BASIC09

 Reference
11-118
BASIC09

 Reference
11-132

PUT

Writes to a direct access ale

Syntax:

PUT # path, data

Function: Writes a fixed-size binary data record to a file or device. Use PUT to store data in random access files.

Although you usually use PUT with files, you can also use it to send data to a device.

For information about storing data in random access files, see Chapter 8, "Disk Files". Also, see GET, SEEK, and SIZE.

Parameters:

path
A variable name you chose to use in an OPEN or CREATE statement that stores the number of the path to the file or device to which you are directing data.

data

Either a variable containing the data you want to send or a string of data.

Examples:

PUT #PATH,DATA$

PUT INPUT,ARRAY$

Sample Program:

This procedure is a simple inventory data base. You type in the information for an item name, list cost, actual cost, and quantity. Using PUT, the procedure stores data in a file named Inventory.

PROCEDURE inventory

[]TYPE INV_ITEM=NAME:STRING[25]; LIST,COST:REAL; QTY:INTEGER

[]DIM INV_ARRAY(100):INV_ITEM

[]DIM WORK_REC:INV_ITEM

[]DIM PATH:BYTE

[]ON ERROR GOTO 10

[]DELETE "inventory"
10[]ON ERROR
[]CREATE #PATH,"inventory”

[]WORK_REC.NAME=””
[]WORK_REC.LIST=0
[]WORK_REC.COST=0
[]WORK_REC.QTY=0
[]FOR N=1 TO 100
[]PUT #PATH,WORK_REC
[]NEXT N
[]L00P
[]INPUT "Record number? ",recnum
[]IF recnum<1 OR recnum>100 THEN
[]PRINT
[]PRINT "End of Session"
[]PRINT
[]CLOSE #PATH
[]END
[]ENDIF
[]INPUT "Item name? ",WORK_REC.NAME
[]INPUT "List price? ",WORK_REC.LIST
[]INPUT "Cost price? " WORK_REC.COST
[]INPUT "Quantity? ",WORK_REC.QTY
[]SEEK #PATH,(recnum-1)*SIZECWORK_REC)
[]PUT #PATH,WORK_REC
[]ENDL00P
[]END

RAD Returns trigonometric calculations in radians

Syntax: RAD

Function: Set a procedure's state flag so that a procedure uses radians in SIN, COS, TAN, ACS, ASN, and ATN functions. Because this is the BASIC09 default, you do not need to use the RAD statement unless you previously used a DEG statement in the procedure.

Parameters:

None

Examples:

RAD

Sample Program:

This program calculates sine, cosine, and tangent for a value you supply. It calculates one set of results in degrees, using DEG, and the second set of results in radians using RAD.

PROCEDURE trigcalc

DIM ANGLE:REAL

[]DEG

[]INPUT "Enter the angle of two sides of a triangle...",ANGLE

[]PRINT

[]PRINT [][][][][][][][][]Angle","S1NE", -TOSINE" "TAN"

[]PRINT "[][][][][][][][][]--“

[]PRINT "Degrees = "; ANGLE,SIN(ANGLE),COS(ANGLE), TAN(ANGLE)

[]RAD

[]PRINT "Radians = "; ANGLE,SIN(ANGLE),COS(ANGLE), TAN(ANGLE)

[]PRINT

[]END

READ Reads data from a device or DATA statement

Syntax: READ [#path,] varname

Function: Reads either an ASCII record from a sequential file or device, or an item from a DATA statement.

Parameters:

Path
A variable containing the path number of the file you want to access. You can also specify one of the standard I/O paths (0, 1, or 2).

Varname
The variable in which you want to store the data read from a file, device, or DATA line.

Notes:

The following information deals with reading sequential disk files:

· To read file records, you must first dimension a variable to contain the path number of the file, then use OPEN or CREATE to open a file in the READ or UPDATE access mode. The command begins reading records at the first record in the file. After it reads each item, it updates the pointer to the next item.

· Records can be of any length within a file. Make sure the variable you use to store the records is dimensioned large enough to store each item. If the variable storage is too small, BASIC09 truncates the record to the maximum size for which you dimensioned the variable. If you do not indicate a variable size with the DIM statement, the default -is 32 characters.

· BASIC09 separates individual data items in the input record with ASCII null characters. You can also separate numeric items with comma or space character delimiters. Each input record is terminated by a carriage return character

The following information deals with reading DATA items:

· READ accesses DATA line items sequentially. Each string type item in a DATA line must be surrounded by quotation marks. Items in a DATA line must be separated with commas.

· Each READ command copies an item into the specified variable storage and updates the data pointer to the next item, if any.

