BASIC09

 Reference
11-101
BASIC09

 Reference
11-50
BASIC09

 Reference
11-116

Sample Program:

This procedure uses MOD to execute repeatedly a sequence of GOSUB commands. A loop of index of 80 causes execution to jump to each line number in the list 10 times.
PROCEDURE repeat
[]SHELL "TMODE -PAUSE"
[]DIM T: INTEGER
[]FOR T=1 TO 80
[]ON MODCT,8)+1 GOSUB 10,20,30,40,50,60,70,80
[]NEXT T
[]SHELL "TMODE PAUSE"
[]END
10[]PRINT USING "S10^","*" \ RETURN
20[]PRINT USING "S10^","**" \ RETURN
30[]PRINT USING "S10^”,”***" \ RETURN
40[]PRINT USING "S10^","****" \ RETURN
50[]PRINT USING "S10^”,”*****" \ RETURN
60[]PRINT USING "S10^","****" \ RETURN
70[]PRINT USING "S10^","***" \ RETURN
80[]PRINT USING "S10^","**" \ RETURN
[]END

ON/GOTO Jump to line number on a

specified condition

Syntax:
ON pos GOTO linenum [,linenum,...]

Function: Transfers procedure control to the line number located at position pos in the list of line numbers immediately following the GOTO command. For example, if pos equals 1, BASIC09 branches to the first line number it encounters in the list. If pos equals 2, BASIC09 branches to the second line number it encounters in the list. If pos is greater than the number of items in the list, execution continues with the next command line. To use ON/GOTO you must have numbered lines to match the line numbers in the list.
Parameters:

pos

An integer value in a range from 1 to the number of items in the list following GOTO.
linenum
Any numbered line in the procedure.

Examples:

PRINT "You can now: (1) End the program (2) Print the results"
PRINT "

(3) Try again

(4) Start a new program"
INPUT "Type the letter of your choice: ",choice
ON CHOICE GOTO 100, 200, 300, 400

Sample Program:

This procedure converts decimal numbers to binary. It uses ON GOTO to execute the operation you select from a menu: Convert a number, display the result of all conversions, or end the program.

PROCEDURE bicalc
[]DIM[]NUMBER,NUM,X,STORAGE:INTEGER;[]BI:STRING;
[]ARRAY(50,2):STRING
[]COUNT=0

10[]BI="" \NUMHER=0 \NUM=0 \X=0 \STORAGE=0

[]INPUT "Number to convert to binary ",NUMBER

[]IF NUMBER=0 THEN END

[]ENDIF

[]NUM=LOG10(NUMHER)/.3

[]NUM=2^NUM \STORAGE=NUMBER

[]REPEAT

[]X=NUMBER/NUM

[]IF X>0 THEN BI=BI+"1"

[]NUMHER=MOD(NUMHER,NUM)

[]ELSE BI=BI+"0"

[]ENDIF

[]NUM=NUM/2

[]UNTIL NUM<=1

[]IF NUMHER>0 THEN

[]BI=BI+”1"

[]ELSE^BI=BI+"0"

[]ENDIF

[]PRINT STORAGE; " = "; BI; " in binary."

[]PRINT

[]COUNT=COUNT+1

[]ARRAY(COUNT,1)=STR$(STORAGE)

[]ARRAY(COUNT,2)=BI

12[]PRINT "Do you want to: C1) Convert another number."

[]PRINT "[][][][][][][][][][][][][][][][](2) Disp1ay all ca1cu1ations thus far."

[]PRINT "[][][][][][][][][][][][][][][][](3) End the program."

[]INPUT "Enter 1, 2, or 3...",choice

[]ON choice GOTO 10,20,30

[]END

20[]FOR T=1 TO COUNT

[]PRINT ARRAY(T,1); " = "; ARRAY(T,2)

[]NEXT T

[]GOTO 12

30[]PRINT \ PRINT " Program Terminated"

[]END

OPEN Opens a path to a device

Syntax: OPEN # path,"pathlist" [access model][+ access model][+...]

