BASIC09__

 Reference
11-155

TYPE Defines a data type
Syntax: TYPE name = typedeclar [; typedeclar[;...]]

Function: Defines new data types (complex data structures). New data types are vectors (one-dimensional arrays) of previously defined types. Structures created by TYPE differ from arrays in that they can consist of elements of different types, and BASIC09 accesses elements by field names rather than by an indexed position.

Parameters:

Name
 The name you select for the new data type.

typedecrar
One or more type declarations, which can consist of field names, type declarations, and sub
scripts. Separate different types or different lengths of string declarations with semicolons.

Notes:

· Complex data structures allow you to create data types that are appropriate for a specific task. You can organize, read, and write associated data naturally. Also, BASIC09 establishes and defines element positions at compilation time. This saves time and overhead at run time because BASIC09 can access the elements of a data structure faster than it can access the elements of an array.

· When you define new data structures using TYPE, you can can include any of the five existing data types (string, real, integer, byte, and Boolean), or you can include data structure types that you previously defined with TYPE. This means that your structures can be simple or very complex, such as non-rectangular data lists or trees.

· TYPE does not create storage. You create storage using the DIM statement, after using TYPE.

· To access elements of a data structure, use the field name as well as any appropriate element index.

· For more information on creating and using complex data types, see "Complex Data Types" in Chapter 6.

Examples:

TYPE LIBRARY=TITLE,AUTHOR,PUBLISHER:STRING[25];
REFERENCE: INTEGER
DIM BOOK(500):LIBRARY

TYPE PARTS=ITEM,LOCATION:STRING[20]; CAT:REAL;
QUANTITY;INTEGER
DIM INVENTORY(1000):PARTS

Sample Program:

This procedure builds an array to contain a book reference list, including the book title, the author's name, the publisher, and a reference number. It does so by using TYPE to create a special data structure to store all the information for each book.

PROCEDURE books
[]TYPE LIBRARY=TITLE,AUTHOR,PUBLISHER:STRING[30]; REFERENCE:INTEGER
[]DIM BOOKS(100):LIBRARY
[]T=0
[]L00P
[]T=T+ 1
[]INPUT "BOOK TITLE...",BT$

[]BOOKS(T).TITLE=BT$

[]EXITIF BOOKS(T).TITLE="" THEN

[]GOTO 100

[]ENDEXIT

[]INPUT "Book Author...”BA$

[]BOOKS(T).AUTHOR=BA$
[]INPUT "Book Publisher...",BP$

[]BOOKS(T).PUBLISHER=BP$
[]INPUT "Reference Number...”,BOOKS(T).REFERENCE

[]ENDLOOP

100[]FOR X=1 TO T-1
[]PRINT BOOKS(X).TITLE; “ , “; BOOKs(X).AUTHOR; “ , “,
[]BOOKS(X).PUHLISHER; " , “; BOOKS(X).REFERENCE
[]NEXT X
[]END

UNTIL Terminates a REPEAT loop on specified condition

Syntax:
REPEAT

procedure lines

UNTIL expression
Function: Ends a REPEAT loop. REPEAT establishes a loop that executes the encompassed procedure lines until the result of the expression following UNTIL is true. Because the loop is tested at the bottom, the lines within the loop are executed at least once.

Parameters:

procedures
Statements you want to execute in the loop.
lines
expression
A Boolean expression (the result must be either True or False).

Examples:

REPEAT
COUNT = COUNT+1
UNTIL COUNT > 100

INPUT X,Y

REPEAT

X = X-1

Y = Y-1

UNTIL X<1 OR Y<0

See REPEAT for more information.

USING Formats PRINT output

Syntax: PRINT [#path] USING [format,] data[;data...]

Function: Prints data using a format you specify. This statement is especially useful for printing report headings, accounting reports, checks, or any document requiring a specific format.

USING is actually an extension of the PRINT statement. The same rules that apply to the PRINT statement also apply to the PRINT USING statement (see PRINT).

