BASIC09

 Reference

- 30 -

BASIC09

 Reference

- 31 -

DATE$ Provide date and time

Syntax: DATES

Function: Returns the date and time. The OS-9 internal date is kept in the format:
yearlmonthl day hour: minutes:seconds
If your OS-9 Startup file contains the SETIME command, the system asks you to enter the date and time whenever it boots.

If it does not contain the SETIME command, the date and time start from 86/09/01:00:00:00.
You can use the normal string functions to access the data contained in DATES, but you cannot use functions or operations that attempt to change or append to its values. To reset the date or time or both, use the SHELL command, such as:
SHELL "SETIME"
Parameters: None
Examples:
PRINT DATES
Sample Program:
This program is essentially the same as the sample program for the DATA statement, except that it gets the day, month, and year from DATE$.
PROCEDURE date
[]DIM X,DAY,MONTH,YEAR,CALC:INTEGER

[]DIM ANUM,HNUM,CNUM,DNUM,ENUM,FNUM,GNUM,HNUM,INUM:INTEGER
[]DIM WEEKDAY(7):STRING[9]

[]MONTH=VAL(MID$(DATE$,4,2))
(* get month from DATES.

[]DAY=VAL(MID$(DATE$,7,2))

(* get day from DATE. []YEAR=VAL("19"$(LEFT$(DATE$,2))
(* get year from DATES.

[]FOR X=1 TO 7

[]READ WEEKDAY(X)
[]NEXT X
[]ANUM=INT(.6+1/MONTH)
[]BNUM=YEAR-ANUM
[]CNUM=MONTH+12*ANUM
[]DNUM=BNUM/100
[]ENUM=INT(DNUM/4)
[]FNUM=INT(DNUM)
[]GNUM=INT(5*BNUM/4)
[]HNUM=INT(13*(CNUM+1)/5)
[]INUM=HNUM+GNUM-FNUM+ENUM+DAY-1
[]INUM=INUM-7*INT(INUM/7)+1
[]PRINT
[]PRINT "Today is "; WEEKDAY(INUM)

[]DATA "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday"
[]DATA "Saturday"
[]END
DEG Return trigonometric calculations in degrees

Syntax: DEG
Function: Causes a procedure to calculate trigonometric values in degrees. If you do not include the DEG statement, procedures produce radian values.
Parameters: None
Examples:
DEG
Sample Program:

This procedure calculates the sine, cosine, and tangent for a value you enter. Because it uses the DEG statement, it displays the results in degrees.
PROCEDURE degcalc
[]DIM NUM:REAL
[]DEG
[]INPUT "Enter a number...”,NUM
[]PRINT
[]PRINT "Number", "SINE","COSINE","TAN"
[]PRINT “--“
[]PRINT NUM,SINCNUM),COSCNUM),TANCNUM)
[]PRINT

[]END
DELETE Erase a disk file
Syntax:
DELETE "pathname"
Function: DELETE removes a file from disk storage and releases the portion of the disk on which it resides. When you DELETE a file, it is permanently lost.
Parameters:

pathname
The complete pathlist to the file you want to delete, including the drive and one or more directories, if appropriate. You must surround the pathlist with quotation marks.
Examples:
DELETE "myf i 1 e"
DELETE "/D1/ACCOUNTS/receivable5"
Sample Program:
This procedure creates a file named Samplefile, writes data to the file, then closes it. It then lists the file before deleting it.
PROCEDURE close
[]DIM PATH:BYTE
[]CREATE #PATH,"samplefile":WRITE
(* create a file.

[]WRITE #PATH,"This file is for testing purposes only."
[]WRITE #PATH,"It will be destroyed when this procedure ends."
[]CLOSE #PATH

(* close the file.
[]SHELL "LIST 5amplefile"
[]DELETE "5amplefile"
[]END
DIM Assi variable storage
Syntax:
DIM variable[,...] [:type][;variable][,...][: type)[...]
Function: Assigns storage space and declares types for variables, arrays, or complex data structures.