Function: Opens an input/output path to a disk file or to a device. When you open a file, you can select one or more of the following access modes:

Mode
Function

READ
Lets you read (receive) data from a file or device but does not allow you to write (send) data.

WRITE
Lets you write data to a file or device but does not allow you to read data.

UPDATE
Lets you both read from and write to a file ordevice.

EXEC
Specifies that the file you want to access is in the current execution directory.

DIR
Specifies that the file you want to access is a directory-type file.

Parameters:

path
The variable in which BASIC09 stores the number of the newly opened path.

pathlist
The route to the file or device to be opened, including the filename if appropriate.

access mode
The type of access the system is to allow for the file or device. Use a plus symbol to specify more than one type of access.

Notes:

· The access mode defines the direction of I/O transfers.

· Because OS-9 files are byte-addressed and are unformatted, you can set up the filing system you want for a particular application. Your system can read the data contained in a file as single bytes or in groups of any size you want.

· You can expand a file using PRINT, WRITE, or PUT statements to write beyond the current end-of-file.
Examples:

OPEN #TRANS,"transportation":UPDATE

OPEN #SPOOL,"/user4/report":WRITE

OPEN #OUTPATH,name$:UPDATE+EXEC

Sample Program:

This procedure opens a path to both the SYS directory on Drive /DO and the error message file.

PROCEDURE reader

[]DIM A:STRING[80]

[]DIM PATH:BYTE

[]OPEN #PATH,"/D0/SYS/ERRMSG":READ

[]WHILE EOF(#PATH)<>TRUE DO

[]READ #PATH,A

[]PRINT A

[]ENDWHILE

[]CLOSE #PATH

[]END

OR Performs a Boolean OR operation

Syntax: operand l OR operand2

Function: Performs an OR operation on two or more values, returning a Boolean value of either TRUE or FALSE.

Parameters:

operandl
Either numeric or string values.
operand2

Examples:

PRINT A>3 OR B>3
PRINT A$="YES" or B$="YES"

Sample Program:

This procedure asks you to type a word or phrase, then converts all lowercase characters to uppercase. It uses OR to test for a character in your word or phrase that is outside of the ASCII values for lowercase letters. If it is, the character does not need converting.

PROCEDURE uppercase

[]DIM PHRASE,NEWSTRING:STRING[80]; CHARACTER: STRING[1]; T,X:INTEGER

[]NEWSTRING="" \PHRASE=""

[]PRINT "Type a phrase in lowercase and I will make it uppercase."

[]INPUT PHRASE

[]FOR T=1 TO LEN(PHRASE)

[]CHARACTER=MID$(PHRASE,T,1)

[]X=ASC(CHARACTER)

[]IF X<97 OR X>122 THEN

[]NEWSTRING=NEWSTRING+CHARACTER

[]ELSE

[]X=X-32

[]NEWSTRING=NEWSTRING+CHR$(X)

[]ENDIF

[]NEXT T

[]PHRASE=NEWSTRING

[]NEWSTRING=""

[]PRINT PHRASE

[]END

PARAME
stablishes variables to receive from another procedure

Syntax:
PARAM variable[,...] [: type] [; variable] [,...] [: type] [...]

Function: Defines the parameters that a called procedure expects to receive from the procedure that calls it. When using PARAM, be sure that the total size of each parameter in the calling procedure's RUN statement is the same as the defined size in the called procedure's PARAM statement.

Parameters:

variable
A simple variable, an array structure, or a complex data structure.
type

Byte, Integer, Real, Boolean, String, or user defined.

Notes:
· BASIC09 checks the size of each parameter to prevent accidental access to storage other than that assigned to the parameter. However, BASIC09 does not check that parameters are of the proper type. In most cases you must be sure that types evaluated in RUN statements match the types defined in the PARAM statements.

However, because BASIC09 does not perform type checking, it is possible to perform useful but normally illegal type conversions of identically-sized data structures. For example, you could pass a string of 80 characters to a procedure expecting a byte array of 80 elements. Each character in the string is assigned a corresponding position in the array.

