BASIC09

 Reference

- 18 -

BASIC09

 Reference

Chapter 11

BASIC09 Command Reference
BASIC09 is made of keywords (functions and statements) that you use, with their parameters, to instruct the computer to perform certain operations.

This chapter is a complete reference for all of BASIC09's keywords.
Keyword Format

The reference to each keyword is organized in this manner:
· The keyword.

· The proper syntax (spelling and form) for using the keyword.

· A brief description of the keyword's purpose or effect.

· Descriptions of any parameters or arguments for the keyword.

· Notes about special features or requirements of the keyword, when appropriate.

· One or more examples for using the keyword.

· One or more sample procedures.

This format can vary slightly, depending on the complexity of each keyword. For instance, some keywords require parameters or arguments, and others do not. Some keywords are self explanatory and do not require a sample procedure.
The Syntax Line
The second line in each command or keyword reference is the syntax line. This line uses keyword constants and keyword Variables to show you how to construct a command line. Constants are words, numbers, or symbols that you type exactly as they appear. Variables are words that only represent the actual words, numbers, or symbols that you must supply for the command.
All variables are italic. When you see an italicized word, you know that you must supply some other word, name, symbol, or value in place of that word. If a word, symbol, or value is not italicized, type it exactly the way it appears in the syntax line.
The syntax line also uses symbols to help you understand how to construct a command line. These symbols are:
[image: image1]
[]
Words, names, value, or symbols contained between right and left brackets are optional. You can use them or not, depending on what you want to accomplish with the command.

…
Ellipsis indicates that the last parameter can be repeated.
The following syntax line for DELETE requires only one parameter, the variable pathname.
DELETE "pathname"

Because pathname is italicized, you know that you must replace it with other text-in this case the pathlist to the file you want to delete. If you wanted to delete a file named Test from the ROOT directory of Drive /D1, this syntax line tells you that you must type:

delete "/d1 /test"
Other syntax lines are more complex, such as the line for CREATE:

CREATE *path,"pathli5t"[accessmode)

[+access model[+...]

This line tells you how to create a path to a file or device. Because the number symbol (#) is not italicized, you type it after the blank space following the keyword. However, path,pathlist, and access mode are all italicized. You must replace them with other names or values.
The access mode variable is contained within brackets. This tells you that it is optional. You can include an access mode, or not. If you don't, BASIC09 opens the path in the Update Mode.
The second access mode shows that the command allows two access mode parameters, preceded by a plus symbol. The ellipsis shows that you can have even more access mode parameters.
Other syntax lines show that no parameters are required, such as:
DATE$

This command returns the current date. There is nothing it requires, and you can do nothing else with it.
Sample Programs

The sample programs in this chapter are complete. That is, you can type them, run them, and get a result. The procedures let you see the syntax and form of a command, as well as showing you how it might be used in a program.
Because the programs are executable, the manual shows unformatted listings (without relative address, indented control structures, and so on). This helps. eliminate confusion for you when you type the program. You can type it exactly as it appears, exit the editor, and run the procedure.
ABS
Return absolute value
Syntax:
ABS(number)
Function: Computes the absolute value of number. A number's
absolute value is its magnitude without regard to its sign.
Absolute values are always positive or zero.
Parameters:
Number
Any positive or negative number.
Examples:
PRINT ABS(.6561)
X=ABS(Y)

Sample Program:
The following procedure asks you to type the temperature, and makes an appropriate comment. It uses ABS to get the absolute value of the temperature.
PROCEDURE temperature
 DIM TEMP:INTEGER
 INPUT "What's the temperature outside? (Degrees F)...",TEMP
 IF TEMP<0 THEN
 PRINT "That's "; ABS(TEMP); " below zero ! Brrrrrrr
 END
 END IF
 IF TEMP=0 THEN
 PRINT "Zero degrees? That's mighty cold!"
 END
 END IF
 PRINT TEMP; " degrees above zero? That's kind of balmy..."
 REND
ACS Return arccosine
Syntax:
ACS(number)
Function: Calculates the arccosine of number. Use the DEG or RAD commands to tell BASIC09 if number is in degrees or radians. If you do not specify degrees or radians, the default is radians.
Parameters:
number
The number for which you want to compute the arccosine.
Examples:
PRINT ASCC.6561)
Sample Program:
The procedure calculates the arccosine of a value you type and expresses the result in degrees.
PROCEDURE arccosine
[]DEG
[]DIM NUM:REAL
[]INPUT "Enter a number between -1 and 1",NUM
[]PRINT "The arccorsine of "; NUM; " is ---“; ACS(NUM)
[]END
ADDRReturn
the location of a variable
Syntax: ADDR(name)