Parameters:

path
The number to an opened device or file. If you do not specify path the default is #1, the video
screen (standard output device). To print to another device or file, first OPEN a path to that file or device (see OPEN).

format
An expression specifying the arrangement of the displayed data.

data
Any numeric or string constant or variable. Always enclose string constants within quotation marks. Separate all data items with semicolons or commas.

See PRINT USING for more information.

VAL Converts string data to numeric data
Syntax: VAL(string)

Function: Converts string-type data to numeric-type. VAL is the inverse of the STR$ function. It returns the real value represented by the characters in a string. If any character in the specified string is not numeric, BASIC09 returns an error.

Parameters:

string
An ASCII string containing one or more of the following characters: 0123456789. + $-.

Examples:

PRINT VAL(123)

A$="44.66"
PRINT VAL(A$)

Sample Program:

This procedure calculates an exponential value, then adds the necessary number of zeroes to convert it to standard notation. It uses STR$ to convert the original number to a string, then uses VAL to convert the exponent into a value to determine the correct decimal place.

PROCEDURE bignum
[]DIM C,PLACES,B,SIGN:STRING; EX,COUNT, NEWCOUNT, DECIMAL:INTEGER

[]DIM NEW,ZERO,NEWEST:STRING[100]

[]COUNT=-1

[]ZERO="000000000000000000000000000000000000"

[]NEW="" \NEWEST=""

[]INPUT "What number do you want to raise to the power of 14?...",NUM

[]A=NUM^14
[]B=STR$CA)
[]EX=SUBSTR("E",H)
[]SIGN=MID$(H,EX+1,1

[]PLACES=RIGHT$(B,LEN(B)-EX-1)
[]FOR T=1 TO LEN(B)
[]C=MID$(B,T,1)
[]IF C="." THEN
[]DECIMAL=0
[]GOTO 10
[]ENDIF
[]DECIMAL=DECIMAL+1
[]IF C="E" THEN 100
[]NEW=NEW+C
10[]NEXT T
100[]NEWCOUNT=VAL(PLACES)-DECIMAL
[]NEW=NEW+LEFT$(ZERO,NEWCOUNT+1)
[]FOR T=LEN(NEW) TO 1 STEP -1
[]COUNT=COUNT+1
[]NEWEST=MID$(NEW,T,1)+NEWEST
[]IF MOD(COUNT,3)=2 AND T>1 THEN
[]NEWEST=","+NEWEST
[]ENDIF
[]NEXT T
[]PRINT NUM; " to the power of 14 = "; A
[]PRINT "= "; NEWEST
[]END

WHILE/DO/ENDWHILE Establishes a loop
Syntax:
WHILE expression DO

procedure lines

ENDWHILE

Function: Establishes a loop that executes the encompassed procedure lines while the result of the expression following WHILE is true. Because the loop is tested at the top, the lines within the loop are never executed unless the expression is true.

Parameters:

expression
A Boolean expression (has a result of True or False).
procedure
Program lines to execute if the expression is true

lines.

Examples:

WHILE COUNT < 12 DO COUNT = COUNT+1 ENDWHILE

Sample Program:

You must create a file of directory names using the GET sample program before you can use the following procedure. Copyutil uses the filenames created by the GET sample program to copy a directoty's files to another directory you specify. You must specify a directory name that does not exist. Copyutil uses a WHILE/DO/ENDWHILE loop to continue copying until BASIC09 reaches the end of the file.

PROCEDURE copyutil
[]DIM PATH,T,COUNT:INTEGER; FILE,JOB,DIRNAME:STRING
[]OPEN #PATH,"dirfile":READ
[]INPUT "Name of new directory...",DIRNAME
[]SHELL "MAKDIR "+DIRNAME
[]SHELL "LOAD COPY"
[]WHILE NOT(EOF(#PATH)) DO
[]READ #PATH,FILE
[]JOB=FILE+" "+DIRNAME+"/"+FILE
[]ON ERROR GOTO 10
[]PRINT "COPY "; JOB
[]SHELL "COPY "+JOB
10[]ON ERROR
[]ENDWHILE
[]CLOSE #PATH
[]END

WRITE Writes data to a sequential file or device

Syntax: WRITE [#Path,] data

Function: Writes an ASCII record to a sequential file or to a device.