· You declare simple arrays by using the variable name, without a subscript, in a PARAM statement
· You can declare several variables of the same type by separating them with commas. To separate variables of different types, follow each type group with a colon, the type name, and then a semicolon.

· If you do not include a maximum length for a string variable enclosed in brackets following the type, like this:
DIM name:string[251]

BASIC09 uses a default length of 32 characters for strings. You can declare shorter or longer lengths, to the capacity of BASIC09's memory.

· Arrays can have one, two, or three dimensions. The PARAM format for dimensioned arrays is the same as for simple variables except you must follow each array name with a subscript, enclosed in parentheses, to indicate its size. The maximum array size is 32767.

· Arrays can be either of the standard BASIC09 type, or of a user-defined type. To create your own data types for simple variables, arrays, and complex data structures, see TYPE.

Examples:

PARAM NUMBER: INTEGER

PARAM NAME:STRINGL25];ADDRESS:STRINGL30J;ZIP: INTEGER

PARAM N01,N02,NO3:REAL;NO4,NO5,NOG:INTEGER;NO7: BYTE

Sample Program:
The first procedure asks you to enter a decimal number. Then, it asks you to choose whether you want to convert the number to binary or hexadecimal. Depending on your choice, the procedure calls (using RUN) either a procedure named Binary or a procedure named Hex. It passes the number you typed to the appropriate procedure for conversion

PROCEDURE convert
[]DIM NUMBER,CHOICE:INTEGER
[]PRINT USING "S80^"; "Hexadecimal – Binary Conversion Program"
[]PRINT
10[]INPUT "Number to convert...",NUMBER
[]IF NUMBER=0 THEN
[]END
[]ENDIF
[]INPUT "Choose: (1) Binary or (2) Hex...",CHOICE
[]ON CHOICE GOTO 20,30
20[]RUN BINARY(NUMBER)
[]GOTO 10
30[]RUN HEXCNUMBER)
[]GOTO 10
[]END

PROCEDURE binary
[]DIM NUM,X,STORAGE:INTEGER; BI :STRING; ARRAY(50,2):STRING
[]PARAM NUMBER:INTEGER
[]COUNT=0
[]BI="" \NUM=0 \X=0 \STORAGE=0
[]NUM=LOG10CNUMBER)/.3
[]NUM=2^NUM \STORAGE=NUMBER
[]REPEAT
[]X=NUMBER/NUM
[]IF X>0 THEN
[]BI=BI+"1 "
[]NUMBER=MOD(NUMBER,NUM)
[]ELSE
[]BI=BI+"0"
[]ENDIF
[]NUM=NUM/2
[]UNTIL NUM<=1
[]IF NUMBER>0 THEN
[]BI=BI+"1"
[]ELSE
[]BI=BI+"0"
[]ENDIF
[]PRINT STORAGE; " = "; BI; " in binary."
[]PRINT
[]END

PROCEDURE hex
[]DIM NUM,X,STORAGE:INTEGER; TABLE,HX:STRING; ARRAYC50,2):STRING
[]PARAM NUMBER:INTEGER
[]TABLE="123456789ABCDEF"
[]HX="" \NUM=0 \X=0 \STORAGE=0
[]NUM=LOG10(NUMBER)/1.2
[]NUM=16^NUM \STORAGE=NUMBER
[]REPEAT
[]X=NUMBER/NUM
[]IF X>0 THEN
[]HX=HX+MID$(TABLE,X,1)
[]NUMBER=MOD(NUMBER,NUM)
[]ELSE HX=HX+"0"
[]ENDIF
[]NUM=NUM/ 16
[]UNTIL NUM<=1
[]IF NUMBER>O THEN
[]HX=HX+MID$(TABLE,NUMBER,1)
[]ELSE
[]HX=HX+"0"
[]ENDIF
[]PRINT STORAGE; “ = “; HX; " in hexadecimal."
[]PRINT
[]END

PAUSE Suspends execution and enters Debug

Syntax: PAUSE text
Function: Suspends the execution of a procedure and causes BASIC09 to enter the DEBUG mode. If you include text with the PAUSE command, it is displayed on the screen.