· You can independently move the pointer to a selected DATA statement. To do this, use line numbers with the DATA lines See the DATA and RESTORE commands for more information on using this function of READ.

Examples:

READ #PATH,DATA

READ #1,RESPONSE$

READ #INPUT,INDEXCX

FOR T=1 TO 10
READ NAME$(T)
NEXT T
DATA "JIM","JOE","SUE","TINA","WENDY"
DATA "SALL","MICKIE","FRED",”MARV”,”WINNIE”

Sample Program:

This procedure puts random values between 1 and 10 into a disk file, then READS the values and uses asterisks to indicate how many times RND selected each value.

PROCEDURE randlist
[]DIM SHOW,BUCKET:STRING
[]DIM T,PATH,SELECT(10),R:INTEGER
[]BUCKET="************************'I
[]FOR T=1 TO 10
[]SELECT(T)=0
[]NEXT T
[]ON ERROR GOTO 10
[]SHELL "DEL RANDFILE"
10[]0N ERROR
[]CREATE #PATH,"randfile":UPDATE
[]FOR T=1 TO 100
[]R=RND(9)+1
[]WRITE #PATH,R
[]NEXT T
[]PRINT "Random Distribution"
[]SEEK #PATH,0
[]FOR T=1 TO 100
[]READ #PATH,NUM
[]SELECT(NUM)=SELECT(NUM)+1
[]NEXT T
[]FOR T=1 TO 10
[]SHOW=RIGHT$(BUCKET,SELECT(T))
[]PRINT USING "S6<,I3<,S2<,S20<","Number",T,":",SHOW
[]NEXT T
[]CLOSE #PATH
[]END

REM
Inserts remarks in a procedure

Syntax:
REM [text]
(* [text][*)]

Function: Inserts remarks inside a procedure. BASIC09 ignores these remarks; they serve only to document a procedure and its functions. Use remarks to title a procedure, show its creation date, show the name of the programmer, or to explain particular features and operations of a procedure.

Parameters:

Text

Comments you want to include within a procedure

Notes:

· You can insert remarks at any point in a procedure.

· The second form of REM, using parentheses and asterisks, is compatible with Pascal programming structure.

· When editing programs, you can use the exclamation character "!" in place of the keyword REM.

· BASIC09's initial compilation retains remarks, but the PACK compile command strips them from procedures.

Examples:

REM this is a comment

(* Insert text between parentheses and asterisks*)

(* or use only one parenthesis and asterisk

Sample Program:

This procedure uses the various forms of REM to explain its operations.

PROCEDURE copydir
[]REM Use this program with the
[](* GET sample program to *)
[](* create a file of directory*)
[](* filenames, then copy they*)
[](* files to another directory*)
[]DIM PATH,T,COUNT:INTEGER; FILE,JOH,DIRNAME:STRING
[]OPEN #PATH,"dirfile":READ (* open the file
[]INPUT "Name of new directory...",DIRNAME (* get the directory
[]SHELL "MAKDIR "+DIRNAME (* create a newdirectory
[]SHELL "LOAD COPY"
[]WHILE NOT(EOF(#PATH)) DO
[]READ #PATH,FILE (* get a filename
[]JOB=FILE+" "+DIRNAME+"/"+FILE (* create the COPY syntax
[]ON ERROR GOTO 10
[]PRINT "COPY "; JOB (* display the operation
[]SHELL "COPY "+JOB (copy the file
10[]0N ERROR

[]ENDWHILE

[]CLOSE #PATH

[]END

REPEAT/UNTIL Establish a loop/Terminates on specific condition

Syntax:

REPEAT

Procedure lines

UNTIL expression

Function: Establishes a loop that executes the encompassed procedure lines until the result of the expression following UNTIL is true. Because the loop is tested at the bottom, the lines within the loop are executged at least once.

Parameters:
expression

A Boolean expression (returns either True or False).

Procedure

Statement you want to repeat until expression returns False.

Lines

Examples:

REPEAT

COUNT = COUNT+1

UNTIL COUNT > 100

INPUT X,Y

REPEAT

X = X-1

Y = Y-1

UNTIL X<1 OR Y<0

Examples:

The procedure sorts a disk file. In this case, it is written to sort the disk file created by the GET sample program__a directory listing. It uses a REPEAT/UNTIL loop to compare a string in the file with the first string in the file. If the first string is greater than the comparison string, the procedure swaps them.

