BASIC09

 Reference
11-147

SHELL Forks another shell

Syntax: SHELL ["string"][+ "string"...][+ variable] [+ variable...]

Function: Executes OS-9 commands or programs from within a BASIC09 procedure. Using SHELL, you can access OS-9 functions, including multiprogramming, utilities, commands, terminal and input/output control, and so on.

When you use the SHELL command, OS-9 creates a new process to handle the commands you provide. If you specify an operation, BASIC09 evaluates the expression and passes it to the shell for execution. If you do not specify an operation, BASIC09 temporarily halts, and the shell process displays prompts and accepts commands in the normal manner. In this case, press CTRL BREAK to return to BASIC09.

When the shell process terminates, BASIC09 becomes active and resumes execution at the statement following the SHELL statement.

Parameters:

string

Any OS-9 command or function. String constants must be enclosed in quotation marks.

Concatenate string constants and string variables using a plus symbol (+).

variable
Any string variable containing an OS-9 command or function.

Examples:

SHELL "COPY FILE1 FILE2"

SHELL "COPY FILE1 FILE2&"

SHELL "COPY "+FILE$+" "+DIRNAME+"/"FILE$

SHELL "LIST DOCUMENT"

SHELL "KILL "+STR$CN)

Sample Program:

You must use this procedure with the GET sample program. Using the two programs together enables you to copy all the files from one directory to another directory. The GET sample program reads the files in a directory and stores them in a file named Dirfile. This procedure reads the filenames from Dirfile and uses SHELL to copy them to the directory you specify.

PROCEDURE copyutil
[]DIM PATH,T,COUNT:INTEGER; FILE,JOB,DIRNAME:STRING
[]OPEN #PATH,"dirfi1e":READ
[]INPUT "Name of new directory...",DIRNAME
[]SHELL "MAKDIR "+DIRNAME
[]SHELL "LOAD COPY"
[]WHILE NOT(EOF(#PATH)) DO
[]READ #PATH,FILE
[]JOB=FILE+" "+DIRNAME+"/"+FILE
[]ON ERROR GOTO 10
[]PRINT "COPY "; JOB
[]SHELL "COPY "+JOB
10[]0N ERROR
[]ENDWHILE
[]CLOSE #PATH
[]END

SIN Returns the sine of a number

Syntax: SIN(number)

Function: Calculates the trigonometric sine of number. You can use the DEG or RAD commands to cause number to represent a value in either degrees or radians. Unless you specify DEG, the default is radians. SIN returns a real number.

Parameters:
number
The angle of two sides of a triangle for which you want to find the ratio.

Examples:

PRINT SIN(4S

Sample Program:

This procedure calculates sine, cosine, and tangent values for a number you type.

PROCEDURE ratiocalc

[]DEG

[]DIM ANGLE:REAL

[]INPUT "Enter the angle of two sides of a triangle...",ANGLE

[]PRINT

[]PRINT "Angle","SINE","COSINE”,”TAN”
[]PRINT “---“
[]PRINT ANGLE,SIN(ANGLE),COS(ANGLE).,TAN(ANGLE) OPRINT REND

SIZE Returns the size of a data structure

Syntax: SIZE(variable)

Function: Returns the size in bytes of a variable, array, or data structure. SIZE is especially useful with random access files to determine the size of records to store in a file. You can also use SIZE to determine the size of variable storage for other purposes.

SIZE returns the size of assigned storage, not necessarily the size of a string. For example, if you dimension a variable for 15 characters, and assign a 10-character string to it, SIZE returns 15, not 10. SIZE returns the total size of arrays. That is, it returns the number of elements multiplied by the size of the elements.

Parameters:

variable
The variable, array, or data structure for which you want to find the size.

Examples:

RECORDLENGTH = SIZE(A$)

PRINT "YOUR NAME IS STORED IN A "; SIZE(NAME$); " CHARACTER STRING."