Place PAUSE statements in a program temporarily to observe the way in which the procedure operates and to track down programming errors. When the procedure is operating correctly, remove the PAUSE statement.

After using DEBUG, you can continue execution of the paused procedure with the CONT command.

Parameters:

text

A message you want PAUSE to display on the screen when BASIC09 executes the statement.

Examples:

PAUSE

PAUSE The array is now full.

PEEK

Returns the value in a memory location

Syntax:
PEEK(mem)

Function: Returns the value of a memory byte as a decimal integer. The value returned is in the range 0 to 255. PEEK is the complement of the POKE statement.

See also ADDR.

Parameters:

mem
An integer value representing the location of the memory byte you want to examine. The memory byte is relative to the current process's address space.

Examples:

PRINT PEEKC15250)

MEMVAL = PEEKC4450)

 Sample Program:

This procedure asks you to type a phrase in uppercase characters. It then uses ADDR to locate the area in memory where BASIC09 stores the phrase. Next, it reads each character from memory with PEEK, converts it to lowercase if necessary, and pokes the new value back into the same location. When the procedure displays the contents of the phrase, it is all lowercase.

PROCEDURE lowercase

[]DIM LOC,T:INTEGER; PHRASE:STRING[80]

[]PRINT "Type a phrase in UPPERCASE and I'll make it lowercase."

[]INPUT PHRASE

[]LOC=ADDR(PHRASE)

[]FOR T=LOC TO LOC+LEN(PHRASE)

[]X=PEEK(T)

[]IF X>32 AND X<91 THEN

[]X=X+32

[]POKE T,X

[]ENDIF

[]NEXT T

[]PRINT PHRASE

[]END

PI
Returns the value of pi

Syntax: PI

Function: Returns the constant value 3.14159265.

Parameters:
None
Examples:

PRINT "The area of a circle with a radius of 6 inches ir 11;PI*6A

Sample Program:

This procedure uses the formula (PI + 2)/15 as a basis for calculating a screen position. Taking the sine of the formula, it prints a sine wave of asterisks down the screen.

PROCEDURE picalc
[]DIM FORMULA,CALCULATE,POSITION:REAL
[]SHELL "DISPLAY 0C"
[]FORMULA=(PI+2)/15
[]CALCULATE=FORMULA
[]SHELL "TMODE -PAUSE"
[]FOR T=0 TO 100
[]CALCULATE=CALCULATE+FORMULA
[]POSITION=INT(SIN(CALCULATE)*10+16)
[]PRINT TAB(POSITION); "*"
[]NEXT T
[]SHELL "TMODE PAUSE"
[]END

POKE
Stores a value in a memory location

Syntax:

POKE mem, value
Function: Stores a value at the specified memory address, relative to the current process's address space. Mem is an absolute address at which BASIC09 stores a byte type value. POKE is the complement of the PEEK statement.

You should use care when using POKE. Because it changes the value in memory, a POKE to the wrong portion of memory could cause OS-9, BASIC09, or your procedures to malfunction until you reboot the system.

See also ADDR.

Parameters:

mem

An integer value representing the location of the memory byte you want to change.
value
The value to store in the specified memory location.

Examples:

POKE 1 5250 , 1 3

Sample Program:

This procedure asks you to type a phrase in uppercase characters. It then uses ADDR to locate the area in memory where BASIC09 stores the phrase. Next, it reads each character from memory, converts it to lowercase if necessary, and uses POKE to store the new value back in the same location. When the procedure next displays the contents of the phrase, it is all lowercase.

PROCEDURE lowercase

[]DIM LOC,T:INTEGER; PHRASE:STRING[80]

[]PRINT "Type a phrase in UPPERCASE and I'll make it lowercase."