Function: Returns the absolute location in a process's address space of the variable, array, or data structure assigned to name. The address returned is that of the first character in the variable. If the variable is numeric, one or more of the locations might contain zero.
For instance, if you use ADDR to obtain the address of an integer variable that contains the value 44, the first address location (byte) contains 0, and the second location contains 44.

Parameters:

name

The name of a string, a numeric variable, an array, or a data structure.

Examples:

This procedure displays the memory address where a variable named X resides:

Sample Program:
This procedure uses ADDR to tell you the memory location of the variable that stores your keyboard entry.
PROCEDURE address
[]DIM A:INTEGER
[]DIM TEST:STRING
[]INPUT "Type a String of characters...",TEST
[]A=ADDR(TEST)
[]PRINT "The String you typed it Stored at address”; A
[]PRINT "This is what it contains:..."
[]FOR T=A TO A+LEN(TEST)
[]PRINT CHR$(PEEK(T));
[]NEXT T
[]PRINT
[]END
AND
Performs a logical AND operation

Syntax:
operandl AND operand2
Function: Performs the logical AND operation on two or more values, returning a value of either TRUE or FALSE.
Parameters:
operandl
Can be either numeric or string values.
operand2
Examples:
PRINT A>3 AND B>3
PRINT A$="YES" AND H$="YES"
Sample Program:

The following program calculates an insurance premium rate that is based on the answers to some lifestyle questions. Every time you press E, the premium rate goes up. The procedure uses AND to increase the rate by two percent if you both smoke and drink.
PROCEDURE policy
[]DIM POLICY-VALUE,RATE:REAL
[]DIM SMOKE,DRINK:STRING[1]
[]POLICY_VALUE=1000000.
[]RATE=.001
[]INPUT "Do you smoke? (Y/N)...",SMOKE
[]INPUT "Do you drink? (Y/N)...",DRINK
[]IF SMOKE="Y" AND DRINK="Y" THEN RATE=RATE+.02
[]ELSE
[]IF SMOKE="Y" THEN RATE=RATE+.01
[]ENDIF
[]IF DRINK="Y" THEN RATE=RATE+.01
[]ENDIF
[]ENDIF
[]PRINT "Your premium is "; RATE* POLICY-VALUE
[]END

ASC Returns ASCII code
Syntax:
ASC (string)
Function:
Returns the ASCII code for the first character of string.
ASC returns the value as a decimal number. If string is null (contains no characters) BASIC09 returns Error 67 (Illegal Argument).
Parameters:
string

Any string type variable or constant.
Examples:
PRINT ASC("Hello")
x = ASC(A$)
Sample Program:
The following procedure determines whether the first character you enter is a hexadecimal digit. To do this, it gets the ASCII value of the character and compares it to the ranges for characters between 1 and 0 and A and F.
PROCEDURE hexcheck
[]DIM A:INTEGER

[]DIM HEXNUM:STRING
[]LOOP
[]INPUT "Enter a hexadecimal value ...“,HEXNUM
[]A=ASC(HEXNUM) \

(* GET THE ASCII CODE *)
[]EXITIF A<48 OR A>57 AND A<65 OR A>70 THEN
[]PRINT "Not a hex number."
[]END
[]ENDEXIT
[]PRINT "Ok."
[]ENDLOOP
[]END
ASN
Returns arcsine
Syntax:
ASN(number)
Function: Calculates the arcsine of number. ASN expresses its result in radians unless you specify otherwise (see DEG).
Parameters:

number
The number for which you want to calculate the arcsine.

Examples:
PRINT ASC(.6561)

Sample Program:

The following program calculates the arcsine of a number you enter and expresses the result in degrees.

