

This routine first finds the length of both strings and passes the length of the longer one to strncmp.

OTHER MODULES NEEDED: STRNCMP, STRLEN

ENTRY:
X = start of 1st string

Y = start of 2nd string

EXIT:

CC zero set if equal (beq)

carry + zero clear if 1>2 (bhi)

carry set if 1<2 (blo)

STRNCMP - Compare two null terminated strings

The maximum number of bytes to compare is passed in D.

OTHER MODULES NEEDED: COMPARE

ENTRY:
X = start of 1st string

Y = start of 2nd string

D = number of bytes to compare

CASEMTCH (a global variable in COMPARE)

0 = match for case

-1 = ignore case differences

EXIT:

CC zero set if equal (beq)

carry + zero clear if 1>2 (bhi)

carry set if 1<2 (blo)

STRLEN - Find length of null terminated string

The nul byte at end of string is NOT included in count.

ENTRY:
X = start of string

EXIT:

D = length

All other registers (except CC) preserved

STRHLEN - Find length of sign-bit terminated string

The sign-bit set byte IS included in count.

ENTRY:
X = start of string

EXIT:

D = length

All other registers (except CC) preserved

B09STRLEN - Find the length of a BASIC09 string

ENTRY:
X = start of string

D = max possible length (size passed to subroutine)

EXIT:

D = actual length (either at $FF or max size)

All other registers (except CC) preserved

STRCAT - Append two nul terminated strings

User must ensure there is room in buffer!

OTHER MODULES NEEDED: STRCPY, STRLEN

ENTRY:
X = start of string to move

Y = start of string to append to

EXIT:

All registers preserved (except CC)

STRNCP - Copy N bytes of a null terminated string

User must ensure there is room in buffer! If N>string length only N bytes will be moved

OTHER MODULES NEEDED: STRLEN, MEMMOVE

ENTRY:
X = start of string to move

Y = buffer for copy of string

EXIT:

D = actual number of bytes moved

All other registers preserved (except CC)

STRCPY - Copy a null terminated string

User must ensure there is room in buffer!

OTHER MODULES NEEDED: STRNCPY

ENTRY:
X = start of string to move

Y = buffer for copy of string

EXIT:

All registers preserved (except CC)

STRNCPY - Copy N bytes of a null terminated string

User must ensure there is room in buffer!

If N>string length only N bytes will be moved

OTHER MODULES NEEDED: STRLEN, MEMMOVE

ENTRY:
X = start of string to move

Y = buffer for copy of string

EXIT:

D = actual number of bytes moved

All other registers preserved (except CC)

STRHCPY - Copy sign-bit terminated string

User must ensure there is room in buffer!

See also PARSNSTR, this routine does not change sign-bit termination.

OTHER MODULES NEEDED: strhlen,memmove

ENTRY:
X = start of string to move

Y = buffer for copy of string

TO_UPPRS - Convert nul terminated string to uppercase

OTHER MODULES NEEDED: TO_UPPER

ENTRY:
X = start of string

EXIT:

All registers (except CC) preserved

TO_UPPER - Convert character in B to uppercase

OTHER MODULES NEEDED: IS_LOWER

ENTRY:
B = ASCII value of character to convert

EXIT:

B = ASCII value of character in uppercase

Note: control codes, etc. are not effected.

TO_LOWRS - Convert a null terminated string to all lowercase

OTHER MODULES NEEDED: TO_LOWER

ENTRY:
 X = start of string

EXIT:

All registers (except CC) preserved

TO_LOWER - Convert character in B to lowercase

OTHER MODULES NEEDED: IS_UPPER

ENTRY:
B = ASCII value of character to convert

EXIT:

B = ASCII value of character in lowercase

Note: control codes, etc. are not effected.

PARSNSTR - Parse sign bit terminated string to convert it to a null terminated string

If X and Y are the same the existing string will be overwritten -- don't do this with psects.