Sample Program:
This procedure creates a simple inventory, stored in a file named Inventory. It uses SIZE to calculate the size of each element to be stored in the file, and to move the pointer to the beginning of each record's storage space

PROCEDURE inventory
[]TYPE INV_ITEM=NAME:STRING[25]; LIST,COST:REAL; QTY: INTEGER
[]DIM INV_ARRAY(100):INV_ITEM
[]DIM WORK_REC:INV_ITEM
[]DIM PATH:BYTE
[]ON ERROR GOTO 10
[]DELETE "inventory"
10[]0N ERROR
[]CREATE #PATH,"inventory"
[]WORK_REC.NAME="
[]WORK_REC.LIST= 0
[]WORK_REC.COST= 0
[]WORK_REC.QTY=0
[]FOR N=1 TO 100
[]PUT `PATH,WORK-REC
[]NEXT N
[]LOOP
[]INPUT "Record number? ",recnum
[]IF recnum<1 OR recnum>100 THEN
[]PRINT
[]PRINT "End of Session"
[]PRINT
[]CLOSE #PATH
[]END
[]ENDIF
[]INPUT "Item name? ",WORK_REC.NAME
[]INPUT "List price? ",WORK_REC.LIST
[]INPUT "Cost price? ",WORK_REC.COST
[]INPUT "Quantity? ",WORK_REC.QTY
[]SEEK #PATH,(recnum-1)*SIZE(WORK_REC)
[]PUT #PATH,WORK_REC
[]ENDLOOP
[]END

SQ Returns the value of a number raised to the power of 2

Syntax: SQ(number)

Function: Calculates the value of a number raised to the power of 2.

Parameters:

number
The number you want raised to the power of 2.

Examples:

PRINT SQC188)

PRINT PI·SQ(R)

Sample Program:

This procedure uses SQ in a formula that positions asterisks on the screen in a sine wave pattern.

PROCEDURE sinedown
[]DIM FORMULA,CALCULATE,POSITION:REAL
[]SHELL "DISPLAY 0C"
[]FORMULA=(PI+2)/15
[]CALCULATE=FORMULA
[]SHELL "TMODE -PAUSE"
[]FOR T=0 TO 200
[]CALCULATE=CALCULATE+SQ(FORMULA)
[]POSITION=INT(SIN(CALCULATE)*12+16)

[]PRINT TAB(POSITION); "*"
[]NEXT T
[]SHELL "TMODE PAUSE"
[]END

SQR/SQRT Returns the square root of a number

Syntax:
SQR(number)

SQRT(number)

Function: Calculates the square root of a number. SQR and SQRT serve the same function.

Parameters:

number
The number for which you want the square root.

Examples:

PRINT SQR(188)

PRINT PI*SQRT(R)

Sample Program:

This procedure uses SQRT in a formula to position asterisks on the screen in a sine wave pattern.

PROCEDURE sqrdown
[]DIM FORMULA,CALCULATE,POSITION:REAL
[]SHELL "DISPLAY 0C"
[]FORMULA=PI/15
[]CALCULATE=FORMULA
[]SHELL "TMODE -PAUSE"
[]FOR T=0 TO 200
[]CALCULATE=CALCULATE+SQRT(FORMULA).
[]POSITION=INT(SIN(CALCULATE)*12+16)
[]PRINT TAB(POSITION); "*"
[]NEXT T
[]SHELL "TMODE PAUSE"
[]END

STEP Establishes the size of increments in a FOR loop
Syntax:
FOR variable = init val TO end val [STEP value] [procedure statements] NEXT variable
Function: STEP provides an increment value in a FOR/NEXT loop. If you do not specify a STEP value, the loop steps in increments of 1.

BASIC09 executes the lines following the FOR statement until it encounters a NEXT statement. Then it either increases or decreases the initial value by 1 (the default) or by the value given by STEP. If you give the loop an initial value that is greater than the final value, and specify a negative value for STEP, the loop decreases from the initial value to the end value.

Parameters:

variable
Any legal numeric variable name.

init val
Any numeric constant or variable.

end val
Any numeric constant or variable.

value
Any numeric constant or variable.