PROCEDURE dirsort

[]DIM BTEMP:BOOLEAN; TEMP,FILES(125):STRTING; TOP,BOTTOM,M,N:INTEGER

[]DIM T,X,PATH:INTEGER

[]FOR T=1 TO 125

[]FILES(T)=””

[]NEXT T

[]T=0

[]OPEN #PATH,:dirfile”:READ

[]PRINT “LOADING:”

[]WHILE NOT(EOF(PATH)) DO

[]T=T+1

[]READ #PATH,FILES(T)

[]ENDWHILE

[]TOP=T

[]BOTTOM=1

[]PRINT “SORTING: “;

10[]N=BOTTOM

[]M=TOP

[]PRINT “.”;

[]LOOP

[]REPEAT

[]BTEMP=FILES(N)<FILES(TOP)

[]N=N+1

[]UNTIL NOT(BTEMP)

[]N=N-1

[]EXITIF N=M THEN

[]ENDEXIT

[]TEMP=FILES(M)

[]FILES(M)=FILES(N)

[]FILES(N)=TEMP

[]N=N+1

[]EXITIF N=M THEN

[]ENDEXIT

[]ENDLOOP

[]IF N<>TOP THEN

[]IF FILES(N)<>FILES(TOP) THEN

[]TEMP=FILES(N)

[]FILES(N))=FILES(TOP)

[]FILES(TOP)=TEMP

[]ENDIF

[]ENDIF

[]IF BOTTOM<N-1 THEN

[]TOP=N-1

[]GOTO 10

[]ENDIF

[]IF N+1<TOP THEN

[]BOTTOM=N+1

[]GOTO 10

[]ENDIF

[]CLOSE #PATH

[]DELETE “dirfile”

[]CREATE #PATH,”dirfile”:WRITE

[]PRINT

[]FOR Z=1 TO T

[]WRITE #PATH,FILES(Z)

[]PRINT FILES(Z),

[]NEXT Z

[]CLOSE #PATH

[]END

RESTORE
Resets READ pointer

Syntax:

RESTORE linenumber
Function: Sets the pointer for the READ command to the specified line number. RESTORE without a line number sets the data pointer to the first data statement in the procedure.

READ assigns the items in a DATA statement to variable storage. When you read an item, the pointer automatically advances to the next item. Using RESTORE you can skip backwards or forwards to data items at a specific line number.

Paramenter:
linenumber

The line number of the DATA items you want READ to access.

Examples:

RESTORE 100

Sample Program:

This procedure draws a box on the screen. It uses RESTORE to repeat the data in line 20 to create the sides of the box.

PROCEDURE box

[]DIM LINE:STRING

[]READ LINE

[]PRINT LINE

[]FOR T=1 TO 10

[]RESTORE 20

[]READ LINE

[]PRINT LINE

[]NEXT T

[]RESTORE 10

[]READ LINE

[]PRINT LINE

10[]DATA “------------------------------“

20[]DATA “[][][][][][][][][][][][][][][][][][][]”

[]END

RETURN
Returns from subroutine

Syntax:

RETURN

Function: Retuens procedure execution to the line immediate following the last GOSUB statement.

Parameters:

None

Sample Program:

This procedure draws a design of astgerisks down the display screen. It uses MOD to send execution to a series of PRINT USING routines over and over. Each PRINT USING routine sends execution back to the main routine with a RETURN statement.

PROCEDURE stars

[]DIM T:INTEGER

[]SHELL “TMODE –PAUSE”

[]FOR T=1 TO 100

[]ON MOD(T,8)+1 GOSUB 10,20,30,40,50,60,70,80

[]NEXT T

[]SHELL “TMODE PAUSE”

[]END

10[]PRINT USING “S10^”,”*” \ RETURN

20[]PRINT USING “S10^”,”**” \ RETURN

30[]PRINT USING “S10^”,”***” \ RETURN

40[]PRINT USING “S10^”,”****” \ RETURN

50[]PRINT USING “S10^”,”*****” \ RETURN

60[]PRINT USING “S10^”,”****” \ RETURN

70[]PRINT USING “S10^”,”***” \ RETRUN

80[]PRINT USING “S10^”,”**” \ RETURN

[]END

RIGHT$
Returns specified rightmost portion of a string

Syntax:

RIGHT$(string,length)

Function: Returns the specified number of characters from the right portion of the specified string. If length is the same as or greater than the number of characters in string, then RIGHT$ returns all of the characters in the string.

Parameters:
String
A sequence of string type characters or a variable containing a sequence of string type characters.

Length
The number of characters you want to access.