ENTRY:
X = start of sign bit terminated string

Y = buffer for null terminated string

EXIT:

D = string size (not including null)

All other registers (except CC) preserved

I/O Routines

PRINTS - Print a program embedded, null terminated string to standard out

OTHER MODULES NEEDED: PUTS

ENTRY:
Null terminated string must follow PRINTS call, e.g.:

LBSR
PRINTS

fcc
/this is a string to print/

fcb
$0d

fcc
/a second string/

fcb
$0d,0

lbsr
morestuff...

EXIT:

CC carry set if error

B = error code (if any)

PUTS - Print a null terminated string to standard out

OTHER MODULES NEEDED: FPUTS

ENTRY:
X = string to print

EXIT:

CC carry set if error

B = error code (if any)

FPUTS - Print null terminated string to A.

ENTRY:
X = start of string

A = path

EXIT:

CC carry set if error

B = NitrOS-9 error if any (from I$WritLn)

NOTE: string is feed through I$WritLn for editing (adding LF, etc.)

PUTCR - Print a carriage return to standard out

OTHER MODULES REQUIRED: FPUTCR

ENTRY:
none

EXIT:

CC carry set if error (from I$WritLn)

B = error code if any.

FPUTCR - Print a carriage return

OTHER MODULES REQUIRED: FPUTC

ENTRY:
A = path

EXIT:

CC carry set if error (from I$WritLn)

B = error code if any.

PUTSPACE - Print a space to standard output

OTHER MODULES REQUIRED: FPUTSPACE

ENTRY:
none

EXIT:

CC carry set if error (from I$WritLn)

B = error code if any.

FPUTSPACE - Print a space

OTHER MODULES REQUIRED: FPUTC

ENTRY:
A = path

EXIT:

CC carry set if error (from I$WritLn)

B = error code if any.

PUTC - Put single character to standard out

OTHER MODULES NEEDED: FPUTC

ENTRY:
B = character to print

EXIT:

CC carry set if error

B = error code if any

FPUTC - Print one character

ENTRY:
A = path

B = char to print

EXIT:

CC carry set if error (from I$WritLn)

B = error code if any

GETC - Get one character from standard input

OTHER MODULES NEEDED: FGETC

ENTRY:
none

EXIT:

A = character

CC carry set if error (from I$Read)

B = error code if any

FGETC - Get one character

ENTRY:
A = path

EXIT:

A = character

CC carry set if error (from I$Read)

B = error code if any

GETS - Get a nul terminated string from standard input

OTHER MODULES NEEDED: FGETS

ENTRY:
X = buffer for string

Y=max buffer size (leave room for null!!)

EXIT:

CC carry set if error (from I$ReadLn)

B = error code if any

NOTE: The string entered must end with an end-of-record char (usually a $0D), the null is appended for ease in string handling.

FGETS - Get a nul terminated string

The string entered must end with an end-of-record char (usually a $0D), the null is appended for ease in string handling.

ENTRY:
A = path

X = buffer for string

Y = max buffer size (leave room for null!!)

EXIT:

CC carry set if error (from I$ReadLn)

B = error code if any

INKEY - Checks standard input for a key and returns it if available

Nul bytes entered from the keyboard are returned as "no keypress".

ENTRY:
none

EXIT:

A = character, 0 = no character

B = error code (if any)

CC = carry set if error (from I$Read)

Integer Math

MULT168 - 16 x 8 Multiply (24 bit result)

ENTRY:
A = multiplier

X = multiplicand

EXIT:

A = product byte 1

X = product bytes 2 & 3

B = modified

MULT16 - 16 x 16 Multiply

ENTRY:
D = multiplier

X = multiplicand

EXIT:

Y = product 2 msbs

U = " 2 lsbs

D & X preserved

DIV168 - 16 x 8 bit integer divide

The result must be an 8 bit value.