Procedure
 Procedure lines you want to be executed

Statements
 within the loop.

 Examples:

FOR COUNTER = 1 to 100 STEP .S

PRINT COUNTER

NEXT COUNTER

FOR X = 1 0 TO 1 STEP -1
PRINT X
NEXT X

FOR TEST = A TO B STEP RATE

PRINT TEST

NEXT TEST

Sample Program:

This procedure reverses the order of characters in a word or phrase you type. It uses STEP to decrement a counter that points to each character in the string in reverse order.

PROCEDURE reverse

[]DIM PHRASE:STRING; T,BEGIN:INTEGER

[]PRINT "Type a word or phrase you want to reverse:";

[]PRINT

[]INPUT PHRASE

[]BEGIN=LEN(PHRASE)

[]PRINT "This is how your phrase looks backwards:"

[]FOR T=BEGIN TO 1 STEP –1

[]PRINT MID$(PHRASE,T,1);

[]NEXT T

[]PRINT

[]END

STOP Terminates a procedure

Syntax: STOP ["string"]

Function: Causes a procedure to cease execution, print the message "STOP Encountered", and return control to BASIC09's command mode. You can also specify additional text to display when BASIC09 encounters STOP.

Use stop when you want a procedure to terminate without entering the DEBUG mode.

Parameters:

string

Text to display when STOP executes.

Examples:

STOP "Program terminated before completion."

IF RESPONSE = "Y" THEN STOP "Program terminated at your request." ENDIF

STR$ Converts numeric data to string data

Syntax:
STR$(number)

Function: Converts a numeric type to a string type. This lets you display the number as a string or use string operators on a number. The conversion replaces the numeric values with the ASCII characters of the number. STR$ is the inverse of the VAL function.

Parameters:

number
Any numeric-type data.

Examples:

PRINT STR$(1010)

DIM I:INTEGER
I=44
PRINT STR$(I)

DIM B:BYTE
B=001
PRINT STR$(H)

DIM R:REAL
R=1234.56
PRINT STR$(R)

Sample Program:

This procedure calculates an exponential value, then adds the necessary number of zeroes to convert it to standard notation. It uses STR$ to convert the number you type to a string type value so that it can use string functions to add the zeroes.

 PROCEDURE bignum

[]DIM C,PLACES,H,SIGN:STRING; EX,COUNT,NEWCOUNT, DECIMAL:INTEGER

[]DIM NEW,ZERO,NEWEST:STRING[100]

[]COUNT=-1

[]ZERO="000000000000000000000000000000000000"

[]NEW="" \NEWEST=""

[]INPUT "What number do you want to raise to the power of 14?...", NUM []A=NUM^14

[]B=STR$(A)

[]EX=SUBSTR("E",H)

[]SIGN=MID$(H,EX+1,1)

[]PLACES=RIGHT$(B,LEN(B)-EX-1)

[]FOR T=1 TO LEN(B)

[]C=MID$(H,T,1)

[]IF C="." THEN

[]DECIMAL=0

[]GOTO 10

[]END IF

[]DECIMAL=DECIMAL+1

[]IF C="E" THEN 100

[]NEW=NEW+C

10[]NEXT T

100[]NEWCOUNT=VAL(PLACES)-DECIMAL

[]NEW=NEW+LEFT$(ZERO,NEWCOUNT+1)

[]FOR T=LEN(NEW) TO 1 STEP –1

[]COUNT=COUNT+1

[]NEWEST=MID$(NEW,T,1)+NEWEST

[]IF MOD(COUNT,3)=2 AND T>,1 THEN

[]NEWEST=","+NEWEST

[]ENDIF

[]NEXT T

[[]PRINT NUM; " to the power of 14 = "; a

[]PRINT "_ "; NEWEST

[]END

SUBSTR Searches for specified characters in a string

Syntax:
SUBSTR(targetstring,searchstring)

Function: Searches for the first occurrence of targetstring within searchstring and returns the numeric value of its location. SUBSTR counts the first character in searchstring as character Number 1. Therefore, if you searched for the string "worth" in the string "Fortworth", SUBSTR returns a value of 5.
If SUBSTR cannot find targetstring, it returns a value of 0.