PROCEDURE arcsine
[]DIM NUM:REAL
[]DEG
[]INPUT "Enter a number (-1 to 1) ",NUM
[]PRINT "The arcsine of a "; NUM; " is ---"; ASN(NUM)
[]END

ATN Returns arctangent

Syntax:
ATN(number)

Function: Calculates the arctangent of number.
Parameters:
number
The number for which you want to find the arctangent.
Examples:
PRINT ASC(.6561)
Sample Program:

This procedure calculates arcsine, arccosine, and arctangent for a value you enter.
PROCEDURE anglecalc
[]DIM NUM:REAL
[]DEG
[]INPUT "Enter a number ",NUM
[]PRINT
[]PRINT " ","Arcsine","Arccosine","Arctangent"
[]PRINT "Number","Degrees","Degrees","Degrees"
[]PRINT “---“
[]IF NUM>1 OR NUM<-1 THEN
[]PRINT NUM,"UNDEF","UNDEF",ATN(NUM)
[]PRINT
[]END
[]ENDIF
[]PRINT NUM,ASN(NUM),ACS(NUM),ATN(NUM)
[]PRINT
[]END
BASE Set array base
Syntax:
BASE 0
BASE 1

Function: Sets a procedure's lowest array or data structure index to either 0 or 1. If you want to have the first elements in arrays set to 0, you must include B A S E 0 at the beginning of the procedure.

The BASE statement does not affect string operations such as MID$, RIGHTS, and LEFTS. BASIC09 always indexes the first character of a string as 1.
Parameters:
0 or 1

If you do not indicate a BASE setting in a procedure, BASIC09 uses a default of 1.
Examples:
BASE 0

Sample Program:

This procedure determines how many times RND selects each number between 0 and 11 out of 1000 selections. It stores the results in an array of 12 elements. Because it specifies BASE 0, one of the elements in the array is 0. Whenever the procedure picks a random number, it increments the value in the corresponding array number by one.

PROCEDURE randomtest
[]BASE 0

(* set the array base at 0.
[]DIM RND_ARRAY(12),X,R:INTEGER
(* dimension array to hold results.
[]FOR X=0 TO 11
[]RND-ARRAY(X)=0

(* initialize array elements at zero.
[]NEXT X
[]SHELL "TMODE -PAUSE"

(* turn off screen pause.
[]FOR X=1 TO 1000
[]R=RND(11) (select random number 1000 times.
[]RND-ARRAY(R)=RND-ARRAY(R)+1

(* add 1 to appropriate element,
[]PRINT 1001-X 0 count down from 1000 to 1,
[]NEXT X
[]FOR X=0 TO 11 OPRINT "RND selected "; X; " "; RND-ARRAY(X); "times,
(*display array
[]NEXT X
 []SHELL "TMODE PAUSE" 0 turn scroll lock back on,
 []END

BYE End procedure, terminate BASIC09
Syntax: BYE

Function: Ends execution of a procedure and terminates BASIC09. The statement closes any open files, but you lose any unsaved procedures or data.

Use BYE to exit packed programs that you call from OS-9 and especially programs that you call from procedure files.
Parameters:
None

Examples:
INPUT "Pre55 ENTER to return to the system.";Z$
BYE
Sample Program:

This procedure calculates the payments and interest of a loan. When it is through, it exits the procedure and BASIC09 with a BYE statement.
PROCEDURE loan
[]DIM PRIN,LENG.,RATE,MONPAY:REAL
[]DIM RESPONSE:STRING[1]
[]REPEAT
[]PRINT "Amortization Program"
[]DINPUT "How much do you want to borrow?...",PRIN
[]INPUT "For how many months?...",LENG
[]INPUT "At what interest rate? ...",RATE
[]A=RATE/1200 .
[]B=1-1/(1+A)^LENG
[]MONPAY=PRIN*A/H
[]MONPAY=INT(MONPAY*100+.5)/100
[]PRINT "Monthly payments are...$";
[]PRINT USING "R12.2<",MONPAY
[]PRINT "The total interest to pay is ...$";
[]PRINT USING "r12.2<",MONPAY*LENG-PRIN
[]PRINT
[]INPUT "Do another calculation?...",RESPONSE
[]PRINT
[]PRINT
[]UNTIL RESPONSE<>"Y"
[]BYE