Parameters:
variable
A simple variable, an array structure, or a complex data structure.
type

BYTE, INTEGER, REAL, BOOLEAN, STRING, or user defined.
Notes:
· You declare simple arrays with DIM by using the variable name, without a subscript. If you do not explicitly declare variables, the system makes them type real unless they are followed by a dollar sign ($). The system dimensions variables ending with a dollar sign ($) as strings, with a length of 32 bytes. You must declare types of all other simple variables as to type.
· You can declare several variables of the same type by separating them with commas. To separate variables of different types, follow each type group with a colon, the type name, and then a semicolon.
· Define a maximum length for a string variable by enclosing the length in brackets following the type, like this: DIM name:5tring[25]
If you do not define a maximum length, BASIC09 uses a default length of 32 characters. You can declare a shorter length or a longer length, up to the capacity of BASIC09's memory. If you try to extend a string beyond its declared length, or beyond the default length, the system ignores all extra characters. Thus the following:

DIM name:string[10]

name = "Abbernathinsky"
produces the string:
Abbernathi
· Arrays can have one, two, or three dimensions. The DIM format for dimensioned arrays is the same as for simple variables, except that you must follow each array name with a subscript, enclosed in parentheses, to indicate its size. The maximum array size is 32767.
Arrays can be either of the standard BASIC09 type or of a user-defined type. For information on creating your own types for simple variables, arrays, and complex data structures, see TYPE.
Examples:

DIM logica1:H00LEAN
DIM a,b,c:INTEGER
DIM name,addre55,zip:STRING
DIM name:STRINGL25l; addre55:STRINGt30J; zip: INTEGER
DIM not,not,no3:REAL;no4,noS,no6:INTEGER; no7:BYTE
Sample Program:
This procedure randomly selects letters and vowels to create sixletter words that might look like alien names. It first DIMS nine string variables to contain the letters selected for each name. It DIMS two integer variables to provide a loop counter and to store the number of names you request.

When asked, type the number of names you want to have the procedure generate.
PROCEDURE alien
[]DIM B,BEGIN,F,FINISH:STRING
[]DIM VOWELS,VOWEL1,VOWEL2:STRING
[]DIM MID1,MID2:STRING
[]DIM T,RESPONSE:INTEGER
[]VOWELS="aeiouy"

[]INPUT "How many alien names do you want to See?...",RESPONSE
[]BEGIN="AHCDFGHJKLMNPRSTVWXZ"
[]FINISH="ehlmnprstvwyz"

[]FOR T=1 TO RESPONSE
[]B=MID$(BEGIN,RND(19)+1,1)
[]F=MID$(FINISH,RND(12)+1,1)
[]MID1=CHR$(RND(25)+97)
[]MID2=CHR$(RND(25)+97)
[]VOWEL1=MID$(VOWELS,RND(5)+1,1)
[]VOWEL2=MID$(VOWELS,RND(5)+1,1)
[]PRINT B; VOWEL1; MID1; MID2; VOWEL2; F,
[]NEXT T

[]PRINT
[]END
DO Execute procedure lines in a loop
Syntax:
WHILE expression DO
proclines
ENDWHILE

Function: Establishes a loop that executes the procedure lines between DO and ENDWHILE as long as the result of the expression following WHILE is true. Because the loop is tested at the top, the lines within the loop are never executed unless expression is true.
Parameters:
expression
A Boolean expression (produces a result of True or False).
proclines
 Are program lines to execute if the expression is true.

See WHILE/DO/ENDWHILE for more information.
ELSE Execute alternate action
Syntax:
IF condition THEN
action
ELSE
secondary action
ENDIF
Function: ELSE provides access to a secondary action within an IF/THEN test. When the condition tested by IF is not true, BASIC09 executes the secondary action preceded by ELSE.
Parameters:
Condition

A Boolean expression (produces a result of True or False).

Action
A line number to which the procedure is to transfer execution, or a program statement. If action is a line number, do not include the ENDIF statement in the IF test.

secondary action
One or more program statements.
For more information, see IF/THEN/ELSE
END Terminate a procedure
Syntax:
END ["text"]

Function: Ends procedure execution and returns to the calling procedure, or to the highest level procedure. If you provide output text for END, it functions in the same manner as PRINT. You can use END several times in the same procedure. END is not required as the last statement in a procedure.

