BASIC09

 Reference
11-50
BASIC09

 Reference
11-50
BASIC09

 Reference
11-64

LEN Returns the length of a string
Syntax:
LEN(string)
Function: Returns the number of characters in a string. Counts blanks or spaces as characters.

Parameters:
string

A literal string or a variable containing string characters.

Examples:
PRINT LEN("AHCDEFGHIJKLM")

PRINT LEN(NAME$)

NAME$ = "JOE"
ADDRESS$ _ "2244 LANCASTER"
TOTALLEN = LEN(NAME$)+LEN(ADDRESS$)
Sample Program:
The following procedure uses LEN to determine which name in a list is longest.
PROCEDURE longname
[]DIM NAMES,LNAME:STRING; LONGEST,LENGTH:INTEGER
[]NAMES-"" \LNAME="" \LENGTH=0 \LONGEST=0
[]FOR T=1 TO 10
[]READ NAMES
[]LENGTH=LEN(NAMES)
[]IF LONGEST<LENGTH THEN
[]LONGEST=LENGTH
[]LNAME=NAMES
[]ENDIF
[]NEXT T
[]PRINT "The longest name is "; LNAME; " with "; LONGEST; " characters,"
[]END
[]DATA "Joe Blonski","Mike Marvel","Hal Skeemish","Fred Laungly"
[]DATA "Jane Misty","Wendy Paston","Martha Upshong","Jacqueline Rivers"
[]DATA "Susy Reetmore","Wilson Creding
LET Assigns a variable's value
Syntax:
[LET] variable = expression
Function: Assigns a value to a variable. BASIC09 does not require the LET statement to assign values but does accept it in order to be compatible with versions of BASIC that do require it.

Parameters:
variable

The variable to which you want to assign a value.
expression

Either a numeric or string constant or a numeric or string expression.
Notes:
· The result of the LET expression must be of the same type as, or compatible with, the variable in which it is stored.

· BASIC09's assignment function accepts either = or : = as assignment operators. The : = form helps to distinguish assignment operations from comparisons (test for equality) and is compatible with Pascal programming.

· Use BASIC09's assignment function to copy entire arrays or complex data structures to another array or complex data structure. The data structures do not need to be of the same type or shape, but the size of the destination structure must be the same as or larger than the source structure. This means the assignment function can perform unusual type conversions. For example, you can copy a string variable of 80 characters into a one-dimensional array of 80 bytes.

Examples:
LET A = 5
LET A := H
ANSWER = A * H
LET NAME$:_ "JOE"
NAME $ = FIRSTNAME$ + " " + LASTNAME$
Sample Program:
This procedure uses LET to assign a random value to the variable R.
PROCEDURE getint
[]DIM T: INTEGER
[]FOR T=1 TO 10
[]LET R=RND(50)-25
[]PRINT R,INT(R)
[]NEXT T
[]END
LNOT Performs a logical NOT on a number
Syntax:
LNOT(value)
Function: Performs the logical NOT function on an integer or byte type number. The operation involves a bit-by-bit logical complement operation of the number you specify. For instance, if value is 188, the logic looks like this:
188 Decimal = 10111100 Binary
NOT 10111100

= 01000011
01000011 Binary = 67 Decimal

LNOT changes each bit in a binary number to its complementary binary value all 1 values become 0 and all 0 values become 1. LNOT returns an integer result; it is not a Boolean operator.

Parameters:
value

Any decimal or hexadecimal integer or byte number. Precede hexadecimal numbers with $.
Examples:
PRINT LNOT(88)
A = LNOT(B)
A = LNOT($44)
Sample Program:
This procedure uses one byte (contained in the variable STORAGE) to indicate the results of eight questions. Each bit in the byte indicates a Yes or No answer (Yes =1 and No = 0). The combination logic of LAND and LNOT masks the byte X so that it affects only the appropriate bit of STORAGE to set it to 0 if the answer is No. LOR sets the appropriate bit to 1 if the answer is Yes. The procedure operates in conjunction with the LXOR sample program
PROCEDURE questions
[]DIM QUESTION;STRING[60]; T;INTEGER; X,STORAGE;BYTE
[]DIM ANSWER;STRING[1]
[]X=1
[]FOR T=1 TO 8
[]READ QUESTION
[]PRINT QUESTION; " (Y/N)? ";
[]GET #O,ANSWER
[]PRINT
[]IF ANSWER="y" OR ANSWER="Y" THEN
[]STORAGE=LOR(STORAGE,X)

(* Answer is yes, set bit to 1,
[]ELSE
[]STORAGE=LAND(STORAGE,LNOT(X))