Parameters:

targetstring

The group of characters you want to locate.

searchstring
The string in which you want to find targetstring.

Examples:

PRINT SUBSTR("THREE","ONETWOTHREEFOURFIVESIX")

X=SUBSTR(" ",FULLNAME$)

Sample Program:
This procedure selects the last name from a string containing both a first name and a last name. It uses SUBSTR to find the space between the two names in order to determine where the last name begins.

PROCEDURE lastname
[]DIM NAMES:STRING; LASTNAME:STRING[10]
[]PRINT "Here are the last names:"
[]FOR T=1 TO 10
[]READ NAMES
[]POINTER=SUBSTR(" ",NAMES)
[]POINTER=LEN(NAMES)-POINTER
[]LASTNAME=RIGHT$(NAMES,POINTER)
[]PRINT LASTNAME
[]NEXT T
[]DATA "Joe Blonski","Mike Marvel","Hal Skeemish","Fred Laungly"
[]DATA "Jane Misty","Wendy Paston","Martha Upshong","Jacqueline Rivers"
[]DATA "Susy Reetmore","Wilson Creding"
[]END

SYSCALL Executes an OS-9 System Call

Syntax:
SYSCALL callcode registers
Function: Lets you execute any OS-9 system call from BASIC09. Use this command to directly manipulate your system or data or to directly access devices.
Be careful! Used improperly, SYSCALL can cause undesirable results you might unintentionally format a disk or destroy disk or memory data. Before using SYSCALL, you should be familiar with assembly language programming and should understand the system call information in the OS-9 Technical Reference manual. The OS-9 Technical Reference manual provides information about all OS-9 system calls.
To pass required register values to the SYSCALL command, create a complex data structure that contains values for all registers. Fbr example:
TYPE REGISTERS=CC,A,B,DP:HYTE; X,Y,U:INTEGER DIM REGS:REGISTERS DIM CALLCODE:BYTE

The complex data type REGISTERS contains values for all registers. Unless you specifically assign values to variables (for instance, REGS.CC, REGS.A, and REGS.B in the previous example), they contain random values. See the TYPE command for further information.

Parameters:

callcode
is the request code of the system call you wish to use. All system call codes are referenced in
the OS-9 Technical Reference manual.

registers
is a list of the register entry values required for the system call you are using.

Examples:
see "Sample Programs."

 Sample Programs:

The following programs set up a data type (REGISTERS) for the register variables. Before executing SYSCALL, the procedures store the required register entry values in the complex data structure REGS. The procedures also establish CALLCODE as a variable to hold the request code of the system call you want to use.
The Writecall procedure uses the string variable TEST to store text that it writes to the screen through Path 0 (the standard output path) using System Call $8A, I$Write. Before the procedure calls I$Write, it stores the appropriate path number (0) in Register A. The ADDR command calculates the address of the variable TEST, and the LEN command determines the length of the variable. The procedure stores these two values in Registers X and Y.
The Readcall uses System Call $8B, I$ReadLn to perform a function that is the opposite of Writecall. Readcall establishes TEST as a string variable into which it writes the characters you type. Because the length of TEST is restricted to ten characters (DIM TEST: STRING[1 0 1), the terminal bell sounds if you attempt to type more than 10 characters. Pressing [ENTER] terminates the call and the procedure prints the contents of TEST the characters you typed

PROCEDURE WriteCall
[]TYPE REGISTERS=CC,A,B,DP:BYTE; X,Y,U:INTEGER
[]DIM REGS:REGISTERS
[]DIM PATH,CALLCODE:BYTE
[]DIM TEST:STRING[50]
[]TEST="This is a test of I$Write,,Sy5tem call $8A..."
[]REGS.A=0
[]REGS.X=ADDR(TEST)
[]REGS.Y=LEN(TEST)
[]CALLCODE=$8A
[]RUN SYSCALL(CALLCODE,REGS)
[]PRINT
[]END