ENTRY:
A = divisor

X = dividend

EXIT:

A = remainder

B = quotient

All other registers (except CC) preserved

DIV16 - 16 x 16 bit integer divide

ENTRY:
D = divisor

X = dividend

EXIT:

X = quotient

D = remainder

DIV88 - 8 x 8 Divide

ENTRY:
A = divisor

B = dividend

EXIT:

A = remainder

B = quotient

Number Conversions

DEC_BIN - Decimal to binary conversion

OTHER MODULES NEEDED: DECTAB$, IS_TERMIN

ENTRY:
X = start of asci decimal string terminated by a space, comma, CR or null.

EXIT:

D = binary value

CC carry set if error (too large, not numeric)

Y = terminator or error char.

BIN_DEC - Binary to decimal conversion

OTHER MODULES NEEDED: DECTAB$

ENTRY:
X=buffer for ascii string

D=binary value to convert

EXIT:

All registers (except CC) preserved

ASC_BIN - ASCII String to binary byte conversion

OTHER MODULES NEEDED: IS_TERMIN

ENTRY:
X = start of string of binary digits (001101) terminated by space, comma,

CR or null.

EXIT:

D = value

CC carry set if error (string too long, not binary digits)

Y = terminator or error pos.

BIN_ASC - Binary word to ASCII string conversion

ENTRY:
D = binary value

X = buffer for 16 bit number

EXIT:

All registers (except CC) preserved

HEX_BIN - Hexadecimal string to binary conversion

OTHER MODULES REQUIRED: TO_UPPER, IS_TERMIN, IS_XDIGIT

ENTRY:
X = start of a hex string terminated by a space, comma, CR, or NULL.

EXIT:

D = binary number

CC carry set iferror (too large, non-numeric)

Y = terminator position or error char.

BIN_HEX - Binary to hexadecimal convertor

This subroutine will convert the binary value in 'D' to a 4 digit hexadecimal ascii string.

OTHER MODULES NEEDED: BIN2HEX

ENTRY:
D = value to convert

X = buffer for hex string-null terminated

EXIT:

All registers (except CC) preserved.

HEX2BIN - Convert hex byte to two hex digits

ENTRY:
B = value to convert

EXIT:

D = 2 byte hex digits

DECTAB - Table of decimal numbers for use by binary/decimal conversion routines

Identifying Routines

IS_PUNCT - Is B a punctuation character?

OTHER MODULES NEEDED: IS_ALNUM, IS_CNTRL

ENTRY:
B = character to test

EXIT:

CC zero = 1 if punct., 0 if not

IS_PRINT - Is B a printable character?

Non-printable characters are defined as $00..$1F and $7F+ -- all others are printable

OTHER MODULES NEEDED: IS_CNTRL

ENTRY:
B = character to test

EXIT:

CC zero = 1 if printable, 0 if not

IS_CNTRL - Is B a control character?

Control characters are defined as $00..$1F and $7F+

ENTRY:
B = character to test

EXIT:

CC zero = 1 if control, 0 if not

IS_SPACE - Is B a space?

This module is included for completeness only, it is much more efficient to do an inline test.

ENTRY:
B = character to test

EXIT:

CC zero = 1 if space, 0 if not

IS_XDIGIT - Is B a hexadecimal digit?

A hexadecimal digit is in the range of 0..9, A..F or a..f

OTHER MODULES NEEDED: IS_DIGIT

ENTRY:
B = character to test

EXIT:

CC zero=1 if hex digit, 0 if not

IS_ALNUM - Is B an alphanumeric letter?

An alphanumeric letter resides in the range a..z or A..Z or digit 0..9

OTHER MODULES NEEDED: IS_ALPHA, IS_DIGIT

ENTRY:
B = character to test

EXIT:

CC zero = 1 if alphanumeric, 0 if not

IS_ALPHA - Is B an alphabet letter?