[]INPUT PHRASE

[]LOC=ADDR(PHRASE)

[]FOR T=LOC TO LOC+LEN(PHRASE)

[]X=PEEK(T)

[]IF X>32 AND X<91 THEN

[]X=X+32

[]POKE T,X

[]ENDIF

[]NEXT T

[]PRINT PHRASE

[]END

POS
Returns cursor's column position

Syntax:
POS

Function: Returns the current column position of the cursor.

Parameters:

None

Examples:

PRINT POS

Sample Program:

This procedure is a simple typing program that uses POS to make sure that words are not split when you type to the end of the screen. After you type 25 characters on a line, the procedure breaks the line at the next space character.

PROCEDURE wordwrap
[]DIM CHARACTER:STRING[1]
[]PRINT USING "S32^"; "Word Wrap Program"
[]PRINT USING "S32^"; "Press [CTRL][C] to Exit"
[]PRINT
[]SHELL "TMODE -ECHO"
[]WHILE CHARACTER<>" " DO
[]GET #1 ,CHARACTER
[]PRINT CHARACTER;
[]IF POS>25 AND CHARACTER=" " THEN
[]PRINT CHR$(13)
[]ENDIF
[]ENDWHILE
[]SHELL "TMODE ECHO"
[]END

PRINT
Displays text

Syntax:

PRINT [#path] [TAB(pos);] data[;data...]

Function: Prints numeric or string data on the video display unless another path is specified.

Parameters:

path
The number corresponding to an opened device or file. If you do not specify path, the default
is # 1, the video screen (standard output device). To print to another device or file, first OPEN a path to that file or device (see OPEN).

pos
A column number that tells TAB where to begin printing. Specify any number from 0 to the width of your video display.

data
Any numeric or string constant or variable. Enclose string constants within quotation marks. All data items must be separated by a semicolon or comma.

Notes:

· If you specify more than one data item in the statement, separate them with commas or semicolons.

· If you use commas, PRINT automatically advances to the next tab zone before printing the next item. In BASIC09, tab zones are 16 characters apart.

· If you use semicolons or spaces to separate data items, BASIC09 prints the items without any spaces between them. BASIC09 begins the next print item immediately following the end of the last print item.

· If you end a print item without any trailing punctuation, PRINT begins printing at the beginning of the next line

· If the data being printed is longer than the display screen width, PRINT moves to the next line and continues printing the data.

· TAB causes BASIC09 to begin displaying the specified data at the column position specified by TAB. If the output line is already past the specified TAB position, PRINT ignores TAB.

· You can concatenate items for printing using the plus (+ symbol, for example: print "hello "+name$+" +lastname$.

· PRINT displays REAL numbers with nine or fewer digits in regular format. It displays REAL numbers with more than nine digits in exponential format. For example, 1073741824 is displayed as 1.07374182E+09.

· You must enclose string constants within quotation marks.

Examples:

PRINT A$

PRINT "Menu Items"

PRINT COUNT

PRINT VALUE,TEMP+Cn/2.5),LOCATION$

PRINT #PRINTER-PATH,"The result i5 ";NUMBER

PRINT #OUTPATH FMT$,COUNT,VALUE

PRINT "what is"+NAME$+`s age? ";

PRINT "INDEX: ";I;TAB(25);"VALUE ";VALUE

Sample Program:

This procedure asks you to type a word or phrase, then displays it backwards by reading each character from end to beginning and using PRINT to display it on the screen.

PROCEDURE reverse

DIM PHRASE,TITLE:STRING; T,BEGIN:INTEGER

[]DIM INSTRUCTIONS:STRING[43]

[]TITLE="Word Reversing Program"

[]INSTRUCTIONS="Type a word or phrase you want to reverse: "

[]PRINT TITLE
[]PRINT "____________________________"
[]WHILE PHRASE<>”” DO
[]PRINT
[]PRINT INSTRUCTIONS
[]INPUT PHRASE
[]BEGIN=LEN(PHRASE)
[]PRINT "This is how your phrase looks backwards:"
[]FOR T=BEGIN TO 1 STEP -1
[]PRINT MID$(PHRASE,T,1);
[]NEXT T
[]PRINT
[]ENDWHILE
[]END

PRINT USING Displays formatted text

Syntax:

PRINT [#path] USING [format,] data[;data...]