PROCEDURE Readcall
[]TYPE REGISTERS=CC,A,B,DP:BYTE; X,Y,U:INTEGER
[]DIM REGS:REGISTERS
[]DIM PATH,CALLCODE:BYTE
[]DIM TEST:STRING[10]
[]REGS.A=0
[]REGS.X=ADDR(TEST)
[]REGS.Y=10
[]CALLCODE=$8B
[]RUN SYSCALL(CALLCODE,REGS)
[]PRINT
[]PRINT TEST
[]END

TAB Causes PRINT to jump to the specified column

Syntax: TAB(number)

Function: Causes PRINT to display the next PRINT item to display in the column specified by number. If the cursor is already past the desired tab position, BASIC09 ignores TAB.

Use POS to determine the current cursor position when displaying characters on the screen.
Screen display columns are numbered from 1, the leftmost column, to a maximum of 255. The size of BASIC09 output buffer varies according to the stack size.
You can also use TAB with PRINT USING statements.

Parameters:

number
The column at which you want PRINT to begin.

Examples:

PRINT TAB(20);TITLE$

PRINT TAH(X);ITEMNUMBER;ITEM$

Sample Program:
This procedure uses asterisks to simulate a sine wave on the screen. It uses TAB to position each asterisk in the proper location.

PROCEDURE sinewave
[]DIM FORMULA,CALCULATE,POSITION:REAL
[]SHELL "DISPLAY 0C"
[]FORMULA=(PI+2)/15
[]CALCULATE=FORMULA
[]SHELL "TMODE -PAUSE"
[]FOR T=0 TO 200
[]CALCULATE=CALCULATE+SQ(FORMULA)
[]POSITION=INT(SIN(CALCULATE)*12+16)
[]PRINT TAB(POSITION); "*"
[]NEXT T
[]SHELL "TMODE PAUSE"
[]END

TAN Returns the tangent of a value

Syntax:
TAN(number)

Function: Calculates the trigonometric tangent of number. Using DEG or RAD, you can specify the measure of the angle (number) in either degrees or radians. Radians are the default units.

Parameters:

number
The angle for which you want to find the tangent.

Examples:

PRINT TANC45)

Sample Program:

This procedure calculates sine, cosine, and tangent values for a number you type.

PROCEDURE ratiocalc
[]DEG
[]DIM ANGLE:REAL

[]INPUT "Enter the angle of two sides of a triangle...",ANGLE

[]PRINT “---“

[]PRINT "Angle","SINE","COSINE","TAN"

[]PRINT ANGLE,SIN(ANGLE),COS(ANGLE),TAN(ANGLE)
[]PRINT
[]end

TRIM$ Removes spaces from the end of a string

Syntax:
TRIM$(string)

Function: Removes any trailing spaces from the end of the specified string. This function is particularly useful for trimming records you recover from a random access file.

Parameters:

string
The string or string variable from which you wish to remove trailing spaces.

Examples:

PRINT TRIM$(A$)

GET A$,B$,C$
PRINT TRIM$(A$),TRIM$(B$),TRIM$(C$)

Sample Program:

This program takes names you type and puts them in a random access disk file. Because random access files use the same amount of storage for each item, short names are pfd with extra spaces. When reading the names back from the file, the procedure uses TRIM$ to remove these extra spaces.