Parameters:
text

A literal string or a string-type variable.
Examples:
END "Program Terminated"
LAST="Session over"
END LAST
Sample Program:
This procedure calculates a loan's term, using END to terminate routines.
PROCEDURE loaner
[]DIM YOUPAY,PRINCIPLE,INTEREST,NUMPAY,YEARS,MONTHS:REAL
[]DIM RESPONSE:STRING[1]
[]REPEAT
[]PRINT
[]PRINT USING "S45^","Loan Terms"
[]PRINT -
[]INPUT " Amount of Regular Payments ",YOUPAY
[]INPUT " Enter the Principle ",PRINCIPLE
[]INPUT " Enter the Annual Interest Rate ",INTEREST
[]INPUT " Enter the Number of Payments Yearly",NUMPAY
[]YEARS=-(LOG(1-PRINCIPLE*(INTEREST/100)/(NUMPAY*YOUPAY))/
(LOG(1+INTEREST/100/NUMPAY)* NUMPAY))
[]MONTH=INT(YEARS*12+.5)
[]YEARS= INT(MONTH/12)
[]MONTH=MONTH-YEARS*12
[]PRINT " The Term of Your Loan is "; YEARS; " years and "; MONTH; " months."

[]INPUT "Calculate another or Quit (C/Q)?...", RESPONSE
[]UNTIL RESPONSE<>"C" AND RESPONSE<),"c"
[]END "Goodbye-I hope I helped you."
ENDEXIT Leave loop if a condition is True
Syntax:
EXITIF condition THEN
Proclines

ENDEXIT
Function: ENDEXIT terminates an EXITIF test. You always use EXITIF/THEN/ENDEXIT inside a procedure loop. If the Boolean expression tested by EXITIF is true, BASIC09 executes the program statements between THEN and ENDEXIT and then transfers program operation outside the loop. If the condition tested by EXITIF is not true, loop execution continues at the statement following ENDEXIT.
Parameters:
condition
A comparison operation that returns either True or False, such as A = B, A<B, or A=B=C.
proclines
One or more statements to perform if the Boolean expression tested by EXITIF is True.

For more information, see EXITIF/THEN/ENDEXIT
ENDIF Close IF statement
Syntax:
IF condition THEN
action
[ELSE
secondary action]
ENDIF
Function: ENDIF terminates an IF/THEN condition test. If the condition tested by IF is true, BASIC09 executes the statements between THEN and ENDIF. If the condition tested by IF is not true, BASIC09 transfers execution to the procedure line following ENDIF or (optionally) executes the statements following ELSE.
Parameters:
condition
A Boolean expression (produces a result of True or False).
action
A line number to which the procedure is totransfer execution. Action can also be a program statement. If action is a line number, do not include the ENDIF statement in the IF test.
secondary
A program statement.
action
For more information, see IF/THEN/ELSE/ENDIF.
ENDLOOP Close LOOP statement
Syntax:
LOOP

statement(s)

ENDLOOP
Function: ENDLOOP terminates a procedure loop established by the LOOP command. BASIC09 endlessly executes all procedure statements between LOOP and ENDLOOP repeatedly unless a condition test within the loop (such as EXITIF/ THEN/ENDEXIT, or IF/THEN) transfers execution outside of the loop.

Parameters:

staternent(s) One or more procedure lines that execute within the loop.