(* Answer is no, set bit to 0,
[]END I F
[]X=X*2
[]NEXT T
[]PRINT STORAGE
[]RUN summary(STORAGE)
[]END
[]DATA "Do you have more than one Color Computer"
[]DATA "Do you use your Color Computer for games"
[]DATA "Do you use your Color Computer for word processing"
[]DATA "Do you use your Color Computer for business applications"
[]DATA "Do you use your Color Computer at home"
[]DATA "Do you use your Color Computer at the office"
[]DATA "Do you use your Color Computer more than two hours a day"
[]DATA "Do you share your Color Computer with others"
LOG Returns natural logarithm
Syntax:
LOG(nUmber)
Function: Computes the natural logarithm of a number that is greater than zero. BASIC09 returns the logarithm as a real type result.
Parameters:
number
Any integer, byte, or real number.
Examples:
PRINT LOG(3 . 1 41 59)
LOGVALUE = LOG(88/PI)
Sample Program:
This procedure calculates the natural log and the log to base 10 of the values 1-7.
PROCEDURE logs
[]DIM NUM,T:INTEGER
[]FOR T=1 TO 7
[]PRINT "The LOG of "; T; " to the natural base = "· LOG(T)
[]PRINT "The LOG of "; T; " to base 1 0 = "; LOG10(T)
[]PRINT
[]NEXT T
[]END
LOG10 Returns base 10 logarithm
Syntax:
LOG 10(number)
Function: Calculates the base 10 logarithm of a number. BASIC09 returns the logarithm as a real number.

Parameters:

number
Any byte, integer, or real value.

Examples:

PRINT LOG1 0 ($ 45

PRINT LOG1 0 (A

PRINT LOG10(A/12)

 Sample Program:

This procedure calculates the natural log and the log to base 10 of the values 1-7.

PROCEDURE logs
[]DIM NUM,T:INTEGER
[]FOR T=1 TO 7
[]PRINT "The LOG of "; T; " to the natural base = "· LOG(T)
[]PRINT "The LOG of "; T; " to base 10 = "; LOG10(T)
[]PRINT
[]NEXT T
[]END

LOOP/ENDLOOP
Establishes/Closes a loop
Syntax:
LOOP
Statement(s)
ENDLOOP
Function: Establishes a loop in which you can install EXITIF tests at any location. The LOOP and ENDLOOP statements define the body of the loop. EXITIF tests for a condition which, if TRUE, causes alternate actions, the transfer of procedure execution to another routine, or both.
If you do not include an EXITIF statement, the loop cannot terminate.
Parameters:
statements)
One or more procedure lines to execute within the loop.
Examples:
LOOP
COUNT = COUNT+1
EXITIF COUNT > 100 THEN
DONE = TRUE
ENDEXIT
PRINT COUNT
X=COUNT/2
ENDLOOP
INPUT X,Y
LOOP
PRINT
EXITIF X<0 THEN
PRINT "X became 0 first"
END
ENDEXIT
X = X-1
EXITIF Y=0 THEN
PRINT "Y became 0 first"
END
ENDEXIT
Y=Y-1
ENDLOOP
Sample Program:
This procedure simulates a gambling machine that awards cash returns depending on a random selection of kinds of fruits. You begin with a stake of $25 and win or lose according to random selections of the procedure.

The program uses LOOP/ENDLOOP to keep operating until you run out of cash.
PROCEDURE bandit
[]DIM FRUIT1,FRUIT2,FRUIT3,STAKE:INTEGER; FRUIT(10):STRING[G]

[]STAKE=25

[]PRINT \ PRINT "You have $"; STAKE; " to play with."
[]FOR T=1 TO 10
[]READ FRUIT(T)
[]NEXT T
[]LOOP
[]FRUIT1=RNDC9)+1 \FRUIT2=RNDC9)+1 \FRUIT3=RNDC9)+1
[]PRINT FRUIT(FRUIT1); " "; FRUIT(FRUIT2); " "; FRUIT(FRUIT3)
[]IF FRUIT(FRUIT1)=FRUIT(FRUIT2) AND FRUIT(FRUIT1)=FRUIT(FRUIT3) THEN
[]STAKE=STAKE+10
[]ELSE
[]IF FRUIT(FRUIT1)=FRUIT(FRUIT2) OR FRUIT(FRUIT2)=FRUIT(FRUIT3) THEN
[]STAKE=STAKE+2
[]ELSE
[]IF FRUIT(FRUIT1)=FRUIT(FRUIT3) THEN
[]STAKE=STAKE+1
[]ELSE STAKE=STAKE-1
[]ENDIF
[]ENDIF
[]ENDIF
[]EXITIF STAKE<1 THEN
[]PRINT
[]PRINT "You're Busted ...Hetter go home."
PROCEDURE questions
DIM QUESTION:STRING[60]; T:INTEGER; X,STORAGE:BYTE
[]DIM ANSWER:STRING[1]