PROCEDURE namestor

[]DIM NAMES,TEMP1,NAME(100):STRING[26]; FIRST,LAST: STRING[15];INITIAL:STRING[1]
[]DIM PATH,T:INTEGER
[]NAMES=""
[]ON ERROR GOTO 10

[]DELETE "nameliSt"

10[]ON ERROR

[]CREATE #PATH,"nameliSt":UPDATE

[]FOR T=1 TO 100
[]NAME(T)
[]NEXT T
[]T=0

[]L00P
[]INPUT "First Name: ",FIRST
[]EXITIF FIRST="" THEN
[]CLOSE #PATH
[]GOTO 100
[]ENDEXIT
[]INPUT "Initial: ",INITIAL
[]INPUT "Last: ",LAST
[]T=T+1
[]NAME(T)=FIRST+" "+INITIAL+" "+LAST
[]PUT #PATH,NAME(T)
[]SEEK #PATH,T*26
[]ENDLOOP
100[]OPEN #PATH,"namelist":READ
[]PRINT \ PRINT
[]PRINT "Lastname","Firstname","Initial
[]REM Print underline (40 characters)
[]PRINT "___”
[]PRINT
[]SEEK #PATH,O
[]T=0
[]WHILE NOT(EOF(#PATH)) DO
[]GET #PATH,NAMES
[]T=T+ 1
[]NAMES=TRIM$(NAMES)
[]X=SUHSTR(" ",NAMES)
[]FIRST=LEFT$(NAMES,X-1)
[]TEMP1=RIGHT$(NAMES,LEN(NAMES)-X+1)
[]INITIAL=MID$(TEMP1,2,1)
[]LAST=RIGHT$CTEMP1,LENCTEMP1)-3)
[]PRINT LAST,FIRST,INITIAL
[]SEEK #PATH,T*26
[]ENDWHILE
[]CLOSE #PATH
[]END

TRON/TROFF Turns on/off trace function

Syntax:
TRON

TROFF

Function: Turns on or off the BASIC09 trace mode. When trace is turned on (TRON), BASIC09 decompiles and displays each statement in a procedure before execution. BASIC09 also displays the result of each expression after evaluation. This function lets you follow program flow and is helpful in debugging and analyzing the execution of a procedure. After the procedure is debugged, remove the TRON statement.
If you want to view only a portion of a procedure's execution, surround that portion with TRON and TROFF. Tracing begins immediately after the TRON statement and ends at the TROFF statement. The rest of the program executes normally.

Parameters:
None

Examples:

H$="00000000000000000000"+B$

N=1 +LEN(B$)

FOR I=4 TO 1 STEP –1

TRON

N=N-4

A(I)=VAL(MID$(B$,N,4)

TROFF

NEXT I

TRUE Returns a Boolean TRUE value

Syntax:
variable = TRUE

Function: TRUE is a Boolean function that always returns True. You can use TRUE and FALSE to assign values to Boolean variables.

Parameters:

variable
The Boolean storage unit you want to set to True.

Examples:

DIM TEST:HOOLEAN

TEST=TRUE

Sample Program:

This procedure asks five questions. If your answer is correct, it stores the Boolean value TRUE in a Boolean type variable. If your answer is incorrect, .it stores the Boolean value FALSE in the variable.

PROCEDURE quiz

[]DIM REPLY,VALUE:BOOLEAN; ANSWER:STRING[1]; QUESTION:STRING[80]

[]FOR T=1 TO 5

[]READ QUESTION,VALUE

[]PRINT QUESTION

[]PRINT "(T) = TRUE[][][][][][][](F) = FALSE"

[]PRINT "Select T or F:[][]";

[]GET #1,ANSWER

[]IF ANSWER=”T” THEN

[]REPLY=TRUE

[]ELSE

[]REPLY=FALSE
[]ENDIF
[]IF REPLY=VALUE THEN
[]PRINT \ PRINT "That's Correct ...Good Show!"

[]ELSE

[]PRINT "Sorry, you're wrong ...Hetter Luck next time."

[]ENDIF

[]PRINT \ PRINT \ PRINT

[]NEXT T[]

[]DATA "In computer talk, CPU stands for Central Packaging Unit.", FALSE

[]DATA "The actual value of 64K is 65536 bytes.",TRUE

[]DATA "The bits in a byte are normally numbered 0 through 7.",TRUE []DATA "HASIC09 has four data types.",FALSE

[]DATA "The LAND function is a Boolean type operator.",FALSE

[]END