Function: Prints data using a format you specify. This statement is especially useful for printing report headings, accounting reports, checks, or any document requiring a specific format. USING is actually an extension of the PRINT statement; therefore, the same rules that apply to the PRINT statement also apply to the PRINT USING statement (see PRINT).

Parameters:

path
The number corresponding to an opened device or file. If you do not specify pith, the default is # 1, the video screen (standard output device). To print to another device or file, first OPEN a path to that file or device (see OPEN).

format
An expression specifying the arrangement of the displayed data.

data
Any numeric or string constant or variable. Always enclose string constants within quotation marks. Each data item must be separated by semicolons or commas.

Notes:

Each PRINT USING format specifier begins with a single identifier letter that specifies the type of format, as shown in the following table:

B
Boolean format

E
exponential format

H
hexadecimal format

I

integer format

R
real format

S
string format

Follow the identifier letter with a constant number that specifies the field width. This number indicates the exact number of printcolumns the output occupies. It must allow for both the data and any overhead characters, such as sign characters, decimal points, exponents, and so on.

Optionally, you can add a justification indicator to the format expression. The indicators are <, >, and ^. The meaning of these indicators varies, depending on the format type in which you use them. See the format type descriptions for specific information.

Note: Do not use any spaces within format expressions.

The following are the format type descriptions:

Real

Use this format for real, integer, or byte type numbers. The total field width specification must include two overhead positions for the sign and decimal point. The field width has two parts, separated by a period. The first part specifies the integer portion of the field. The second part specifies how many fractional digits to display to the right of the decimal point.

If a number has more significant digits than the field allows, BASIC09 uses the undisplayed digits to round the number within the correct field width.

The justification modes are:

< Left justify with leading sign and trailing spaces. This is the default if you omit a justification indicator.

>ight justify with leading spaces and sign.

^ight justify with leading spaces and trailing sign (financial format).

Some examples and their results are:

PRINT USING 1IR8.2<11,5678.123 5678.12

PRINT USING 1IR8.2>11,5678.123 5678.12

PRINT USING "R8.2>",12.3 12.30

PRINT USING "R8.2>",-555.9 -555.90

PRINT USING "R10.2^",-6722.4599 6722.46-

Exponential

Use this format to display real, integer, or byte values in the scientific notation format-using a mantissa and decimal exponent. The field has two parts: the first part must allow for six overhead positions for the mantissa sign, decimal point, and exponent characters.
The justification modes are:

<
Left justify with leading sign and trailing spaces. This is the default if you omit a justification indicator.

>

Right justify with leading spaces and sign.

Some examples and their results are:

PRINT USING "E1 2. 3",1 234.567 1.235E+03
PRINT USING "E13.6>",-.001234 -1.234000E-03
PRINT USING "E18. 5>",1 23456789 1.23457E+08

Integer

Use this format to display integer, byte, or real type numbers in an integer or byte format. The field width must allow for one position of overhead for the sign.

The justification modes are:

<
Left justify with leading sign and trailing spaces. This is the default if you omit a justification indicator.

>
Right justify with leading spaces and sign.

^
Right justify with leading sign and zeroes.

Some examples and their results are:

PRINT USING "I4<",10 10
PRINT USING "I4<",10 10
PRINT USING "I4^",-10 –010

Hexadecimal

Use this format to display any data type in hexadecimal notation. The field width specification determines the number of hexadecimal characters BASIC09 displays. If the data to display is string type, this function displays the ASCII value of each character in hexadecimal.

The justification modes are:

<
Left justify with trailing spaces. This is the default if you omit a justification indicator.

>
Right justify with leading spaces.

^
Center digits.