For more information, see LOOP/ENDLOOP
ENDWHILE Close WHILE statement
Syntax:
WHILE condition DO
proclines
ENDWHILE
Function: Forms the bottom of a WHILE loop. WHILE causes the procedure lines between DO and ENDWHILE to execute as long as the result of the expression following WHILE is true. Because the loop is tested at the top, the lines within the loop are never executed unless the expression is true.
Parameters:
condition
A Boolean expression (produces results of True or False).
proclines
Are program lines to execute if the expression is true.
For more information, see WHILE/DO/ENDWHILE.
EOF Test for end-of-file
Syntax:
EOF (path)
Function: Tests for the end of a disk file. The function returns a value of True when it encounters an end-of-file; otherwise, it returns False. Use EOF with a READ or GET statement.
Parameters:
path
The number of the path you are accessing. BASIC 09 automatically stores a path number
into the variable you specify during a CREATE or OPEN operation.
Examples:
IF EOF(xPATH) THEN

CLOSE #PATH

ENDIF
Sample Program:

This procedure redirects a listing of the current directory into a file named Dirfile. It then lists Dirfile to the screen. EOF tells the WHILE/ENDWHILE loop when the READ operation reaches the end of the file.
PROCEDURE readfile
[]DIM A:STRING[80]

[]DIM PATH:BYTE
[]SHELL "DIR > dirfile"
[]OPEN #PATH,"dirfile":READ
[]WHILE NOT EOF(#PATH) DO
[]READ *PATH,A
[]PRINT A
[]ENDWHILE
[]CLOSE #PATH
[]END
ERR Return error code
Syntax:
ERR
Function: Returns the error code of the most recent error. BASIC09 automatically sets the ERR code to zero after you reference it. ERR is only useful when used in conjunction with BASIC09's ON ERROR error trapping functions.
See Appendix A for a list of all BASIC09 error codes.
Parameters:
None

Examples:
ERRNUM = ERR
IF ERRNUM = 218 THEN
PRINT "File already exists. Please use another filename."

ENDIF

Sample Program:
This procedure displays the contents of a file you select. If the file doesn't exist (Error 216, Pathname not found), the procedure uses ERR to tell you. If an error other than Error 216 occurs, the procedure displays I can't handle error x x, where xx is the code of the error.

PROCEDURE readfile
[]DIM READFILE:STRING; A:STRING[80]; PATH:BYTE
10[]INPUT "Type the pathli5t of the file to read...",READFILE
[]ON ERROR GOTO 100
(* if an error occurs, skip to line 100.
[]OPEN #PATH,READFILE:READ
[]WHILE EOF(#PATH)<>TRUE DO
[]READ #PATH,A
[]PRINT A
[]ENDWHILE
[]CLOSE #PATH
[]END
100[]ERRNUM=ERR

(* store the error code in ERRNUM.
[]IF ERRNUM=216 THEN
(* if file doesn't exist say 5o.
[]PRINT "I can't find the file ...Please try again."
[]ON ERROR
[]GOTO 10
[]ENDIF
[]PRINT "Sorry, I can't handle error number "; ERRNUM (other error.
[]CLOSE #PATH
[]END
ERROR Simulate an error
Syntax:
ERROR code
Function: Simulates the error specified by code. You would mainly use this command to test ON ERROR GOTO routines. When BASIC09 encounters an ERROR statement, it proceeds as if the error corresponding to the specified code has occurred. Refer to Appendix A for a listing of error codes and their meanings.

Parameters:
code
The code of the error you want to simulate.

Examples:
ERROR 207

ERRNUM = ERR

IF ERRNUM = 207 THEN
PRINT "Memory is full. The current data is being saved to disk."

ENDIF
Sample Program:
This program creates a file named Testl. Before creating the file, it checks to see if it already exists. If the file exists, the procedure deletes it. An error trap catches any error that might occur. To test if the trap works for Error 216, "Pathname not found", the statement ERROR 216 is inserted as the fourth line. After testing the ~ trap to make sure it works, delete this line to use the procedure
PROCEDURE errortest
[]DIM PATH,ERRNUM:HYTE; RESPONSE:STRING[1]
[]BASE 0
[]ON ERROR GOTO 10

(* set error trap
[]ERROR 216

(* simulate error
[]DELETE "teSt1"
[]GOTO 100
10[]ERRNUM=ERR
[]IF ERRNUM=216 THEN
[]INPUT "File doesn't exist...continue? (Y/N)",RESPONSE
[]IF RESPONSE="N" THEN
[]END "Procedure terminated at your request…”
[]ENDIF
[]ENDIF
[]ON ERROR