[]END
CHAIN Execute another module
Syntax:
CHAIN "module [parameters] [...]"
Function: CHAIN performs an OS-9 chain operation, passing module as the name of a program to execute. If you include other parameters, CHAIN passes them to the executing module. The module must be programmed to expect parameters of the type you provide.
CHAIN exits BASIC09, unlinks BASIC09, and returns the freed memory to OS-9.
CHAIN can begin execution of any module, not only BASIC09 modules. It executes the module indirectly through the shell in order to take advantage of the shell's parameter processing. This has the side effect of leaving the initiated shells active. Programs that repeatedly chain to each other eventually fill memory with waiting shells. To prevent this, use the EX option to initialize a shell.
BASIC09 does not close files that are open when you execute CHAIN. However, the OS-9 FORK call passes only the standard I/O paths (0, 1, and 2) to a child process. Therefore, if you need to pass an open path to another program segment, use the EX shell option.

Parameters:
module
The name of the procedure module you want BASIC09 to execute.
parameters
String data passed to the chained module.
Examples:
CHAIN "ex BASIC09 menu"

CHAIN "HASIC09 #10k sort (""datafile"",
""tempfile"")"

CHAIN "DIR /D0"

CHAIN "Dir; Echo *** Copying Directory ***; ex basic09 copydir"
Sample Program:
This procedure chains to two others to display a directory or a file. It uses CHAIN to call the procedures.

PROCEDURE chaining
[]DIM RESPONSE:BYTE
[]PRINT USING "S26","- MENU -"

(* print menu title.
[]PRINT
[]PRINT "1. List current data directory" (* print menu.
[]PRINT "2. Display a file"
[]PRINT "3. Exit to system"
[]PRINT
[]INPUT "Select a function (1-3) ",RESPONSE (* function you want.
[]ON RESPONSE GOTO 100,200,300

(* select appropriate function.
[]00 CHAIN "EX BASIC09 dirlook"

(* chain to list directory.
[]200 CHAIN "EX BASIC09 display"

(* chain to list file.
[]300 BYE

PROCEDURE dirlook
[]REM Lists the specified directory
[]SHELL "DIR" (* execute dir command.
[]CHAIN "EX BASIC09 chaining"

(* chain back to calling proc.
[]END

PROCEDURE display
[]REM Lists the specified file.
[]DIM FILE,JOB:STRING
[]INPUT "Path of file to display...",FILE
[]JOB="LIST "+FILE
[]SHELL JOB

(* list specified file.
[]CHAIN "EX BASIC09 chaining"

(* chain back to calling proc.
[]END
CHD Change data directory
CHX Change execution directory
Syntax:
CHD dirpath
CHX dirpath

Function:
Changes the current data or execution directory.

Parameters:
dirpath
An existing data or execution directory.

Examples:
CHD "/D1/ACCOUNTS/RECEIVABLE"
CHX "/D1 /CMDS"
CHD ".."
Sample Program:
This procedure creates a directory, and makes it the data directory. Then, it creates a file in the new directory, exits the new directory, and deletes the file and the directory.
PROCEDURE chdtest
[]DIM PATH:BYTE
[]SHELL "MAKDIR TEST"

(* create new directory named TEST.

[]CHD "TEST"

(* make TEST the data directory.
[]CREATE #PATH,"samplefile":WRITE
(* create a file in TEST.
[]REM Write data into the new file
[]WRITE #PATH,"This file is for testing only."
[]WRITE #PATH,"It will be destroyed when this procedure ends."

[]CLOSE #PATH
[]SHELL "LIST samplefile"

(* list the new file.
[]CHD ".."

(* make the ROOT the data directory.
[]SHELL "DEL TEST/samplefile"
(* delete the file.
[]SHELL "DELDIR TEST"

(* delete the directory.
[]END

CHR$ Return ASCII character
Syntax:
CHR$(code)
Function: Returns the ASCII character for the value of code. CHR$ is the inverse of the ASC function, which returns the ASCII code for a given character. For a complete listing of ASCII codes, see Chapter 9.
Parameters:
code

The ASCII value for a keyboard character or special block graphics character.