Examples:

PRINT RIGHT$(“HOTDOG”,3)

PRINT right$(a$,6)

Sample Program:

PROCEDURE lastname

[]DIM NAMES:STRING: LASTNAME:STRING[10]

[]PRINT “Here are the last names:”

[]FOR T=1 TO 10

[]POINTER=SUBSTR(“ “,NAMES)

[]POINTER=LEN(NAMES)-POINTER

[]LASTNAME=RIGHT$(NAMES,POINTER)

[]PRINT LASTNAME

[]NEXT T

[]DATA “Joe Blonski”,”Mike Marvel”,”Hal Skeemish”,”Fred Langly”

[]DATA “Jane Misty”,”Wendy Paston”,”Martha Upshong”,”Jacqueline Rivers”

[]DATA “Susy Reetmore”,”Wilson Creding”

[]END

RND
Returns a random value

Syntax:
RND(number)

Function: Returns a random real value in the following ranges:

If number = 0 then range = 0 to 1

If number>0 then range = 0 to number

The values produced by RND are not truly random numbers, but occur in a predictable sequence. Specifying a number less than 0 begins the sequence over.

Parameters:

number
A numeric constant, variable, or expression.

Examples:

PRINT RND(5)

PRINT RND(A)

PRINT RND(A*5)

Sample Program:

This procedure presents addition problems for you to solve. It uses RND to select two numbers between 0 and 20.

PROCEDURE addition

[]DIM A,B,ANSWER,C:INTEGER

[]FOR T=1 TO 5

[]A=RND(20)

[]B=RND(20)

[]C=A+B

[]PRINT USING “’What is:[]’,13”,A

[]PRINT USING “’[][][][][][][]+[]’,13”,B

[]PRINT “[][][][][][][][][]------“

[]INPUT “[][][][][][][][][][]”,ANSWER

[]IF ANSWER=C THEN

[]PRINT “CORRECT”

[]ELSE

[]PRINT “WRONG”

[]ENDIF

[]PRINT

[]NEXT T

[]END

RUN
execute another procedure

Syntax:
RUN procname [(param[,param,…])]

Function: Calls a procedure for execution, passing the specified parameters to the called procedure. When the called procedure ends, execution returns to the calling procedure, beginning at the statement following the RUN statement.

RUN can call a procedure existing within the workspace, a procedure previously compliled by the PACK command, or a machine language procedure outside the workspace.

Parameters:

procname
The name of the procedure to execute. The procname can be the literal name of the procedure to execute, or it can be a variable name containing the procedure name.

param
One or more parameters that the called procedure needs for execution. The parameters can be variables or constants, or the names of entire arrays or data structures.

Notes:

· You can pass all types of data to a called program except byte type. However, you can pass byte arrays.
· If a parameter is a constant or expressing, BASIC09 passes it by value. That is, BASIC09 evaluates the constant or expression and places it in temporay storage. It passes the address of the temporary storage location to the called procedure. The called program can change the passed values, but the changes are not reflected in the calling procedure.
· If a parameter is the name of a variable, array, or data structure, BASIC09 passes it to the called program by reference. That is, it passes the address of the variable storage to the called procrdure. Thus, the value can be changed by the receiving procedure, and these changes are reflected in the calling procedure.
· If the procedure names by RUN is not in the workspace, BASIC09 looks outside the workspace. If it cannot find it there, it looks in the current execution directory for a diskfile with the proper name. If the file is on disk, BASIC09 loads and execute it, regardless of whether it is a packed BASIC09 program or a machine language program.
If the program is a machine language module, BASIC09 executes a JSR (jump to subroutine) instruction to its entry point and executes it as 6809 native code. The machine language program returns to the original calling procedure by executing a RTS (return from subroutine) instruction.
· After you call an external procedure, and no longer need it, use KILL to remove it from memory to free space for other operations.
· Machine language modules return error status by setting the C bit of the MPU condition code register, and by setting the B register to the appropriate error code.
Examples:

RUN CALCULATE(10,20,ADD)

RUN PRINT(TEXT$)

Sample Program:

Makelist creates and displays a list of fruit. Next, it asks you to type a word to insert. After you type and enter a new word,Makelist uses RUN to call a second procedure names Insert to look through the list and insert the new word in alphabetical order. After each insertion, the procedure asks for another word. Press only [ENTER] to terminate the program.