[]X=1
[]FOR T=1 TO 8
[]READ QUESTION
[]PRINT QUESTION; " (Y/N)? ";
[]GET #O,ANSWER
[]]PRINT
[]IF ANSWER="y" OR ANSWER="Y" THEN
[]STORAGE=LOR(STORAGE,X)
[]ELSE
[]STORAGE=LAND(STORAGE,LNOT(X))
[]ENDIF
[]X=X*2
[]NEXT T
[]PRINT STORAGE
[]RUN summary(STORAGE)
[]END
[]DATA "Do you have more than one Color Computer"
[]DATA "Do you use your Color Computer for games"
[]DATA "Do you use your Color Computer for word processing"
[]DATA "Do you use your Color Computer for business applications"
[]DATA "Do you use your Color Computer at home"
[]DATA "Do you use your Color Computer at the office"
[]DATA "Do you use your Color Computer more than two hours a day"
[]DATA "Do you share your Color Computer with others
LXOR Returns logical XOR of two numbers
Syntax:
LXOR(valuel, value2
Function: Performs the logical XOR function on two-byte, or integer-type, values. For instance, if you LXOR the numbers 5 and 6 the logic is like this:
Decimal 5 = Binary 0101

Decimal 6 = Binary 0110

0101
LXOR 0110
=
0011 = 3 Decimal
If one bit or the other bit in the evaluation is 1, but not both, LXOR returns a result of 1. Otherwise, LXOR returns a result of 0.
Parameters:
valuel

A byte or integer number.
value2

A byte or integer number.
Examples:
PRINT LXOR(11,12)

PRINT LXOR($20,$FF)
Sample Program:
The following program summarizes the results of the sample program for LOR. The LOR program stored the answers to eight questions in a single byte. This procedure reads the byte and displays appropriate comments. LXOR checks to see if two of the answers are "yes" or "no
[]ENDEXIT
[]PRINT "Your Stake is now $"; STAKE; "."
[]PRINT
[]PRINT
[]INPUT "Press ENTER to pull again...",Z$
[]ENDLOOP
[]END
[]DATA "ORANGE","APPLE","CHERRY","LEMON","BANANA"
[]DATA "PEAR", "PLUM","PEACH","GRAPE","APRICOT"
LOR Returns logical OR of two numbers
Syntax:
LOR(valuel, valueZ
Function: Performs the logical OR function on a byte- or integer-type value. The operation involves a bit-by-bit logical OR operation on two values. For instance, if you LOR the numbers 5 and 6, the logic is like this:
Decimal 5 = Binary 0101

Decimal 6 = Binary 0110

0101

OR
0110
=
0111
 = 7 Decimal

If one bit or the other bit is 1, LOR returns a result of 1. Otherwise, LOR returns a result of 0.

Parameters:
valuel

A byte or integer number.

value2

A byte or integer number.
Examples:
PRINT LOR(11,12)

PRINT LORC$20,$FF)
Sample Program:
This procedure stores the answers to eight "yes" or "no" questions in one byte, named STORAGE. If you answer "yes" to a prompt, the procedure sets a corresponding bit to 1. If you answer "no" to a prompt, the procedure sets a corresponding bit to 0. The procedure uses LOR to set bits to 1 by masking all bits except the one it needs to set. The procedure operates in conjunction with the LXOR sample program
PROCEDURE summary
[]DIM T: INTEGER; A,H,X,TEST,TEST2:BYTE; SUMMARY:STRING[50]
[]PARAM STORAGE:BYTE
[]A=0 \H=0
[]PRINT \ PRINT
[]PRINT "The following is a summary of the questionnaire answers:"
[]PRINT
[]PRINT "The surveyee: "
[]X=1
[]FOR T=1 TO 8
[]TEST=LAND(STORAGE,X)
[]READ SUMMARY
[]IF TEST>0 THEN
[]PRINT TAB(10); SUMMARY
[]ENDIF
[]X=X*2
[]NEXT T
[]IF LAND(STORAGE,128)>0 THEN
[]A =1
[]ENDIF
[]]IF LAND(STORAGE,64)>0 THEN
[]B =1
[]ENDIF
[]TEST2=LXOR(A,B)
[]IF TEST2=1 THEN
[]PRINT "This computer owner either uses the computer"
[]PRINT "more than two hours a day or shares it with others."
[]PRINT "This is a heavy use situation."
[]ENDIF
[]TEST2=LAND(A,B)
[]IF TEST2=1 THEN
[]PRINT "This computer user uses the computer more than two”