(* turn off error trap
100[]CREATE #PATH , "test 1 ":WRITE
[]END
EXITIF/THEN/ENDEXIT
Exit from loop if a condition is true
Syntax:
EXITIF condition THEN
statement
ENDEXIT
Function: Use these statements with loop constructions (particularly LOOP and ENDLOOP) to provide an exit for what is otherwise an endless loop. EXITIF performs a test of a Boolean expression, such as A<B. The THEN statement precedes any operation you want to execute if the expression is true. You must always follow EXITIF with an ENDEXIT.
If the Boolean expression following an EXITIF is false, execution of the program transfers to the statement immediately following the body of the loop (after the ENDEXIT statement). Otherwise, BASIC09 executes the statements) between EXITIF and ENDEXIT, then transfers control to the statement following the body of the loop.
You can also use EXITIF and ENDEXIT with types of loop constructions other than LOOP/ENDLOOP.

Parameters:

Boolean
A comparison operation that returns either
expression
True or False, such as A=B, A<B, or A=B=C.
statement
An operation to be performed if the Boolean
expression tested by EXITIF is True, such as:
PRINT A is less than H.
Examples:
LOOP
COUNT=COUNT+1
EXITIF COUNT>100 THEN
DONE = TRUE
ENDEXIT
PRINT COUNT
X = COUNT/2
ENDLOOP
Sample Program:

This procedure simulates a gambling machine by randomly selecting among several fruit names and displaying them: It gives you a starting stake of $25 and, depending on the combination of fruit selected, it adds or subtracts from your stake.

If your stake drops to zero, an EXITIF statement ends the procedure and tells you that you're broke.
PROCEDURE onearm
[]DIM FRUIT1,FRUIT2,FRUIT3,STAKE:INTEGER; FRUIT(8): STRING[6]

[]STAKE=25
[]PRINT \ PRINT "You have $"; STAKE; " to play with."
[]FOR T=1 TO 8
[]READ FRUIT(T)
[]NEXT T
[]L00P
[]FRUIT1=RND(7)+1 \FRUIT2=RND(7)+1 \FRUIT3=RND(7)+1
[]PRINT FRUIT(FRUIT1); " "; FRUIT(FRUIT2); " "; FRUIT(FRUIT3)
[]IF FRUIT(FRUIT1)=FRUIT(FRUIT2) AND FRUIT(FRUIT1)= FRUITCFRUIT3) THEN STAKE=STAKE+10
[]ELSE
[]IF FRUIT(FRUIT1)=FRUIT(FRUIT2) OR FRUIT(FRUIT1)= FRUIT(FRUIT3) OR []FRUIT(FRUIT2)=FRUIT(FRUIT3) THEN
[]STAKE=STAKE+ 1
[]ELSE
[]STAKE=STAKE-1
[]ENDIF
[]ENDIF
[]REM exit play loop is Stake is less than $1.
[]EXITIF STAKE<1 THEN
[]PRINT
[]PRINT "You're Busted...Better go home."
[]ENDEXIT
[]PRINT "Your stake is now $"; STAKE; "."
[]PRINT
[]PRINT
[]INPUT "Press ENTER to pull again...",Z$
[]ENDLOOP
[]END
[]DATA "ORANGE","APPLE","CHERRY","LEMON","BANANA"
[]DATA "PEAR", "PLUM","PEACH"
EXP Return natural exponent
Syntax: E XP(n um ber)
Function: Returns the natural exponent of number, that is, e (2.71828183) to the power of number. Number must be positive.
This function is the inverse of the LOG function. Therefore, number = EXP(LOG(number)).
Parameters:
number
 A positive value.
Examples:
PRINT EXP(2)
Sample Program:
This procedure calculates the exponent of values in the range 0-1.
PROCEDURE exprint
[]FOR T=0 TO 1 STEP .03
[]PRINT EXP(T),EXP(T+.01),EXP(T+.02)
[]NEXT T
[]END