Parameters:

path
A variable containing the path number of the file or device to which you want to send data.
Path can be one of the the standard I/O paths (0, 1, 2).

data
The data you want to send over the specified path.

· Notes:

The following information deals with writing sequential disk files:

 To write file records, you must first dimension a variable to contain the path number of the file, then use OPEN or CREATE to open a file in the WRITE or UPDATE access mode.

· Records can be of any length within a file.

· Individual data items in the input record are separated by ASCII null characters. You can also separate numeric items with comma or space character delimiters. Each input record is terminated by a carriage return character.

Examples:

WRITE #PATH,DATA$

WRITE #1,RESPONSE$

WRITE #OUTPUT,INDEX(X)

OPEN #PATH,"namefile":WRITE
FOR T=1 TO 10
READ NAME$
WRITE #PATH, NAME$
NEXT T
CLOSE #PATH
DATA "JIM", "JOE","SUE","TINA","WENDY"
DATA "SALL", "MICKIE","FRED","MARV","WINNIE"

Sample Program:

This procedure selects 100 random values between 1 and 10. It uses WRITE to place the values into a disk file. Next, it reads the values from the file and uses asterisks to indicate how many times RND selected each value.

PROCEDURE randlist
[]DIM SHOW,BUCKET:STRING
[]DIM T,PATH,SELECT(10),R:INTEGER
[]BUCKET="************************”
[]FOR T=1 TO 10
[]SELECT(T)=0
[]NEXT T
[]ON ERROR GOTO 10
[]SHELL "DEL RANDFILE"
10[] ON ERROR
[]CREATE #PATH,"randfile":UPDATE
[]FOR T=1 TO 100
[]R=RND(9)+1
[]WRITE #PATH,R
[]NEXT T
[]PRINT "Random Distribution"
[]SEEK #PATH,0
[]FOR T=1 TO 100
[]READ #PATH,NUM
[]SELECT(NUM)=SELECT(NUM)+1
[]NEXT T

[]FOR T=1 TO 1 0
[]SHOW=RIGHT$(BUCKET,SELECT(T))
[]PRINT USING "S6<,I3<,S2<,S20<","Number",T,":",SHOW
[]NEXT T
[]CLOSE #PATH
[]END

XOR Returns the exclusive OR of two values

Syntax:
operandl XOR operand2
Function: Performs the logical exclusive OR operation on two or more values, returning a value of either TRUE or FALSE.

Parameters:

operandl
Boolean values or expressions (that result in values of True or False).

operand2

Examples:

PRINT 02 XOR H>3

PRINT A$="YES" XOR H$="YES"

Sample Program:

This procedure lets two people type numbers until one of them guesses the number that the computer picks. It uses XOR to determine that one of the numbers typed is the correct number, but not both.

PROCEDURE draw5traw

[]DIM NUM1,NUM2,R:INTEGER; A:BOOLEAN

[]PRINT "This program will help you pick"

[]PRINT "between two people. Choose who will be"

[]PRINT "Person 1 and who will be Person 2."

[]PRINT "Then, enter numbers between 1 and 10"

[]PRINT "when requested."
[]PRINT
[]R=RND(1 0
10[]INPUT "Person 1 , type a number and press ENTER...",NUM1
[]INPUT "Person 2, type a number and press ENTER...",NUM2
[]A=NUM1=R XOR NUM2=R
[]IF A=FALSE THEN
[]PRINT "You'll have to try again..."

[]PRINT
[]GOTO 10
[]ENDIF
[]IF NUM1 =R THEN
[]PRINT "You win, Person 1"
[]ENDIF
[]IF NUM2=R THEN
[]PRINT "You win, Person 2"
[]ENDIF
[]PRINT "The Number was..."; R
[]END