[]PRINT "hours per day and shares it with others. This is a"
[]PRINT "super heavy use situation."
[]ENDIF
[]END
[]DATA "Uses more than one computer"
[]DATA "Plays games"
[]DATA "Uses the computer for word proce55ing"
[]DATA "U5e5 the computer for bu5ine55"
[]DATA "Keeps a Color Computer at home"
[]DATA "Keeps a Color Computer at the office"
[]DATA "Uses the computer more than two hours a day"
[]DATA "Shares the computer with others"
MID$ Returns characters from within a string
Syntax:
MID$(string,begin,length)
Function: Returns a substring length characters long, beginning at begin. Use MID$ to "take apart" a string consisting of a number of elements.
Parameters:
string

A sequence of string type characters or a
begin

The position (an integer value) in string of the first character to retrieve.
length

The number of characters you want to retrieve.
Examples:
NAME$ = "JONES, JOHN M."
LASTNAME$ = MID$(NAME$,8,6)
FIRSTNAME$ = MID$(NAME$,1,S)
INITIAL$ = MID$(NAME$,1S,2)
Sample Program:
This procedure reverses a word or phrase you type. MID$ reads each character in your phrase from the end to the beginning.
ROCEDURE reverse

[]DIM PHRASE:STRING; T,BEGIN:INTEGER
[]PRINT "Type a word or phrase you want to reverse:";
[]PRINT
[]INPUT PHRASE
[]BEGIN=LEN(PHRASE)
[]PRINT "This is how your phrase looks backwards:"
[]FOR T=BEGIN TO 1 STEP -1
[]PRINT MID$(PHRASE,T,1);
[]NEXT T
[]PRINT
[]END
MOD
Returns modulus of a division
Syntax:
MOD(numberl,number2)
Function: Returns the modulus (remainder) of a division. MOD divides numberl by number2 and calculates the remainder. You can use MOD to put a limit on a numeric variable. For instance, regardless of the value of X, MOD(X,3) produces numbers only in the range 0 through 2. MOD(X,5) produces numbers only in the range of 0 through 4.
You can use MOD to cause repeating sequences. For instance, in a loop, MOD(X,3) produces a repeating sequence of 0, 1, 2, where X increases by 1 in each step of the loop.
Parameters:
numberl A byte, integer or real number dividend.

number2 A byte, integer or real number divisor.
Examples:
PRINT MOD(99,5)
 Sample Program:
This procedure uses MOD to execute repeatedly routines that display asterisks on the screen. There are eight subroutines that the MOD function selects over and over through 100 passes.
PROCEDURE stardown
[]DIM T: INTEGER
[]SHELL "TMODE -PAUSE"
[]FOR T=1 TO 100
[]ON MOD(T,8)+1 GOSUB 10,20,30,40,50,60,70,80
[]NEXT T
[]SHELL "TMODE PAUSE"
[]END
10[]PRINT USING "S10^","*" \ RETURN
20[]PRINT USING "S10^","**" \ RETURN
30[]PRINT USING "S10^","***" \ RETURN
40[]PRINT USING "S10^","****" \ RETURN
50[]PRINT USING "S10"","*****" \ RETURN
60[]PRINT USING "S10^","****" \ RETURN
70[]PRINT USING "S10^","***" \ RETURN
80[]PRINT USING "S10^","**" \ RETURN
[]END
NEXT Causes repetition in a FOR loop
Syntax:
FOR variable = init val TO end val [STEP
value]
[procedure statements]
NEXT variable
Function: NEXT forms the bottom end of a FOR/NEXT loop. Any program statements between FOR and NEXT are executed once for each repetition of the loop, from the initial value to end value.
Parameters:
variable
Any legal numeric variable name.
init val
Any numeric constant or variable.
end val
Any numeric constant or variable.
value

Any numeric constant or variable.
procedure

statements
Procedure lines you want to execute within the loop.