An alphabet letter is in the range a..z or A..Z

OTHER MODULES NEEDED: IS_LOWER, IS_UPPER

ENTRY:
B = character to test

EXIT:

CC zero = 1 if alpha, 0 if not

IS_DIGIT - Is B a digit?

A digit is in the range 0..9

ENTRY:
B = character to test

EXIT:

CC zero = 1 if digit, 0 if not

IS_LOWER - Is B a lowercase letter?

ENTRY:
B = character to test

EXIT:

CC zero = 1 if lowercase, 0 if not

IS_UPPER - Is B an uppercase letter?

ENTRY:
B=character to test

EXIT:

CC zero=1 if uppercase, 0 if not

IS_TERMIN - Is B a string terminator?

This module is used by HEX_BIN, DEC_BIN, etc. It permits SPACE, CR, COMMA and NULL to be used as a delimiter -- useful for parameter and list processing.

ENTRY:
B = character to test

EXIT:
CC zero = 1 if space, 0 if not

NitrOS-9 File Specific

GETFMD - Get the last modified date of an open file

Even though NitrOS-9 does not save seconds in its files this routine stores a zero in this position. This is done to make the routine compatible with DATESTR.

ENTRY:
X = buffer for 6 byte date

A = path of open file

EXIT:

CC carry set if error

B = error code (if any) from SS.FD

MKTEMP - Make a temporary filename

This subroutine creates a temporary filename by adding a "." and a two digit hexidecimal value based on the process id.

IMPORTANT: there must be room after the filename for at least 6 bytes! Filename must be variable area, not parameter or program sections!!!

OTHER MODULES NEEDED: BIN_HEX

ENTRY:
X = filename

EXIT:
No registers (expect CC) modified filename ends in ".processid",$0d

Miscellaneous Routines

LINEDIT - Edit/input line

This routine does not use cursor positioning, instead it uses backspacing, etc. This means it can be used without a GOTOXY module, however it is a bit slow, especially when lines get longer than one line. If the buffer contains data, you will be able to edit; to enter new data pass a buffer of blanks.

OTHER MODULES NEEDED: STRLEN,IS_PRINT, FPUTS, FPUTC, FGETC, MEMMOVE

ENTRY:
X = null terminated string to edit

A = input path (normally 0)

B = output path (normally 1)

EXIT:

CC carry set if error (GetStt, Setstt, Write, Read, etc.)

B = error code, if any

SHO_REGS - Display the 6809 registers

The contents of the 6809 registers are displayed to the standard error path. The value used for PC is that of the calling routine S is assumed to be 2 greater than actual to comp for the subroutine call.

OTHER MODULES NEEDED: BIN2HEX, BIN_HEX, PUTS

ENTRY:
none

EXIT:

none

MEMMOVE - Memory move

This routine properly moves overlapping areas of memory. Uses fast move algorithm.

ENTRY:
X = source data

Y = destination

D = count

EXIT:

All registers (except CC) preserved

PTSEARCH - Pattern Search

OTHER MODULES REQUIRED: COMPARE

ENTRY:
X = start of memory to search

U = end of memory

Y = start of pattern

D = size of pattern

CASEMTCH

ENTER:
(a global variable in COMPARE)

=0 if A<>a

-1 if A=a

EXIT:

X = address of match if found, unchanged if no match

CC zero set if match, clear for no-match

A,B,U,Y preserved

MEMSET - Set bytes in memory to specified value

ENTRY:
X = start of memory

Y = number of bytes to set

B = character to set

EXIT:

All registers (except CC) preserved

COMPARE - String comparison

Compares characters in A & B, and converts both to uppercase first if CASEMTCH is set (negative)

OTHER MODULES NEEDED: TO_UPPER

ENTRY:
A/B = characters to compare

CASEMTCH

0 (or positive value) if A<>a

-1 (or neg value) if A=a

EXIT:

CC zero set if characters match.

All other registers preserved.