The number of bytes of memory used to represent data varies according to data type. The following chart suggests field widths for specific data types:

Memory

Field Width

Type

Bytes

To Specify

Boolean and Byte
1

2

Integer

2

4

Real

5

 10

String

1 per

2 times the string

character

length

Some examples and their results are:

PRINT USING "H4",100 0064
PRINT USING "H4",-1 FFFF
PRINT USING "H81%--,--ABC" 414243

String

Use this format to display string data of any length. The field width specifies the total field size. If the string to display is shorter than the field size, PRINT USING pads it with spaces according to the justification mode. If the string to display is longer than the specified field width, PRINT USING truncates the right portion of the string.

The justification modes are:

<
Left justify with trailing spaces. This is the default if you omit a justification indicator.

>
Right justify with leading spaces.

^
Center characters.

 Some examples and their results are:

PRINT USING "S9<","HELLO" HELLO
PRINT USING "S9>","HELLO" HELLO
PRINT USING "S9^","HELLO" HELLO

Boolean

Use this format to display Boolean expression results. BASIC09 converts the result of the expression to the strings "True" or "False." The format and results are identical to STRING formats.

The justification modes are:

<
Left justify with trailing spaces. This is the default if you omit a justifcation indicator.

>
Right justify with leading spaces.

^
Center characters.

If A = 5 and B = 6, some examples and their results are:

PRINT USING "B9<",A<B True

PRINT USING "B9>",A>B Fa1se

PRINT USING "B9"",A=B Fa1se

Control Specifiers You can also use control specifiers within PRINT USING formats. The three specifiers are:

Tn

Tab. n specifies a tab column at which to display the next data.

Xn
Spaces. n specifies a number of spaces to insert.

`text'
Constant string. text is a string that is constant to the format.

An example and its result is:

PRINT USING "'Addre55',X1,H4,X4,'Data',X1,H2",1000,100
Address 03E8 Data 64

Repeat

You can repeat identical sequences of specifications using parentheses within a format specification. Enclose the group of specifications you wish to repeat, preceded by a repetition count, such as:

”2(X2,r10.5” in place of “X2,R10.5,X2,R10.511”

”2(I2,2(X1,S4))" in place of "I2,X1 ,S4,X1,S4,I2,X1,S4,X1,S4"

Sample Program:

This program looks at memory locations 32000 to 32010 and displays their contents in decimal, hexadecimal, and binary. PRINT USING formats the display in columns.

PROCEDURE memlook
[]DIM NUMBER,T,MEM,VALUE:INTEGER
[]DIM X,NUM:INTEGER; CHARACTER,BI:STRING
[]PRINT "[]Addr.[]Dec.[]Hex.[]Bin[][][][][][]ASCII"
[]FOR Z=32000 TO 32010
[]BI=""
[]NUMBER=PEEK(Z)
[]IF NUMBER>0 THEN
[]GOSUH 100
[]ENDIF
[]IF PEEK(Z)<32 THEN
[]CHARACTER=""
[]ELSE
[]CHARACTER=CHR$(PEEK(Z))
[]ENDIF
[]IF PEEK(Z)>0 THEN
[]PRINT USING "I6<,T7,I4<,X2,H4<,X1,S8<,X2,S1",Z,PEEK(Z),PEEK(Z),

BI,CHARACTER
[]ELSE PRINT USING "I6<,T7,I4<,X2,H4<,X1,S8>,X2,S1",Z,0,0,"0000"," "
[]ENDIF
[]NEXT Z
[]END

100[]NUM=LOG10(NUMBER)/.3
[]NUM=2^NUM
[]REPEAT
[]X=NUMBER/NUM
[]IF X>0 THEN BI=BI+"1"
[]NUMBER=MOD(NUMBER,NUM)
[]ELSE BI=BI+"0"
[]ENDIF
[]NUM=NUM/2
[]UNTIL NUM<=1
[]IF NUMBER>0 THEN
[]BI=BI+”1”
[]ELSE BI=BI+"0"
[]ENDIF
[]RETURN
[]END