For more information, see FOR/NEXT/STEP.
NOT
Returns the complement of a value
Syntax:
NOT(value)
Function: Returns the logical complement of a Boolean value or expression.
Parameters:
value
A Boolean value (True or False), or an expression resulting in a Boolean value.
Examples:
DIM TEST:BOOLEAN
WHILE NOT(TEST) DO
A=A+1
TEST=A=H
ENDWHILE
Sample Program:

This procedure redirects the current directory listing to a file named Dirfile. It then opens Dirfile and reads the contents, displaying each line on the screen. It uses NOT in a WHILE/ENDWHILE loop to make sure that the end of the file has not been reached before trying to read another entry.
PROCEDURE readfile
[]DIM A:STRING[80]
[]DIM PATH:BYTE
[]SHELL "DIR > dirfile"
[]OPEN #PATH,"dirfile":READ
[]WHILE NOT EOF(#PATH) DO
[]READ #PATH,A
[]PRINT A
[]ENDWHILE
[]CLOSE #PATH
[]END
ON ERROR/GOTO
Establishes an error trap
Syntax:
ON ERROR [GOTO linenum]

Function: Sets an error trap that transfers control to the specified line number in a procedure. This lets your program recover from an error and continue execution. To use these commands, your program must have at least one numbered line-the line to branch to in the event of an error.
Parameters:
linenum
The line to which you want BASIC09 to branch should an error occur.
Notes:
· ON ERROR GOTO is effective only with non-fatal, runtime errors. If such an error occurs without a preceding ON ERROR GOTO statement, BASIC09 enters the DEBUG mode. You must specify ON ERROR GOTO before an error occurs.

· You turn on error trapping by specifying ON ERROR GOTO linenum. You turn off error trapping by specifying ON ERROR without a line number.

· Use ON ERROR GOTO with the ERR function (that returns the code of the last error) to specify a particular action for a particular error. You can also use ERROR to simulate an error to test error trapping. For more information on this, see ERROR.

Examples:
[]DIM FILENAME:STRING
[]DIM PATH: INTEGER
10[]INPUT "Name of file to create? ",FILENAME
[]ON ERROR GOTO 100
[]CREATE #PATH,FILENAME:UPDATE
[]END
100[]PRINT "That file already exists...please choose another name..." []GOTO 10
[]END
Sample Program:
If you created a directory file with the GET sample program, you can use this procedure to delete files from the original directory using key characters. For instance, you might type XX as key characters. This means that any filename containing the character group XX is deleted. You can select any key characters you wish, but be sure they apply only to files you want to delete.
If you want to delete all the files in the directory, type an asterisk (*) when asked for key characters.
This procedure uses ON ERROR to let the procedure continue, even if a directory entry cannot be deleted if an entry is a subdirectory. Without the ON ERROR function, the procedure would produce an error and cease execution when it tried to delete a subdirectory.
PROCEDURE purge
[]REM Use caution with this procedure
[]REM He Sure to Specify key characters
[]REM that exist only in the files you
[]REM want to delete!
[]DIM PATH: INTEGER
[]DIM NAME(100):STRING
[]DIM WILDCARD:STRING
[]X=0
[]OPEN #PATH,"dirfile":READ
[]WHILE NOT(EOF(#PATH)) DO
[]X=X+1
[]READ #PATH,NAME(X)
[]ENDWHILE
[]FOR T=1 TO X
[]PRINT NAME(T),
[]NEXT T
[]INPUT "Wildcard Characters...",WILDCARD
[]FOR T=1 TO X
[]ON ERROR GOTO 100
[]IF SUBSTR(WILDCARD,NAME(T))>0 OR WILDCARD="*" THEN
[]PRINT "DELETING “; NAME(T); ". "
[]DELETE NAME(T)
[]ENDIF
10[]NEXT T
[]END
100[]PRINT "*[]*[]*[]ERROR,[]"; NAME(T) ; “[]cannot be deleted ...continuing.
[]GOTO 10
[]END
ON/GOSUB Jumps to subroutine on a specified condition
Syntax:
ON pos GOSUB linenum [,linenum,...]

Function: Transfers procedure control to the line number located at position pos in the list of line numbers immediately following the GOSUB command. For example, if pos equals 1, BASIC09 branches to the first line number it encounters in the list. If pos equals 2, BASIC09 branches to the second line number it encounters in the list. If pos is greater than the number of items in the list, execution continues with the next command line. To use ON/GOSUB you must have numbered lines to match the line numbers in your list. End the routines accessed by ON/GOSUB with a RETURN statement.
Parameters:

pos

An integer value pointing to a line number in a list of line numbers.
linenum
Any numbered line in the procedure.
Examples:
PRINT "You can now: C1) End the program C2) Print the results"
PRINT " C3) Try again C4) Start a new program"
INPUT "Type the letter of your-choice: ",CHOICE
ON CHOICE GOSUB 100, 200, 300, 400