Examples:
PRINT CHR$(88)

Sample Program:
By increasing by one the ASCII values of characters you type, the following program creates a secret code. It uses CHR$ to display the secret code.
PROCEDURE secret

[]DIM TEXT,SECRETLINE;STRING[80]
[]DIM T,CODECHAR:INTEGER

[]TEXT=””
[]SECRETLINE=""

[]PRINT "Type a line to code in capital letters..."

[]INPUT TEXT

(* you type a line,

[]FOR T=1 TO LEN(TEXT)

[]CODECHAR=ASC(MIDS(TEXT,T,1))
(* look at each character in line.

[]IF CODECHAR=90 THEN (is it "Z"? If yes then

[]CODECHAR=64

(* make it one less than "A".

[]ENDIF

[]IF CODECHAR=32 THEN

(* is character a space? If yes then

[]CODECHAR=31

(* decrease its value by one.

[]ENDIF

[]SECRETLINE=SECRETLINE+CHRS(CODECHAR+1) (* add 1 to characters.

[]NEXT T

[]PRINT SECRETLINE

(* print the secret code.

[]END

CHX Change execution directory
CHD Change data directory
Syntax:
CHX dirpath
CHD dirpa th
Function:
Changes the current execution or data directory.
Parameters:
dirpath An existing execution or data directory.
Examples:
CHX "/D1 /CMDS"
CHD "/D1/ACCOUNTS/RECEIVABLE"

CHD “..”
CLOSE Deallocate file or device path
Syntax: CLOSE #pathnum

Function: Deallocates the file or device path specified by pathnum.
When you OPEN or CREATE a file, BASIC09 allocates a path number to the variable you supply in the OPEN or CREATE command. The system then knows the path by that number. If the path you CLOSE is to a non-shareable device (such as a printer), the system releases the device for other use. Do not close paths 0, 1, and 2 (the standard I/O paths) unless you immediately open a new path to take over the standard path number.

Parameters:
pathnum
The name of variable containing the path number or the actual number of the path to a file or device.
Examples:

CLOSE #FILEPATH, #PRINTERPATH, #TERMPATH

CLOSE #5, x6, #7

CLOSE #1 \

(* closes the standard output path *)
OPEN #PATH,"/T1" \

(* redirects standard output *)
Sample Program:
This procedure creates a directory named TEST and changes it to the data directory. It then creates a file named Samplefile and writes data to the file. Finally it changes back to the parent directory and deletes Samplefile and TEST.

PROCEDURE close

[]DIM PATH;BYTE

[]SHELL "MAKDIR TEST"

[]CHD "TEST"

[]CREATE #PATH,"samplefile";WRITE

(* create a new file.

[]WRITE #PATH,"This file is for testing only."

[]WRITE #PATH,"It will be destroyed when this procedure ends."

[]CLOSE #PATH

(* close the file.

[]SHELL "LIST samplefile"

[]CHD ".."

[]SHELL "DELDIR TEST"

[]END
COS Return cosine
Syntax:
COS(number)

Function: Calculates the cosine of number. Unless you specify DEG, COS interprets the value of number in radians.
Parameters:
number
The number for which you want to find the cosine.
Examples:
PRINT COS(45)

Sample Program:
This procedure calculates sine, cosine, and tangent of a value you enter.
PROCEDURE ratiocalc

[]DIM NUM:REAL

[]DEG

[]INPUT "Enter a number...",NUM SPRINT
[]PRINT "Number", "SINE","COSINE","TAN"

[]PRINT

[]PRINT ANGLE,SINCNUM),COSCNUM),TANCNUM) SPRINT
[]END
CREATE Establish a disk file.
Syntax: CREATE # pa th, "pa thlist" [access mode] [+ access mode] [+ ...]
Function: Creates a file on a disk. When you create a file, you can select one or more of the following access modes for the file:
Mode
Function
READ
Lets you read (receive) data from a file but does not let you write (send) data to the file.
WRITE
Lets you write data to a file but does not let you read data from a file.
UPDATE
Lets you both read from and write to a file.
Parameters:
path
The name of the variable in which BASIC09 stores the number of the opened path.
pathlist
The route to the file or device to be opened, including the filename, if appropriate.
access
mode The type of access to be allowed for the file or device. Use plus symbols to allow more than one type of access with a single file.
Notes:
· You can access files either sequentially or randomly. With random access, you must establish the filing system you want for a particular application.
· Files are byte-addressed, and you are not restricted by explicit record lengths. You can read the data one byte at a time, or in whatever size portions you want.