PROCEDURE makelist

[]DIM LIST(25),NEWORD,TEMPWORD:STRING[15]

[]DIM T,LAST:INTEGER

[]LAST=10

[]PRINT “This is ytour list…”

[]FOR T=1 TO LAST

[]READ LIST(T)

[]PRINT LIST(T),

[]LOOP

[]PRINT

[]PRINT

[]INPUT “Type a word to insert…”,NEWORD

[]EXITIF NEWORD=”” THEN

[]PRINT

[]END “I’ve ended the session at your request…”

[]ENDEXIT

[]RUN Insert(LIST,NEWORD,LAST)

[]PRINT

[]PRINT “This is your new list…”

[]FOR T=1 TO LAST

[]PRINT LIST(T)

[]NEXT T

[]PRINT

[]ENDLOOP

[]DATA “APPLES”,”BANANAS”,”CANTALOPE”

[]DATA “DATES”,”GRAPES”,”LEMONS”

[]DATA “MANGOS”,”PEACHES”,”PLUMS”

[]DATA “PEARS”

PROCEDURE insert

[]PARAM LIST(25),NEWORD:STRING[15]

[]PARAM LAST:INTEGER

[]DIM TEMPWORD:STRING[15]

[]DIM T,X:INTEGER

[]T=1

[]WHILE NEWORD>LIST(T)DO

[]T=T+1

[]ENDWHILE

[]FOR X=T TO LAST

[]TEMPWORD=LIST(X)

[]LIST(X)=NEWORD

[]NEWORD=TEMPWORD

[]NEXT X

[]LAST=LAST+1

[]LIST(LAST)=NEWORD

[]END

SEEK

Resets the direct-access file pointer

Syntax:

SEEK #path,number
Function: Changes the file pointer address in the disk file. The pointer indicates the location in a file for the next READ or WRITE operation.

You usually use SEEK with random access files to move the pointer from one record to another, in any order. You can also use SEEK with sequential access files tp rewind the pointer to the beginning of the file (to the first item or record).

For information about storing data in random access files, see Chapter 8. “Disk Files.” Also see PUT, GET, and, SIZE.

Paramters:

Path
A variable name you choose in which BASIC09 stores the number of the path it opens to the file you specify.

Number
The item or record number you weant to access. If you are rewinding a sequenctial, access file, specify a number 0.

Examples:

SEEK #PATH,0

SEEK #OUTFILE,A

SEEK #INDEX,LOCATION*SIZE(INVENTORY)

Sample Program:

This procedure creates a file named Test1, then writes 10 lines of data into it. Next, it reads the lines from the file and displays them. It uses SEEK to both store and extract the lines in blocks of 25 characters.

PROCEDURE makelist

[]DIM LENGTH:BYTE

[]DIM LINE:STRING[25]

[]DIM PATH:BYTE

[]LENGTH=25

[]BASE 0

[]ON ERROR GOTO 10

[]DELETE “test1”

10[]ON ERROR

[]CREATE #PATH,”test1”:WRITE

[]FOR T=0 TO 9

[]READ LINE$

[]SEEK #PATH,LENGTH*T

[]PUT #PATH,LINE$

[]NEXT T

[]CLOSE #PATH

[]OPEN #PATH,”test1”:READ

[]FOR T=9 TO 0 STEP –1

[]SEEK #PATH,LENGTH*T

[]GET #PATH,LINE

[]PRINT LINE

[]NEXT T

[]CLOSE #PATH

[]END

[]DATA “This is a test line #1”

[]DATA “This ia a test line #2”

[]DATA “This ia a test line #3”

[]DATA “This ia a test line #4”

[]DATA “This ia a test line #5”

[]DATA “This ia a test line #6”

[]DATA “This ia a test line #7”

[]DATA “This ia a test line #8”

[]DATA “This ia a test line #9”

[]DATA “This ia a test line #10”

SGN

Returns a value’s sigh

Syntax:

SGN(number)

Function: Determines whether a number’s sign is positive or negative

If number is less than 0, then SGN returns –1. If number equals 0, then SGN returns 0. If number is greater than 0, then SGN returns 1.

Parameters:

Number
The value for which you want to determine the sign.

Examples:

PRINT SGN(-22)

PRINT SGN(A)

PRINT SGN(44-A)

Sample Program:

This procedure uses SGN to create half sine waves down the screen. SGN tests when the SIN calculation results are positive.

PROCEDURE halfsine

[]DIM FORMULA,CALCULATE,POSITION:REAL

[]SHELL “DISPLAY 0C”

[]FORMUA=(PI+2)/15

[]CALCULATE=FORMULA

[]SHELL “TMODE –PAUSE”

[]FOR T=0 TO 100

[]CALCULATE=CALCULATE+FORMULA

[]POSITION=INT(SIN(CALCULATE)*10+16)

[]IF SGN(SIN(CALCULATE))>0 THEN

[]PRINT TAB(POSITION); “*”

[]ENDIF

[]NEXT T

[]SHELL “TMODE PAUSE”

[]END