· A new file has a size of zero. OS-9 then expands the file automatically when PRINT, WRITE, or PUT statements write beyond the current end-of-file.

Examples:
CREATE #TRANS,"transportation":UPDATE
CREATE #SPOOL,"/user4/report":WRITE
CREATE #OUTPATH,name$:UPDATE+EXEC
Sample Program:
This procedure CREATES a directory named TEST and makes it the data directory. It creates a file in TEST named Samplefile, writes data to the file, then resets the parent directory as the data directory. Finally, it deletes Samplefile and TEST.
PROCEDURE close

[]DIM PATH:BYTE

[]SHELL "MAKDIR TEST"

[]CHD "TEST"

[]CREATE #PATH,"samplefile":WRITE

(* create a file.

[]WRITE #PATH,"This file is for testing purposes only."

[]WRITE #PATH,"It will be destroyed when this procedure ends."

[]CLOSE #PATH

(* close the file.

[]SHELL "LIST samplefile"

[]CHD ".."
[]SHELL "DELDIR TEST"

[]END
DATA Store numeric and string information
Syntax: DATA "item" [,"item",...]

Function: Stores numeric and string constants to be accessed by a READ statement. A DATA line can contain up to 254 characters. Each item in the list must be separated by commas.
You can place DATA statements anywhere in a procedure that is convenient. BASIC09 reads sequentially, starting with the first item in the first DATA statement, and ending with the last item in the last DATA statement.

The following rules apply to data items: You must place all string data between quotation marks.

· To include quotes.n string-type data, use consecutive quotation marks, like this: DATA " H e 5 a i d , " " g o home"" to me".
· You can use RESTORE to reset the data pointer. Using RESTORE without an argument resets the pointer to the beginning of the data items. Using RESTORE with a line number, resets the pointer to the first item in the specified line.
· The READ statement can support a list of one or more variable names of various types. The data types in DATA statements must match the variable types used in the corresponding READ statements.
· You can include arithmetic expressions in data items. READ causes the expressions to be evaluated and returns the result of the expression as the data item.
Parameters:
item

Numeric or string characters. Enclose string characters in quotation marks.
Examples:
DATA 1.1,1.5,9999,"CAT","DOG"

DATA SIN(TEMP/25), COS(TEMP*PI)

DATA TRUE,FALSE,TRUE,TRUE,FALSE

DATA "The rain in Spain","falls mainly on the plain"
Sample Program:
This procedure calculates the day of the week for a date you enter. A data statement contains the names of the weekdays.
PROCEDURE weekday
[]DIM X,DAY,MONTH,YEAR,CALC:INTEGER
[]DIM ANUM,HNUM,CNUM,DNUM,ENUM,FNUM,GNUM,HNUM,INUM: INTEGER
[]DIM WEEKDAY(7):STRING[9]
[]PRINT USING "S60^","Day of the Week Program"
[]PRINT USING "S60^","For any year after 1752"
[]PRINT
[]INPUT "Enter day of the month as two digits, such as 08...",DAY
[]INPUT "Enter month as two digits, such as 12...",MONTH
[]INPUT "Enter year as four digits, such as 1986...",YEAR
[]FOR X=1 TO 7
[]READ WEEKDAY(X)
[]NEXT X
[]ANUM=INT(.6+1/MONTH)
[]BNUM=YEAR-ANUM
[]CNUM=MONTH+12 * ANUM
[]DNUM=BNUM/100
[]ENUM=INT(DNUM/4)
[]FNUM=INT(DNUM)
[]GNUM=INT(5*BNUM/4)
[]HNUM= INT(13*(CNUM+1)/5)
[]INUM=HNUM+GNUM-FNUM+ENUM+DAY-1
[]INUM=INUM-7*INT(INUM/7)+1
[]PRINT
[]PRINT "The day of the week on "; DAY; "/"; MONTH;
[]PRINT "/"; YEAR; " is..."; WEEKDAYCINUM)
[]DATA "Sunday","Monday","Tuesday","Wednesday", "Thursday"
[]DATA "Friday","Saturday"
[]END

